Freescale
Data Sheet: Technical Data Document Number: MPC5646C
Rev. 5.1, 08/2012
© Freescale, Inc., 2010-2012. All rights reserved.
This document contains information on a product under development. Freescale reserves
the right to change or discontinue this product without notice.
MPC5646C
176-pin LQFP
(24 mm x 24 mm) 208-pin LQFP
(28 mm x 28 mm)
256 MAPBGA
(17 mm x 17 mm)
On-chip modules available within the family include the following
features:
e200z4d dual issue, 32-bit core Power Architecture
compliant CPU
Up to 120 MHz
4 KB, 2/4-Way Set Associative Instruction Cache
Variable length encoding (VLE)
Embedded floating-point (FPU) unit
Supports Nexus3+
e200z0h single issue, 32-bit core Power Architecture compliant
CPU
Up to 80 MHz
Variable length encoding (VLE)
Supports Nexus3+
Up to 3 MB on-chip flash memory: flash page buffers to improve
access time
Up to 256 KB on-chip SRAM
64 KB on-chip data flash memory to support EEPROM emulation
Up to 16 semaphores across all slave po rts
User selectable MBIST
Low-power modes supported: STOP, HALT, STANDBY
16 region Memory Protection Unit (MPU)
Dual-core Interrupt Co n tro ller (IN TC). Inter ru pt sou rces can be
routed to e200z4d, e200z0h, or both
Crossbar switch architecture for concurrent access to peripherals,
flash memory, and SRAM from multiple bus masters
32 channel eDMA controller with DMAMUX
Timer supports input/output channels providing 16-bit input
capture, output compare, and PWM functions (eMIOS)
2 analog-to-digital converters (ADC): one 10-bit and one 12-bit
Cross Trigger Unit (CTU) to enable synchronization of ADC
conversions with a timer event from the eMIOS or from the PIT
Up to 8 serial peripheral interface (DSPI) modules
Up to 10 serial communication interface (LINFlex) modules
Up to 6 full CAN (FlexCAN) modules with 64 MBs each
CAN Sampler to catch ID of CAN message
1 inter IC communication interface (I2C) module
Up to 177 (LQFP) or 199 (BGA) configurable general purpose I/O
pins
System clocks sources
4–40 MHz external crystal oscillator
16 MHz internal RC oscillator
—FMPLL
Additionally, there are two low power oscillators: 128 kHz
internal RC oscillator, 32 kHz external crystal oscillator
Real Time Counter (RTC) with clock source from internal 128
kHz or 16 MHz oscillators or external 4–40 MHz crystal
Supports autonomous wake-up with 1 ms resolution with
max timeout of 2 seconds
Optional support from external 32 kHz crystal oscillator ,
supporting wak e-up with 1 second resolution and max
timeout of 1 hour
1 System Timer Modu le (ST M ) with four 32-bit compare
channels
Up to 8 periodic interrupt timers (PIT) with 32-bit counter
resolution
1 Real Time Interrupt (RTI) with 32-bit counter resolution
1 Safety Enhanced Software Watchdog Timer (SWT) that
supports keyed functionality
1 dual-channel FlexRay Controller with 128 message buffers
1 Fast Ethernet Controller (FEC)
On-chip voltage regulator (VREG)
Cryptographic Service s Engin e (C SE)
Offered in the following standard package types:
176-pin LQFP, 24 24 mm, 0.5 mm Lead Pitch
208-pin LQFP, 28 28 mm, 0.5 mm Lead Pitch
256-ball MAPBGA, 17 17mm, 1.0 mm Lead Pitch
MPC5646C Microcontroller
Datasheet
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale2
Table of Contents
1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.1 Document Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
1.2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
2 Block diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
3 Package pinouts and signal descriptions . . . . . . . . . . . . . . . . .9
3.1 Pad types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
3.2 System pins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
3.3 Functional ports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
4 Electrical Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . .38
4.1 Parameter classification . . . . . . . . . . . . . . . . . . . . . . . .38
4.2 NVUSRO register . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39
4.2.1 NVUSRO [PAD3V5V(0)] field description . . . . .39
4.2.2 NVUSRO [PAD3V5V(1)] field description . . . . .39
4.3 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . .39
4.4 Recommended operating conditions . . . . . . . . . . . . . .41
4.5 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . .44
4.5.1 Package thermal characteristics . . . . . . . . . . . .44
4.5.2 Power considerations . . . . . . . . . . . . . . . . . . . .44
4.6 I/O pad electrical characteristics. . . . . . . . . . . . . . . . . .45
4.6.1 I/O pad types . . . . . . . . . . . . . . . . . . . . . . . . . . .45
4.6.2 I/O input DC characteristics. . . . . . . . . . . . . . . .45
4.6.3 I/O output DC characteristics. . . . . . . . . . . . . . .46
4.6.4 Output pin transition times. . . . . . . . . . . . . . . . .49
4.6.5 I/O pad current specification . . . . . . . . . . . . . . .50
4.7 RESET electrical characteristics. . . . . . . . . . . . . . . . . .52
4.8 Power management electrical characteristics. . . . . . . .54
4.8.1 Voltage regulator electrical characteristics . . . .54
4.8.2 VDD_BV options . . . . . . . . . . . . . . . . . . . . . . . .55
4.8.3 Voltage monitor electrical characteristics. . . . . .56
4.9 Low voltage domain power consumption . . . . . . . . . . .57
4.10 Flash memory electrical characteristics . . . . . . . . . . . .59
4.10.1 Program/Erase characteristics. . . . . . . . . . . . . .59
4.10.2 Flash memory power supply DC characteristics61
4.10.3 Flash memory start-up/switch-off timings . . . . .62
4.11 Electromagnetic compatibility (EMC) characteristics . .62
4.11.1 Designing hardened software
to avoid noise problems . . . . . . . . . . . . . . . . . . . . . . . .62
4.11.2 Electromagnetic interference (EMI) . . . . . . . . . 63
4.11.3 Absolute ma ximum ratings (electrical sensitivity)63
4.12 Fast external crystal oscillator (4–40 MHz)
electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.13 Slow external crystal oscillator (32 kHz)
electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.14 FMPLL electrical characteristics . . . . . . . . . . . . . . . . . 69
4.15 Fast internal RC oscillator (16 MHz)
electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.16 Slow internal RC oscillator (128 kHz)
electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.17 ADC electrical characteristics . . . . . . . . . . . . . . . . . . . 71
4.17.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.18 Fast Ethernet Controller . . . . . . . . . . . . . . . . . . . . . . . 81
4.18.1 MII Receive Signal Timing
(RXD[3:0], RX_DV, RX_ER, and RX_CLK). . . . . . . . . 81
4.18.2 MII Transmit Signal Timing
(TXD[3:0], TX_EN, TX_ER, TX_CLK) . . . . . . . . . . . . . 81
4.18.3 MII Async Inputs Signal Timing
(CRS and COL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.18.4 MII Serial Management Channel Timing
(MDIO and MDC). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
4.19 On-chip peripherals. . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.19.1 Current consumption . . . . . . . . . . . . . . . . . . . . 84
4.19.2 DSPI characteristics. . . . . . . . . . . . . . . . . . . . . 86
4.19.3 Nexus characteristics. . . . . . . . . . . . . . . . . . . . 94
4.19.4 JTAG characteristics . . . . . . . . . . . . . . . . . . . . 96
5 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . 98
5.1.1 176 LQFP package mechanical drawing . . . . . 98
5.1.2 208 LQFP package mechanical drawing . . . . 101
5.1.3 256 MAPBGA package mechanical drawing . 106
6 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7 Revision history. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Introduction
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 3
1 Introduction
1.1 Document Overview
This document describes the features of the family and options available within the family members, and highlights important
electrical and physical characteristics of the MPC5646C device. T o ensure a complete understanding of the device functionality ,
refer also to the MPC5646C Reference Manual.
1.2 Description
The MPC5646C is a new family of next generation microcontrollers built on the Power Architecture embedded category. This
document describes the features of the family and options available wit hin th e family mem bers, and highlights important
electrical and physical characteristics of the device.
The MPC5646C family expands the range of the MPC560xB microcontroller family. It provides the scalability needed to
implement platform approaches and delivers the performance required by increasingly sophisticated software architectures. The
advanced and cost-efficient host processor core of the MPC5646C automotive controller family complies with the Power
Architecture embedded category, which is 100 percent user-mode compatible with the original Power Architecture user
instruction set architecture (UISA). It operates at speeds of up to 120 MHz and offers high performance processing optimized
for low power consump tion. It also capitalizes on the available development infrastructure of current Power Architecture
devices and is supported with software drivers, operating systems and configuration code to assist with users implementations.
Introduction
MPC5646C Microcontroller Datasheet, Rev. 5.1
Freescale 4
Table 1. MPC5646C family comp arison1
Feature MPC5644B MPC5644C MPC5645B MPC5645C MPC5646B MPC5646C
Package 176
LQFP 208
LQFP 176
LQFP 208
LQFP 256
BGA 176
LQFP 208
LQFP 176
LQFP 208
LQFP 256
BGA 176
LQFP 208
LQFP 176
LQFP 208
LQFP 256
BGA
CPU e200z4d e200z4d + e200z0h e200z4d e200z4d + e200z0h e200z4d e200z4d + e200z0h
Execution speed2Up to 120 MHz
(e200z4d) Up to 120 MHz
(e200z4d)
Up to 80 MHz
(e200z0h)3
Up to 120 MHz
(e200z4d) Up to 120 MHz
(e200z4d)
Up to 80 MHz
(e200z0h)3
Up to 120 MHz
(e200z4d) Up to 120 MHz
(e200z4d)
Up to 80 MHz
(e200z0h)3
Code flash memory 1.5 MB 2 MB 3 MB
Data flash memory 4 x16 KB
SRAM 128 KB 192 KB 160 KB 256 KB 192 KB 256 KB
MPU 16-entry
eDMA432 ch
10-bit ADC
27 ch 33 ch 27 ch 33 ch 27 ch 33 ch 27 ch 33 ch 27 ch 33 ch 27 ch 33 ch
dedicated5,6
shared with
12-bit ADC719 ch
12-bit ADC
5ch 10ch 5ch 10ch 5ch 10ch 5ch 10ch 5ch 10ch 5ch 10ch
dedicated8
shared with
10-bit ADC719 ch
CTU 64 ch
Tot al timer I/O9 eMIOS 64 ch, 16-bit
SCI (LINFlexD) 10
SPI (DSPI) 8
CAN (FlexCAN)10 6
FlexRay Yes
STCU11 Yes
Ethernet No Yes No Yes No Yes
MPC5646C Microcontroller Datasheet, Rev. 5.1
Introduction
Freescale5
I2C 1
32 kHz oscillator (SXOSC) Yes
GPIO12 147 177 147 177 199 147 177 147 177 199 147 177 147 177 199
Debug JTAG Nexus
3+ JTAG Nexus
3+ JTAG Nexus
3+
Cryptographic Services
Engine (CSE) Optional
1Feature set dependent on selected peripher al multiplexing; table shows example.
2Based on 125 C ambient operating temperature and subject to full device characterization.
3The e200z0h can run at speeds up to 80 MHz. However , if system frequency is >80 MHz (e.g., e200z4d running at 120 M Hz) the e200z0h needs
to run at 1/2 system frequency. There is a configurable e200z0 system clock divider for this purpose.
4DMAMUX also included that allows for software selection of 32 out of a possible 57 sources.
5Not shared with 12-bit ADC, but possibly shared with other alternate functions.
6There are 23 dedicated ANS plus 4 dedicated ANX channels on LQPF176. For higher pin count packages, there are 29 dedicated ANS plus 4
dedicated ANX channels.
716x precision channels (ANP) and 3x standard (ANS).
8Not shared with 10-bit ADC, but possibly shared with other alternate functions.
9As a minimum, all timer channels can function as PWM or Input Capture and Output Control. Refer to the eMIOS section of the device reference
manual for information on the channel configuration and functions.
10 CAN Sampler also included that allows ID of CAN message to be captured when in low power mode.
11 STCU controls MBIST activation and reporting.
12 Estimated I/O count for proposed packages based on multiplexing with peripherals.
Table 1. MPC5646C family comparison1 (continued)
Feature MPC5644B MPC5644C MPC5645B MPC5645C MPC5646B MPC5646C
Package 176
LQFP 208
LQFP 176
LQFP 208
LQFP 256
BGA 176
LQFP 208
LQFP 176
LQFP 208
LQFP 256
BGA 176
LQFP 208
LQFP 176
LQFP 208
LQFP 256
BGA
MPC5646C Microcontroller DataSheet, Rev. 5.1
Block di agram
Freescale6
2 Block diagram
Figure 1 shows the detailed block diagram of the MPC5646C.
Figure 1. MPC5646C block diagram
8
DSPI
FMPLL
Nexus 3+
SRAM
SIUL
Reset Control
2
128 KB
External
IMUX
GPIO &
JTAGC
Pad Control
JTAG Port
Nexus Port
e200z0h
Interrupt requests
64-bit 8 x 5 crossbar switch
6
FlexCAN
Peripheral Bridge
Interrupt
Request
Interrupt
Request
I/O
Clocks
Instructions
Data
Voltage
regulator
NMI1
SWT
8
4
STM
NMI1
INTC
I
2
C
10
LINFlexD
27 ch or 33 ch
(2)
MPU
CMU
2
SRAM Flash memory
Code Flash
2
1.5 MB Data Flash
64 KB
MC_PCUMC_MEMC_CGMMC_RGM BAM
CTU
RTC/API SSCM
(Master)
(Master)
(Slave)
(Slave)
(Slave)
controller
controller
ADC Analog-to-Digital Converter
BAM Boot Assist Module
CSE Cryptographic Services Engine
CAN Controller Area Network (FlexCAN)
CMU Clock Monitor Unit
CTU Cross Triggering Unit
DMAMUX DMA Channel Multiplexer
DSPI Deserial Serial Peripheral Interface
eDMA enhanced Direct Memory Access
FlexCAN Controller Area Network controller modules
FEC Fast Ethenet Controller
eMIOS Enhanced Modular Input Outp ut System
ECSM Error Correction Status Module
FMPLL Frequency-Modulated Phase-Locked Loop
FlexRay FlexRay Communication Controller
I2C Inter-integrated Circuit Bus
IMUX Internal Multiplexer
INTC Interrupt Controller
MPU
ECSM
from peripheral
registers
blocks
eMIOS
e200z4d
Nexus 3+
Nexus
CSE
FEC
FlexRay
WKPU
16 x
Semaphores
STCU
NMI0
NMI0
Instructions
(Master)
Data
(Master)
ADC 1
10-bit
CAN
Sampler
ADC
10 ch
(1)
1
12-bit
PIT RTI
2
32 ch
DMAMUX
(3) (3)
Notes:
1) 10 dedicated channels plus up to 19 shared channels
.
See the device-comparison table.
2) Package dependent. 27 or 33 dedicated channels plus up to 19 shared c hannels. See the device-comparison table.
3)
(Master)
eDMA
16 x precision channels (ANP) are m apped on input only I/O cells.
JTAGC JTAG controller
LINFlexD Local Interconnect Network Flexible with DMA support
MC_ME Mode Entry Module
MC_CGM Clock Generation Module
MC_PCU Power Control Unit
MC_RGM Reset Generation Module
MPU Memory Protection Unit
Nexus Nexus Development Interface
NMI Non-Maskable Interrupt
PIT_RTI Periodic Interrupt Timer with Real-Time Interrupt
RTC/API Real-Time Clock/ Autonomous Periodic In terrupt
SIUL System Integration Unit Lite
SRAM Static Random-Access Memory
SSCM System Status Configuration Module
STM System Ti mer Module
SWT Software Wa tchdog Timer
STCU Self Test Control Unit
WKPU Wakeup Unit
Legend:
Block diagram
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 7
Table 2 summarizes the functions of the blocks present on the MPC5646C.
Table 2. MPC5646C series block summary
Block Function
Analog-to-digital converter (ADC) Converts analog voltages to digital values
Boot assist module (BAM) A block of read-only memory containing VLE code which is executed according
to the boot mode of the device
Clock monitor unit (CMU) Monitors clock source (internal and external) integrity
Cross triggering unit (CTU) Enables synchronization of ADC conversions with a timer event from the eMIOS
or from the PIT
Cryptographic Security Engine
(CSE) Suppo rts the encoding and decoding of any kind of data
Crossbar (XBAR) switch Supports simultaneous connections between two master ports and three slave
ports. The crossbar supports a 32-bit address bus width and a 64-bit data bus
width
DMA Channel Multi plexer
(DMAMUX) Allows to route DMA sources (called slots) to DMA channels
Deserial serial peripheral interface
(DSPI) Provides a synchronous serial interface for communication with external devices
Error Correction Status Module
(ECSM) Pro vides a myriad of miscellaneous control functions for the device includi ng
program-visible information about configuration an d revision levels, a reset
status register, wakeup control for exiting sleep modes, and optional featu res
such as information on memory errors reported by error-correcting codes
Enhanced Direct Memory Access
(eDMA) Performs complex data transfers with minimal intervention from a host processor
via “n” programmable channels.
