CS8371 CS8371 8V/1A, 5V/250mA Dual Regulator with Independent Output Enables and NoCap Description The CS8371 is a 8V/5V dual output linear regulator. The 8V 5% output sources 1A, while the 5V 5% output sources 250mA. Each output is controlled by its own ENABLE lead. Setting the ENABLE input high turns on the associated regulator output. Holding both ENABLE inputs low puts the IC into sleep mode where current consumption is less than 10A. The regulator is protected against overvoltage, short-circuit and ther- Features mal runaway conditions. The device can withstand 45V load dump transients making suitable for use in automotive environments. CherryOs proprietary NoCap solution is the first technology which allows the output to be stable without the use of an external capacitor. Two Regulated Outputs 8V 5%, 1A 5V 5%, 250mA The CS8371 is available in a 7 lead TO-220 package with copper tab. The tab can be connected to a heatsink if necessary. <10A Sleep Mode Current Independent ENABLE for each Output Separate Sense Feedback Lead for 8V Output Fault Protection Overvoltage Shutdown +45V Peak Transient Voltage Short Circuit Thermal Shutdown CMOS Compatible, LowCurrent ENABLE Inputs Block Diagram VCC Overvoltage Shutdown Package Options - ENABLE1 VOUT1 Current Limit + - Trimmed Bandgap Voltage Reference Sense TO-220 7 Lead + 1.2V Pre-Regulator/ Bias Generator Tab (Gnd) VIA Thermal Shutdown - ENABLE2 + - 1.2V + Gnd 1 ENABLE 1 2 ENABLE 2 3 VOUT2 4 Gnd 5 Sense 6 VCC 7 VOUT1 VOUT2 Current Limit 1 NoCap is a trademark of Cherry Semiconductor Corporation, and is patented. Cherry Semiconductor Corporation 2000 South County Trail, East Greenwich, RI 02818 Tel: (401)885-3600 Fax: (401)885-5786 Email: info@cherry-semi.com Web Site: www.cherry-semi.com Rev. 6/9/99 1 A Company CS8371 Absolute Maximum Ratings Power Dissipation .............................................................................................................................................Internally Limited ENABLE Input Voltage Range .............................................................................................................................-0.6V to +10.0V Load Current (8V Regulator)...........................................................................................................................Internally Limited Load Current (5V Regulator)...........................................................................................................................Internally Limited Transient Peak Voltage (31V load dump @ 14V VCC) ...........................................................................................................45V Storage Temperature Range ................................................................................................................................-65C to +150C Junction Temperature Range...............................................................................................................................