1
MRF1570T1 MRF1570FT1MOTOROLA RF DEVICE DATA
The RF MOSFET Line
    
N–Channel Enhancement–Mode Lateral MOSFETs
Designed for broadband commercial and industrial applications with frequen-
cies up to 470 MHz. The high gain and broadband performance of these
devices make them ideal for large–signal, common source amplifier applica-
tions in 12.5 volt mobile FM equipment.
Specified Performance @ 470 MHz, 12.5 Volts
Output Power — 70 Watts
Power Gain — 10 dB
Efficiency — 50%
Capable of Handling 20:1 VSWR, @ 15.6 Vdc, 470 MHz, 2 dB Overdrive
Excellent Thermal Stability
Characterized with Series Equivalent Large–Signal Impedance Parameters
Broadband–Full Power Across the Band: 135–175 MHz
400–470 MHz
Broadband Demonstration Amplifier Information Available
Upon Request
Available in Tape and Reel. T1 Suffix = 500 Units per 44 mm, 13 inch Reel.
MAXIMUM RATINGS
Rating Symbol Value Unit
Drain–Source Voltage VDSS 40 Vdc
Gate–Source Voltage VGS ± 20 Vdc
Total Device Dissipation @ TC = 25°C
Derate above 25°C
PD165
0.5
Watts
W/°C
Storage Temperature Range Tstg 65 to +150 °C
Operating Junction Temperature TJ175 °C
ESD PROTECTION CHARACTERISTICS
Test Conditions Class
Human Body Model 1 (Minimum)
Machine Model M2 (Minimum)
Charge Device Model C2 (Minimum)
THERMAL CHARACTERISTICS
Characteristic Symbol Max Unit
Thermal Resistance, Junction to Case RθJC 0.75 °C/W
NOTE – CAUTION – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and
packaging MOS devices should be observed.
Order this document
by MRF1570T1/D

SEMICONDUCTOR TECHNICAL DATA
470 MHz, 70 W, 12.5 V
LATERAL N–CHANNEL
BROADBAND
RF POWER MOSFETs
CASE 1366–03, STYLE 1
TO–272 SPLIT LEAD
PLASTIC
MRF1570T1


CASE 1366A–02, STYLE 1
TO–272 STRAIGHT LEAD
PLASTIC
MRF1570FT1
Motorola, Inc. 2002
REV 2
MRF1570T1 MRF1570FT1
2
MOTOROLA RF DEVICE DATA
ELECTRICAL CHARACTERISTICS (TC = 25°C unless otherwise noted)
Characteristic Symbol Min Typ Max Unit
OFF CHARACTERISTICS
Zero Gate Voltage Drain Current
(VDS = 60 Vdc, VGS = 0 Vdc)
IDSS 1 µA
ON CHARACTERISTICS
Gate Threshold Voltage
(VDS = 12.5 Vdc, ID = 0.8 mAdc)
VGS(th) 1.0 3 Vdc
Drain–Source On–Voltage
(VGS = 10 Vdc, ID = 2.0 Adc)
VDS(on) 1 Vdc
DYNAMIC CHARACTERISTICS
Input Capacitance (Includes Input Matching Capacitance)
(VDS = 12.5 Vdc, VGS = 0 V, f = 1 MHz)
Ciss 500 pF
Output Capacitance
(VDS = 12.5 Vdc, VGS = 0 V, f = 1 MHz)
Coss 250 pF
Reverse Transfer Capacitance
(VDS = 12.5 Vdc, VGS = 0 V, f = 1 MHz)
Crss 35 pF
RF CHARACTERISTICS (In Motorola Test Fixture)
Common–Source Amplifier Power Gain
(VDD = 12.5 Vdc, Pout = 70 W, IDQ = 800 mA) f = 470 MHz
Gps
10
dB
Drain Efficiency
(VDD = 12.5 Vdc, Pout = 70 W, IDQ = 800 mA) f = 470 MHz
η
50
%
Load Mismatch
(VDD = 15.6 Vdc, f = 470 MHz, 2 dB Input Overdrive, VSWR 20:1 at
All Phase Angles)
ΨNo Degradation in Output Power
Before and After Test
3
MRF1570T1 MRF1570FT1MOTOROLA RF DEVICE DATA
Figure 1. 135 – 175 MHz Broadband Test Circuit Schematic