Enhanced modular inpu t output
system (eMIOS) Provides the functiona lity to generate or measure events
Flash memory Provides non-volatile storage for program code, constants and variables
FlexCAN (controller area network) Supports the standard CAN communications protocol
FMPLL (frequency-modulate d
phase-locked loop) Generates high-speed system clocks and supports programmable frequency
modulation
FlexRay (FlexRay communication
controller) Provides high-speed distributed control for advanced automotive applications
Fast Ethernet Controller (FEC) Ethernet Media Access Controller (MAC) designed to support both 10 an d 100
Mbps Ethernet/IEEE 802.3 networks
Internal multiplexer (IMUX) SIUL
subblock Allows flexible mapping of peripheral interface on the different pins of the device
Inter-integrated circuit (I2C™) bus A two wire bidirectional serial bus that provides a simple and efficient method of
data exchange between devices
Interrupt controller (INTC) Provides priority-based preemp tive scheduling of interrupt requests for both
e200z0h and e200z4d cores
JTAG controller Provides the means to test chip functionality and connectivity while remaining
transparent to system logic when not in test mode
MPC5646C Microcontroller DataSheet, Rev. 5.1
Block di agram
Freescale8
LinFlexD (Local Interconnect
Network Flexible with DMA
support)
Manages a high number of LIN (Local Interconnect Network protocol) messages
efficiently with a minimum of CPU load
Memory protection unit (MPU) Pro vides hardware access control for all memory references gene rated in a
device
Clock generation module
(MC_CGM) Provides logic and control required for the generation of system and peripheral
clocks
Power control unit (MC_PCU) Reduces the overall power consumption by disconne cting parts of the device
from the power supply via a power switching device; de vice components are
grouped into sections called “power domains” which are controlled by the PCU
Reset generation module
(MC_RGM) Centralizes reset sources and manages the device reset sequence of the device
Mode entry module (MC_ME) Provi des a mechanism for controlling the device operational mode and mode
transition sequences in all functional states; also manages the power control unit,
reset generation module and clock generation module, and holds the
configuration, control and status registers accessible for applications
Non-Maskable Interrupt (NMI) Handl es external events that must produce an immediate response, such as
power down detection
Nexus Development Interface
(NDI) Provides real-time de velopment capabilities for e200z0h and e200z4d core
processor
Periodic interrupt timer/ Real T ime
Interrupt Timer (PIT_RTI) Produces periodic interrupts and triggers
Real-time counter (RTC/API) A free running coun ter used for time keeping applicatio ns, the RTC can be
configured to generate an interrupt at a predefined interval independent of the
mode of operation (run mode or low-power mode). Supports autonomous
periodic interrupt (API) function to generate a periodic wakeup request to exit a
low power mode or an interrupt request
Static random-access memory
(SRAM) Pro vi des storage for program code, constants, and variables
System integration unit lite (SIUL) Provides control over all the electrical pad controls and up 32 ports with 16 bits
of bidirectional, general-purpose input and output signals and supports up to 32
external interrupts with trigger event configuration
System status and configuration
module (SSCM) Provides system configuration and status data (such as memory size and status,
device mode and security status), device identification data, debug status port
enable and selection, and bus and peripheral abort enable/disable
System timer module (STM) Provides a set of output compare events to support AutoSAR and operating
system tasks
Semaphores Provides the hardw are support needed in multi-core systems for sharing
resources and provides a simple mechanism to achieve lock/unlock operations
via a single write access.
Wake Unit (WKPU) Supports external sources that can generate interrupts or wakeup events, of
which can cause non-maskable interrupt requests or wakeup events.
Table 2. MPC5646C series block summary (continued)
Block Function
Package pinouts and signal descriptions
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 9
3 Package pinouts and signal descriptions
The available LQFP pinouts and the MAPBGA ballmaps are provided in the following figures. For functional port pin
description, see Table 4.
Figure 2. 176-pin LQFP configuration
176 LQFP
Top view
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
104
103
102
101
100
99
98
97
96
95
94
93
92
91
90
89
PB[2]
PC[8]
PC[13]
PC[12]
PI[0]
PI[1]
PI[2]
PI[3]
PE[7]
PE[6]
PH[8]
PH[7]
PH[6]
PH[5]
PH[4]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV_A
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PI[4]
PI[5]
PH[12]
PH[11]
PG[11]
PG[10]
PE[15]
PE[14]
PG[15]
PG[14]
PE[12]
PC[7]
PF[10]
PF[11]
PA[15]
PF[13]
PA[14]
PA[4]
PA[13]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV_A
PB[9]
PB[8]
PB[10]
PF[0]
PF[1]
PF[2]
PF[3]
PF[4]
PF[5]
PF[6]
PF[7]
PJ[3]
PJ[2]
PJ[1]
PJ[0]
PI[15]
PI[14]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
VDD_HV_A
VSS_HV
PD[8]
PB[4]
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PE[13]
PF[14]
PF[15]
VDD_HV_B
VSS_HV
PG[0]
PG[1]
PH[3]
PH[2]
PH[1]
PH[0]
PG[12]
PG[13]
PA[3]
PI[13]
PI[12]
PI[11]
VDD_LV
VSS_LV
PI[8]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
PD[12]
VDD_HV_ADC1
VSS_HV_ADC1
PB[11]
PD[11]
PD[10]
PD[9]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC0
VSS_HV_ADC0
PB[3]
PC[9]
PC[14]
PC[15]
PJ[4]
VDD_HV_A
VSS_HV
PH[15]
PH[13]
PH[14]
PI[6]
PI[7]
PG[5]
PG[4]
PG[3]
PG[2]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV_A
VSS_HV
RESET
VSS_LV
VDD_LV
VRC_CTRL
PG[9]
PG[8]
PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PF[9]
PF[8]
PF[12]
PC[6]
NOTE
1) VDD_HV_B supplies the IO voltage domain for the
pins PE[12], PA[11], PA[10], PA[9], PA[8], PA[7],
PE[13], PF[14], PF[15], PG[0], PG[1], PH[3], PH[2],
PH[1], PH[0], PG[12], PG[13], and PA[3].
2)Availability of port pin alternate functions depends
on product selection.
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package pinouts and signal descriptions
Freescale10
Figure 3. 208-pin LQFP configuration
208 LQFP
Top view
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
208
207
206
205
204
203
202
201
200
199
198
197
196
195
194
193
192
191
190
189
188
187
186
185
184
183
182
181
180
179
178
177
176
175
174
173
172
171
170
169
168
167
166
165
164
163
162
161
160
159
158
157
156
155
154
153
152
151
150
149
148
147
146
145
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
119
118
117
116
115
114
113
112
111
110
109
108
107
106
105
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
PB[3]
PC[9]
PC[14]
PC[15]
PJ[4]
VDD_HV_A
VSS_HV
PH[15]
PH[13]
PH[14]
P[I6]
P[I7]
PG[5]
PG[4]
PG[3]
PG[2]
PA[2]
PE[0]
PA[1]
PE[1]
PE[8]
PE[9]
PE[10]
PA[0]
PE[11]
VSS_HV
VDD_HV_A
VSS_HV
RESET
VSS_LV
VDD_LV
VRC_CTRL
PG[9]
PG[8]
PC[11]
PC[10]
PG[7]
PG[6]
PB[0]
PB[1]
PK[1]
PK[2]
PK[3]
PK[4]
PK[5]
PK[6]
PK[7]
PK[8]
PF[9]
PF[8]
PF[12]
PC[6]
PA[11]
PA[10]
PA[9]
PA[8]
PA[7]
PE[13]
PF[14]
PF[15]
VDD_HV_B
VSS_HV
PG[0]
PG[1]
PH[3]
PH[2]
PH[1]
PH[0]
PG[12]
PG[13]
PA[3]
PI[13]
PI[12]
PI[11]
PI[10]
VDD_LV
VSS_LV
PI[9]
PI[8]
PB[15]
PD[15]
PB[14]
PD[14]
PB[13]
PD[13]
PB[12]
VDD_HV_A
VSS_HV
PD[12]
VDD_HV_ADC1
VSS_HV_ADC1
PB[11]
PD[11]
PD[10]
PD[9]
PJ[5]
PJ[6]
PJ[7]
PJ[8]
PB[7]
PB[6]
PB[5]
VDD_HV_ADC0
VSS_HV_ADC0
PC[7]
PF[10]
PF[11]
PA[15]
PF[13]
PA[14]
PJ[12]
PJ[11]
PA[4]
PK[0]
PJ[15]
PJ[14]
PJ[13]
PA[13]
PJ[10]
PJ[9]
PA[12]
VDD_LV
VSS_LV
XTAL
VSS_HV
EXTAL
VDD_HV_A
PB[9]
PB[8]
PB[10]
PF[0]
PF[1]
PF[2]
PF[3]
PF[4]
PF[5]
PF[6]
PF[7]
PJ[3]
PJ[2]
PJ[1]
PJ[0]
PI[15]
PI[14]
PD[0]
PD[1]
PD[2]
PD[3]
PD[4]
PD[5]
PD[6]
PD[7]
VDD_HV_A
VSS_HV
PD[8]
PB[4]
PB[2]
PC[8]
PC[13]
PC[12]
PL[0]
PK[15]
PK[14]
PK[13]
PK[12]
PK[11]
PK[10]
PK[9]
PI[0]
PI[1]
PI[2]
PI[3]
PE[7]
PE[6]
PH[8]
PH[7]
PH[6]
PH[5]
PH[4]
PE[5]
PE[4]
PC[4]
PC[5]
PE[3]
PE[2]
PH[9]
PC[0]
VSS_LV
VDD_LV
VDD_HV_A
VSS_HV
PC[1]
PH[10]
PA[6]
PA[5]
PC[2]
PC[3]
PI[4]
PI[5]
PH[12]
PH[11]
PG[11]
PG[10]
PE[15]
PE[14]
PG[15]
PG[14]
PE[12]
NOTE
1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], PA[11],
PA[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0], PG[1], PH[3],
PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3].
2) Availability of port pin alternate functions depends on product selection.
Package pinouts and signal descriptions
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 11
Figure 4. 256-pin BGA configuration
3.1 Pad types
In the device the following types of pads are availabl e for system pins and functi onal port pins:
S = Slow1
M = Medium1, 2
12345678910111213141516
APC[15] PB[2] PC[13] PI[1] PE[7] PH[8] PE[2] PE[4] PC[4] PE[3] PH[9] PI[4] PH[11] PE[14] PA[10] PG[11] A
BPH[13] PC[14] PC[8] PC[12] PI[3] PE[6] PH[5] PE[5] PC[5] PC[0] PC[2] PH[12] PG[10] PA[11] PA[9] PA[8] B
CPH[14] VDD_HV_
APC[9] PL[0] PI[0] PH[7] PH[6] VSS_LV VDD_HV_
APA[5] PC[3] PE[15] PG[14] PE[12] PA[7] PE[13] C
DPG[5] PI[6] PJ[4] PB[3] PK[15] PI[2] PH[4] VDD_LV PC[1] PH[10] PA[6] PI[5] PG[15] PF[14] PF[15] PH[2] D
EPG[3] PI[7] PH[15] PG[2] VDD_LV VSS_LV PK[10] PK[9] PM[1] PM[0] PL[15] PL[14] PG[0] PG[1] PH[0] VDD_HV_
AE
FPA[2] PG[4] PA[1] PE[1] PL[2] PM[6] PL[1] PK[11] PM[5] PL[13] PL[12] PM[2] PH[1] PH[3] PG[12] PG[13] F
GPE[8] PE[0] PE[10] PA[0] PL[3] VSS_HV VSS_HV VSS_HV VSS_HV VSS_HV VSS_HV PK[12] VDD_HV_
BPI[13] PI[12] PA[3] G
HPE[9] VDD_HV_
APE[11] PK[1] PL[4] VSS_LV VSS_LV VSS_HV VSS_HV VSS_HV VSS_HV PK[13] VDD_HV_
AVDD_LV VSS_LV PI[11] H
JVSS_HV VRC_CTR
LVDD_LV PG[9] PL[5] VSS_LV VSS_LV VSS_LV VSS_HV VSS_HV VSS_HV PK[14] PD[15] PI[8] PI[9] PI[10] J
KRESET VSS_LV PG[8] PC[11] PL[6] VSS_LV VSS_LV VSS_LV VSS_LV VDD_LV VDD_LV PM[3] PD[14] PD[13] PB[14] PB[15] K
LPC[10] PG[7] PB[0] PK[2] PL[7] VSS_LV VSS_LV VSS_LV VSS_LV VDD_LV VDD_LV PM[4] PD[12] PB[12] PB[13] VDD_HV_
ADC1 L
MPG[6] PB[1] PK[4] PF[9] PK[5] PK[6] PK[7] PK[8] PL[8] PL[9] PL[10] PL[11] PB[11] PD[10] PD[11] VSS_HV_
ADC1 M
NPK[3] PF[8] PC[6] PC[7] PJ[13] VDD_HV_
APB[10] PF[6] VDD_HV_
APJ[1] PD[2] PJ[5] PB[5] PB[6] PJ[6] PD[9] N
PPF[12] PF[10] PF[13] PA[14] PJ[9] PA[12] PF[0] PF[5] PF[7] PJ[3] PI[15] PD[4] PD[7] PD[8] PJ[8] PJ[7] P
RPF[11] PA[15] PJ[11] PJ[15] PA[13] PF[2] PF[3] PF[4] VDD_LV PJ[2] PJ[0] PD[0] PD[3] PD[6] VDD_HV_
ADC0 PB[7] R
TPJ[12] PA[4] PK[0] PJ[14] PJ[10] PF[1] XTAL EXTAL VSS_LV PB[9] PB[8] PI[14] PD[1] PD[5] VSS_HV_
ADC0 PB[4] T
12345678910111213141516
Notes:
1) VDD_HV_B supplies the IO voltage domain for the pins PE[12], P A[11], P A[10], PA[9], PA[8], PA[7], PE[13], PF[14], PF[15], PG[0],
PG[1], PH[3], PH[2], PH[1], PH[0], PG[12], PG[13], and PA[3].
2)Availability of port pin alternate functions depends on product selection.
1. See the I/O pad electrical characteristics in the device data sheet for details.
2. All medium and fast pads are in slow configuration by default at reset and can be configured as fast or medium. For example,
Fast/Medium pad will be Medium by default at reset. Similarly, Slow/Medium pad will be Slow by default. Only exception is PC[1]
which is in medium configuration by default (refer to PCR.SRC in the reference manual, Pad Config uration Registers
(PCR0—PCR198)).
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package pinouts and signal descriptions
Freescale12
F = Fast1, 2
I = Input only with analog feature1
A = Analog
3.2 System pins
The system pins are listed in Table 3.
3.3 Functional ports
The functional port pins are listed in Table 4.
Table 3. System pin descriptions
Port pin Function I/O
direction Pad
type RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
RESET Bidirectional reset with Schmitt-T r igger
characteristics and noise filter. I/O M Input, weak
pull-up only
after
PHASE2
29 29 K1
EXTAL Analog input of the oscillator amplifier
circuit. Needs to be grounded if oscillator
bypass mode is used.
IA
1
1For analog pads, it is not recommended to enable IBE if APC is enable d to avoid extra current in middle range
voltage.
—5874T8
XTAL Analog output of the oscillator amplifier
circuit, when the oscillator is not in bypass
mode.
Analog input for the clock generator when
the oscillator is in bypass mode.
