L298
Jenuary 2000
DUAL FULL-BRIDGE DRIVER
Multiwatt15
ORDERING NUMBERS : L298N (Multiwatt Vert.)
L298HN (Multiwatt Horiz.)
L298P (PowerSO20)
BLOCK DIAGRAM
.OPERATING SUPPLY VOLTAGE UP TO 46 V
.TO T A L DC CURREN T UP TO 4 A
.LOW SA TU RATION VOLTAGE
.OV ERTEM PE RATU RE PROT E CTION
.LOGICAL "0" INPUT VOLTAGE UP TO 1.5 V
(HIGH NOISE IMMUNITY)
DESCRIPTION
The L2 98 is an int egr ated mono lit hi c c ir c uit in a 15-
lead Multiwatt and PowerSO20 packages. It is a
high voltage, hig h c urrent dual ful l-b ri dge dr iv er d e -
signed to accept standard TTL logic levels and drive
inductive loads such as relays, solenoids, DC and
steppi ng motors. Two enable in puts are provided to
enable or disable the device independently of the in-
put signals. The emitters of the lower transistors of
each bridge are connected together and the corre-
spon ding e xte rnal termi nal c an b e us ed f or the co n-
nection of an external sensing resistor. An additional
sup ply input is p ro vi ded so t hat t he logic work s at a
lower voltag e.
PowerSO20
®
1/13
PIN CONN ECTIONS (top view)
GND
Input 2 VSS
N.C.
Out 1
V
S
Out 2
Input 1
Enable A
Sense A
GND 10
8
9
7
6
5
4
3
2
13
14
15
16
17
19
18
20
12
1
11 GND
D95IN239
Input 3
Enable B
Out 3
Input 4
Out 4
N.C.
Sense B
GND
ABSOLU TE MAX IMUM RATINGS
Symbol Parameter Value Unit
VSPower Supply 50 V
VSS Logic Supply Voltage 7 V
VI,Ven Input and Enable Voltage –0.3 to 7 V
IOPeak Output Current (each Channel)
– Non Repetitive (t = 100µs)
–Repetitive (80% on –20% off; ton = 10ms)
–DC Ope ra tio n
3
2.5
2
A
A
A
Vsens Sensing Voltage –1 to 2.3 V
Ptot Total Power Dissipation (Tcase = 75°C) 25 W
Top Junc ti on Op era ti ng Temper at ur e –25 to 130 °C
Tstg, TjStor age and Junct io n Temp er atu re –40 to 150 °C
THERMAL D ATA
Symbol Parameter PowerSO20 Multiwatt15 Unit
Rth j-case Thermal Resistance Junction-case Max. 3 °C/W
Rth j-amb Thermal Resistance Junction-ambient Max. 13 (*) 35 °C/W
(*) Moun te d on al uminum subs trat e
1
2
3
4
5
6
7
9
10
11
8
ENABLE B
INPUT 3
LOGIC SUPPLY VOLTAGE VSS
GND
INPUT 2
ENABLE A
INPUT 1
SUPPLY VOLTAGE VS
OUTPUT 2
OUTPUT 1
CURRENT SENSING A
TAB CONNECTED TO PIN 8
13
14
15
12
CURRENT SENSING B
OUTPUT 4
OUTPUT 3
INPUT 4
D95IN240A
Multiwatt15
PowerSO20
L298
2/13
PIN F U NCTIO NS (ref er to t he bl oc k d iagr am )
MW.15 PowerSO Name Function
1;15 2;19 Sense A; Sense B Between this pin and ground is connected the sense resistor to
control the current of the load.
2;3 4;5 Out 1; Out 2 Outputs of the Bridge A; the current that flows through the load
connec ted betw een thes e two pi ns is mon it or ed at pi n 1.
46 V
SSupply Voltage for the Power Output Stages.
A non-inductive 100nF capacitor must be connected between this
pin and gr ou nd.
5;7 7;9 Input 1; Input 2 TTL Compatible Inputs of the Bridge A.
6;11 8;14 Enable A; Enable B TTL Compatible Enable Input: the L state disables the bridge A
(enable A) and/or the bridge B (enable B).
8 1,10,11,20 GND Ground.
9 12 VSS Supply Voltage for the Logic Blocks. A100nF capacitor must be
connected between this pin and ground.
10; 12 13;15 Input 3; Input 4 TTL Compatible Inputs of the Bridge B.
13; 14 16;17 Out 3; Out 4 Outputs of the Bridge B. The current that flows through the load
connec ted betw een thes e two pi ns is mon it or ed at pi n 15.
