LCE6.5 - LCE170A Available 1500 Watt Low Capacitance Transient Voltage Suppressor DESCRIPTION This Transient Voltage Suppressor (TVS) product family includes a rectifier diode element in series and in an opposite direction. This allows it to achieve low capacitance performance below 100 pF (see figure 2). The low level of TVS capacitance may be used for protecting higher frequency applications in inductive switching environments or electrical systems involving secondary lightning effects per IEC61000-4-5 as well as RTCA/DO-160 or ARINC 429 for airborne avionics. With virtually instantaneous response, they also protect from ESD and EFT per IEC61000-4-2 and IEC61000-4-4. If bipolar transient capability is required, two of these low capacitance TVS devices may be used in parallel in opposite directions (antiparallel) for complete ac protection as shown in figure 4. Important: For the latest information, visit our website http://www.microsemi.com. FEATURES * * * * * * Unidirectional low-capacitance TVS series (for bidirectional see figure 4). Economical plastic encapsulated TVS series for thru-hole mounting. Suppresses transients up to 1500 watts @ 10/1000 s (see figure 1)*. Clamps transient in less than 100 pico seconds. Working voltage (V WM ) range 6.5 V to 170 V. RoHS compliant versions available. Case 1 Package Also available in: HiRel Case 1 package (axial-lead) MLCE6.5 - MXLCE170A DO-13 (metal) package (axial-lead) LC6.5 - LC170A APPLICATIONS / BENEFITS * * * * * * * Protection from switching transients and induced RF. Low capacitance for data line protection up to 1 MHz. Protection for aircraft fast data rate lines up to Level 5 Waveform 4 and Level 2 Waveform 5A in RTCA/DO-160D (also see MicroNote 130) & ARINC 429 with bit rates of 100 kb/s (per ARINC 429, Part 1, par 2.4.1.1). ESD & EFT protection per IEC 61000-4-2 and -4-4. Secondary lightning protection per IEC61000-4-5 with 42 ohms source impedance: Class 1: LCE6.5 to LC170A Class 2: LCE6.5 to LC150A Class 3: LCE6.5 to LC70A Class 4: LCE6.5 to LC36A Secondary lightning protection per IEC61000-4-5 with 12 ohms source impedance: Class 1 : LCE6.5 to LC90A Class 2: LCE6.5 to LC45A Class 3: LCE6.5 to LC22A Class 4: LCE6.5 to LC11A Secondary lightning protection per IEC61000-4-5 with 2 ohms source impedance: Class 2: LCE6.5 to LC20A Class 3: LCE6.5 to LC10A DO-215AB and DO-214AB package (surface mounts) SMCG(J)LCE6.5 - SMCG(J)LCE170A MSC - Lawrence 6 Lake Street, Lawrence, MA 01841 Tel: 1-800-446-1158 or (978) 620-2600 Fax: (978) 689-0803 MSC - Ireland Gort Road Business Park, Ennis, Co. Clare, Ireland Tel: +353 (0) 65 6840044 Fax: +353 (0) 65 6822298 Website: www.microsemi.com RF01122, Rev. A (4/9/13) (c)2013 Microsemi Corporation Page 1 of 6 LCE6.5 - LCE170A MAXIMUM RATINGS Parameters/Test Conditions Junction and Storage Temperature Thermal Resistance, Junction to Lead @ 0.375 inch (10 mm) from body (1) Thermal Resistance, Junction to Ambient (2) Peak Pulse Power @ T L = +25 C (3) Rated Average Power Dissipation @ T L = +40 C @ T A = +25 C Solder Temperature @ 10 s Symbol Value Unit T J and T STG R JL -65 to +150 22 C C/W R JA P PP P M(AV) 82 1500 5 1.52 260 C/W W W T SP o C Notes: 1. When mounted on FR4 PC board with 4 mm2 copper pads (1 oz) and track width 1 mm, length 25 mm. 2. At 10/1000 s with repetition rate of 0.01% or less (see figure 1). 3. At 3/8 inch (10 mm) from body. TVS devices are not typically used for dc power dissipation and are instead operated at or less than their rated standoff voltage (V WM ) except for transients that briefly drive the device into avalanche breakdown (V BR to V C region). Also see figure 4 for further protection details in rated peak pulse power for unidirectional and bidirectional configurations respectively. MECHANICAL and PACKAGING * * * * * * * CASE: Void-free transfer molded thermosetting epoxy body meeting UL94V-0. TERMINALS: Tin-lead or RoHS compliant annealed matte-tin plating readily solderable per