B1, B2, B3, B4, B5, B6 Long Ferrite Beads, Fair Rite Products
C1, C32, C37, C43 270 pF, 100 mil Chip Capacitors
C2, C20, C21 33 pF, 100 mil Chip Capacitors
C3 18 pF, 100 mil Chip Capacitor
C4, C5 30 pF, 100 mil Chip Capacitors
C6, C7 180 pF, 100 mil Chip Capacitors
C8, C9 150 pF, 100 mil Chip Capacitors
C10, C15 300 pF, 100 mil Chip Capacitors
C11, C16, C33, C39 10 µF, 50 V Electrolytic Capacitors
C12, C17, C34, C40 0.1 µF, 100 mil Chip Capacitors
C13, C18, C35, C41 1000 pF, 100 mil Chip Capacitors
C14, C19, C36, C42 470 pF, 100 mil Chip Capacitors
C22, C23 110 pF, 100 mil Chip Capacitors
C24, C25 68 pF, 100 mil Chip Capacitors
C26, C27 120 pF, 100 mil Chip Capacitors
C28, C29 24 pF, 100 mil Chip Capacitors
C30, C31 27 pF, 100 mil Chip Capacitors
C38, C44 240 pF, 100 mil Chip Capacitors
L1, L2 17.5 nH, 6 Turn Inductors, Coilcraft
L3, L4 5 nH, 2 Turn Inductors, Coilcraft
L5, L6, L7, L8 1 Turn, #18 AWG, 0.33 ID Inductors
L9, L10 3 Turn, #16 AWG, 0.165 ID Inductors
N1, N2 Type N Flange Mounts
R1, R2 25.5 Chip Resistors (1206)
R3, R4 9.3 Chip Resistors (1206)
Z1 0.32 x 0.080 Microstrip
Z2, Z3 0.46 x 0.080 Microstrip
Z4, Z5 0.34 x 0.080 Microstrip
Z6, Z7 0.45 x 0.080 Microstrip
Z8, Z9, Z10, Z11 0.28 x 0.240 Microstrip
Z12, Z13 0.39 x 0.080 Microstrip
Z14, Z15 0.27 x 0.080 Microstrip
Z16, Z17 0.25 x 0.080 Microstrip
Z18, Z19 0.29 x 0.080 Microstrip
Z20, Z21 0.14 x 0.080 Microstrip
Z22 0.32 x 0.080 Microstrip
Board 31 mil Glass Teflon





    



     




 


     
 



    
     
      

     
   
      







 
     


MRF1570T1 MRF1570FT1
4
MOTOROLA RF DEVICE DATA
Figure 2. 135 – 175 MHz Broadband Test Circuit Component Layout


  
 



















   




















 






 
 




MRF1570T1
TYPICAL CHARACTERISTICS, 135 – 175 MHZ
 
 
 

!  "# $"%&'
Figure 3. Output Power versus Input Power
()* !++"#+$"%&'
 , - ./




 
0

()*!  "# $"%&'
Figure 4. Input Return Loss versus Output Power
0
0
0
 
 
 
 , - ./

+#+&&+$.'!
5
MRF1570T1 MRF1570FT1MOTOROLA RF DEVICE DATA
TYPICAL CHARACTERISTICS, 135 – 175 MHZ




()*!  "# $"%&'
Figure 5. Gain versus Output Power
12!++
"#+
%+
$
.
'
      
 
 
 
 , - ./









()*!  "# $"%&'
Figure 6. Drain Efficiency versus Output Power
!+%+##3+$4'η




      
 
 
 
 , - ./




5! %& # $6%'
Figure 7. Output Power versus Biasing Current
()* !++"#+$"%&'
 
 
 
 , - ./
 ,  .6



  

5! %& # $6%'
Figure 8. Drain Efficiency versus Biasing Current
!+%+##3+$4'η

 
 
 
 , - ./
 ,  .6
  







! &3 %# $&'
Figure 9. Output Power versus Supply Voltage
()* !++"#+$"%&'
 
 
 