3;18 N.C. Not Connected
ELE CTRICAL CHARACT E R I S TIC S (V S = 42V; VSS = 5V, Tj = 25 °C ; unle ss otherwis e s pec ified)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
VSSupply Voltage (pin 4) Operative Condition VIH +2.5 46 V
VSS Logic Supply Voltage (pin 9) 4.5 5 7 V
ISQuiescent Supply Current (pin 4) Ven = H; IL = 0 Vi = L
Vi = H 13
50 22
70 mA
mA
Ven = L Vi = X 4 mA
ISS Quiescent Current from VSS (pin 9) Ven = H; IL = 0 Vi = L
Vi = H 24
736
12 mA
mA
Ven = L Vi = X 6 mA
ViL Input Low Voltage
(pins 5, 7, 10, 12) –0.3 1.5 V
ViH Input Hi gh Vol ta ge
(pins 5, 7, 10, 12) 2.3 VSS V
IiL Low Voltage Input Current
(pins 5, 7, 10, 12) Vi = L –10 µA
IiH High Voltage Input Current
(pins 5, 7, 10, 12) Vi = H VSS –0.6V 30 100 µA
Ven = L Enable Low Voltage (pins 6, 11) –0.3 1.5 V
Ven = H Enable High Voltage (pins 6, 11) 2.3 VSS V
Ien = L Low Voltage Enable Current
(pins 6, 11) Ven = L –10 µA
Ien = H High Voltage Enable Current
(pins 6, 11) Ven = H VSS –0.6V 30 100 µA
VCE sat (H) Source Saturation Voltage IL = 1A
IL = 2A 0.95 1.35
21.7
2.7 V
V
VCEsat ( L) Sink Saturation Voltage IL = 1A (5)
IL = 2A (5) 0.85 1.2
1.7 1.6
2.3 V
V
VCEsat Tot al Dr op IL = 1A (5)
IL = 2A (5) 1.80 3.2
4.9 V
V
Vsens Sensing Voltage (pins 1, 15) –1 (1) 2 V
L298
3/13
Figure 1 : Typi ca l S atur at ion V olt ag e vs . O utput
Current. Figure 2 : Swit c hin g T im es Tes t Cir c uits .
Note : For INPUT Switching, set EN = H
For ENABLE Switching, set IN = H
1) 1)Sensi ng voltage can be – 1 V for t 50 µse c; i n stead y state Vsens min 0.5 V.
2) See fi g. 2.
3) See fi g. 4.
4) The loa d must be a pure res istor.
ELE CTRICAL CHARACT E R I S TIC S (continue d)
Symbol Parameter Test Conditions Min. Typ. Max. Unit
T1 (Vi) Source Current Turn-off Delay 0.5 Vi to 0.9 IL (2); (4) 1.5 µs
T2 (Vi) Source Current Fall Time 0.9 IL to 0.1 IL (2); (4) 0.2 µs
T3 (Vi) Source Current Turn-on Delay 0.5 Vi to 0.1 IL (2); (4) 2 µs
T4 (Vi) Source Current Rise Time 0.1 IL to 0.9 IL (2); (4) 0.7 µs
T5 (Vi) Sink Current Turn-off Delay 0.5 Vi to 0.9 IL (3); (4) 0.7 µs
T6 (Vi) Sink Current Fall Time 0.9 IL to 0.1 IL (3); (4) 0.25 µs
T7 (Vi) Sink Current Turn-on Delay 0.5 Vi to 0.9 IL (3); (4) 1.6 µs
T8 (Vi) Sink Current Rise Time 0.1 IL to 0.9 IL (3); (4) 0.2 µs
fc (Vi) Commuta tio n Fre qu enc y I L = 2A 25 40 K Hz
T1 (V en) Source Current Turn-off Delay 0.5 Ven to 0.9 IL (2); (4) 3 µs
T2 (V en) Source Current Fall Time 0.9 IL to 0.1 IL (2); (4) 1 µs
T3 (Ven) Source Current Turn-on Delay 0.5 Ven to 0. 1 IL (2); (4) 0.3 µs
T4 (V en) Source Current Rise Time 0.1 IL to 0.9 IL (2); (4) 0.4 µs
T5 (Ven) Sink Current Turn-off Delay 0.5 Ven to 0.9 IL (3); (4) 2.2 µs
T6 (V en) Sink Current Fall Time 0.9 IL to 0.1 IL (3); (4) 0.35 µs
T7 (V en) Sink Current Turn-on Delay 0.5 Ven to 0. 9 IL (3); (4) 0.25 µs
T8 (V en) Sink Current Rise Time 0.1 IL to 0.9 IL (3); (4) 0.1 µs
L298
4/13
Figure 3 : Sourc e C ur ren t Dela y Times vs. Input or En abl e S wit c hi ng.