I/O A1—5672T7
Table 4. Functional por t pin descriptions
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
PA[0] PCR[0] AF0
AF1
AF2
AF3
GPIO[0]
E0UC[0]
CLKOUT
E0UC[13]
WKPU[19]
CAN1RX
SIUL
eMIOS_0
MC_CGM
eMIOS_0
WKPU
FlexCAN_1
I/O
I/O
O
I/O
I
I
M/S Tristate 24 24 G4
Package pinouts and signal descriptions
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 13
PA[1] PCR[1] AF0
AF1
AF2
AF3
GPIO[1]
E0UC[1]
WKPU[2]
CAN3RX
NMI[0]3
SIUL
eMIOS_0
WKPU
FlexCAN_3
WKPU
I/O
I/O
I
I
I
S Tristate 19 19 F3
PA[2] PCR[2] AF0
AF1
AF2
AF3
GPIO[2]
E0UC[2]
MA[2]
WKPU[3]
NMI[1]3
SIUL
eMIOS_0
ADC_0
WKPU
WKPU
I/O
I/O
O
I
I
S Tristate 17 17 F1
PA[3] PCR[3] AF0
AF1
AF2
AF3
GPIO[3]
E0UC[3]
LIN5TX
CS4_1
RX_ER_CLK
EIRQ[0]
ADC1_S[0]
SIUL
eMIOS_0
LINFlexD_5
DSPI_1
FEC
SIUL
ADC_1
I/O
I/O
O
O
I
I
I
M/S Tristate 114 138 G16
PA[4] PCR[4] AF0
AF1
AF2
AF3
GPIO[4]
E0UC[4]
CS0_1
LIN5RX
WKPU[9]
SIUL
eMIOS_0
DSPI_1
LINFlexD_5
WKPU
I/O
I/O
I/O
I
I
S Tristate 51 61 T2
PA[5] PCR[5] AF0
AF1
AF2
GPIO[5]
E0UC[5]
LIN4TX
SIUL
eMIOS_0
LINFlexD_4
I/O
I/O
O
M/S Tristate 146 170 C10
PA[6] PCR[6] AF0
AF1
AF2
AF3
GPIO[6]
E0UC[6]
CS1_1
LIN4RX
EIRQ[1]
SIUL
eMIOS_0
DSPI_1
LINFlexD_4
SIUL
I/O
I/O
O
I
I
S Tristate 147 171 D11
PA[7] PCR[7] AF0
AF1
AF2
AF3
GPIO[7]
E0UC[7]
LIN3TX
RXD[2]
EIRQ[2]
ADC1_S[1]
SIUL
eMIOS_0
LINFlexD_3
FEC
SIUL
ADC_1
I/O
I/O
O
I
I
I
M/S Tristate 128 152 C15
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package pinouts and signal descriptions
Freescale14
PA[8] PCR[8] AF0
AF1
AF2
AF3
GPIO[8]
E0UC[8]
E0UC[14]
RXD[1]
EIRQ[3]
ABS[0]
LIN3RX
SIUL
eMIOS_0
eMIOS_0
FEC
SIUL
MC_RGM
LINFlexD_3
I/O
I/O
I/O
I
I
I
I
M/S Input,
weak
pull-up
129 153 B16
PA[9] PCR[9] AF0
AF1
AF2
AF3
GPIO[9]
E0UC[9]
CS2_1
RXD[0]
FAB
SIUL
eMIOS_0
DSPI1
FEC
MC_RGM
I/O
I/O
O
I
I
M/S Pull-
down 130 154 B15
PA[10] PCR[10] AF0
AF1
AF2
AF3
GPIO[10]
E0UC[10]
SDA
LIN2TX
COL
ADC1_S[2]
SIN_1
SIUL
eMIOS_0
I2C
LINFlexD_2
FEC
ADC_1
DSPI_1
I/O
I/O
I/O
O
I
I
I
M/S Tristate 131 155 A15
PA[11] PCR[11] AF0
AF1
AF2
AF3
GPIO[11]
E0UC[11]
SCL
RX_ER
EIRQ[16]
LIN2RX
ADC1_S[3]
SIUL
eMIOS_0
I2C
FEC
SIUL
LINFlexD_2
ADC_1
I/O
I/O
I/O
I
I
I
I
M/S Tristate 132 156 B14
PA[12] PCR[12] AF0
AF1
AF2
AF3
GPIO[12]
E0UC[28]
CS3_1
EIRQ[17]
SIN_0
SIUL
eMIOS_0
DSPI1
SIUL
DSPI_0
I/O
I/O
O
I
I
S Tristate 53 69 P6
PA[13] PCR[13] AF0
AF1
AF2
AF3
GPIO[13]
SOUT_0
E0UC[29]
SIUL
DSPI_0
eMIOS_0
I/O
O
I/O
M/S Tristate 52 66 R5
PA[14] PCR[14] AF0
AF1
AF2
AF3
GPIO[14]
SCK_0
CS0_0
E0UC[0]
EIRQ[4]
SIUL
DSPI_0
DSPI_0
eMIOS_0
SIUL
I/O
I/O
I/O
I/O
I
M/S Tristate 50 58 P4
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
Package pinouts and signal descriptions
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 15
PA[15] PCR[15] AF0
AF1
AF2
AF3
GPIO[15]
CS0_0
SCK_0
E0UC[1]
WKPU[10]
SIUL
DSPI_0
DSPI_0
eMIOS_0
WKPU
I/O
I/O
I/O
I/O
I
M/S Tristate 48 56 R2
PB[0] PCR[16] AF0
AF1
AF2
AF3
GPIO[16]
CAN0TX
E0UC[30]
LIN0TX
SIUL
FlexCAN_0
eMIOS_0
LINFlexD_0
I/O
O
I/O
I
M/S Tristate 39 39 L3
PB[1] PCR[17] AF0
AF1
AF2
GPIO[17]
E0UC[31]
LIN0RX
WKPU[4]
CAN0RX
SIUL
eMIOS_0
LINFlexD_0
WKPU
FlexCAN_0
I/O
I/O
I
I
I
S Tristate 40 40 M2
PB[2] PCR[18] AF0
AF1
AF2
AF3
GPIO[18]
LIN0TX
SDA
E0UC[30]
SIUL
LINFlexD_0
I2C
eMIOS_0
I/O
O
I/O
I/O
M/S Tristate 176 208 A2
PB[3] PCR[19] AF0
AF1
AF2
AF3
GPIO[19]
E0UC[31]
SCL
WKPU[11]
LIN0RX
SIUL
eMIOS_0
I2C
WKPU
LINFlexD_0
I/O
I/O
I/O
I
I
S Tristate 1 1 D4
PB[4] PCR[20] AF0
AF1
AF2
AF3
GPI[20]
ADC0_P[0]
ADC1_P[0]
SIUL
ADC_0
ADC_1
I
I
I
I Tristate 88 104 T16
PB[5] PCR[21] AF0
AF1
AF2
AF3
GPI[21]
ADC0_P[1]
ADC1_P[1]
SIUL
ADC_0
ADC_1
I
I
I
I Tristate 91 107 N13
PB[6] PCR[22] AF0
AF1
AF2
AF3
GPI[22]
ADC0_P[2]
ADC1_P[2]
SIUL
ADC_0
ADC_1
I
I
I
I Tristate 92 108 N14
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package pinouts and signal descriptions
Freescale16
PB[7] PCR[23] AF0
AF1
AF2
AF3
GPI[23]
ADC0_P[3]
ADC1_P[3]
SIUL
ADC_0
ADC_1
I
I
I
I Tristate 93 109 R16
PB[8] PCR[24] AF0
AF1
AF2
AF3
GPI[24]
ADC0_S[0]
ADC1_S[4]
WKPU[25]
OSC32k_XTAL4
SIUL
ADC_0
ADC_1
WKPU
SXOSC
I
I
I
I
I
I 61 77 T11
PB[9]5PCR[25] AF0
AF1
AF2
AF3
GPI[25]
ADC0_S[1]
ADC1_S[5]
WKPU[26]
OSC32k_EXTAL4
SIUL
ADC_0
ADC_1
WKPU
SXOSC
I
I
I
I
I
I 60 76 T10
PB[10] PCR[26] AF0
AF1
AF2
AF3
GPIO[26]
SOUT_1
CAN3TX
ADC0_S[2]
ADC1_S[6]
WKPU[8]
SIUL
DSPI_1
FlexCAN_3
ADC_0
ADC_1
WKPU
I/O
O
I
I
I
S Tristate 62 78 N7
PB[11] PCR[27] AF0
AF1
AF2
AF3
GPIO[27]
E0UC[3]
CS0_0
ADC0_S[3]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
I/O
I
S Tristate 97 117 M13
PB[12] PCR[28] AF0
AF1
AF2
AF3
GPIO[28]
E0UC[4]
CS1_0
ADC0_X[0]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
O
I
S Tristate 101 123 L14
PB[13] PCR[29] AF0
AF1
AF2
AF3
GPIO[29]
E0UC[5]
CS2_0
ADC0_X[1]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
O
I
S Tristate 103 125 L15
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
Package pinouts and signal descriptions
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 17
PB[14] PCR[30] AF0
AF1
AF2
AF3
GPIO[30]
E0UC[6]
CS3_0
ADC0_X[2]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
O
I
S Tristate 105 127 K15
PB[15] PCR[31] AF0
AF1
AF2
AF3
GPIO[31]
E0UC[7]
CS4_0
ADC0_X[3]
SIUL
eMIOS_0
DSPI_0
ADC_0
I/O
I/O
O
I
S Tristate 107 129 K16
PC[0]6PCR[32] AF0
AF1
AF2
AF3
GPIO[32]
TDI
SIUL
JTAGC
I/O
I
M/S Input,
weak
pull-up
154 178 B10
PC[1]6PCR[33] AF0
AF1
AF2
AF3
GPIO[33]
TDO
SIUL
JTAGC
I/O
O
F/M Tristate 149 173 D9
PC[2] PCR[34] AF0
AF1
AF2
AF3
GPIO[34]
SCK_1
CAN4TX
EIRQ[5]
SIUL
DSPI_1
FlexCAN_4
SIUL
I/O
I/O
O
I
M/S Tristate 145 169 B11
PC[3] PCR[35] AF0
AF1
AF2
AF3
GPIO[35]
CS0_1
MA[0]
CAN1RX
CAN4RX
EIRQ[6]
SIUL
DSPI_1
ADC_0
FlexCAN_1
FlexCAN_4
SIUL
I/O
I/O
O
I
I
I
S Tristate 144 168 C11
PC[4] PCR[36] AF0
AF1
AF2
AF3
ALT4
GPIO[36]
E1UC[31]
FR_B_TX_EN
SIN_1
CAN3RX
EIRQ[18]
SIUL
eMIOS_1
Flexray
DSPI_1
FlexCAN_3
SIUL
I/O
I/O
O
I
I
I
M/S Tristate 159 183 A9
PC[5] PCR[37] AF0
AF1
AF2
AF3
ALT4
GPIO[37]
SOUT_1
CAN3TX
FR_A_TX
EIRQ[7]
SIUL
DSPI_1
FlexCAN_3
Flexray
SIUL
I/O
O
O
O
I
M/S Tristate 158 182 B9
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package pinouts and signal descriptions
Freescale18
PC[6] PCR[38] AF0
AF1
AF2
AF3
GPIO[38]
LIN1TX
E1UC[28]
SIUL
LINFlexD_1
eMIOS_1
I/O
O
I/O
S Tristate 44 52 N3
PC[7] PCR[39] AF0
AF1
AF2
AF3
GPIO[39]
E1UC[29]
LIN1RX
WKPU[12]
SIUL
eMIOS_1
LINFlexD_1
WKPU
I/O
I/O
I
I
S Tristate 45 53 N4
PC[8] PCR[40] AF0
AF1
AF2
AF3
GPIO[40]
LIN2TX
E0UC[3]
SIUL
LINFlexD_2
eMIOS_0
I/O
O
I/O
S Tristate 175 207 B3
PC[9] PCR[41] AF0
AF1
AF2
AF3
GPIO[41]
E0UC[7]
LIN2RX
WKPU[13]
SIUL
eMIOS_0
LINFlexD_2
WKPU
I/O
I/O
I
I
S Tristate 2 2 C3
PC[10] PCR[42] AF0
AF1
AF2
AF3
GPIO[42]
CAN1TX
CAN4TX
MA[1]
SIUL
FlexCAN_1
FlexCAN_4
ADC_0
I/O
O
O
O
M/S Tristate 36 36 L1
PC[11] PCR[43] AF0
AF1
AF2
AF3
GPIO[43]
MA[2]
CAN1RX
CAN4RX
WKPU[5]
SIUL
ADC_0
FlexCAN_1
FlexCAN_4
WKPU
I/O
O
I
I
I
S Tristate 35 35 K4
PC[12] PCR[44] AF0
AF1
AF2
AF3
ALT4
GPIO[44]
E0UC[12]
FR_DBG[0]
SIN_2
EIRQ[19]
SIUL
eMIOS_0
Flexray
DSPI_2
SIUL
I/O
I/O
O
I
I
M/S Tristate 173 205 B4
PC[13] PCR[45] AF0
AF1
AF2
AF3
ALT4
GPIO[45]
E0UC[13]
SOUT_2
FR_DBG[1]
SIUL
eMIOS_0
DSPI_2
Flexray
I/O
I/O
O
O
M/S Tristate 174 206 A3
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
Package pinouts and signal descriptions
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 19
PC[14] PCR[46] AF0
AF1
AF2
AF3
ALT4
GPIO[46]
E0UC[14]
SCK_2
FR_DBG[2]
EIRQ[8]
SIUL
eMIOS_0
DSPI_2
Flexray
SIUL
I/O
I/O
I/O
O
I
M/S Tristate 3 3 B2
PC[15] PCR[47] AF0
AF1
AF2
AF3
ALT4
GPIO[47]
E0UC[15]
CS0_2
FR_DBG[3]
EIRQ[20]
SIUL
eMIOS_0
DSPI_2
Flexray
SIUL
I/O
I/O
I/O
O
I
M/S Tristate 4 4 A1
PD[0] PCR[48] AF0
AF1
AF2
AF3
GPI[48]
ADC0_P[4]
ADC1_P[4]
WKPU[27]
SIUL
ADC_0
ADC_1
WKPU
I
I
I
I
I Tristate 77 93 R12
PD[1] PCR[49] AF0
AF1
AF2
AF3
GPI[49]
ADC0_P[5]
ADC1_P[5]
WKPU[28]
SIUL
ADC_0
ADC_1
WKPU
I
I
I
I
I Tristate 78 94 T13
PD[2] PCR[50] AF0
AF1
AF2
AF3
GPI[50]
ADC0_P[6]
ADC1_P[6]
SIUL
ADC_0
ADC_1
I
I
I
ITristate 79 95N11
PD[3] PCR[51] AF0
AF1
AF2
AF3
GPI[51]
ADC0_P[7]
ADC1_P[7]
SIUL
ADC_0
ADC_1
I
I
I
I Tristate 80 96 R13
PD[4] PCR[52] AF0
AF1
AF2
AF3
GPI[52]
ADC0_P[8]
ADC1_P[8]
SIUL
ADC_0
ADC_1
I
I
I
I Tristate 81 97 P12
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package pinouts and signal descriptions
Freescale20
PD[5] PCR[53] AF0
AF1
AF2
AF3
GPI[53]
ADC0_P[9]
ADC1_P[9]
SIUL
ADC_0
ADC_1
I
I
I
I Tristate 82 98 T14
PD[6] PCR[54] AF0
AF1
AF2
AF3
GPI[54]
ADC0_P[10]
ADC1_P[10]
SIUL
ADC_0
ADC_1
I
I
I
I Tristate 83 99 R14
PD[7] PCR[55] AF0
AF1
AF2
AF3
GPI[55]
ADC0_P[11]
ADC1_P[11]
SIUL
ADC_0
ADC_1
I
I
I
I Tristate 84 100 P13
PD[8] PCR[56] AF0
AF1
AF2
AF3
GPI[56]
ADC0_P[12]
ADC1_P[12]
SIUL
ADC_0
ADC_1
I
I
I
I Tristate 87 103 P14
PD[9] PCR[57] AF0
AF1
AF2
AF3
GPI[57]
ADC0_P[13]
ADC1_P[13]
SIUL
ADC_0
ADC_1
I
I
I
I Tristate 94 114 N16
PD[10] PCR[58] AF0
AF1
AF2
AF3
GPI[58]
ADC0_P[14]
ADC1_P[14]
SIUL
ADC_0
ADC_1
I
I
I
I Tristate 95 115 M14
PD[11] PCR[59] AF0
AF1
AF2
AF3
GPI[59]
ADC0_P[15]
ADC1_P[15]
SIUL
ADC_0
ADC_1
I
I
I
I Tristate 96 116 M15
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
Package pinouts and signal descriptions
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 21
PD[12] PCR[60] AF0
AF1
AF2
AF3
GPIO[60]
CS5_0
E0UC[24]
ADC0_S[4]
SIUL
DSPI_0
eMIOS_0
ADC_0
I/O
O
I/O
I
S Tristate 100 120 L13
PD[13] PCR[61] AF0
AF1
AF2
AF3
GPIO[61]
CS0_1
E0UC[25]
ADC0_S[5]
SIUL
DSPI_1
eMIOS_0
ADC_0
I/O
I/O
I/O
I
S Tristate 102 124 K14
PD[14] PCR[62] AF0
AF1
AF2
AF3
ALT4
GPIO[62]
CS1_1
E0UC[26]
FR_DBG[0]
ADC0_S[6]
SIUL
DSPI_1
eMIOS_0
Flexray
ADC_0
I/O
O
I/O
O
I
S Tristate 104 126 K13