MIL-STD-750 method 2026. MARKING: Part number and polarity band. POLARITY: Cathode indicated by band. TAPE & REEL option: Standard per EIA-296 (add "TR" suffix to part number). Consult factory for quantities. WEIGHT: Approx 1.5 grams. See Package Dimensions on last page. PART NOMENCLATURE LC E 6.5 A (e3) Low Capacitance Rated RoHS Compliance e3 = RoHS compliant Blank = non-RoHS compliant Encapsulated Plastic Package Reverse Standoff Voltage (V WM ) (See Electrical Characteristics table) +/- 5% Tolerance Level SYMBOLS & DEFINITIONS Definition Symbol I (BR) V (BR) Breakdown Current: The current used for measuring breakdown voltage V (BR) . o Breakdown Voltage: This is the breakdown voltage the device will exhibit at 25 C. V WM Rated Working Standoff Voltage: The maximum peak voltage that can be applied over the operating temperature range. Maximum Clamping Voltage: The maximum peak voltage appearing across the TVS when subjected to the peak pulse current in a one millisecond time interval. The peak pulse voltage is the combination of voltage rise due to both the series resistance and thermal rise and positive temperature coefficient V(BR) . Peak Impulse Current: The peak current during the impulse. Peak Pulse Power: The pulse power as determined by the product of V C and I PP . VC I PP P PP ID Standby Current: The current at the standoff voltage V WM . RF01122, Rev. A (4/9/13) (c)2013 Microsemi Corporation Page 2 of 6 LCE6.5 - LCE170A o ELECTRICAL CHARACTERISTICS @ 25 C MICROSEMI PART NUMBER RATED WORKING STANDOFF VOLTAGE BREAKDOWN VOLTAGE V WM V (BR) Volts LCE6.5 LCE6.5A LCE7.0 LCE7.0A LCE7.5 LCE7.5A LCE8.0 LCE8.0A LCE8.5 LCE8.5A LCE9.0 LCE9.0A LCE10 LCE10A LCE11 LCE11A LCE12 LCE12A LCE13 LCE13A LCE14 LCE14A LCE15 LCE15A LCE16 LCE16A LCE17 LCE17A LCE18 LCE18A LCE20 LCE20A LCE22 LCE22A LCE24 LCE24A LCE26 LCE26A LCE28 LCE28A LCE30 LCE30A LCE33 LCE33A LCE36 LCE36A LCE40 LCE40A LCE43 LCE43A LCE45 LCE45A LCE48 LCE48A LCE51 LCE51A MAXIMUM STANDBY CURRENT MAXIMUM CLAMPING VOLTAGE V C @ I PP MAXIMUM PEAK IMPULSE CURRENT I D @V WM @ I PP @ I (BR) Volts 10/1000 s Amps pF Volts 100 100 100 100 100 100 100 100 94 100 89 97 80 88 74 82 68 75 63 70 58 65 56 61 52 57 49 54 46 51 42 46 38 42 35 39 32 36 30 33 28 31 25.4 28.1 23.3 25.8 21.0 23.3 19.5 21.6 18.7 20.6 17.5 19.4 16.5 18.2 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 75 150 150 150 150 150 150 150 150 Volts MIN MAX mA A 6.5 6.5 7.0 7.0 7.5 7.5 8.0 8.0 8.5 8.5 9.0 9.0 10 10 11 11 12 12 13 13 14 14 15 15 16 16 17 17 18 18 20 20 22 22 24 24 26 26 28 28 30 30 33 33 36 36 40 40 43 43 45 45 48 48 51 51 7.22 7.22 7.78 7.78 8.33 8.33 8.89 8.89 9.44 9.44 10.0 10.0 11.1 11.1 12.2 12.2 13.3 13.3 14.4 14.4 15.6 15.6 16.7 16.7 17.8 17.8 18.9 18.9 20.0 20.0 22.2 22.2 24.4 24.4 26.7 26.7 28.9 28.9 31.1 31.1 33.3 33.3 36.7 36.7 40.0 40.0 44.4 44.4 47.8 47.8 50.0 50.0 53.3 53.3 56.7 56.7 8.82 7.98 9.51 8.60 10.2 9.21 10.9 9.83 11.5 10.4 12.2 11.1 13.6 12.3 14.9 13.5 16.3 14.7 17.6 15.9 19.1 17.2 20.4 18.5 21.8 19.7 23.1 20.9 24.4 22.1 27.1 24.5 29.8 26.9 32.6 29.5 35.3 31.9 38.0 34.4 40.7 36.8 44.9 40.6 48.9 44.2 54.3 49.1 58.4 52.8 61.1 55.3 65.1 58.9 69.3 62.7 10 10 10 10 10 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1000 1000 500 500 250 250 100 100 50 50 10 10 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 12.3 11.2 13.3 12.0 14.3 12.9 15.0 13.6 15.9 14.4 16.9 15.4 18.8 17.0 20.1 18.2 22.0 19.9 23.8 21.5 25.8 23.2 26.9 24.4 28.8 26.0 30.5 27.6 32.2 29.2 35.8 32.4 39.4 35.5 43.0 38.9 46.6 42.1 50.1 45.4 53.5 48.4 58.0 53.3 64.3 58.1 71.4 64.5 76.7 69.4 80.3 72.7 85.5 77.4 91.1 82.4 CAPACITANCE @0 Volts f = 1 MHz WORKING INVERSE BLOCKING VOLTAGE V WIB INVERSE PEAK BLOCKING INVERSE LEAKAGE BLOCKING CURRENT VOLTAGE VOLTS I IB @ V WIB C V PIB A 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Volts 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 100 200 200 200 200 200 200 200 200 Continued. RF01122, Rev. A (4/9/13) (c)2013 Microsemi