-40C to +150C Lead Temperature Soldering: Wave Solder (through hole styles only) ..........................................10 sec. max, 260C peak Electrical Characteristics: -40C TA +85C, 10.5V VCC 16.0V, ENABLE 1 = ENABLE 2 = 5.0V, IOUT1 = IOUT2 = 5.0mA, unless otherwise stated. PARAMETER TEST CONDITIONS MIN TYP MAX UNIT 7.60 8.00 8.40 V Primary Output (VOUT1) Output Voltage IOUT1 = 1.0A Line Regulation 10.5V VCC 26V 50 mV Load Regulation 5mA IOUT1 1.0A 150 mV Sleep Mode Quiescent Current VCC = 14V, ENABLE 1 = ENABLE 2 = 0V 10.0 A 0 0.2 Quiescent Current VCC = 14V, IOUT1 = 1.0A, IOUT2 = 250mA 30 mA Dropout Voltage IOUT1 = 250mA 1.2 V Dropout Voltage IOUT1 = 1.0A 1.5 V Quiescent Bias Current IOUT1 = 5mA, ENABLE2 = 0V, VCC = 14V IQ = ICC - IOUT1 10 mA Quiescent Bias Current IOUT1 = 1.0A, ENABLE2 = 0V, VCC = 14V IQ = ICC - IOUT1 22 mA Ripple Rejection f = 120Hz, VCC = 14V with 1.0VPP AC, COUT = 0F f = 10kHz, VCC = 14V with 1.0VPP AC, COUT = 0F f = 20kHz, VCC = 14V with 1.0VPP AC, COUT = 0F Current Limit VCC = 16V Overshoot Voltage 5mA IREG1 1.0A Output Noise 10Hz-100kHz 90 dB 74 dB 68 dB 1.1 2.5 A 6.0 V 300 Vrms Secondary Output (VOUT2) Output Voltage IOUT2 = 250mA Line Regulation Load Regulation 4.75 5.25 V 7V VCC 26V 40 mV 5mA IOUT2 250mA 100 mV Dropout Voltage IOUT2 = 5.0mA 2.2 V Dropout Voltage IOUT2 = 250mA 2.5 V Quiescent Bias Current IOUT2 = 5mA, ENABLE1 = 0V, VCC = 14V IQ = ICC - IOUT2 7 mA Quiescent Bias Current IOUT2 = 250mA, ENABLE1 = 0V, VCC = 14V IQ = ICC - IOUT2 8 mA Ripple Rejection f = 120Hz, VCC = 14V with 1.0 VPP AC, COUT = 0F f= 10kHz, VCC = 14V with 1.0VPP AC, COUT = 0F f = 20kHz, VCC = 14V with 1.0VPP AC, COUT = 0F 2 5.00 90 dB 75 dB 67 dB CS8371 Electrical Characteristics: -40C TA +85C, 10.5V VCC 16.0V, ENABLE 1 = ENABLE 2 = 5.0V, IOUT1 = IOUT2 = 5.0mA, unless otherwise stated. PARAMETER TEST CONDITIONS MIN Secondary Output (VOUT2): continued Current Limit VCC = 16V 270 Overshoot Voltage 5mA IREG2 250mA Output Noise 10Hz-100kHz Protection Circuitry ESD Threshold UNIT 600 mA 4.3 V Vrms -150 150 A Low High 0 2.0 0.8 5.0 V V Human Body Model 2.0 Overvoltage Shutdown 4.0 kV 24 Thermal Shutdown MAX 170 ENABLE Function (ENABLE) Input Current VCC = 14V, 0V ENABLE 5.5V Input Voltage TYP Guaranteed by Design 30 150 V 180 C 30 C Thermal Hysteresis Package Pin Description PACKAGE PIN # PIN SYMBOL 7 Lead TO-220 1 2 3 4 5 6 7 FUNCTION ENABLE1 ENABLE 2 VOUT2 Gnd Sense VCC VOUT1 ENABLE control for the 8V, 1A output ENABLE control for the 5V, 250mA output 5V 5%, 250mA regulated output Ground Sense feedback for the primary 8V output Supply voltage, usually from battery 8V 5%, 1A regulated output Typical Performance Characteristics 8.05 8.04 2.0 VIN = 14V IOUT = 1A 5.00 VIN = 14V IOUT = 250A 1.8 8.02 8.01 8.00 7.99 7.98 Dropout Voltage (V) 1.6 Output Voltage (V) Output Voltage (V) 8.03 4.95 4.90 1.2 -40C 25C 1.0 0.8 85C 0.6 7.97 0.4 7.96 7.95 -40 1.4 0.2 -20 0 20 40 60 80 Ambient Temperature (C) Regulator 1 Output Voltage 100 120 140 4.85 -40 -20 0 20 40 60 80 Ambient Temperature (C) Regulator 2 Output Voltage 3 100 120 140 0 0 100 200 300 400 500 600 700 Output Current (mA) Regulator 1 Dropout Voltage 800 900 1000 CS8371 Typical Performance Characteristics: continued 10 2.5 10 VIN = 14V TA = 25C -40C 25C 1.5 85C 1.0 8 7 6 5 4 3 0.5 0 0 50 100 150 1 6.0 5.5 0.5 0.4 0.3 0.2 0.1 40 60 -20 0 20 40 60 IOUT = 1A IOUT = 5mA 4.0 -20 0 20 5.01 8.010 5.00 3.0 2.8 2.6 Output Voltage (V) Output Voltage (V) Quiescent Current (mA) IOUT = 250mA IOUT = 5mA 8.005 8.000 -40C 25C 7.995 85C 25C 85C 4.99 4.98 4.97 7.990 4.96 7.985 4.95 2.4 2.2 -20 