PD[15] PCR[63] AF0
AF1
AF2
AF3
ALT4
GPIO[63]
CS2_1
E0UC[27]
FR_DBG[1]
ADC0_S[7]
SIUL
DSPI_1
eMIOS_0
Flexray
ADC_0
I/O
O
I/O
O
I
S Tristate 106 128 J13
PE[0] PCR[64] AF0
AF1
AF2
AF3
GPIO[64]
E0UC[16]
CAN5RX
WKPU[6]
SIUL
eMIOS_0
FlexCAN_5
WKPU
I/O
I/O
I
I
S Tristate 18 18 G2
PE[1] PCR[65] AF0
AF1
AF2
AF3
GPIO[65]
E0UC[17]
CAN5TX
SIUL
eMIOS_0
FlexCAN_5
I/O
I/O
O
M/S Tristate 20 20 F4
PE[2] PCR[66] AF0
AF1
AF2
AF3
ALT4
GPIO[66]
E0UC[18]
FR_A_TX_EN
SIN_1
EIRQ[21]
SIUL
eMIOS_0
Flexray
DSPI_1
SIUL
I/O
I/O
O
I
I
M/S Tristate 156 180 A7
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package pinouts and signal descriptions
Freescale22
PE[3] PCR[67] AF0
AF1
AF2
AF3
GPIO[67]
E0UC[19]
SOUT_1
FR_A_RX
WKPU[29]
SIUL
eMIOS_0
DSPI_1
Flexray
WKPU
I/O
I/O
O
I
I
M/S Tristate 157 181 A10
PE[4] PCR[68] AF0
AF1
AF2
AF3
ALT4
GPIO[68]
E0UC[20]
SCK_1
FR_B_TX
EIRQ[9]
SIUL
eMIOS_0
DSPI_1
Flexray
SIUL
I/O
I/O
I/O
O
I
M/S Tristate 160 184 A8
PE[5] PCR[69] AF0
AF1
AF2
AF3
GPIO[69]
E0UC[21]
CS0_1
MA[2]
FR_B_RX
WKPU[30]
SIUL
eMIOS_0
DSPI_1
ADC_0
Flexray
WKPU
I/O
I/O
I/O
O
I
I
M/S Tristate 161 185 B8
PE[6] PCR[70] AF0
AF1
AF2
AF3
GPIO[70]
E0UC[22]
CS3_0
MA[1]
EIRQ[22]
SIUL
eMIOS_0
DSPI_0
ADC_0
SIUL
I/O
I/O
O
O
I
M/S Tristate 167 191 B6
PE[7] PCR[71] AF0
AF1
AF2
AF3
GPIO[71]
E0UC[23]
CS2_0
MA[0]
EIRQ[23]
SIUL
eMIOS_0
DSPI_0
ADC_0
SIUL
I/O
I/O
O
O
I
M/S Tristate 168 192 A5
PE[8] PCR[72] AF0
AF1
AF2
AF3
GPIO[72]
CAN2TX
E0UC[22]
CAN3TX
SIUL
FlexCAN_2
eMIOS_0
FlexCAN_3
I/O
O
I/O
O
M/S Tristate 21 21 G1
PE[9] PCR[73] AF0
AF1
AF2
AF3
GPIO[73]
E0UC[23]
WKPU[7]
CAN2RX
CAN3RX
SIUL
eMIOS_0
WKPU
FlexCAN_2
FlexCAN_3
I/O
I/O
I
I
I
S Tristate 22 22 H1
PE[10] PCR[74] AF0
AF1
AF2
AF3
GPIO[74]
LIN3TX
CS3_1
E1UC[30]
EIRQ[10]
SIUL
LINFlexD_3
DSPI_1
eMIOS_1
SIUL
I/O
O
O
I/O
I
S Tristate 23 23 G3
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
Package pinouts and signal descriptions
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 23
PE[11] PCR[75] AF0
AF1
AF2
AF3
GPIO[75]
E0UC[24]
CS4_1
LIN3RX
WKPU[14]
SIUL
eMIOS_0
DSPI_1
LINFlexD_3
WKPU
I/O
I/O
O
I
I
S Tristate 25 25 H3
PE[12] PCR[76] AF0
AF1
AF2
AF3
GPIO[76]
E1UC[19]
CRS
SIN_2
EIRQ[11]
ADC1_S[7]
SIUL
eMIOS_1
FEC
DSPI_2
SIUL
ADC_1
I/O
I/O
I
I
I
I
M/S Tristate 133 157 C14
PE[13] PCR[77] AF0
AF1
AF2
AF3
GPIO[77]
SOUT_2
E1UC[20]
RXD[3]
SIUL
DSPI_2
eMIOS_1
FEC
I/O
O
I/O
I
M/S Tristate 127 151 C16
PE[14] PCR[78] AF0
AF1
AF2
AF3
GPIO[78]
SCK_2
E1UC[21]
EIRQ[12]
SIUL
DSPI_2
eMIOS_1
SIUL
I/O
I/O
I/O
I
M/S Tristate 136 160 A14
PE[15] PCR[79] AF0
AF1
AF2
AF3
GPIO[79]
CS0_2
E1UC[22]
SCK_6
SIUL
DSPI_2
eMIOS_1
DSPI_6
I/O
I/O
I/O
I/O
M/S Tristate 137 161 C12
PF[0] PCR[80] AF0
AF1
AF2
AF3
GPIO[80]
E0UC[10]
CS3_1
ADC0_S[8]
SIUL
eMIOS_0
DSPI_1
ADC_0
I/O
I/O
O
I
S Tristate 63 79 P7
PF[1] PCR[81] AF0
AF1
AF2
AF3
GPIO[81]
E0UC[11]
CS4_1
ADC0_S[9]
SIUL
eMIOS_0
DSPI_1
ADC_0
I/O
I/O
O
I
S Tristate 64 80 T6
PF[2] PCR[82] AF0
AF1
AF2
AF3
GPIO[82]
E0UC[12]
CS0_2
ADC0_S[10]
SIUL
eMIOS_0
DSPI_2
ADC_0
I/O
I/O
I/O
I
S Tristate 65 81 R6
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package pinouts and signal descriptions
Freescale24
PF[3] PCR[83] AF0
AF1
AF2
AF3
GPIO[83]
E0UC[13]
CS1_2
ADC0_S[11]
SIUL
eMIOS_0
DSPI_2
ADC_0
I/O
I/O
O
I
S Tristate 66 82 R7
PF[4] PCR[84] AF0
AF1
AF2
AF3
GPIO[84]
E0UC[14]
CS2_2
ADC0_S[12]
SIUL
eMIOS_0
DSPI_2
ADC_0
I/O
I/O
O
I
S Tristate 67 83 R8
PF[5] PCR[85] AF0
AF1
AF2
AF3
GPIO[85]
E0UC[22]
CS3_2
ADC0_S[13]
SIUL
eMIOS_0
DSPI_2
ADC_0
I/O
I/O
O
I
S Tristate 68 84 P8
PF[6] PCR[86] AF0
AF1
AF2
AF3
GPIO[86]
E0UC[23]
CS1_1
ADC0_S[14]
SIUL
eMIOS_0
DSPI_1
ADC_0
I/O
I/O
O
I
S Tristate 69 85 N8
PF[7] PCR[87] AF0
AF1
AF2
AF3
GPIO[87]
CS2_1
ADC0_S[15]
SIUL
DSPI_1
ADC_0
I/O
O
I
S Tristate 70 86 P9
PF[8] PCR[88] AF0
AF1
AF2
AF3
GPIO[88]
CAN3TX
CS4_0
CAN2TX
SIUL
FlexCAN_3
DSPI_0
FlexCAN_2
I/O
O
O
O
M/S Tristate 42 50 N2
PF[9] PCR[89] AF0
AF1
AF2
AF3
GPIO[89]
E1UC[1]
CS5_0
CAN2RX
CAN3RX
WKPU[22]
SIUL
eMIOS_1
DSPI_0
FlexCAN_2
FlexCAN_3
WKPU
I/O
I/O
O
I
I
I
S Tristate 41 49 M4
PF[10] PCR[90] AF0
AF1
AF2
AF3
GPIO[90]
CS1_0
LIN4TX
E1UC[2]
SIUL
DSPI_0
LINFlexD_4
eMIOS_1
I/O
O
O
I/O
M/S Tristate 46 54 P2
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
Package pinouts and signal descriptions
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 25
PF[11] PCR[91] AF0
AF1
AF2
AF3
GPIO[91]
CS2_0
E1UC[3]
LIN4RX
WKPU[15]
SIUL
DSPI_0
eMIOS_1
LINFlexD_4
WKPU
I/O
O
I/O
I
I
S Tristate 47 55 R1
PF[12] PCR[92] AF0
AF1
AF2
AF3
GPIO[92]
E1UC[25]
LIN5TX
SIUL
eMIOS_1
LINFlexD_5
I/O
I/O
O
M/S Tristate 43 51 P1
PF[13] PCR[93] AF0
AF1
AF2
AF3
GPIO[93]
E1UC[26]
LIN5RX
WKPU[16]
SIUL
eMIOS_1
LINFlexD_5
WKPU
I/O
I/O
I
I
S Tristate 49 57 P3
PF[14] PCR[94] AF0
AF1
AF2
AF3
ALT4
GPIO[94]
CAN4TX
E1UC[27]
CAN1TX
MDIO
SIUL
FlexCAN_4
eMIOS_1
FlexCAN_1
FEC
I/O
O
I/O
O
I/O
M/S Tristate 126 150 D14
PF[15] PCR[95] AF0
AF1
AF2
AF3
GPIO[95]
E1UC[4]
RX_DV
CAN1RX
CAN4RX
EIRQ[13]
SIUL
eMIOS_1
FEC
FlexCAN_1
FlexCAN_4
SIUL
I/O
I/O
I
I
I
I
M/S Tristate 125 149 D15
PG[0] PCR[96] AF0
AF1
AF2
AF3
ALT4
GPIO[96]
CAN5TX
E1UC[23]
MDC
SIUL
FlexCAN_5
eMIOS_1
FEC
I/O
O
I/O
O
F Tristate 122 146 E13
PG[1] PCR[97] AF0
AF1
AF2
AF3
GPIO[97]
E1UC[24]
TX_CLK
CAN5RX
EIRQ[14]
SIUL
eMIOS_1
FEC
FlexCAN_5
SIUL
I/O
I/O
I
I
I
M Tristate 121 145 E14
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package pinouts and signal descriptions
Freescale26
PG[2] PCR[98] AF0
AF1
AF2
AF3
GPIO[98]
E1UC[11]
SOUT_3
SIUL
eMIOS_1
DSPI_3
I/O
I/O
O
M/S Tristate 16 16 E4
PG[3] PCR[99] AF0
AF1
AF2
AF3
GPIO[99]
E1UC[12]
CS0_3
WKPU[17]
SIUL
eMIOS_1
DSPI_3
WKPU
I/O
I/O
I/O
I
S Tristate 15 15 E1
PG[4] PCR[100] AF0
AF1
AF2
AF3
GPIO[100]
E1UC[13]
SCK_3
SIUL
eMIOS_1
DSPI_3
I/O
I/O
I/O
M/S Tristate 14 14 F2
PG[5] PCR[101] AF0
AF1
AF2
AF3
GPIO[101]
E1UC[14]
WKPU[18]
SIN_3
SIUL
eMIOS_1
WKPU
DSPI_3
I/O
I/O
I
I
S Tristate 13 13 D1
PG[6] PCR[102] AF0
AF1
AF2
AF3
GPIO[102]
E1UC[15]
LIN6TX
SIUL
eMIOS_1
LINFlexD_6
I/O
I/O
O
M/S Tristate 38 38 M1
PG[7] PCR[103] AF0
AF1
AF2
AF3
GPIO[103]
E1UC[16]
E1UC[30]
LIN6RX
WKPU[20]
SIUL
eMIOS_1
eMIOS_1
LINFlexD_6
WKPU
I/O
I/O
I/O
I
I
S Tristate 37 37 L2
PG[8] PCR[104] AF0
AF1
AF2
AF3
GPIO[104]
E1UC[17]
LIN7TX
CS0_2
EIRQ[15]
SIUL
eMIOS_1
LINFlexD_7
DSPI_2
SIUL
I/O
I/O
O
I/O
I
S Tristate 34 34 K3
PG[9] PCR[105] AF0
AF1
AF2
AF3
GPIO[105]
E1UC[18]
SCK_2
LIN7RX
WKPU[21]
SIUL
eMIOS_1
DSPI_2
LINFlexD_7
WKPU
I/O
I/O
I/O
I
I
S Tristate 33 33 J4
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
Package pinouts and signal descriptions
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 27
PG[10] PCR[106] AF0
AF1
AF2
AF3
GPIO[106]
E0UC[24]
E1UC[31]
SIN_4
SIUL
eMIOS_0
eMIOS_1
DSPI_4
I/O
I/O
I/O
I
S Tristate 138 162 B13
PG[11] PCR[107] AF0
AF1
AF2
AF3
GPIO[107]
E0UC[25]
CS0_4
CS0_6
SIUL
eMIOS_0
DSPI_4
DSPI_6
I/O
I/O
I/O
I/O
M/S Tristate 139 163 A16
PG[12] PCR[108] AF0
AF1
AF2
AF3
ALT4
GPIO[108]
E0UC[26]
SOUT_4
TXD[2]
SIUL
eMIOS_0
DSPI_4
FEC
I/O
I/O
O
O
M/S Tristate 116 140 F15
PG[13] PCR[109] AF0
AF1
AF2
AF3
ALT4
GPIO[109]
E0UC[27]
SCK_4
TXD[3]
SIUL
eMIOS_0
DSPI_4
FEC
I/O
I/O
I/O
O
M/S Tristate 115 139 F16
PG[14] PCR[110] AF0
AF1
AF2
AF3
GPIO[110]
E1UC[0]
LIN8TX
SIN_6
SIUL
eMIOS_1
LINFlexD_8
DSPI_6
I/O
I/O
O
I
S Tristate 134 158 C13
PG[15] PCR[111] AF0
AF1
AF2
AF3
GPIO[111]
E1UC[1]
SOUT_6
LIN8RX
SIUL
eMIOS_1
DSPI_6
LINFlexD_8
I/O
I/O
O
I
M/S Tristate 135 159 D13
PH[0] PCR[112] AF0
AF1
AF2
AF3
ALT4
GPIO[112]
E1UC[2]
TXD[1]
SIN_1
SIUL
eMIOS_1
FEC
DSPI_1
I/O
I/O
O
I
M/S Tristate 117 141 E15
PH[1] PCR[113] AF0
AF1
AF2
AF3
ALT4
GPIO[113]
E1UC[3]
SOUT_1
TXD[0]
SIUL
eMIOS_1
DSPI_1
FEC
I/O
I/O
O
O
M/S Tristate 118 142 F13
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package pinouts and signal descriptions
Freescale28
PH[2] PCR[114] AF0
AF1
AF2
AF3
ALT4
GPIO[114]
E1UC[4]
SCK_1
TX_EN
SIUL
eMIOS_1
DSPI_1
FEC
I/O
I/O
I/O
O
M/S Tristate 119 143 D16
PH[3] PCR[115] AF0
AF1
AF2
AF3
ALT4
GPIO[115]
E1UC[5]
CS0_1
TX_ER
SIUL
eMIOS_1
DSPI_1
FEC
I/O
I/O
I/O
O
M/S Tristate 120 144 F14
PH[4] PCR[116] AF0
AF1
AF2
AF3
GPIO[116]
E1UC[6]
SOUT_7
SIUL
eMIOS_1
DSPI_7
I/O
I/O
O
M/S Tristate 162 186 D7
PH[5] PCR[117] AF0
AF1
AF2
AF3
GPIO[117]
E1UC[7]
SIN_7
SIUL
eMIOS_1
DSPI_7
I/O
I/O
I
S Tristate 163 187 B7
PH[6] PCR[118] AF0
AF1
AF2
AF3
GPIO[118]
E1UC[8]
SCK_7
MA[2]
SIUL
eMIOS_1
DSPI_7
ADC_0
I/O
I/O
I/O
O
M/S Tristate 164 188 C7
PH[7] PCR[119] AF0
AF1
AF2
AF3
ALT4
GPIO[119]
E1UC[9]
CS3_2
MA[1]
CS0_7
SIUL
eMIOS_1
DSPI_2
ADC_0
DSPI_7
I/O
I/O
O
O
I/O
M/S Tristate 165 189 C6
PH[8] PCR[120] AF0
AF1
AF2
AF3
GPIO[120]
E1UC[10]
CS2_2
MA[0]
SIUL
eMIOS_1
DSPI_2
ADC_0
I/O
I/O
O
O
M/S Tristate 166 190 A6
PH[9]6PCR[121] AF0
AF1
AF2
AF3
GPIO[121]
TCK
SIUL
JTAGC
I/O
I
S Input,
weak
pull-up
155 179 A11
PH[10]6PCR[122] AF0
AF1
AF2
AF3
GPIO[122]
TMS
SIUL
JTAGC
I/O
I
M/S Input,
weak
pull-up
148 172 D10
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
Package pinouts and signal descriptions
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 29
PH[11] PCR[123] AF0
AF1
AF2
AF3
GPIO[123]
SOUT_3
CS0_4
E1UC[5]
SIUL
DSPI_3
DSPI_4
eMIOS_1
I/O
O
I/O
I/O
M/S Tristate 140 164 A13
PH[12] PCR[124] AF0
AF1
AF2
AF3
GPIO[124]
SCK_3
CS1_4
E1UC[25]
SIUL
DSPI_3
DSPI_4
eMIOS_1
I/O
I/O
O
I/O
M/S Tristate 141 165 B12
PH[13] PCR[125] AF0
AF1
AF2
AF3
GPIO[125]
SOUT_4
CS0_3
E1UC[26]
SIUL
DSPI_4
DSPI_3
eMIOS_1
I/O
O
I/O
I/O
M/S Tristate 9 9 B1
PH[14] PCR[126] AF0
AF1
AF2
AF3
GPIO[126]
SCK_4
CS1_3
E1UC[27]
SIUL
DSPI_4
DSPI_3
eMIOS_1
I/O
I/O
O
I/O
M/S Tristate 10 10 C1
PH[15] PCR[127] AF0
AF1
AF2
AF3
GPIO[127]