Figure 4 : Swit c hin g T im es Tes t Cir c uits .
Note : For INPUT Switching, set EN = H
For ENABLE Switching, set IN = L
L298
5/13
Figure 5 : Sink C ur re nt Del ay T im es vs. Input 0 V E nab le S witching.
Figure 6 : Bidir ec t iona l DC Motor C ont r ol.
L = Low H = High X = Don’t care
Inputs Function
Ven = H C = H ; D = L Forward
C = L ; D = H Reverse
C = D Fast Motor Stop
Ven = L C = X ; D = X Free Running
Motor Stop
L298
6/13
Figure 7 : For hi gher c ur ren ts, outputs can be par al leled. Tak e c ar e to par allel cha nnel 1 with cha nne l 4
and cha nnel 2 with cha nne l 3.
APPLICATION I NFORMATION ( Refe r to t he blo ck di agram)
1.1. P OWER OUT P UT S TA G E
The L298 integrates two power output stages (A ; B).
The power output stage is a bridge configuration
and its outputs can drive an inductive load in com-
mon or differe nzial mode, depend ing on the state of
the inputs. The cur rent that flows through the load
com es out from the brid ge at the sen se output : an
exter nal r esis tor ( RSA ; RSB.) allows to det ect the i n-
tensit y of th is cu rrent.
1.2. INPUT ST AG E
Eac h bri dge is dri ven b y means of four gate s the in-
put of wh ic h ar e I n1 ; In2 ; E nA a nd I n3 ; In4 ; E nB .
The In inputs set the bridge state when The En input
is high ; a low state of the En input inhibits the bridge.
All the inpu ts ar e TT L com pa t ible .
2. SUGGES TIONS
A non inductive capacitor, usually of 100 nF, must
be foreseen between both Vs and Vss, t o ground,
as n ear as pos sibl e to G ND pin. When the lar ge c a-
paci to r of the power suppl y is too f ar from the I C, a
second smaller one must be foreseen near the
L298.
The sense re si stor, not of a wire wo und type, mu st
be gro unded near t he ne gative pol e of V s that mu st
be near th e GND pin of the I.C .
Each input must be connected to the source of the
driv in g s ignals by means of a v er y shor t path.
Turn-On and Turn-Off : Before to Turn-ON the Sup-
ply Voltage and before to Turn it OFF, the Enable in-
put must be d riv e n to the Low state .
3. APPLICATIONS
Fi g 6 s ho ws a bidirectio nal DC m ot or c ontr ol Sc he-
matic Dia gram for wh ich o nly o ne bridg e is needed .
The external bridge of diodes D1 to D4 is made by
four fast recovery elements (trr 200 nsec) that
must be chosen of a VF as low as possible at the
wor st c as e of the load cur re nt.
The sense output voltage can be used to control the
cur rent am plitude by chopp ing the inputs, or to pro-
vid e ove rcurr ent p rotectio n by switc hing low the en-
able input.
The brake function (Fast motor stop) requires that
the Absolute Maximum Rating of 2 Amps must
nev er b e ov er co m e.
When the repetitive peak current needed from the
load is higher than 2 Amps, a p ar alleled c onfigur a-
tion can be chosen (See Fig.7).
An external bridge of diodes are required when in-
duc ti ve lo ads are dr iv en and when the in puts of t he
IC are chopped ; Shottky diodes would be preferred.
L298
7/13
This solutio n can drive until 3 Amps In DC operation
and unt il 3.5 Amps of a repe ti tiv e peak curr ent .
On Fig 8 it is shown the driving of a two phase bipolar
stepper motor ; the needed signals to drive the in-
puts of the L298 are generated, in this example,
from the IC L297.
Fig 9 s how s an example of P . C.B . d es igned fo r the
applic at i on of Fig 8.
Fig 10 shows a second two phase bipolar stepper
motor cont rol circuit where the current is controlled
by the I .C. L65 06.
Figure 8 : Two P has e B ip olar Stepper Motor Circ ui t .
Thi s cir c uit dr iv es bip olar s t eppe r m otor s wit h w indi ng c ur re nt s up to 2 A . The diodes ar e f as t 2 A types .