 ,  .6
5 ,  6%




 


! &3 %# $&'
Figure 10. Drain Efficiency versus Supply Voltage
!+%+##3+$4'η




 
 
 
 ,  .6
5 ,  6%
  
MRF1570T1 MRF1570FT1
6
MOTOROLA RF DEVICE DATA
Figure 11. 400 – 470 MHz Broadband Test Circuit Schematic
B1, B2, B3, B4, B5, B6 Long Ferrite Beads, Fair Rite Products
C1, C9, C15, C32 270 pF, 100 mil Chip Capacitors
C2, C3 7.5 pF, 100 mil Chip Capacitors
C4 5.1 pF, 100 mil Chip Capacitor
C5, C6 180 pF, 100 mil Chip Capacitors
C7, C8 47 pF, 100 mil Chip Capacitors
C10, C16, C37, C42 120 pF, 100 mil Chip Capacitors
C11, C17, C33, C38 10 µF, 50 V Electrolytic Capacitors
C12, C18, C34, C39 470 pF, 100 mil Chip Capacitors
C13, C19, C35, C40 1200 pF, 100 mil Chip Capacitors
C14, C20, C36, C41 0.1 µF, 100 mil Chip Capacitors
C21, C22 33 pF, 100 mil Chip Capacitors
C23, C24 27 pF, 100 mil Chip Capacitors
C25, C26 15 pF, 100 mil Chip Capacitors
C27, C28 2.2 pF, 100 mil Chip Capacitors
C29, C30 6.2 pF, 100 mil Chip Capacitors
C31 1.0 pF, 100 mil Chip Capacitor
L1, L2, L3, L4 1 Turn, #18 AWG, 0.085 ID Inductors
L5, L6 2 Turn, #16 AWG, 0.165 ID Inductors
N1, N2 Type N Flange Mounts
R1, R2 25.5 Chip Resistors (1206)
R3, R4 10 Chip Resistors (1206)
Z1 0.240 x 0.080 Microstrip
Z2 0.185 x 0.080 Microstrip
Z3, Z4 1.500 x 0.080 Microstrip
Z5, Z6 0.150 x 0.240 Microstrip
Z7, Z8 0.140 x 0.240 Microstrip
Z9, Z10 0.140 x 0.240 Microstrip
Z11, Z12 0.150 x 0.240 Microstrip
Z13, Z14 0.270 x 0.080 Microstrip
Z15, Z16 0.680 x 0.080 Microstrip
Z17, Z18 0.320 x 0.080 Microstrip
Z19 0.380 x 0.080 Microstrip
Board 31 mil Glass Teflon









    




  




  

  




    
    
      

   
 
      





 
    






7
MRF1570T1 MRF1570FT1MOTOROLA RF DEVICE DATA
Figure 12. 400 – 470 MHz Broadband Test Circuit Component Layout


  
 












  

























 
 









MRF1570T1
TYPICAL CHARACTERISTICS, 400 – 470 MHZ

 
!  "# $"%&'
Figure 13. Output Power versus Input Power
()*!++"#+$"%&'
 , - ./




 
 
 

0
()*!  "# $"%&'
Figure 14. Input Return Loss versus Output Power
+#+&&+$.'!
0
0
0
      
 
 , - ./
 
 
MRF1570T1 MRF1570FT1
8
MOTOROLA RF DEVICE DATA
TYPICAL CHARACTERISTICS, 400 – 470 MHZ


()*!  "# $"%&'
Figure 15. Gain versus Output Power
12!++"#+%+$.'
 
 , - ./
 
 



       

()*!  "# $"%&'
Figure 16. Drain Efficiency versus Output Power
!+%+##3+$4'η






      
 
 , - ./
 
 




5! %& # $6%'
Figure 17. Output Power versus Biasing Current
()* !++"#+$"%&'
 , - ./
 ,  .6
 
 
 



    

Figure 18. Drain Efficiency versus Biasing Current
!+%+##3+$4'η
 , - ./
 ,  .6
 
 
 

5! %& # $6%'
    







! &3 %# $&'
Figure 19. Output Power versus Supply Voltage
()* !++"#+$"%&'
 ,  .6
5 ,  6%
 