SOUT_5
E1UC[17]
SIUL
DSPI_5
eMIOS_1
I/O
O
I/O
M/S Tristate 8 8 E3
PI[0] PCR[128] AF0
AF1
AF2
AF3
GPIO[128]
E0UC[28]
LIN8TX
SIUL
eMIOS_0
LINFlexD_8
I/O
I/O
O
S Tristate 172 196 C5
PI[1] PCR[129] AF0
AF1
AF2
AF3
GPIO[129]
E0UC[29]
WKPU[24]
LIN8RX
SIUL
eMIOS_0
WKPU
LINFlexD_8
I/O
I/O
I
I
S Tristate 171 195 A4
PI[2] PCR[130] AF0
AF1
AF2
AF3
GPIO[130]
E0UC[30]
LIN9TX
SIUL
eMIOS_0
LINFlexD_9
I/O
I/O
O
S Tristate 170 194 D6
PI[3] PCR[131] AF0
AF1
AF2
AF3
GPIO[131]
E0UC[31]
WKPU[23]
LIN9RX
SIUL
eMIOS_0
WKPU
LINFlexD_9
I/O
I/O
I
I
S Tristate 169 193 B5
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package pinouts and signal descriptions
Freescale30
PI[4] PCR[132] AF0
AF1
AF2
AF3
GPIO[132]
E1UC[28]
SOUT_4
SIUL
eMIOS_1
DSPI_4
I/O
I/O
O
M/S Tristate 143 167 A12
PI[5] PCR[133] AF0
AF1
AF2
AF3
ALT4
GPIO[133]
E1UC[29]
SCK_4
CS2_5
CS2_6
SIUL
eMIOS_1
DSPI_4
DSPI_5
DSPI_6
I/O
I/O
I/O
O
O
M/S Tristate 142 166 D12
PI[6] PCR[134] AF0
AF1
AF2
AF3
ALT4
GPIO[134]
E1UC[30]
CS0_4
CS0_5
CS0_6
SIUL
eMIOS_1
DSPI_4
DSPI_5
DSPI_6
I/O
I/O
I/O
I/O
I/O
S Tristate 11 11 D2
PI[7] PCR[135] AF0
AF1
AF2
AF3
ALT4
GPIO[135]
E1UC[31]
CS1_4
CS1_5
CS1_6
SIUL
eMIOS_1
DSPI_4
DSPI_5
DSPI_6
I/O
I/O
O
O
O
S Tristate 12 12 E2
PI[8] PCR[136] AF0
AF1
AF2
AF3
GPIO[136]
ADC0_S[16]
SIUL
ADC_0
I/O
I
S Tristate 108 130 J14
PI[9] PCR[137] AF0
AF1
AF2
AF3
GPIO[137]
ADC0_S[17]
SIUL
ADC_0
I/O
I
S Tristate 131 J15
PI[10] PCR[138] AF0
AF1
AF2
AF3
GPIO[138]
ADC0_S[18]
SIUL
ADC_0
I/O
I
S Tristate 134 J16
PI[11] PCR[139] AF0
AF1
AF2
AF3
GPIO[139]
ADC0_S[19]
SIN_3
SIUL
ADC_0
DSPI_3
I/O
I
I
S Tristate 111 135 H16
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
Package pinouts and signal descriptions
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 31
PI[12] PCR[140] AF0
AF1
AF2
AF3
GPIO[140]
CS0_3
CS0_2
ADC0_S[20]
SIUL
DSPI_3
DSPI_2
ADC_0
I/O
I/O
I/O
I
S Tristate 112 136 G15
PI[13] PCR[141] AF0
AF1
AF2
AF3
GPIO[141]
CS1_3
CS1_2
ADC0_S[21]
SIUL
DSPI_3
DSPI_2
ADC_0
I/O
O
O
I
S Tristate 113 137 G14
PI[14] PCR[142] AF0
AF1
AF2
AF3
GPIO[142]
ADC0_S[22]
SIN_4
SIUL
ADC_0
DSPI_4
I/O
I
I
S Tristate 76 92 T12
PI[15] PCR[143] AF0
AF1
AF2
AF3
GPIO[143]
CS0_4
CS2_2
ADC0_S[23]
SIUL
DSPI_4
DSPI_2
ADC_0
I/O
I/O
O
I
STristate 75 91 P11
PJ[0] PCR[144] AF0
AF1
AF2
AF3
GPIO[144]
CS1_4
CS3_2
ADC0_S[24]
SIUL
DSPI_4
DSPI_2
ADC_0
I/O
O
O
I
STristate 74 90 R11
PJ[1] PCR[145] AF0
AF1
AF2
AF3
GPIO[145]
ADC0_S[25]
SIN_5
SIUL
——
ADC_0
DSPI_5
I/O
I
I
S Tristate 73 89 N10
PJ[2] PCR[146] AF0
AF1
AF2
AF3
GPIO[146]
CS0_5
CS0_6
CS0_7
ADC0_S[26]
SIUL
DSPI_5
DSPI_6
DSPI_7
ADC_0
I/O
I/O
I/O
I/O
I
S Tristate 72 88 R10
PJ[3] PCR[147] AF0
AF1
AF2
AF3
GPIO[147]
CS1_5
CS1_6
CS1_7
ADC0_S[27]
SIUL
DSPI_5
DSPI_6
DSPI_7
ADC_0
I/O
O
O
O
I
S Tristate 71 87 P10
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package pinouts and signal descriptions
Freescale32
PJ[4] PCR[148] AF0
AF1
AF2
AF3
GPIO[148]
SCK_5
E1UC[18]
SIUL
DSPI_5
eMIOS_1
I/O
I/O
I/O
M/S Tristate 5 5 D3
PJ[5] PCR[149] AF0
AF1
AF2
AF3
GPIO[149]
ADC0_S[28]
SIUL
ADC_0
I/O
I
S Tristate 113 N12
PJ[6] PCR[150] AF0
AF1
AF2
AF3
GPIO[150]
ADC0_S[29]
SIUL
ADC_0
I/O
I
S Tristate 112 N15
PJ[7] PCR[151] AF0
AF1
AF2
AF3
GPIO[151]
ADC0_S[30]
SIUL
ADC_0
I/O
I
S Tristate 111 P16
PJ[8] PCR[152] AF0
AF1
AF2
AF3
GPIO[152]
ADC0_S[31]
SIUL
ADC_0
I/O
I
S Tristate 110 P15
PJ[9] PCR[153] AF0
AF1
AF2
AF3
GPIO[153]
ADC1_S[8]
SIUL
ADC_1
I/O
I
S Tristate 68 P5
PJ[10] PCR[154] AF0
AF1
AF2
AF3
GPIO[154]
ADC1_S[9]
SIUL
ADC_1
I/O
I
S Tristate 67 T5
PJ[11] PCR[155] AF0
AF1
AF2
AF3
GPIO[155]
ADC1_S[10]
SIUL
ADC_1
I/O
I
S Tristate 60 R3
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
Package pinouts and signal descriptions
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 33
PJ[12] PCR[156] AF0
AF1
AF2
AF3
GPIO[156]
ADC1_S[11]
SIUL
ADC_1
I/O
I
S Tristate 59 T1
PJ[13] PCR[157] AF0
AF1
AF2
AF3
GPIO[157]
CS1_7
CAN4RX
ADC1_S[12]
CAN1RX
WKPU[31]
SIUL
DSPI_7
FlexCAN_4
ADC_1
FlexCAN_1
WKPU
I/O
O
I
I
I
I
S Tristate 65 N5
PJ[14] PCR[158] AF0
AF1
AF2
AF3
GPIO[158]
CAN1TX
CAN4TX
CS2_7
SIUL
FlexCAN_1
FlexCAN_4
DSPI_7
I/O
O
O
O
M/S Tristate 64 T4
PJ[15] PCR[159] AF0
AF1
AF2
AF3
GPIO[159]
CS1_6
CAN1RX
SIUL
DSPI_6
FlexCAN_1
I/O
O
I
M/S Tristate 63 R4
PK[0] PCR[160] AF0
AF1
AF2
AF3
GPIO[160]
CAN1TX
CS2_6
SIUL
FlexCAN_1
DSPI_6
I/O
O
O
M/S Tristate 62 T3
PK[1] PCR[161] AF0
AF1
AF2
AF3
GPIO[161]
CS3_6
CAN4RX
SIUL
DSPI_6
FlexCAN_4
I/O
O
I
M/S Tristate 41 H4
PK[2] PCR[162] AF0
AF1
AF2
AF3
GPIO[162]
CAN4TX
SIUL
FlexCAN_4
I/O
O
M/S Tristate 42 L4
PK[3] PCR[163] AF0
AF1
AF2
AF3
GPIO[163]
E1UC[0]
CAN5RX
LIN8RX
SIUL
eMIOS_1
FlexCAN_5
LINFlexD_8
I/O
I/O
I
I
M/S Tristate 43 N1
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package pinouts and signal descriptions
Freescale34
PK[4] PCR[164] AF0
AF1
AF2
AF3
GPIO[164]
LIN8TX
CAN5TX
E1UC[1]
SIUL
LINFlexD_8
FlexCAN_5
eMIOS_1
I/O
O
O
I/O
M/S Tristate 44 M3
PK[5] PCR[165] AF0
AF1
AF2
AF3
GPIO[165]
CAN2RX
LIN2RX
SIUL
FlexCAN_2
LINFlexD_2
I/O
I
I
M/S Tristate 45 M5
PK[6] PCR[166] AF0
AF1
AF2
AF3
GPIO[166]
CAN2TX
LIN2TX
SIUL
FlexCAN_2
LINFlexD_2
I/O
O
O
M/S Tristate 46 M6
PK[7] PCR[167] AF0
AF1
AF2
AF3
GPIO[167]
CAN3RX
LIN3RX
SIUL
FlexCAN_3
LINFlexD_3
I/O
I
I
M/S Tristate 47 M7
PK[8] PCR[168] AF0
AF1
AF2
AF3
GPIO[168]
CAN3TX
LIN3TX
SIUL
FlexCAN_3
LINFlexD_3
I/O
O
O
M/S Tristate 48 M8
PK[9] PCR[169] AF0
AF1
AF2
AF3
GPIO[169]
SIN_4
SIUL
DSPI_4
I/O
I
M/S Tristate 197 E8
PK[10] PCR[170] AF0
AF1
AF2
AF3
GPIO[170]
SOUT_4
SIUL
DSPI_4
I/O
O
M/S Tristate 198 E7
PK[11] PCR[171] AF0
AF1
AF2
AF3
GPIO[171]
SCK_4
SIUL
DSPI_4
I/O
I/O
M/S Tristate 199 F8
PK[12] PCR[172] AF0
AF1
AF2
AF3
GPIO[172]
CS0_4
SIUL
DSPI_4
I/O
I/O
M/S Tristate 200 G12
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
Package pinouts and signal descriptions
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 35
PK[13] PCR[173] AF0
AF1
AF2
AF3
GPIO[173]
CS3_6
CS2_7
SCK_1
CAN3RX
SIUL
DSPI_6
DSPI_7
DSPI_1
FlexCAN_3
I/O
O
O
I/O
I
M/S Tristate 201 H12
PK[14] PCR[174] AF0
AF1
AF2
AF3
GPIO[174]
CAN3TX
CS3_7
CS0_1
SIUL
FlexCAN_3
DSPI_7
DSPI_1
I/O
O
O
I/O
M/S Tristate 202 J12
PK[15] PCR[175] AF0
AF1
AF2
AF3
GPIO[175]
SIN_1
SIN_7
SIUL
DSPI_1
DSPI_7
I/O
I
I
M/S Tristate 203 D5
PL[0] PCR[176] AF0
AF1
AF2
AF3
GPIO[176]
SOUT_1
SOUT_7
SIUL
DSPI_1
DSPI_7
I/O
O
O
M/S Tristate 204 C4
PL[1] PCR[177] AF0
AF1
AF2
AF3
GPIO[177]
SIUL
I/O
M/S Tristate F7
PL[2] PCR[178]7AF0
AF1
AF2
AF3
GPIO[178]
MDO08
SIUL
Nexus
I/O
O
M/S Tristate F5
PL[3] PCR[179] AF0
AF1
AF2
AF3
GPIO[179]
MDO1
SIUL
Nexus
I/O
O
M/S Tristate G5
PL[4] PCR[180] AF0
AF1
AF2
AF3
GPIO[180]
MDO2
SIUL
Nexus
I/O
O
M/S Tristate H5
PL[5] PCR[181] AF0
AF1
AF2
AF3
GPIO[181]
MDO3
SIUL
Nexus
I/O
O
M/S Tristate J5
PL[6] PCR[182] AF0
AF1
AF2
AF3
GPIO[182]
MDO4
SIUL
Nexus
I/O
O
M/S Tristate K5
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package pinouts and signal descriptions
Freescale36
PL[7] PCR[183] AF0
AF1
AF2
AF3
GPIO[183]
MDO5
SIUL
Nexus
I/O
O
M/S Tristate L5
PL[8] PCR[184] AF0
AF1
AF2
AF3
GPIO[184]
EVTI
SIUL
Nexus
I/O
I
S Pull-up M9
PL[9] PCR[185] AF0
AF1
AF2
AF3
GPIO[185]
MSEO
SIUL
Nexus
I/O
O
M/S Tristate M10
PL[10] PCR[186] AF0
AF1
AF2
AF3
GPIO[186]
MCKO
SIUL
Nexus
I/O
O
F/S Tristate M11
PL[11] PCR[187] AF0
AF1
AF2
AF3
GPIO[187]
SIUL
I/O
M/S Tristate M12
PL[12] PCR[188] AF0
AF1
AF2
AF3
GPIO[188]
EVTO
SIUL
Nexus
I/O
O
M/S Tristate F11
PL[13] PCR[189] AF0
AF1
AF2
AF3
GPIO[189]
MDO6
SIUL
Nexus
I/O
O
M/S Tristate F10
PL[14] PCR[190] AF0
AF1
AF2
AF3
GPIO[190]
MDO7
SIUL
Nexus
I/O
O
M/S Tristate E12
PL[15] PCR[191] AF0
AF1
AF2
AF3
GPIO[191]
MDO8
SIUL
Nexus
I/O
O
M/S Tristate E11
PM[0] PCR[192] AF0
AF1
AF2
AF3
GPIO[192]
MDO9
SIUL
Nexus
I/O
O
M/S Tristate E10
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
Package pinouts and signal descriptions
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 37
PM[1] PCR[193] AF0
AF1
AF2
AF3
GPIO[193]
MDO10
SIUL
Nexus
I/O
O
M/S Tristate E9
PM[2] PCR[194] AF0
AF1
AF2
AF3
GPIO[194]
MDO11
SIUL
Nexus
I/O
O
M/S Tristate F12
PM[3] PCR[195] AF0
AF1
AF2
AF3
GPIO[195]
SIUL
I/O
M/S Tristate K12
PM[4] PCR[196] AF0
AF1
AF2
AF3
GPIO[196]
SIUL
I/O
M/S Tristate L12
PM[5] PCR[197] AF0
AF1
AF2
AF3
GPIO[197]
SIUL
I/O
M/S Tristate F9
PM[6] PCR[198] AF0
AF1
AF2
AF3
GPIO[198]
SIUL
I/O
M/S Tristate F6
1Alternate functions are chosen by setting the values of the PCR.PA bitfields inside the SIUL module. PCR.PA =
000 AF0; PCR.PA = 001 AF1; PCR.P A = 010 AF2; PCR.P A = 011 AF3; PCR.P A = 100 AL T4. This is
intended to select the output functions; to use one of the input functions, the PCR.IBE bit must be written to ‘1’,
regardless of the values selected in the PCR.P A bitfields. For this reason, the value corresponding to an input only
function is reported as “—”.
2Multiple inputs are routed to all respective modules internally. The input of some modules must be configured by
setting the values of the PSMIO.PADSELx bitfields inside the SIUL module.
3NMI[0] and NMI[1] have a higher priority than alternate functions. When NMI is selected, the PCR.PA field is
ignored.
4SXOSC’s OSC32k_XT AL and OSC32k_EXTAL pins are shared with GPIO functionality . When used as crystal pins,
other functionality of the pin cannot be used and it should be ensured that application never programs OBE and
PUE bit of the corresponding PCR to "1".
5If you want to use OSC32K functionality through PB[8] and PB[9], you must ensure that PB[10] is static in nature
as PB[10] can induce coupling on PB[9] and disturb oscillator frequency.