RS1 = RS2 = 0.5
D1 to D8 = 2 A Fast diodes {VF 1.2 V @ I = 2 A
trr 200 ns
L298
8/13
Figure 9 : Sugges t ed P r inted Circuit B oar d La y out for the C ir c uit of fig. 8 (1 :1 sc al e) .
Figure 10 : Two Phase Bi polar Step per Mo t or C ontr ol Circu it by Us ing t he Cur re nt Con t roller L6506.
RR and Rsense depend from the load current
L298
9/13
Multiwatt15 V
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 5 0.197
B 2.65 0.104
C 1.6 0.063
D 1 0.039
E 0.49 0.55 0.019 0.022
F 0.66 0.75 0.026 0.030
G 1.02 1.27 1.52 0.040 0.050 0.060
G1 17.53 17.78 18.03 0.690 0.700 0.710
H1 19.6 0.772
H2 20.2 0.795
L 21.9 22.2 22.5 0.862 0.874 0.886
L1 21.7 22.1 22.5 0.854 0.870 0.886
L2 17.65 18.1 0.695 0.713
L3 17.25 17.5 17.75 0.679 0.689 0.699
L4 10.3 10.7 10.9 0.406 0.421 0.429
L7 2.65 2.9 0.104 0.114
M 4.25 4.55 4.85 0.167 0.179 0.191
M1 4.63 5.08 5.53 0.182 0.200 0.218
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
Dia1 3.65 3.85 0.144 0.152
OUTLINE AND
MECHANICAL DATA
L298
10/13
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 5 0.197
B 2.65 0.104
C 1.6 0.063
E 0.49 0.55 0.019 0.022
F 0.66 0.75 0.026 0.030
G 1.14 1.27 1.4 0.045 0.050 0.055
G1 17.57 17.78 17.91 0.692 0.700 0.705
H1 19.6 0.772
H2 20.2 0.795
L 20.57 0.810
L1 18.03 0.710
L2 2.54 0.100
L3 17.25 17.5 17.75 0.679 0.689 0.699
L4 10.3 10.7 10.9 0.406 0.421 0.429
L5 5.28 0.208
L6 2.38 0.094
L7 2.65 2.9 0.104 0.114
S 1.9 2.6 0.075 0.102
S1 1.9 2.6 0.075 0.102
Dia1 3.65 3.85 0.144 0.152
Multiwatt15 H
OUTLINE AND
MECHANICAL DATA
L298
11/13
JEDEC MO-166
PowerSO20
e
a2 A
Ea1
PSO20MEC
DETAIL A
T
D
1
1120
E1
E2
h x 45
DETAIL A
lead
slug
a3
S
Gage Plane 0.35
L
DETAIL B
R
DETAIL B
(COPLANARITY)
GC
- C -
SEATING PLANE
e3
b
c
NN
H
BOTTOM VIEW
E3
D1
DIM. mm inch
MIN. TYP. MAX. MIN. TYP. MAX.
A 3.6 0.142
a1 0.1 0.3 0.004 0.012
a2 3.3 0.130
a3 0 0.1 0.000 0.004
b 0.4 0.53 0.016 0.021
c 0.23 0.32 0.009 0.013
D (1) 15.8 16 0.622 0.630
D1 9.4 9.8 0.370 0.386
E 13.9 14.5 0.547 0.570
e 1.27 0.050
e3 11.43 0.450
E1 (1) 10.9 11.1 0.429 0.437
E2 2.9 0.114
E3 5.8 6.2 0.228 0.244
G 0 0.1 0.000 0.004
H 15.5 15.9 0.610 0.626
h 1.1 0.043
L 0.8 1.1 0.031 0.043
N 10˚ (max.)
S
T10 0.394
(1) "D and F" do not include mold flash or protrusions.
- Mold flash or protrusions shall not exceed 0.15 mm (0.006").
- Critical dimensions: "E", "G" and "a3"
OUTLINE AND
MECHANICAL DATA
(max.)
10
L298
12/13
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the conse-
quences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No
license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specification mentioned in this
publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMi-
croelectronics products are not authorized for use as critical components in life support devices or systems without express written
approval of STMicr oelectroni cs. The ST logo is a regis tered tra demark of STMi croelec tronics
© 2000 ST Microelec troni cs – Prin ted in Italy – All R ights Res erved
STMic roelectron ics GROUP OF C OMPANIES
Austra lia - Br azil - Ch ina - Fi nland - Franc e - Germa ny - Hong K ong - India - It aly - Japan - M alaysi a - Malt a - Moroc co -
Sing apore - Spain - S weden - Sw itzerl and - Uni ted Kingdom - U. S.A.
http://www.st.com
L298
13/13