File Number 2220 Avalanche-Energy-Rated P-Channel Power MOSFETs -10A and -12A, -60V and -100V lps (on) = 0.302 and 0.402 Features: a Single pulse avalanche energy rated = SOA is power-dissipation limited w Nanosecond switching speeds e Linear transfer characteristics @ High input impedance The IRF9130, IRF9131, IRF9132 and IRF9133 are advanced power MOSFETs designed, tested, and guaranteed to with- stand a specified level of energy in the breakdown ava- lanche mode of operation. These are p-channel enhance- ment-mode silicon-gate power field-effect transistors designed for applications such as switching regulators, switching converters, motor drivers, relay drivers, and driv- ers for high-power bipolar switching transistors requiring high speed and low gate-drive power. These types can be operated directly from integrated circuits. The IRF-types are supplied in the JEDEC TO-204AA steel package. Absolute Maximum Ratings Rugged Power MOSFETs IRF9130, IRF9131 IRF9132, IRF9133 TERMINAL DIAGRAM Do 92CS-43262 P-CHANNEL ENHANCEMENT MODE TERMINAL DESIGNATION DRAIN SOURCE (FLANGE ) 92CS-37801 JEDEC TO-204AA Parameter IRF9130 IRF9131 {RF9132 (RF9133 Units Vos Drain - Source Voitage -100 -60 -400 -60 Vv VocR Drain - Gate Voltage (Rgg = 20k) -100 -60 -100 -60 Vv tp @Tc = 25C Continuous Drain Current -12 -12 10 710 A Ip @ Tc = 100C Continuous Drain Current 7.6 7.5 6.5 -6.5 A lpm Pulsed Drain Current @ 48 -48 -40 -40 A Vos Gate - Source Voltage +20 Vv Pp @ Tc = 25C Max. Power Dissipation 75 (See Fig. 14) Ww Linear Derating Factor 0.6 {See Fig. 14) wc Eas Single Pulse Avalanche Energy 500 mJ T ratin Nction an Tetg Storage Seonperature Nenge 55 to 150 Cc Lead Temperature 300 (0.063 in. (1.6mm) from case for 10s) C 6-335Rugged Power MOSFETs IRF9130, IRF9131, IRF9132, IRF9133 Electrical Characteristics @T = 25C (Unless Otherwise Specified) Parameter Type Min. Typ. | Max. Units Test Conditions BVpss_ Drain - Source Breakdown Voltage IRF9130 _ inzo132 | 100 | - Vv Ves = OV {RF9131 | Ip = -250nA inFais3 } 8 | > V D " VGsith) Gate Threshold Voltage ALL -2.0 - -4.0 Vv Vos = Vos 'p = ~250nA loss Gate-Source Leakage Forward ALL - ~ -100 nA VoGs = -20V less Gate-Source Leakage Reverse ALL - _ 100 nA Ves = 20V loss Zero Gate Voltage Drain Current ALL _ - -250 pA Vos = Max. Rating, Vgg = OV - - -1000 pA Vos = Max. Rating x 0.8, Vgg = OV. Te = 125C IDion} On-State Drain Current @ IRF9130 IRF9131 12 ~ 7 A Vos? 'pion) * Rosion! max. Yas = 10 IRF9132 10 A IRF9133 - a Rosion) Static Drain-Source On-State IRF9130 Resistance @ IRF9131 ~ | 0.26 | 0.30 a y tov. A RF9132 1 | ag | g.40 a GS = -10V. Ip = 65 IRF9133 . . Sts Forward Transconductance @) ALL 2.0 3.7 - Siu) Vos? 'bion * Fosion) max. 