 
 





   
Figure 20. Drain Efficiency versus Supply Voltage
!+%+##3+$4'η


! &3 %# $&'
 ,  .6
5 ,  6%
 
 
 




   
9
MRF1570T1 MRF1570FT1MOTOROLA RF DEVICE DATA
Figure 21. 450 – 520 MHz Broadband Test Circuit Schematic
B1, B2, B3, B4, B5, B6 Long Ferrite Beads, Fair Rite Products
C1, C8, C14, C28 270 pF, 100 mil Chip Capacitors
C2, C3 10 pF, 100 mil Chip Capacitors
C4, C5 180 pF, 100 mil Chip Capacitors
C6, C7 47 pF, 100 mil Chip Capacitors
C9, C15, C33, C38 120 pF, 100 mil Chip Capacitors
C10, C16, C29, C34 10 µF, 50 V Electrolytic Capacitors
C11, C17, C30, C35 470 pF, 100 mil Chip Capacitors
C12, C18, C31, C36 1200 pF, 100 mil Chip Capacitors
C13, C19, C32, C37 0.1 µF, 100 mil Chip Capacitors
C20, C21 22 pF, 100 mil Chip Capacitors
C22, C23 20 pF, 100 mil Chip Capacitors
C24, C25, C26, C27 5.1 pF, 100 mil Chip Capacitors
L1, L2 1 Turn, #18 AWG, 0.115 ID Inductors
L3, L4 2 Turn, #16 AWG, 0.165 ID Inductors
N1, N2 Type N Flange Mounts
R1, R2 1.0 k Chip Resistors (1206)
R3, R4 10 Chip Resistors (1206)
Z1 0.40 x 0.080 Microstrip
Z2, Z3 0.26 x 0.080 Microstrip
Z4, Z5 1.35 x 0.080 Microstrip
Z6, Z7 0.17 x 0.240 Microstrip
Z8, Z9 0.12 x 0.240 Microstrip
Z10, Z11 0.14 x 0.240 Microstrip
Z12, Z13 0.15 x 0.240 Microstrip
Z14, Z15 0.18 x 0.172 Microstrip
Z16, Z17 1.23 x 0.080 Microstrip
Z18, Z19 0.12 x 0.080 Microstrip
Z20 0.40 x 0.080 Microstrip
Board 31 mil Glass Teflon









    



  





  




    
    
     

  
 
     






    









MRF1570T1 MRF1570FT1
10
MOTOROLA RF DEVICE DATA
Figure 22. 450 – 520 MHz Broadband Test Circuit Component Layout


  
 











  





















 
 








MRF1570T1
TYPICAL CHARACTERISTICS, 450 – 520 MHZ

!  "# $"%&'
Figure 23. Output Power versus Input Power
()*!++"#+$"%&'
 , - ./
 
 
 
 




 
0
()*!  "# $"%&'
Figure 24. Input Return Loss versus Output Power
+#+&&+$.'!
 , - ./
 
 
 
 
0
0
0
0
      
11
MRF1570T1 MRF1570FT1MOTOROLA RF DEVICE DATA
TYPICAL CHARACTERISTICS, 450 – 520 MHZ

()*!  "# $"%&'
Figure 25. Gain versus Output Power
12!++"#+%+$.'

 , - ./
 
 
 
 
      







()*!  "# $"%&'
Figure 26. Drain Efficiency versus Output Power
!+%+##3+$4'η

 , - ./
 
 
 
 
      







5! %& # $6%'
Figure 27. Output Power versus Biasing Current
()* !++"#+$"%&'
 
 
 
 
 , - ./
 ,  .6



   


5! %& # $6%'
Figure 28. Drain Efficiency versus Biasing Current
 
 
 
 
 , - ./
 ,  .6



  
!+%+##3+$4'η


Figure 29. Output Power versus Supply Voltage
()* !++"#+$"%&'

! &3 %# $&'
 ,  .6
5 ,  6%
 
 
   






 
 


Figure 30. Drain Efficiency versus Supply Voltage
!+%+##3+$4'η

! &3 %# $&'
 ,  .6
5 ,  6%
 
   
 
 
 