0 20 40 60 7.980 80 0 100 200 300 Ambient Temperature (C) 0 1 2 3 4 5 6 7 8 9 10 11 12 8 7 6 5 4 3 2 1 0 700 800 4.94 900 1000 0 50 5 4 3 2 1 0 0 1 2 3 4 5 6 7 Time (ms) Regulator 2 Startup 100 150 200 Regulator 2 Load Regulation 8 9 10 11 12 COUT = 0mF TA = 25C 2 1 0 -1 -2 16 14 12 10 0 100 200 300 400 Time (ns) Regulator 1 Line Transient Response 4 250 Output Current (mA) COUT = 0mF TA = 25C IOUT = 5mA Time (ms) Regulator 1 Startup 600 Output Voltage Deviation (V) COUT = 0mF TA = 25C IOUT = 5mA Reg 2 Output Voltage (V) 5 4 3 2 1 0 500 Regulator 1 Load Regulation Enable 2 (V) Reg 1 Output Voltage (V) Enable 1 (V) Regulator 2 Quiescent Current 8 7 6 5 4 3 2 1 0 400 -40C Output Current (mA) Input Voltage (V) 2.0 -40 80 VIN = 14V 8.015 3.6 3.2 60 5.02 VIN = 14V 3.4 40 Regulator 1 Quiescent Current 8.020 Enable 1 = 0V Enable 2 = 5V VIN = 14V 4.5 Ambient Temperature (C) Quiescent Current 4.0 5.0 3.0 -40 80 Ambient Temperature (C) Ambient Temperature (C) Quiescent Current 500 3.5 0 -40 80 400 Enable 1 = 5V Enable 2 = 0V VIN = 14V 5.5 0.6 4.5 300 200 6.0 0.7 5.0 3.8 100 Regulator 2 Current Limit Quiescent Current (mA) Quiescent Current (mA) Quiescent Current (mA) 6.5 20 0 Reg 2 Output Current (mA) 0.8 0 3 0 3 2 Enable 1 = 0V Enable 2 = 0V VIN = 14V 0.9 7.0 -20 4 2 1.0 Enable 1 = 5V Enable 2 = 5V VIN = 14V IOUT 1 = 1A IOUT 2 = 250mA 4.0 -40 5 1 Regulator 1 Current Limit 9.0 7.5 6 Reg 1 Output Current (A) Regulator 2 Dropout Voltage 8.0 7 1 Output Current (mA) 8.5 8 2 00 250 200 VIN = 14V TA = 25C 9 Reg 2 Output Voltage (V) Dropout Voltage (V) 2.0 Reg 1 Output Voltage (V) 9 500 600 CS8371 0.2 0 -0.2 -0.4 -0.6 16 14 12 10 0 100 200 300 400 500 600 VIN = 14V COUT = 0mF TA = 25C 3 2 1 0 -1 -2 -3 1000 5 0 5 10 Time (ns) 25 30 250 5 0 5 10 15 20 25 30 Regulator 2 Load Transient Response TA = 25C VIN = 14V COUT = 0mF Ripple Rejection (dB) 80 60 Output Capacitor ESR (W) 100 80 60 40 40 10 0 -500 5 100 1 +500 Time (ms) Regulator 1 Load Transient Response TA = 25C VIN = 14V COUT = 0mF Ripple Rejection (dB) 20 VIN = 14V COUT = 0mF TA = 25C Time (ms) Regulator 2 Line Transient Response 20 15 Load Current (mA) Output Voltage Deviation (mV) COUT = 0mF TA = 25C 0.6 0.4 Load Current (mA) Output Voltage Deviation (V) Input Voltage (V) Output Voltage Deviation (V) Typical Performance Characteristics: continued 100 1k 10k 100k 1M 20 1 10 100 Frequency (Hz) Regulator 1 Ripple Rejection 1k 10k Frequency (Hz) Regulator 2 Ripple Rejection 100k 1M TA = 25C VIN = 14V RESR 1.6W IOUT = 5ma to 1A 1 Unstable Region 0.1 .01 0.1 1 10 100 1000 Output Capacitor Size (mF) Regulator 1 Stability Definition of Terms Dropout Voltage: The input-output voltage differential at which the circuit ceases to regulate against further reduction in input voltage. Measured when the output voltage has dropped 100mV from the nominal value obtained at 14V input, dropout voltage is dependent upon load current and junction temperature. Load Regulation: The change in output voltage for a change in load current at constant chip temperature. Long Term Stability: Output voltage stability under accelerated life-test conditions after 1000 hours with maximum rated voltage and junction temperature. Output Noise Voltage: The rms AC voltage at the output, with constant load and no input ripple, measured