Corporation Page 3 of 6 LCE6.5 - LCE170A o ELECTRICAL CHARACTERISTICS @ 25 C (continued) MICROSEMI PART NUMBER LCE54 LCE54A LCE58 LCE58A LCE60 LCE60A LCE64 LCE64A LCE70 LCE70A LCE75 LCE75A LCE80 LCE80A LCE90 LCE90A LCE100 LCE100A LCE110 LCE110A LCE120 LCE120A LCE130 LCE130A LCE150 LCE150A LCE160 LCE160A LCE170 LCE170A RATED WORKING STANDOFF VOLTAGE BREAKDOWN VOLTAGE V WM V (BR) @ Volts I (BR) Volts MIN MAX 54 54 58 58 60 60 64 64 70 70 75 75 80 80 90 90 100 100 110 110 120 120 130 130 150 150 160 160 170 170 60.0 60.0 64.4 64.4 66.7 66.7 71.1 71.1 77.8 77.8 83.3 83.3 88.7 88.7 100 100 111 111 122 122 133 133 144 144 167 167 178 178 189 189 73.3 66.3 78.7 71.2 81.5 73.7 86.9 78.6 95.1 86.0 102.0 92.1 108 98.0 122 111 136 123 149 135 163 147 176 159 204 185 218 197 231 209 MAXIMUM STANDBY CURRENT MAXIMUM CLAMPING VOLTAGE I D @V WM V C @ I PP MAXIMUM PEAK IMPULSE CURRENT Volts 10/1000 s Amps pF Volts 15.6 17.2 14.6 16.0 14.0 15.5 13.2 14.6 12.0 13.3 11.2 12.4 10.6 11.6 9.4 10.3 8.4 9.3 7.7 8.4 7.0 7.8 6.5 7.2 5.6 6.2 5.2 5.8 4.9 5.4 100 100 100 100 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 90 150 150 150 150 150 150 150 150 150 150 150 150 150 150 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 I PP @ mA A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 96.3 87.1 103.0 93.6 107.0 96.8 114.0 103.0 125 113 134 121 142 129 160 146 179 162 196 178 214 193 231 209 268 243 287 259 304 275 CAPACITANCE @0 Volts f = 1 MHz WORKING INVERSE BLOCKING VOLTAGE V WIB INVERSE PEAK BLOCKING INVERSE LEAKAGE BLOCKING CURRENT VOLTAGE VOLTS I IB @ V WIB C V PIB A 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 Volts 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200 400 400 400 400 400 400 400 400 400 400 400 400 NOTE 1: TVS devices are normally selected according to the reverse standoff voltage (V WM ) which should be equal to or greater than the DC or continuous peak operating voltage level. RF01122, Rev. A (4/9/13) (c)2013 Microsemi Corporation Page 4 of 6 LCE6.5 - LCE170A PPP - Peak Pulse Power - kW GRAPHS Pulse Time (tw) in s FIGURE 1 Peak Pulse Power vs Pulse Time (tw) in s RF01122, Rev. A (4/9/13) (c)2013 Microsemi Corporation Page 5 of 6 LCE6.5 - LCE170A PACKAGE DIMENSIONS NOTES: Dimensions are in inches. Millimeter equivalents are given for general information only. The major diameter is essentially constant along its length. In accordance with ASME Y14.5M, diameters are equivalent to x symbology. 1 2 3 4 Symbol BD BL LD LL Dimensions Inches Millimeters Min Max Min Max 0.190 0.360 0.038 1.10 0.205 0.375 0.042 1.625 4.826 9.146 0.958 27.9 5.207 9.527 1.074 41.28 SCHEMATIC APPLICATIONS The TVS low capacitance device configuration is shown in figure 2. As a further option for unidirectional applications, an additional low capacitance rectifier diode may be used in parallel in the same polarity direction as the TVS as shown in figure 3. In applications where random high voltage transients occur, this will prevent reverse transients from damaging the internal low capacitance rectifier diode and also provide a low voltage conducting direction. The added rectifier diode should be of similar low capacitance and also have a higher reverse voltage rating than the TVS clamping voltage V C . The Microsemi recommended rectifier part number is the "ELCR80" for the application in figure 3. If using two (2) low capacitance TVS devices in anti-parallel for bidirectional applications, this added protective feature for both directions (including the reverse of each rectifier diode) is also provided. The unidirectional and bidirectional configurations in figure 3 and 4 will both result in twice the capacitance of figure 2. FIGURE 2 TVS with internal Low Capacitance Diode RF01122, Rev. A (4/9/13) FIGURE 3 Optional Unidirectional configuration (TVS and separate rectifier diode in parallel) (c)2013 Microsemi Corporation FIGURE 4 Optional Bidirectional configuration (two TVS devices in anti-parallel) Page 6 of 6