MRF1570T1 MRF1570FT1
12
MOTOROLA RF DEVICE DATA
Zin = Complex conjugate of source
impedance.
ZOL* = Complex conjugate of the load
impedance at given output power,
voltage, frequency, and ηD > 50 %.
Notes: Impedance Zin was measured with input terminated at 50 W.
Impedance ZOL was measured with output terminated at 50 W.
Figure 31. Series Equivalent Input and Output Impedance
f
MHz
Zin
ZOL*
450 0.94 –j1.12 0.61 –j1.14
 , - ! 5 , - %! ()* ,  "
470 1.03 –j1.17 0.62 –j1.12
500 0.95 –j1.71 0.75 –j1.03
520 0.62 –j1.74 0.77 –j0.97
f
MHz
Zin
ZOL*
400 0.92 –j0.71 1.05 –j1.10
 , - ! 5 , - %! ()* ,  "
440 1.12 –j1.11 0.83 –j1.45
470 0.82 –j0.79 0.59 –j1.43
f
MHz
Zin
ZOL*
135 2.8 +j0.05 0.65 +j0.42
 , - ! 5 , - %! ()* ,  "
155 3.9 +j0.34 1.01 +j0.63
175 2.4 –j0.47 0.71 +j0.37

7 ,  
8
7 ,   ( ,

8
Zin ZOL
*
1)*
9*/:;
<*=(>?
<@/<
.<> <2*
)*1)*
9*/:;
<*=(>?
7 ,  
7 ,  
7 ,  
( ,

87 ,  
7 ,  
7 ,  
7 ,  
7 ,  
7 ,  
7 ,  
13
MRF1570T1 MRF1570FT1MOTOROLA RF DEVICE DATA
APPLICATIONS INFORMATION
DESIGN CONSIDERATIONS
This device is a common–source, RF power, N–Channel
enhancement mode, Lateral Metal–Oxide Semiconductor
Field–Effect Transistor (MOSFET). Motorola Application
Note AN211A, “FETs in Theory and Practice”, is suggested
reading for those not familiar with the construction and char-
acteristics of FETs.
This surface mount packaged device was designed pri-
marily for VHF and UHF mobile power amplifier applications.
Manufacturability is improved by utilizing the tape and reel
capability for fully automated pick and placement of parts.
However, care should be taken in the design process to in-
sure proper heat sinking of the device.
The major advantages of Lateral RF power MOSFETs in-
clude high gain, simple bias systems, relative immunity from
thermal runaway, and the ability to withstand severely mis-
matched loads without suffering damage.
MOSFET CAPACITANCES
The physical structure of a MOSFET results in capacitors
between all three terminals. The metal oxide gate structure
determines the capacitors from gate–to–drain (Cgd), and
gate–to–source (Cgs). The PN junction formed during fab-
rication of the RF MOSFET results in a junction capacitance
from drain–to–source (Cds). These capacitances are charac-
terized as input (Ciss), output (Coss) and reverse transfer
(Crss) capacitances on data sheets. The relationships be-
tween the inter–terminal capacitances and those given on
data sheets are shown below. The Ciss can be specified in
two ways:
1. Drain shorted to source and positive voltage at the gate.
2. Positive voltage of the drain in respect to source and zero
volts at the gate.
In the latter case, the numbers are lower. However, neither
method represents the actual operating conditions in RF ap-
plications.
>9
.2
&()>/<
9*<
;.
;2
22 , ;. ;2
(22 , ;. .2
>22 , ;.
DRAIN CHARACTERISTICS
One critical figure of merit for a FET is its static resistance
in the full–on condition. This on–resistance, RDS(on), occurs
in the linear region of the output characteristic and is speci-
fied at a specific gate–source voltage and drain current. The
drain–source voltage under these conditions is termed
VDS(on). For MOSFETs, VDS(on) has a positive temperature
coefficient at high temperatures because it contributes to the
power dissipation within the device.
BVDSS values for this device are higher than normally re-
quired for typical applications. Measurement of BVDSS is not
recommended and may result in possible damage to the de-
vice.
GATE CHARACTERISTICS
The gate of the RF MOSFET is a polysilicon material, and
is electrically isolated from the source by a layer of oxide.
The DC input resistance is very high – on the order of 109