over a specified frequency range. Current Limit: Peak current that can be delivered to the output. Input Voltage: The DC voltage applied to the input terminals with respect to ground. Quiescent Current: The part of the positive input current that does not contribute to the positive load current. The regulator ground lead current. Input Output Differential: The voltage difference between the unregulated input voltage and the regulated output voltage for which the regulator will operate. Ripple Rejection: The ratio of the peak-to-peak input ripple voltage to the peak-to-peak output ripple voltage. Line Regulation: The change in output voltage for a change in the input voltage. The measurement is made under conditions of low dissipation or by using pulse techniques such that the average chip temperature is not significantly affected. Temperature Stability of VOUT: The percentage change in output voltage for a thermal variation from room temperature to either temperature extreme. 5 CS8371 Applications Circuit C 1* 0.1 mF DISPLAY VIN VOUT1 8V CS8371 Control ENABLE1 ENABLE2 VOUT2 Gnd 5V Tuner IC *C1 is required if regulator is far from power source filter. Application Notes With separate control of each output channel, the CS8371 is ideal for applications where each load must be switched independently. In an automotive radio, the 8V output drives the displays and tape drive motors while the 5V output supplies the Tuner IC and memory. over temperature, load and line variations without the need for an expensive external capacitor. It incorporates high gain (>80dB) and large unity gain bandwidth (>100kHz) while maintaining many of the characteristics of a single-pole amplifier (large phase margin and no overshoot). NoCap is ideally suited for slow switching or steady loads. If the load displays large transient current requirements, such as with high frequency microprocessors, an output storage capacitor may be needed. Some large capacitor and small capacitor ESR values at the output may cause small signal oscillations at the output. This will depend on the load conditions. With these types of loads, a traditional output stage may be better suited for proper operation. Output 1 employs NoCap. Refer to the plots in the Typical Performance Characteristics section for appropriate output capacitor selections for stability if an external capacitor is required by the switching characteristics of the load. Output 2 has a Darlington NPN-type output structure and is inherently stable with any type of capacitive load or no capacitor at all. Stability Considerations/NoCap Normally a low dropout or quasi-low dropout regulator (or any type requiring a slow lateral PNP in the control loop) necessitates a large external compensation capacitor at the output of the IC. The external capacitor is also used to curtail overshoot, determine startup delay time and load transient response. Traditional LDO regulators typically have low unity gain bandwidth, display overshoot and poor ripple rejection. Compensation is also an issue because the high frequency load capacitor value, ESR (Equivalent Series Resistance) and board layout parasitics all can create oscillations if not properly accounted for. NoCap is a Cherry Semiconductor exclusive output stage which