'p = 6-54 Ciss Input Capacitance ALL - 500 _ pF Vos = OV. Vpg = -28V.f = 1.0MHz Coss Output Capacitance ALL - 300 _ pF See Fig. 10 Criss Reverse Transfer Capacitance ALL > 100 = pF tdion) _ Turn-On Delay Time ALL - 30 60 ns Vop = 9-5 BVpygs. Ip = -6.5A, Z, = 500 ty Rise Time ALL _ 70 140 ns See Fig. 17 tdioff) _Turn-Off Delay Time ALL ~ 70 140 ns (MOSFET switching times are essentially tf Fall Time ALL _ 70 140 ns independent of operating temperature.) Qg Total Gate Charge ALL - 25 45 ac Veg = ~15V. Ip = ~15A, Vig = 0.8 Max. Rating (Gate-Source Plus Gate-Drain) See Fig. 18 for test circuit. (Gate charge is essentially independent of operating temperature.) Qgs Gate-Source Charge ALL - 13 23 ac Qgg Gate-Drain (Miller} Charge ALL - 12 22 nc Lp Internal Drain Inductance ALL _ 5.0 - nH Measured between Modified MOSFET the contact screw on symbol showing the header that is closer to internal device source and gate pins inductances O and center of die. ls Internal Source Inductance ALL - 12.5 - oH Measured from the source pin, 6mm GO {0.25 in.) from header and source bonding pad. O s Thermal Resistance R@c___ Junction-to-Case ALL = - 1.67 CAN Rcs__ Case-to-Sink ALL 0.1 _ C/W | Mounting surface flat, smooth, and greased. R@n _ Junction-to-Ambient ALL _ = 30 C/W | Typical socket mount Source-Drain Diode Ratings and Characteristics ie) Is Continuous Source Current IRF9130 _ 12 A Modified MOSFET symbol (Body Diode} IRF9131 7 showing the integral reverse P-N junction rectifier. IRF9132 {| | ao A IRF9133 | Ism Pulse Source Current IRF9130 . _ . sO- {Body Diode) @ IRF9131 - 48 A IRF9132 IRF9133 ~ ~ 40 A s Vsp Diode Forward Voltage IRF9130 _ _ = , =- = IRF9131 -1.5 v Te = 28C, Ig 12A, Veg ov IRF9132 _ ~ - Te = 25C, le = -10A, V = OV IRF9133 16 Vv c s Gs trr Reverse Recovery Time ALL - 300 = ns Ty = 150C, Ip = -12A, dip/dt = 100 A/us Qrar Reverse Recovered Charge ALL _ 1.8 - uc Ty = 150C, Ip = -12A, dig/dt = 100 A/ps ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controlled by Lg + Lp. @ Ty = 25C to 150C. @ Repetitive Rating: Pulse width limited @ Voo = 25V, starting Ty = 25C, L = 5.2 mH, Pulse Test: Pulse width < 300us, by max. junction temperature. Re = 259, Peak I. = 12A. (See Fig. 15 and 16) Duty Cycle = 2%. See Transient Thermal impedance Curve (Fig. 5). 6-336Rugged Power MOSFETs IRF9130, IRF9131, IRF9132, IRF9133 80 pS PULSE TEST Vps > 'pion) * Rasion) max. Ty = 125 Ty=25C a =~ @ a & c a 2 = 2 = E Eb z z we w x x > > o z z z z @ a a 8 oS - 4 6 -8 10 Vpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS) Vgs. GATE-TO-SOURCE VOLTAGE (VOLTS) 92CS-43288 9205-43289 Fig. 1 - Typical Output Characteristics Fig. 2 - Typical Transfer Characteristics 150 C MAX. J Rove = 1.67 C/W lp, DRAIN CURRENT (AMPERES) ip, OAAIN CURRENT (AMPERES) a 2 4 4 a 3 =3 xa <5 -1.0 -10 100 ~1000 Vps. ORAIN-TO-SOURCE VOLTAGE (VOLTS) Vpg. DRAIN-TO-SOURCE VOLTAGE (VOLTS) 9208-43290 92CS$-43321 Fig. 3 - Typical Saturation Characteristics Fig. 4 - Maximum Safe Operating Area IMPEDANCE (PER 1. DUTY FACTOR, D = ty/to 2. PER UNIT BASE = Rg yc PULSE = 1.67 DEG. C/W. THERMAL 3. Tym - Te ge gw 5a z =< ze ce Qu => sb Su a. Pu Nw 10-3 10-1 ty, SQUARE WAVE PULSE DURATION (SECONDS) 10-5 1074 1072 1.0 10 920M. 43302 Fig. 5 - Maximum Effective Transient Thermal impedance, Junction-to-Case Vs. Pulse Duration 6-337Rugged Power MOSFETs IRF9130, IRF9131, IRF9132, IRF9133 Yps > !pjon) * Rosion) max. 20 TEST a 2 w = w on w y z F e > a 2 9 a 2 < - 2 7 =12 = =04 -06 -08 -1.0 -1.2 -14 -16 -1.8 tp, DRAIN CURRENT (AMPERES) Vgp. SOURCE-TO-DRAIN VOLTAGE (VOLTS) 9208-43293, , 92CS-43270 Fig. 6 - Typical Transconductance Vs. Drain Current Fig. 7 - Typical Source-Drain Diode Forward Voltage - a _ BVpgs. DRAIN-TO-SOURCE BREAKDOWN VOLTAGE (NORMALIZED) (NORMALIZEO} wa 9 z fe % oO w z 3 w 9 2 3 @ 2 z < ec 6 2 a a =40 120 160 40 o 40 80 120 Ty, JUNCTION TEMPERATURE (C) Ty, JUNCTION TEMPERATURE (C) 92CS-43394 92CS8-43303 Fig. 8 - Breakdown Voltage Vs. Temperature Fig. 9 - Normalized On-Resistance Vs. Temperature 1000 \ Yes =0 a * Ip =-154 f=1 MHz 5 | FOR TEST CIRCUIT Cisse = Cgs + Cga, Cas SHORTED g SEE FIGURE 18 800 = Cras = Coa wi < fgs Cga a = Coss = Cds + ZF, Lal \ @ 600 gene S -10 Z Cins Cas + Coa a | Vps = 60 V, 1RF9130, 9132 g | 2 vps = ~80V 400 O o 16 ++ bh Vpsg = -20V oO A L P+_| E 200 Cres Se ~2e 7 I a 9 > | was o =10 =20 =30 =40 =50 16 24 32 40 Vpg, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Qg. TOTAL GATE CHARGE (nC) 92CS-43296 92CS-43297 Fig. 10 - Typical Capacitance Vs. Drain-to-Source Voltage Fig. 11 - Typical Gate Charge Vs. Gate-to-Source Voltage 6-338Rugged Power MOSFETs 0.6f--- fe - . | - . o.4[-4.-- J +_ Vgg = -20V__ ; LL -oS a Rpgjon) MEASURED WITH CURRENT PULSE OF 2.0 nS I DURATION. INITIAL Ty = 25 C. (HEATING + EFFECT OF 2.0 nS PULSE IS MINIMAL) 1 tL i 1 RpS(on): DRAIN-TO-SOURCE ON RESISTANCE (OHMS) 0.2;- 1 0 -t0 -20 -30 40 -50 fp, DRAIN CURRENT (AMPERES) a2C8-43298 Fig. 12 - Typical On-Resistance Vs. Drain Current Pp, POWER DISSIPATION (WATTS) 20 40 )==60 80 100 120 140 160 180 190 Tc, CASE TEMPERATURE (C) 92CS-43305, Fig. 14 - Power Vs. Temperature Derating Curve -Yoo ADJUST Ry TO OBTAIN SPECIFIED Ip PULSE Vi GENERATO! pam aa D.U.T. \ { I TO SCOPE ' 0.01.0, 1 of HIGH FREQUENCY 1 SHUNT | ae 92CS-43322 Fig. 17 - Switching Time Test Circuit IRF9130, IRF9131, IRF9132, IRF9133 IRF9132, 9133 a Ww a w a = < e 2 w 3 z a a oO 25 50 7 100 125 160 To, CASE TEMPERATURE ('C) 92CS-43304 Fig. 13 - Maximum Drain Current Vs. Case Temperature Vps out tp Rg = Voo { ov * Ves =-1 ov] | mt tT VARY tp TO OBTAIN 0.012 REQUIRED PEAK IL 92CS-43278 Fig. 15 - Unclamped Inductive Test Circuit It SoU Yoo BVpss 92CS-43279 Fig. 16 - Unclamped Inductive Waveforms Ig 'p CURRENT CURRENT SAMPLING SAMPLING RESISTOR RESISTOR -O +Vps om---- 4 [1.5 ma CURRENT REGULATOR 12V BATTERY Vos > (ISOLATED SUPPLY) 92CS-43323 Fig. 18 - Gate Charge Test Circuit 6-339