— resulting in a leakage current of a few nanoamperes.
Gate control is achieved by applying a positive voltage to
the gate greater than the gate–to–source threshold voltage,
VGS(th).
Gate Voltage Rating — Never exceed the gate voltage
rating. Exceeding the rated VGS can result in permanent
damage to the oxide layer in the gate region.
Gate Termination — The gates of these devices are es-
sentially capacitors. Circuits that leave the gate open–cir-
cuited or floating should be avoided. These conditions can
result in turn–on of the devices due to voltage build–up on
the input capacitor due to leakage currents or pickup.
Gate Protection — These devices do not have an internal
monolithic zener diode from gate–to–source. If gate protec-
tion is required, an external zener diode is recommended.
Using a resistor to keep the gate–to–source impedance low
also helps dampen transients and serves another important
function. Voltage transients on the drain can be coupled to
the gate through the parasitic gate–drain capacitance. If the
gate–to–source impedance and the rate of voltage change
on the drain are both high, then the signal coupled to the gate
may be large enough to exceed the gate–threshold voltage
and turn the device on.
DC BIAS
Since this device is an enhancement mode FET, drain cur-
rent flows only when the gate is at a higher potential than the
source. RF power FETs operate optimally with a quiescent
drain current (IDQ), whose value is application dependent.
This device was characterized at IDQ = 800 mA, which is the
suggested value of bias current for typical applications. For
special applications such as linear amplification, IDQ may
have to be selected to optimize the critical parameters.
The gate is a dc open circuit and draws no current. There-
fore, the gate bias circuit may generally be just a simple re-
sistive divider network. Some special applications may
require a more elaborate bias system.
GAIN CONTROL
Power output of this device may be controlled to some de-
gree with a low power dc control signal applied to the gate,
thus facilitating applications such as manual gain control,
ALC/AGC and modulation systems. This characteristic is
very dependent on frequency and load line.
MRF1570T1 MRF1570FT1
14
MOTOROLA RF DEVICE DATA
MOUNTING
The specified maximum thermal resistance of 0.75°C/W
assumes a majority of the 0.170 x 0.608 source contact on
the back side of the package is in good contact with an ap-
propriate heat sink. As with all RF power devices, the goal of
the thermal design should be to minimize the temperature at
the back side of the package. Refer to Motorola Application
Note AN4005/D, “Thermal Management and Mounting Meth-
od for the PLD–1.5 RF Power Surface Mount Package,” and
Engineering Bulletin EB209/D, “Mounting Method for RF
Power Leadless Surface Mount Transistor” for additional in-
formation.
AMPLIFIER DESIGN
Impedance matching networks similar to those used with
bipolar transistors are suitable for this device. For examples
see Motorola Application Note AN721, “Impedance Matching
Networks Applied to RF Power Transistors.” Large–signal
impedances are provided, and will yield a good first pass
approximation.
Since RF power MOSFETs are triode devices, they are not
unilateral. This coupled with the very high gain of this device
yields a device capable of self oscillation. Stability may be
achieved by techniques such as drain loading, input shunt
resistive loading, or output to input feedback. The RF test fix-
ture implements a parallel resistor and capacitor in series
with the gate, and has a load line selected for a higher effi-
ciency, lower gain, and more stable operating region. See