internally compensates the LDO regulator 6 CS8371 Applications Notes: continued Calculating Power Dissipation in a Dual Output Linear Regulator IIN The maximum power dissipation for a dual output regulator (Figure 1) is Smart Regulator VIN IOUT1 VOUT1 IOUT2 PD(max) = {VIN(max) VOUT1(min)}IOUT1(max) + {VIN(max) VOUT2(min)}IOUT2(max) + VIN(max)IQ, VOUT2 } (1) where VIN(max) is the maximum input voltage, Control Features IQ VOUT1(min) is the minimum output voltage from VOUT1, VOUT2(min) is the minimum output voltage from VOUT2, Figure 1: Dual output regulator with key performance parameters labeled. IOUT1(max) is the maximum output current, for the application, IOUT2(max) is the maximum output current, for the application, Heatsinks IQ is the quiescent current the regulator consumes at IOUT(max). A heatsink effectively increases the surface area of the package to improve the flow of heat away from the IC and into the surrounding air. Once the value of PD(max) is known, the maximum permissible value of RQJA can be calculated: Each material in the heat flow path between the IC and the outside environment will have a thermal resistance. Like series electrical resistances, these resistances are summed to determine the value of RQJA: RQJA = 150C - TA PD (2) RQJA = RQJC + RQCS + RQSA, (3) where RQJC = the junctiontocase thermal resistance, RQCS = the casetoheatsink thermal resistance, and RQSA = the heatsinktoambient thermal resistance. RQJC appears in the package section of the data sheet. Like RQJA, it too is a function of package type. RQCS and RQSA are functions of the package type, heatsink and the interface between them. These values appear in heatsink data sheets of heatsink manufacturers. The value of RQJA can then be compared with those in the package section of the data sheet. Those packages with RQJA's less than the calculated value in equation 2 will keep the die temperature below 150C. In some cases, none of the packages will be sufficient to dissipate the heat generated by the IC, and an external heatsink will be required. 7 CS8371 Package Specification PACKAGE DIMENSIONS IN mm (INCHES) PACKAGE THERMAL DATA Thermal Data RQJC typ RQJA typ TO-220 2.4 50 uC/W uC/W 7 Lead TO-220 (T) Straight 7 Lead TO-220 (TVA) Vertical 4.83 (.190) 4.06 (.160) 10.54 (.415) 9.78 (.385) 10.54 (.415) 9.78 (.385) 1.40 (.055) 1.14 (.045) 1.40 (.055) 1.14 (.045) 3.96 (.156) 3.71 (.146) 2.87 (.113) 2.62 (.103) 2.87 (.113) 2.62 (.103) 6.55 (.258) 5.94 (.234) 14.99 (.590) 14.22 (.560) 3.96 (.156) 3.71 (.146) 14.99 (.590) 14.22 (.560) 6.55 (.258) 5.94 (.234) 11.86 (.467) 2.03 (.080) 14.22 (.560) 13.72 (.540) 0.81 (.030) 0.94 (.037) 0.58 (.023) 1.40 (.055) 1.14 (.045) 7.62 (.300) 0.64 (.025) 0.38 (.015) 4.34 (.171) 7.52 (.296) 4.83 (.190) 4.06 (.160) 2.92 (.115) 2.29 (.090) Cherry Semiconductor Corporation reserves the right to make changes to the specifications without notice. Please contact Cherry Semiconductor Corporation for the latest available information. Ordering Information Rev. 6/9/99 0.56 (.022) 0.36 (.014) 1.27 (.050) TYP 0.56 (.022) 0.36 (.014) 7.75 (.305) 7.49 (.295) Part Number CS8371ET7 CS8371ETVA7 2.92 (.115) 2.29 (.090) 2.92 (.115) 8.26 (.325) Description 7 Lead TO-220 Straight 7 Lead TO-220 Vertical 8 (c) 1999 Cherry Semiconductor Corporation