6Out of reset all the functional pins except PC[0:1] and PH[9:10] are available to the user as GPIO.
PC[0:1] are available as JTAG pins (TDI and TDO respectively).
PH[9:10] are available as JTAG pins (TCK and TMS respectively).
It is up to the user to configure these pins as GPIO when needed.
Table 4. Functional port pin descriptions (continued)
Port
pin PCR
Alternate
function1
Function
Peripheral
I/O
direction2
Pad type
RESET
config.
Pin number
176 LQFP
208 LQFP
256 MAPBGA
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale38
4Electrical Characteristics
This section contains electrical characteristics of the device as well as temperature and power considerations.
This product contains devices to protect the inputs against damage due to high static voltages. However , it is advisable to take
precautions to avoid application of any voltage higher than the specified maximum rated voltages.
To enhance reliability, unused inputs can be driven to an appropriate logic voltage level (VDD or VSS_HV). This could be done
by the internal pull-up and pull-down, which is provided by the product for most general purpose pins.
The parameters listed in the following tables represent the characteristics of the device and its demands on the system.
In the tables where the device logic provides signals with their respective timing characteristics, the symbol “CC” for Controller
Characteristics is included in the Symbol column.
In the tables where the external system must provide signals with their respective timing characteristics to the device, the symbol
“SR” for System Requirement is included in the Symbol column.
4.1 Parameter classification
The electrical parameters shown in this supplement are guaranteed by various methods. To give the custom er a better
understanding, the classifications listed in Table 5 are used and the parameters are tagged accordingly in the tables where
appropriate.
NOTE
The classification is shown in the column labeled “C” in the parameter tables where
appropriate.
4.2 NVUSRO register
Portions of the device configuration , such as high voltage supply is controlled via bit values in the Non-Volatile User Options
Register (NVUSRO). For a detailed description of the NVUSRO register, see MPC5646C Reference Manual.
7When MBIST is enabled to run ( STCU Enable = 1), the application must not drive or tie PAD[178) (MDO[0]) to 0 V
before the device exits reset (external reset is removed) as the pad is internally driven to 1 to indicate MBIST
operation. When MBIST is not enabled (STCU Enable = 0), there are no restriction as the device does not internally
drive the pad.
8These pins can be configured as Nexus pins during reset by the debugger writing to the Nexus Development
Interface "Port Control Register" rather than the SIUL. S pecifically , the debugger can enable the MDO[7:0], MSEO,
and MCKO ports by programming NDI (PCR[MCKO_EN] or PCR[PSTAT_EN]). MDO[8:11] ports can be enabled
by programming NDI ((PCR[MCKO_EN] and PCR[FPM]) or PCR[PSTAT_EN]).
Tab le 5. Parameter cl as si fic a tions
Classification tag Tag description
P Those parameters are guaranteed during production testing on each individual device.
C Those parameters are achieved by the design charac terization by measuring a statistically
relevant sample size across process variations.
T Those parameters are achieved by design characterization on a small sample size from typical
devices under typical conditions unless otherwise noted. All values shown in the typical column
are within this category.
D Those parameters are derived mainly from simulations.
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 39
4.2.1 NVUSRO [PAD3V5V(0)] field description
Table 6 shows how NVUSRO [PAD3V5V(0)] controls the device configuration for VDD_HV_A domain.
The DC electrical characteristics are dependent on the PAD3V5V(0,1) bit value.
4.2.2 NVUSRO [PAD3V5V(1)] field description
Table 7 shows how NVUSRO [PAD3V5V (1)] controls the device configu ration th e device configuration for VDD_HV_B
domain.
The DC electrical characteristics are dependent on the PAD3V5V(0,1) bit value.
4.3 Absolute maximum ratings
Table 6. PAD3V5V(0) field description
Value1
1'1' is delivery value. It is part of shadow flash memory, thus programmable by customer.
Description
0 High voltage supply is 5.0 V
1 High voltage supply is 3.3 V
Table 7. PAD3V5V(1) field description
Value1
1'1' is delivery value. It is part of shadow flash memory, thus programmable by customer.
Description
0 High voltage supply is 5.0 V
1 High voltage supply is 3.3 V
Table 8. Absolute maximum ratings
Symbol Parameter Conditions Value Unit
Min Max
VSS_HV SR Digital ground on VSS_HV
pins —00V
VDD_HV_A SR Voltage on VDD_HV_A pins
with respect to ground
(VSS_HV)
—–0.36.0V
VDD_HV_B1SR Voltage on VDD_HV_B pins
with respect to common
ground (VSS_HV)
—–0.36.0V
VSS_LV SR Voltage on VSS_LV (low
voltage digital supply) pins
with respect to ground
(VSS_HV)
—V
SS_HV 0.1 VSS_HV 0.1 V
VRC_CTRL2 Base control voltage for
external BCP68 NPN device Relative to VDD_LV 0V
DD_LV +1 V
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale40
NOTE
Stresses exceeding the recommended absolute maximum ratings may cause permanent
damage to the device. This is a stress rating only and functional operation of the device at
these or any other conditions above those indicated in the operational sections of this
specification are not implied. Exposure to absolute maxi mum rating conditions for
extended periods may affect device reliability. During overload con diti ons
(VIN >VDD_HV_A/HV_B or VIN <V
SS_HV), the voltage on pins with respect to ground
(VSS_HV) must not exceed the recommended values.
VSS_ADC SR Voltage on VSS_HV_ADC0,
VSS_HV_ADC1 (ADC
reference) pin with respect to
ground (VSS_HV)
—V
SS_HV 0.1 VSS_HV +0.1 V
VDD_HV_ADC0 SR Voltage on VDD_HV_ADC0
with respect to ground
(VSS_HV)
—–0.36.0V
Relative to VDD_HV_A3VDD_HV_A 0.3 VDD_HV_A+0.3
VDD_HV_ADC14SR Voltage on VDD_HV_ADC1
with respect to ground
(VSS_HV)
—–0.36.0V
Relative to VDD_HV_A2VDD_HV_A0.3 VDD_HV_A+0.3
VIN SR V oltage on any GPIO pin with
respect to ground (VSS_HV)Relative to
VDD_HV_A/HV_B
VDD_HV_A/HV_B
0.3 VDD_HV_A/HV_B
+0.3 V
IINJPAD SR Injected input current on any
pin during overload condition –10 10 mA
IINJSUM SR Absolute sum of all injected
input currents during overload
condition
–50 50
IAVGSEG5SR Sum of all the static I/O
current within a supply
segment
(VDD_HV_A or VDD_HV_B)
VDD = 5.0 V ± 10%,
PAD3V5V = 0 70 mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 64
TSTORAGE SR Storage temperature –556150 °C
1VDD_HV_B can be independently controlled from VDD_HV_A. These can ramp up or ramp down in any order . Design
is robust against any supply order.
2This voltage is internally generated by the device and no external voltage should be supp lied.
3Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum
value is 6.0 V then, despite the relative condition, the max value is VDD_HV_A +0.3=6.2V.
4P A3, PA7, PA10, PA1 1 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should
be within ±300 mV of VDD_HV_B when these channels are used for ADC_1.
5Any temperature beyond 125 °C should limit the current to 50 mA (max).
6This is the storage temperature for the flash memory.
Table 8. Absolute maximum ratings (continued)
Symbol Parameter Conditions Value Unit
Min Max
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 41
4.4 Recommended operating conditions
Table 9. Recommended operating conditions (3.3 V)
Symbol Parameter Conditions Value Unit
Min Max
VSS_HV SR Digital ground on VSS_HV
pins —00V
VDD_HV_A1
1100 nF EMI capacitance need to be provided between each VDD/VSS_HV pair.
SR Voltage on VDD_HV_A pins
with respect to ground
(VSS_HV)
—3.03.6V
VDD_HV_B1SR Vol tage on VDD_HV_B pins
with respect to ground
(VSS_HV)
—3.03.6V
VSS_LV2SR Voltage on VSS_LV (low
voltage digital supply) pins
with respect to ground
(VSS_HV)
—V
SS_HV 0.1 VSS_HV +0.1 V
VRC_CTRL3 Base control voltage for
external BCP68 NPN de vice Relative to VDD_LV 0V
DD_LV +1 V
VSS_ADC SR Voltage on VSS_HV_ADC0,
VSS_HV_ADC1 (ADC
reference) pin with respect to
ground (VSS_HV)
—V
SS_HV 0.1 VSS_HV +0.1 V
VDD_HV_ADC04SR Voltage on VDD_HV_ A DC0
with respect to ground
(VSS_HV)
—3.0
53.6 V
Relative to VDD_HV_A6VDD_HV_A 0.1 VDD_HV_A + 0. 1
VDD_HV_ADC17SR Voltage on VDD_HV_ A DC1
with respect to ground
(VSS_HV)
—3.03.6V
Relative to VDD_HV_A6VDD_HV_A 0.1 VDD_HV_A +0.1
VIN SR V olt age on any GPIO pin with
respect to ground (VSS_HV)—V
SS_HV 0.1 V
Relative to
VDD_HV_A/HV_B
—V
DD_HV_A/HV_B
+0.1
IINJPAD SR Injected input current on any
pin during overload condition 55mA
IINJSUM SR Abso lute sum of all injected
input currents during overload
condition
50 50
TVDD SR VDD_HV_A slope to ensure
correct power up8——0.5V/µs
0.5 V/min
TASR Ambient temperature under
bias fCPU up to
120 MHz 2% –40 125 °C
TJSR Junction temperature un der
bias 40 150
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale42
2100 nF EMI capacitance needs to be provided between each VDD_LV/VSS_LV supply pair. 10 µF bulk capacitance
needs to be provided as CREG on each VDD_LV pin. For details refer to the Power Management chapter of the
MPC5646C Reference Manual.
3This voltage is internally generated by the device and no external voltage should be supplied.
4100 nF capacitance needs to be provided between VDD_ADC/VSS_ADC pair.
5Full electrical specification cannot be guaranteed when voltage drops below 3.0 V. In particular, ADC el ectrical
characteristics and I/Os DC electrical specification may not be guaranteed. When voltage drops below VLVDHVL, device
is reset.
6Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum
value is 6.0 V then, despite the relative condition, the max value is VDD_HV_A +0.3=6.2V.
7PA3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1 should be
within ±100 mV of VDD_HV_B when the s e channels are used for ADC_1.
8Guaranteed by the device validation.
Table 10. Recommended operating conditions (5.0 V)
Symbol Parameter Conditions Value Unit
Min Max
VSS_HV SR Digital ground on VSS_HV pins 0 0 V
VDD_HV_A1SR Vo ltage on VDD_HV_A pins with
respect to ground (VSS_HV)—4.55.5V
Voltage drop23.0 5.5
VDD_HV_B SR Generic GPIO functionality 3.0 5.5 V
Ethernet/3.3 V functionality
(See the notes in all figures in
Section 3, “Package pinouts and
signal descriptions” for the list of
channels operating in VDD_HV_B
domain)
—3.03.6V
VSS_LV3SR Voltage on VSS_LV (Low voltage
digital supply) pins with respect to
ground (VSS_HV)
—V
SS_HV –0.1 V
SS_HV +0.1 V
VRC_CTRL4 Base control voltage for external
BCP68 NPN device Relative to
VDD_LV
0V
DD_LV +1 V
VSS_ADC SR Voltage on VSS_HV_ADC0,
VSS_HV_ADC1 (ADC reference)
pin with respect to ground
(VSS_HV)
—V
SS_HV –0.1 V
SS_HV +0.1 V
VDD_HV_ADC05SR Voltage on VDD_HV_ADC0 with
respect to ground (VSS_HV)—4.55.5V
Voltage drop(2) 3.0 5.5
Relative to
VDD_HV_A6VDD_HV_A –0.1 V
DD_HV_A +0.1
VDD_HV_ADC17SR Voltage on VDD_HV_ADC1 with
respect to ground (VSS_HV)—4.55.5V
Voltage drop(2) 3.0 5.5
Relative to
VDD_HV_A6VDD_HV_A 0.1 VDD_HV_A +0.1
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 43
NOTE
SRAM retention guaranteed to LVD levels.
VIN SR Voltage on any GP IO pi n w it h
respect to ground (VSS_HV)—V
SS_HV –0.1 V
Relative to
VDD_HV_A/HV_B
—V
DD_HV_A/HV_B
+0.1
IINJPAD SR Injected input current on any pin
during overload condition —–5 5mA
IINJSUM SR Absolute sum of all injected input
currents during overload condition –50 50
TVDD SR VDD_HV_A slope to ensure correct
power up8——0.5V/µs
0.5 V/min
TA C-Grade Part SR Ambient temperature under bia s 40 85
°C
TJ C-Grade Part SR Junction temperature under bias 40 110
TA V-Grade Part SR Ambient temperature under bias 40 105
TJ V-Grade Part SR Junction temperature under bias 40 130
TA M-Grade Part SR Ambient temperature under bias 40 125
TJ M-Grade Part SR Junction temperature under bias 40 150
1100 nF EMI capacitance need to be provided between each VDD/VSS_HV pair.
2Full device operation is guaranteed by design from 3.0 V–5.5 V. OSC functionality is guaran teed from the entire
range 3.0V–5.5 V, the parametrics measured are at 3.0V and 5.5V (extre me voltage ranges to cover the range of
operation). The parametrics might have some variation in the intermediate voltage range, but there is no impact to
functionality.
3100 nF EMI capacitance needs to be provided between each VDD_L V/VSS_LV supply pair. 10 µF bulk capacit ance
needs to be provided as CREG on each VDD_LV pin.
4This voltage is internally generated by the device and no external voltage should be supplied.
5100 nF capacitance needs to be provided between VDD_HV_(ADC0/ADC1)/VSS_HV_(ADC0/ADC1) pair.
6Both the relative and the fixed conditions must be met. For instance: If VDD_HV_A is 5.9 V, VDD_HV_ADC0 maximum
value is 6.0 V then, despite the relative condition, the max val ue is V DD_HV_A +0.3=6.2V.
7PA 3, PA7, PA10, PA11 and PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1
should be within ±100 mV of VDD_HV_B when these channels are used for ADC_1.
8Guaranteed by device validation.
Table 10. Recommended ope rating conditions (5.0 V) (continued)
Symbol Parameter Conditions Value Unit
Min Max
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale44
4.5 Thermal characteristics
4.5.1 Package thermal characteristics
4.5.2 Power considerations
The average chip-junction temperature, TJ, in degrees Celsius, may be calculated using Equation 1:
TJ = TA + (PD
RJA)Eqn. 1
Where:
TA is the ambient temperature in °C.
RJA is the package junction-to-ambient thermal resistance, in °C/W.
PD is the sum of PINT and PI/O (PD=P
INT + PI/O).
PINT is the product of IDD and VDD, expressed in watts. This is the chip internal power.
PI/O represents the power dissipation on input and output pins; user determined.
Table 11. LQFP thermal characteristics1
1Thermal characteristics are targets based on simulation th at are subject to cha nge per device characterization.
Symbol C Parameter Conditions2
2VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C.
Pin count Value3
3All values need to be confirmed during device validation.
Unit
Min Typ Max
RJA CC D Thermal resistance,
junction-to-ambient
natural convection4
4Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site
(board) temperature, ambient temperature, air flow , power dissipation of other components on the board, and board
thermal resistance.
Single-layer
board—1s 176 385
5Junction-to-Ambient thermal resistance determined per JEDEC JESD51-3 and JESD51-6.
°C/W
208 416
6Junction-to-Ambient thermal resistance determined per JEDEC JESD51-2 and JESD51-6
°C/W
RJA CC D Thermal resistance,
junction-to-ambient
natural convection7
Four-layer
board—2s2p7
7Junction-to-Board thermal resistance determined per JEDEC JESD51-8.
176 31 °C/W
208 34 °C/W
Table 12. 256 MAPBGA thermal characteristics1
1Thermal characteristics are targets based on simulation that are subject to change per device characterization.
Symbol C Parameter Conditions Value Unit
RJA CC Thermal resistance, junction-to-ambient
natural convection Single-layer board—1s 432
2Junction-to-ambient thermal resistance determined per JEDEC JESD51-2 with the single layer board horizontal.
Board meets JESD51-9 specification.
°C/W
Four-layer board—2s2p 263
3Junction-to-ambient thermal resistance determined per JEDEC JESD51-6 with the board horizontal.
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 45
Most of the time for the applications, PI/O< PINT and may be neglected. On the other hand, PI/O may be significant, if the device
is configured to continuously drive external mo dules and/ or memories.
An approximate relationship between PD and TJ (if PI/O is neglected) is given by:
PD = K / (TJ + 273 °C) Eqn. 2
Therefore, solving equations 1 and 2:
K = PD
(TA + 273 °C) + RJA
PD2Eqn. 3
Where:
K is a constant for the particular part, which may be determined from Equation 3 by measuring PD (at equilibrium)
for a known TA. Using this value of K, the values of PD and TJ may be obtained by solving equ ations 1 and 2
iteratively for any value of TA.