Motorola Application Note AN215A, “RF Small–Signal
Design Using Two–Port Parameters” for a discussion of two
port network theory and stability.
15
MRF1570T1 MRF1570FT1MOTOROLA RF DEVICE DATA
NOTES
MRF1570T1 MRF1570FT1
16
MOTOROLA RF DEVICE DATA
NOTES
17
MRF1570T1 MRF1570FT1MOTOROLA RF DEVICE DATA
NOTES
MRF1570T1 MRF1570FT1
18
MOTOROLA RF DEVICE DATA
PACKAGE DIMENSIONS
CASE 1366–03
ISSUE B
TO–272 SPLIT LEAD
PLASTIC
MRF1570T1
#&A
-  #&A  -
- ## #&& % #%#&
# %&# 3-! -
- % %# 00 & %# %   #%
% & # " # #% "##
# #% #B& # %& 3 % #
  # % #-
- #& % #   # 
&- %"%# & &
- # &#- #& % # 
#  &% % %#
### % % %# 00-
- #&& C % C   #
%% &- %"%# %%
& &% # - %  #B#&&
 # C % C #&& % %B
%#% -
- &&% ##&#& # #B&#
%#%  # #% &-
LA1
q
c1
D
C
A
A
999
SEATING
PLANE
SEATING
PLANE
B
E1
P
e
4X
D
4X b2
D1
999 
999 %
E
YY
A2
DIM
A
MIN MAX MIN MAX
MILLIMETERS
- - - -
INCHES
A1 - - - -
A2 - - - -
D- - - -
D1
E- - - -
E1 - - - -
L- - - -
b1 - - - -
b2 - - - -
c1 - - - -
e
e1
+ +
aaa
1
2
3
5
6
7
-+&
q
-
__
-+&
-
__
4X
b1
b3 - - - -
-+& -+&
bbb - -
-+& -+&
P- - - -
D2 -+& -+&
E2 -+& -+&
H
DATUM
PLANE
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
4
2
1
6
5
7
VIEW Y–Y
3
8
CCC
E2
D2 %
DRAIN ID
4
8
2X
e1
4X
2X
b3
(b1)
&3# A
 - &# $'
- %
- %
- &# $'
- &# $'
- %#
- %#
- &# $'
NOTE 6
19
MRF1570T1 MRF1570FT1MOTOROLA RF DEVICE DATA
CASE 1366A–02
ISSUE A
TO–272 STRAIGHT LEAD
PLASTIC
MRF1570FT1
#&A
-  #&A -
- ## #&& % #%#&
# %&# 3-! -
- #&& DD % D#D   #
 &- %"%# &
& - # &#- #&& DD % D#D 
#  &% % %#
### % % %# 00-
- #&& DCD % DCD   #
%% &- %"%# %%
& &% # - %  #B#&&
 # DCD % DCD #&& % %B
%#% -
- &&% ##&#& # #B&#
%#%  # #% &-
- #& % %#& " # DED 3-
A
999
B
E1
P
e
4X
D
4X b2
D1
999 
999 %
E
DIM
A
MIN MAX MIN MAX
MILLIMETERS
- - - -
INCHES
A1 - - - -
D- - - -
D1
E- - - -
E1 - - - -
b- - - -
b1 - - - -
c1 - - - -
e
e1
aaa
1
2
3
5
6
7
-+&
-
-+&
-
4X
b1
b2 - - - -
-+& -+&
bbb - -
-+& -+&
P- - - -
D2 -+& -+&
E2 -+& -+&
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
ÇÇÇÇ
4
2
1
6
5
7
VIEW Y–Y
3
8
CCC
E2
D2
%
DRAIN ID
4
8
2X
e1
4X
2X
b3
&3# A
 - &# $'
- %
- %
- &# $'
- &# $'
- %#
- %#
- &# $'
NOTE 5
D
A
SEATING
PLANE
YY A1
c1
e2 -+& -+&
b3 - - - -
b4 - - - -
(b1)
3X b
999 
e2
3X
4X
ZONE "J"
6
F
A2
A2 - - - -
F-+& -+&
b4
MRF1570T1 MRF1570FT1
20
MOTOROLA RF DEVICE DATA
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation, or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters can and do vary in different
applications and actual performance may vary over time. All operating parameters, including “Typicals”, must be validated for each customer application by
customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended,
or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other
application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola
products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal
injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture
of the part. Motorola and the Stylized M Logo are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.
Motorola and the Stylized M Logo are registered in the US Patent & Trademark Office. All other product or service names are the property of their respective owners.
E Motorola, Inc. 2002.
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; P.O. Box 5405, Denver, Colorado 80217. 1–303–675–2140 or 1–800–441–2447
JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center, 3–20–1, Minami–Azabu. Minato–ku, Tokyo 106–8573 Japan. 81–3–3440–3569
ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre, 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T. Hong Kong. 852–26668334
Technical Information Center: 1–800–521–6274
HOME PAGE: http://www.motorola.com/semiconductors
MRF1570T1/D