4.6 I/O pad electrical characteristics
4.6.1 I/O pad types
The device provides four main I/O pad types depending on the associated alternate functions:
Slow pads—These pads are the most common pads, providing a good compromise between transition time and low
electromagnetic emission.
Medium pads—These pads provide transition fast enough for the serial communication channels with controlled
current to reduce electromagnetic emission.
Fast pads—These pads provide maximum speed. These are used for improved Nexus debugging capability.
Input only pads—These pads are associated to ADC channels and 32 kHz low power external crystal oscillator
providing low input leakage.
Low power pads—These pads are active in standby mo de for wakeup source.
Also, medium/slow and fast/medium pads are available in design which can be configured to behave like a slow/ medi um and
medium/fast pads depending upon the slew-rate control.
Medium and fast pads can use slow configuration to reduce electromagnetic emission, at the cost of reducing AC performance.
4.6.2 I/O input DC characteristics
Table 13 provides input DC electrical characteristics as described in Figure 5.
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale46
Figure 5. I/O input DC electrical characteristics definition
4.6.3 I/O output DC characteristics
The following tables provide DC characteristics for bidirectional pads:
Table 13. I/O input DC electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
Value2
2VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. All values need to be confirmed during device validation.
Unit
Min Typ Max
VIH SR P Input high level CMOS (Schmitt
Trigger) —0.65V
DD —V
DD +0.4 V
VIL SR P Input low level CMOS (Schmitt
Trigger) 0.3 0.35VDD
VHYS CC C Input hysteresis CMOS (Schmitt
Trigger) —0.1V
DD ——
ILKG CC P Digital input leakage No injection
on adjacent
pin
TA=40 °C 2 nA
PT
A=25 °C 2
DT
A= 105 °C 12 500
PT
A= 125 °C 70 1000
WFI SR P Width of input pulse rejected by
analog filter3
3Analog filters are available on all wake up lines.
——40
4ns
WNFI SR P Width of input pulse accepted by
analog filter(3) 10004
4The width of input pulse in between 40 ns to 1000 ns is indeterminate. It may pass the noise or may not depending
on silicon sample to sample variation.
——ns
VIL
VIN
VIH
PDIx = ‘1
VDD
VHYS
(GPDI register of SIUL)
PDIx = ‘0’
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 47
Table 14 provides weak pull figures. Both pull-up and pull-down resistances are supported.
Table 15 provides output driver characteristics for I/O pads when in SLOW configuration.
Table 16 provides output driver characteristics for I/O pads when in MEDIUM configuration.
Table 17 provides output driver characteristics for I/O pads when in FAST config urat ion.
Table 14. I/O pull-up/pull-down DC electrical characteristics
Symbol C Parameter Conditions1,2
1VDD = 3.3 V ± 10% / 5.0 V ± 10 %, TA = 40 to 125 °C, unless otherwise specified.
2VDD as mentioned in the table is VDD_HV_A/VDD_HV_B.
Value Unit
Min Typ Max
|IWPU| CC P Weak pull-up
current absolute
value
VIN = VIL, VDD =
5.0 V ± 10% PAD3V5V = 0 10 150 µA
CPAD3V5V = 1
3
3The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
10 250
PV
IN = VIL, VDD =
3.3 V ± 10% PAD3V5V = 1 10 150
|IWPD| CC P Weak pull-down
current absolute
value
VIN = VIH, VDD =
5.0 V ± 10% PAD3V5V = 0 10 150 µA
C PAD3V5V = 1 10 250
PV
IN = VIH, VDD =
3.3 V ± 10% PAD3V5V = 1 10 150
Table 15. SLOW configuration output buffer electrical characteristics
Symbol C Parameter Conditions1,2
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2VDD as mentioned in the table is VDD_HV_A/VDD_HV_B.
Value Unit
Min Typ Max
VOH CC P Output high level
SLOW
configuration
Push Pull IOH = 3mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0 0.8VDD ——V
CI
OH = 3mA,
VDD = 5.0 V ± 10%, P AD3V5V = 13
3The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in hig h impedance state.
0.8VDD ——
PI
OH = 1.5 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1 VDD 0.8
VOL CC P Output low level
SLOW
configuration
Push Pull IOL =3mA,
VDD = 5.0 V ± 10%, PA D3V5V = 0 0.1VDD V
CI
OL = 3 mA,
VDD = 5.0 V ± 10%, PA D3V5V =
1(3)
0.1VDD
PI
OL = 1.5 mA,
VDD = 3.3 V ± 10%, PA D3V5V = 1 ——0.5
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale48
Table 16. MEDIUM configuration output buffer electrical characteristics
Symbol C Parameter Conditions1,2
1VDD = 3.3 V ± 10% / 5.0 V ± 10 %, TA = 40 to 125 °C, unless otherwise specified.
2VDD as mentioned in the table is VDD_HV_A/VDD_HV_B.
Value Unit
Min Typ Max
VOH CC C Output high level
MEDIUM
configuration
Push Pull IOH = 3mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
0.8VDD ——
V
CI
OH = 1.5 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 13
3The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but
RESET and Nexus output (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
0.8VDD ——
CI
OH = 2mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
VDD 0.8
VOL CC C Output low level
MEDIUM
configuration
Push Pull IOL = 3 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
0.2VDD
V
CI
OL = 1.5 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 1(3)
0.1VDD
CI
OL = 2 mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
——0.5
Table 17. FAST configuration output buff er electrical characteristics
Symbol C Parameter Conditions1,2 Value Unit
Min Typ Max
VOH CC P Output high level
FAST
configuration
Push Pull IOH = 14 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
0.8VDD ——V
CI
OH = 7mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 13
0.8VDD ——
CI
OH = 11 mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
VDD 0.8
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 49
4.6.4 Output pin transition times
VOL CC P Output low level
FAST
configuration
Push Pull IOL = 14 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 0
——0.1V
DD V
CI
OL = 7 mA,
VDD = 5.0 V ± 10%,
PAD3V5V = 1(3)
——0.1V
DD
CI
OL = 11 mA,
VDD = 3.3 V ± 10%,
PAD3V5V = 1
——0.5
1VDD = 3.3 V ± 10% / 5.0 V ± 10 %, TA = 40 to 125 °C, unless otherwise specified.
2VDD as mentioned in the table is VDD_HV_A/VDD_HV_B.
3The configuration PAD3V5 = 1 when VDD = 5 V is only a transient configuration during power-up. All pads but
RESET and Nexus outputs (MDOx, EVTO, MCKO) are configured in input or in high impedance state.
Table 18. Output pin transition times
Symbol C Parameter Conditions1,2 Value3
Unit
Min Typ Max
Ttr CC D Output transition time
output pin4
SLOW configuration
CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0 50 ns
TC
L = 50 pF 100
DC
L = 100 pF 125
DC
L = 25 pF VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——40
TC
L = 50 pF 50
DC
L = 100 pF 75
Ttr CC D Output transition time
output pin(4)
MEDIUM
configuration
CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0
SIUL.PCRx. SRC = 1
10 ns
TC
L = 50 pF 20
DC
L = 100 pF 40
DC
L = 25 pF VDD = 3.3 V ± 10%,
PAD3V5V = 1
SIUL.PCRx. SRC = 1
——12
TC
L = 50 pF 25
DC
L = 100 pF 40
Table 17. FAST configuration output buffer electrical characteristics (continued)
Symbol C Parameter Conditions1,2 Value Unit
Min Typ Max
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale50
4.6.5 I/O pad current specification
The I/O pads are distributed across the I/O supply segment. Each I/O supply is associated to a VDD/VSS_HV supply pair as
described in Table 19.
Table 20 provides I/O consumption figures.
In order to ensure device reliability, the average current of the I/O on a single segment sh ould remain below the IAVGSEG
maximum value.
In order to ensure device functionality, the sum of the dynamic and static current of the I/O on a single segment should remain
below the IDYNSEG maximum value.
Ttr CC D Output transition time
output pin(4)
FAST configuration
CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0 —— 4ns
CL = 50 pF 6
CL = 100 pF 12
CL = 25 pF VDD = 3.3 V ± 10%,
PAD3V5V = 1 —— 4
CL = 50 pF 7
CL = 100 pF 12
1VDD = 3.3 V ± 10% / 5.0 V ± 10 %, TA = 40 to 125 °C, unless otherwise specified.
2VDD as mentioned in the table is VDD_HV_A/VDD_HV_B.
3All values need to be confirmed during device validation.
4CL includes device and package capacitances (CPKG < 5 pF).
Table 19. I/O supplies
Package I/O Supplies
256 MAPBGA Equivalent to 208-pin LQFP segmen t pad distribution + G6, G11, H11, J11
208 LQFP pin6
(VDD_HV_A)
pin7
(VSS_HV)
pin27
(VDD_HV_A)
pin28
(VSS_HV)
pin73
(VSS_HV)
pin75
(VDD_HV_A)
pin101
(VDD_HV_A)
pin102
(VSS_HV)
pin132
(VSS_HV)
pin133
(VDD_HV_A)
pin147
(VSS_HV)
pin148
(VDD_HV_B)
pin174
(VSS_HV)
pin175
(VDD_HV_A)
176 LQFP pin6
(VDD_HV_A)
pin7
(VSS_HV)
pin27
(VDD_HV_A)
pin28
(VSS_HV)
pin57
(VSS_HV)
pin59
(VDD_HV_A)
pin85
(VDD_HV_A)
pin86
(VSS_HV)
pin123
(VSS_HV)
pin124
(VDD_HV_B)
pin150
(VSS_HV)
pin151
(VDD_HV_A)
——
Table 18. Output pin transition times (continued)
Symbol C Parameter Conditions1,2 Value3
Unit
Min Typ Max
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 51
Table 20. I/O consumption
Symbol C Parameter Conditions1,2
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, T A = 40 to 125 °C, unless otherwise specified.
2VDD as mentioned in the table is VDD_HV_A/VDD_HV_B.
Value3
3All values need to be confirmed durin g device validation.
Unit
Min Typ Max
ISWTSLW,4
4Stated maximum values represent peak consumption that lasts only a few ns during I/O transition.
CC D Peak I/O current for
SLOW configuration CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——19.9
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——15.5
ISWTMED(4) CC D Peak I/O current for
MEDIUM
configuration
CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——28.8
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——16.3
ISWTFST(4) CC D Peak I/O current for
FAST configuration CL = 25 pF VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——113.5
mA
VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——52.1
IRMSSLW CC D Root mean square
I/O current for SLOW
configuration
CL = 25 pF, 2 MHz VDD = 5.0 V ± 10%,
PAD3V5V = 0 2.22
mA
CL = 25 pF, 4 MHz 3.13
CL = 100 pF, 2 MHz 6.54
CL = 25 pF, 2 MHz VDD = 3.3 V ± 10%,
PAD3V5V = 1 1.51
CL = 25 pF, 4 MHz 2.14
CL = 100 pF, 2 MHz 4.33
IRMSMED CC D Root mean square
I/O current for
MEDIUM
configuration
CL = 25 pF, 13 MHz VDD = 5.0 V ± 10%,
PAD3V5V = 0 ——6.5mA
CL = 25 pF, 40 MHz 13.32
CL = 100 pF, 13 MHz 18.26
CL = 25 pF, 13 MHz VDD = 3.3 V ± 10%,
PAD3V5V = 1 4.91
CL = 25 pF, 40 MHz 8.47
CL = 100 pF, 13 MHz 10.94
IRMSFST CC D Root mean square
I/O current for FAST
configuration
CL = 25 pF, 40 MHz VDD = 5.0 V ± 10%,
PAD3V5V = 0 21.05 mA
CL = 25 pF, 64 MHz 33
CL = 100 pF, 40 MHz 55.77
CL = 25 pF, 40 MHz VDD = 3.3 V ± 10%,
PAD3V5V = 1 ——14
CL = 25 pF, 64 MHz 20
CL = 100 pF, 40 MHz 34.89
IAVGSEG SR D Sum of all the static
I/O current within a
supply segment
VDD = 5.0 V ± 10%, PAD3V5V = 0 70 mA
VDD = 3.3 V ± 10%, PAD3V5V = 1 654
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale52
4.7 RESET electrical characteristics
The device implements a dedicated bidirectional RESET pin.
Figure 6. Start-up reset requirements
Figure 7. Noise filtering on reset signal
Table 21. Reset electrical characteristics
Symbol C Parameter Conditions1Value2
Unit
Min Typ Max
VIH SR P Input High Le vel CMOS
(Schmitt Trigger) —0.65V
DD —V
DD +0.4 V
VIL
VDD_HV_A
device reset forced by RESET
VDDMIN
RESET
VIH
device start-up phase
VRESET
VIL
VIH
VDD
filtered by
hysteresis filtered by
lowpass filter
WFRST WNFRST
hw_rst
‘1’
‘0’
filtered by
lowpass filter
WFRST
unknown reset
state device under hardware reset
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 53
VIL SR P Input low Level CMOS
(Schmitt Trigger) 0.3 0.35VDD V
VHYS CC C Input hysteresis CMOS
(Schmitt Trigger) —0.1V
DD ——V
VOL CC P Output low level Push Pull, IOL = 2 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 0
(recommended)
0.1VDD V
Push Pull, IOL = 1 mA,
VDD = 5.0 V ± 10%, PAD3V5V = 13 0.1VDD
Push Pull, IOL = 1 mA,
VDD = 3.3 V ± 10%, PAD3V5V = 1
(recommended)
——0.5
Ttr CC D Output transition time
output pin4
MEDIUM configuration
CL = 25 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0 ——10ns
CL = 50 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0 ——20
CL = 100 pF,
VDD = 5.0 V ± 10%, PAD3V5V = 0 ——40
CL = 25 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1 ——12
CL = 50 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1 ——25
CL = 100 pF,
VDD = 3.3 V ± 10%, PAD3V5V = 1 ——40
WFRST SR P Reset input filtered pulse 40 ns
WNFRST SR P Reset input not fi ltered
pulse 1000 ns
|IWPU| CC P Weak pull-up current
absolute value VDD = 3.3 V ± 10%, PAD3V5V = 1 10 150 µA
VDD = 5.0 V ± 10%, PAD3V5V = 0 10 1 50
VDD = 5.0 V ± 10%, PAD3V5V = 1510 250
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2VDD as mentioned in the table is VDD_HV_A/VDD_HV_B. All valu es need to be confirmed during device validation.
3This is a transient configuration during power-up, up to the end of reset PHASE2 (refer to the RGM module section
of the device Reference Manual).
4CL includes device and package capacitance (CPKG <5pF).
5The configuration PAD3V5 = 1 when VDD = 5 V is only transient configuration duri ng power-up. All pads but
RESET and Nexus output (MDOx, EVTO, MCKO) are confi gured in input or in high impedance state.
Table 21. Reset electrical characteristics (continued)
Symbol C Parameter Conditions1Value2
Unit
Min Typ Max
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale54
4.8 Power management electrical characteristics
4.8.1 Voltage regulator electrical characteristics
The device implements an internal volt age regulator to generate the low volt age core supply VDD_LV from the high voltage
supply VDD_HV_A. The following supplies are involved:
HV: High voltage external power supply for voltage reg ulator module. This must be prov ided externally through
VDD_HV_A power pin.
LV: Low voltage internal pow er suppl y for core, FMPLL and Flash digital logic. This is generated by the on-chip
VREG with an external ballast (BCP68 NPN device). It is further split into four main domains to ensure noise isolation
between critical LV modules within the device:
LV_COR: Low voltage supply for the core. It is also used to provide supply for FMPLL through double bonding.
LV_CFLA0/CFLA1: Low voltage supply for the two code Flash modules. It is shorted with LV_COR throug h
double bonding.
LV_DFLA: Low voltage supply for data Flash module. It is short ed with LV_COR through double bonding .
LV_PLL: Low voltage supply for FM PLL. It is shorted to LV_COR through double bon ding.
Figure 8. Volt age regulator capacitance connection
The internal voltage regulator requires external bulk capacitance (CREGn) to be connected to the device to provide a stable low
voltage digital supply to the device. Also required for stability is the CDEC2 capacitor at ballast collector. This is needed to
32 KB 56 KB
SplitSplit
CTRL CTRL
Split
CTRL
PD0 (always on doma in)
PD1 Switchable Domain
HPREG
LPREG
HPVDD
LPVDD
VDD_LV
VSS_LV
Off chip
BCP68
40 f
HPVDD
LPVDD
sw1 (<0.1)
8KB
PD0 Logic
VDD_BV VDD_HV_A VSS_HV
100 nf
(FMPLL, Flash)
VDD_LV VDD_LV VDD_LV
VSS_LV VSS_LV VSS_LV
100 nf 100 nf 100 nf
VRC_CTRL
(CREGn)
Chip Boundary
10 f
(CDEC2)
(4 10 f)
NPN driver
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 55
minimize sharp injection current when ball ast is tu rni ng ON. Apart from the bulk capacitance, user should connect
EMI/decoupling cap (CREGP) at each VDD_LV/VSS_LV pin pair.
4.8.1.1 Recommendations
The external NPN driver must be BCP68 type.
•V
DD_LV should be implemented as a power plane from the emitter of the ballast transistor.
•10F capacitors should be connected to the 4 pins closest to the outside of the package and should be evenly
distributed around the package. For BGA packages, the balls should be used are D8, H14, R9, J3–one cap on each side
of package.
There should be a track direct from the capacitor to this pin (pin also connects to VDD_LV plane). The tracks ESR
should be less than 100 m.
The remaining VDD_LV pins (exact number will vary with package) sh ould be decoupled with 0.1 F caps,
connected to the pin as per 10 F.
(see Section 4.4, “Recommended operating conditions”).
4.8.2 VDD_BV options
Opti on 1: VDD_BV shared with VDD_HV_A
VDD_BV must be star routed from VDD_HV_A from the common source. This is to eliminate ballast noise injection on
the MCU.
Opti on 2: VDD_BV independent of the MCU supply
VDD_BV > 2.6 V for correct functionality . The device is not monitoring this supply hence the external component must
meet the 2.6 V criteria through external monitoring if required.
Tabl e 22. Voltage regulator elec tri ca l ch ara ct eristics
Symbol C Parameter Conditions1Value2
Unit
Min Typ Max
CREGn SR External ballast stability capacitance 40 60 F
RREG SR Stability capacitor equivalent serial
resistance ——0.2
CREGP SR Decoupling capacitance (Close to
the pin) VDD_HV_A/HV_B/VSS_HV
pair 100 nF
VDD_LV/VSS_LV pair 100 nF
CDEC2 SR Stability capacitance regulator
supply (Close to the ballast collector) VDD_BV/VSS_HV 10 40 F
VMREG CC PMain regulator output voltage Before trimming 1.32 V
After trimming
TA = 25 °C 1.24 1.28 1.32
IMREG SR Main regulator current provided to
VDD_LV domain ——350 mA
IMREGINT CC DMain regulator module current
consumption IMREG = 200 mA 2mA
IMREG = 0 mA 1
VLPREG CC PLow power regulator output voltage After trimming
TA = 25 °C 1.225 1.25 1.275 V
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale56
4.8.3 Voltage monitor electrical characteristics
The device implements a Power-on Reset module to ensure correct power-up initialization, as well as four low voltage detectors
to monitor the VDD_HV_A and the VDD_LV voltage while device is supplied:
POR monitors VDD_HV_A during the power-up phase to ensure device is maintained in a safe reset state
LVDHV3 monitors VDD_HV_A to ensure device is reset below minimum functional supply
LVDHV5 monitors VDD_HV_A when application uses device in the 5.0 V±10% range
LVDLVCOR monitors power dom ain No. 1 (PD1)
LVDLVBKP monitors power domain No. 0 (PD0). VDD_LV is same as PD0 supply.
NOTE
When enabled, PD2 (RAM retention) is monitored through LVD_DIGBKP.
ILPREG SR Low power regulator current
provided to VDD_LV domain ——50 mA
ILPREGINT CC DLow power regulator module current
consumption ILPREG = 15 mA;
TA = 55 °C ——600 A
ILPREG = 0 mA;
TA = 55 °C 20
IVREGREF CC DMain LVDs and reference current
consumption (low power and main
regulator switched off)
TA = 55 °C 2 A
IVREDLVD12 CC DMain LVD cu rrent consumption
(switch-off during standby) TA = 55 °C 1 A
IDD_HV_A CC DIn-rush current on VDD_BV during
power-up ——6003mA
1VDD_HV_A = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 12 5 °C, unless otherwise specified.
2All values need to be confirmed duri ng device validation.
3Inrush current is seen more like steps of 600 mA peak. The startup of the regulator happens in steps of 50 mV in
~25 steps to reach ~1.2 V VDD_LV. Each step peak current is within 600 mA
Table 22. Voltage regulator electrical characteristics (continued)
Symbol C Parameter Conditions1Value2
Unit
Min Typ Max
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 57
Figure 9. Low voltage monitor vs. Reset
4.9 Low voltage domain power consumption
Table 24 provides DC electrical characteristics for significant application modes. These values are indicative values; actual
consumption depends on the application.
Table 23. Low voltage monitor electrical characteristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, T A = 40 to 125 °C, unless otherwise specified.
Value2
2All values need to be confirmed durin g device validation.
Unit
Min Typ Max
VPORUP SR P Supply for functional POR module 1.0 5.5
V
VPORH CC P Power-on reset threshold 1.5 2.6
VLVDHV3H CC T LVDHV3 low voltage detector high threshold 2.7 2.85
VLVDHV3L CC T LVDHV3 low voltage detector low threshold 2.6 2.74
VLVDHV5H CC T LVDHV5 low voltage detector high threshold 4.3 4.5
VLVDHV5L CC T LVDHV5 low voltage detector low threshold 4.2 4.4
VLVDLVCORL CC P LVDLVCOR low voltage detector low threshold TA = 25 °C,
after trimming 1.12 1.145 1.17
VLVDLVBKPL CC P LVDLVBKP low voltage detector low threshold 1.12 1.145 1.17
VDDHV/LV
VLVDHVxH/LVxH
RESET
VLVDHVxL/LVxL
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale58
Table 24. Low voltage power domain electrical characteristics1
1Except for IDDMAX and IDDRUN, all the current values are total current drawn from VDD_HV_A and VDD_HV_B.
Symbol C Parameter Conditions2
2VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified All temperatures are based on an
ambient temperature.
Value Unit
Min Typ3
3Target typical current consumption for the following typical operating conditions and configuration. Process = typical,
Voltage = 1.2 V.
Max4
4Target maximum current consumption for mode observed under typical operating conditions. Process = Fast, V oltage
= 1.32 V.
IDDMAX5
5Running consumption is given on voltage regulator supply (VDDREG). It does not include consumption linked to I/Os
toggling. This value is highly dependent on the application. The given value is thought to be a worst case value with
all cores and peripherals running, and code fetched from code flash while modify operation on-going on data flash. It
is to be noticed that this value can be significantly reduced by application: switch-off not used peripherals (default),
reduce peripheral frequen cy through internal prescaler, fetch from RAM most used functions, use low power mode
when possible.
CC D RUN mode maximum
average current 210 3006,7
6Higher current may sunk by device during power-up and standby exit. Please refer to in rush current in Table 22.
7Maximum “allowed” current is package dependent.
mA
IDDRUN CC P RUN mode typical average
current8
8Only for the “P” classification: Code fetched from RAM: Serial IPs CAN and LIN in loop back mode, DSPI as Master ,
PLL as system Clock (4 x Multiplier) peripherals on (eMIOS/CTU/ADC) and running at max frequency, periodic
SW/WDG timer reset enabled. RUN current measured with typical application with accesses on both code flash and
RAM.
at 120 MHz TA= 25 °C 150 2009mA
Dat 80MHzT
A=2C 110
815010 mA
Pat 120MHzT
A= 125 °C 180 270 mA
IDDHALT CC P HALT mode current11 —T
A= 25 °C 20 27 mA
CT
A= 125 °C 35 80 mA
IDDSTOP CC P STOP mode current12 No clocks active TA= 25 °C 400 1200 µA
CT
A= 125 °C 16 60 mA
IDDSTDBY3
(96 KB RAM
retained)
CC P STANDBY3 mode
current13 No clocks active TA= 25 °C 50 75 µA
CT
A= 125 °C 630 12 00 µA
IDDSTDBY2
(64 KB RAM
retained)
CC C STANDBY2 mode
current14 No clocks active TA= 25 °C 40 70 µA
CT
A= 125 °C 500 1100 µA
IDDSTDBY1
(8 KB RAM
retained)
CC C STANDBY1 mode
current15 No clocks active TA= 25 °C 25 65 µA
CT
A= 125 °C 230 650 µA
Adders in LP
mode CC T 32 KHz OSC TA=2C 5 µA
4–40 MHz OSC TA=2C 3 mA
16 MHz IRC TA= 25 °C 500 µA
128 KHz IRC TA=2C 5 µA
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 59
4.10 Flash memory electrical characteristics
4.10.1 Program/Erase characteristics
Table 25 shows the code flash memory program and erase characteristics.
9Subject to change, Configuration: 1
e200z4d + 4 kbit/s Cache, 1
e200z0h (1/2 system frequency), CSE,
1
e
DMA (10 ch.), 6
FlexCAN (4
500 kbit/s, 2
125 kbit/s), 4
LINFlexD (20 kbit/s), 6
DSPI (2
2 Mbit/s,
3
4 Mbit/s, 1
10 Mbit/s ), 16
Timed I/O, 16
ADC Input, 1
FlexRay (2 ch., 10 Mbit/s), 1
FEC (100 Mbit/s),
1
RTC, 4 PIT channels, 1
SWT , 1
STM. For lower pin count packages reduce the amount of timed I/O’s and ADC
channels. RUN current measured with typical application with accesses on both code flash and RAM.
10 This value is obtained from limited sample set
11 Data Flash Power Down. Code Flash in Low Power. SIRC 128 kHz and FIRC 16 MHz ON. 16 MHz XTAL clock.
FlexCAN: instances: 0, 1, 2 ON (clock ed but no reception or transmission), inst ances: 4, 5, 6 clocks gated. LINFlex:
instances: 0, 1, 2 ON (clocked but no reception or transmission), inst ance: 3-9 clocks gated. eMIOS: instance: 0 ON
(16 channels on PA[0 ]-PA [11] and PC[12]-PC[15]) with PWM 20 kHz, instance: 1 clock gated. DSPI: instance: 0
(clocked but no communication, instance: 1-7 clocks gated). RTC/API ON. PIT ON. STM ON. ADC ON but no
conversion except 2 analog watchdogs.
12 Only for the “P” classification: No clock, FIRC 16 MHz OFF, SIRC128 kHz ON, PLL OFF, HPvreg OFF, LPVreg ON.
All possible peripherals off and clock gated. Flash in power down mode.
13 Only for the “P” classification: LPreg ON, HPV reg OFF, 96 KB RAM ON, device configured for minimum consumption,
all possible modules switched-off.
14 Only for the “P” classification: LPreg ON, HPV reg OFF, 64 KB RAM ON, device configured for minimum consumption,
all possible modules switched-off.
15 LPreg ON, HPV reg OFF, 8 KB RAM ON, device configured for minimum consumption, all possible modules switched
OFF.
Table 25. Code flash memory—Program and erase specifications
Symbol C Parameter
Value
Unit
Min Typ1
1Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to
change pending device characterization.
Initial
max2
2Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
Max3
3The maximum program and erase times occur after the specified number of program/erase cycles. These maximum
values are characterized but not guaranteed.
Tdwprogram
CC
C
Double word (64 bits) program time4
4Actual hardware programming times. This does not include software overhead.
—1850500µs
T16Kpperase 16 KB block pre-program and erase time 200 500 5000 ms
T32Kpperase 32 KB block pre-program and erase time 300 600 5000 ms
T128Kpperase 128 KB block pre-program and erase time 600 1300 5000 ms
Teslat D Erase Suspend Latency 30 30 µs
tESRT5
5It is Time between erase suspend resume and the next erase suspend request.
C Erase Suspend Request Rate 20 ms
tPABT D Program Abort Latency 10 10 µs
tEAPT D Erase Abort Latency 30 30 µs
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale60
Table 26 shows the data flash memory program and erase characteristics.
Table 26. Data flash memory—Program and erase specifications
Symbol C Parameter
Value
Unit
Min Typ1
1Typical program and erase times assume nominal supply values and operation at 25 °C. All times are subject to
change pending device characterization.
Initial
max2
2Initial factory condition: < 100 program/erase cycles, 25 °C, typical supply voltage.
Max3
3The maximum program and erase times occur after the specified number of program/erase cycles. These maximum
values are characterized but not guaranteed.
Twprogram
CC
CWord (32 bits) program time4
4Actual hardware programming times. This does not include software overhead.
—3070500µs
T16Kpperase 16 KB block pre-program and erase time 700 800 5000 ms
Teslat D E rase Suspend Latency 30 30 µs
tESRT5
5It is time between erase suspend resume and next erase suspend.
C Erase Suspend Request Rate 10 ms
tPABT D Program Abort Latency 12 12 µs
tEAPT D Erase Abort Latency 30 30 µs
Table 27. Flash memory module life
Symbol C Parameter Conditions Value Unit
Min Typ
P/E CC C Number of program/erase cycles per
block for 16 Kbyte blocks over the
operating temperature range (TJ)
100,000 100,000 cycles
Number of program/erase cycles per
block for 32 Kbyte blocks over the
operating temperature range (TJ)
10,000 100,000 cycles
Number of program/erase cycles per
block for 128 Kbyte blocks over the
operating temperature range (TJ)
1,000 100,000 cycles
Retention CC C Minimum data retention at 85 °C
average ambient temperature1
1Ambient temperature averaged over duration of application, not to exceed recommended product operating
temperature range.
Blocks with 0–1,000 P/E
cycles 20 years
Blocks with 10,000 P/E
cycles 10 years
Blocks with 100,000 P/E
cycles 5 years
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 61
ECC circuitry provides correction of single bit faults and is used to improve further automotive reliability results. Some units
will experience single bit corrections throughout the life of the product with no imp act to product reliability.
4.10.2 Flash memory power supply DC characteristics
Table 29 shows the flash memory power supply DC charact e ri stics on external supply.
Table 28. Flash memory read access timing
Symbol C Parameter
Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, T A = 40 to 125 °C, unless othe rwise specified.
Frequency
range Unit
Code flash
memory Data flash
memory
fREAD CC P Maximum frequency for Flash reading 5 wait states 13 wait states 120 —100 MHz
C 4 wait states 11 wait states 100—80
D 3 wait states 9 wait states 80—64
C 2 wait states 7 wait states 64—40
C 1 wait states 4 wait states 40—20
C 0 wait states 2 wait states 20—0
Table 29. Flash memory powe r supply DC electrical characteristics
Symbol Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = –40 to 125 °C, unless otherwise specified.
Value2
2All values need to be confirmed during device validation.
Unit
Min Typ Max
ICFREAD3
3Data based on characterization results, not tested in production.
CC Sum of the current consumption
on VDD_HV_A on read access Flash memory module read
fCPU = 120 MHz 2%4
4fCPU 120 MHz 2% can be achieved over full temperature 125 °C ambient, 150 °C junction temperature.
Code flash
memory 33 mA
IDFREAD(3) Data flash
memory 13
ICFMOD(3) CC Sum of the current consumption
on VDD_HV_A (program/erase) Program/Erase on-going
while reading flash memory
registers
fCPU = 120 MHz 2% (4)
Code flash
memory 52 mA
IDFMOD(3) Data flash
memory 13
ICFLPW(3) CC Sum of the current consumption
on VDD_HV_A during flash
memory low power mode
Code flash
memory 1.1 mA
ICFPWD(3) CC Sum of the current consumption
on VDD_HV_A during flash
memory power down mode
Code flash
memory 150 µA
IDFPWD(3) Data flash
memory 150
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale62
4.10.3 Flash memory start-up/switch-off timings
4.11 Electromagnetic compatibility (EMC) characteristics
Susceptibility tests are performed on a sample basis during product characterization.
4.11.1 Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical application environment and simplified
MCU software. It should be noted that good EMC performance is highly dependent on the user application and the software in
particular.
Therefore it is recommended that the user apply EMC software optimization and pre-qualification tests in relation with the EMC
level requested for the application.
Software recommendations The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers)
Pre-qualification trials Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the reset pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device. When unexpected behavior is detected, the
software can be hardened to prevent unrecoverable errors occurring.
Table 30. Start-up time/Switch-off time
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
Value Unit
Min Typ Max
TFLARSTEXIT CC D Delay for flash memory module to exit
reset mode Code flash
memory 125
µs
Data flash
memory ——
TFLALPEXIT CC T Delay for flash memory module to exit
low-power mode Code flash
memory ——0.5
TFLAPDEXIT CC T Delay for flash memory module to exit
power-down mode Code flash
memory ——30
Data flash
memory ——
TFLALPENTRY CC T Delay for flash memory module to enter
low-power mode Code flash
memory ——0.5
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 63
4.11.2 Electromagnetic interference (EMI)
The product is monitored in terms of emission based on a typical application. This emission test conforms to the IEC61967-1
standard, which specifies the general conditions for EMI measurements.
4.11.3 Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the product is stressed in order to determine
its performance in terms of electrical sensitivity.
4.11.3.1 Electrostatic discharge (ESD)
Electrostatic discharges (a positive then a negative pulse separated by 1 second) are applied to the pins of each sample according
to each pin combination. The sample size depends on the number of supply pins in the device (3 parts
(n+1) supply pin). This
test conforms to the AEC-Q100-002/-003/-011 standard.
Table 31. EMI radiated emission measurement 1,2
1EMI testing and I/O port waveforms per IEC 61967-1, -2, -4.
2For information on conducted emission and susceptibility measurement (norm IEC 61967-4), please contact your
local marketing representative.
Symbol C Parameter Conditions Value Unit
Min Typ Max
SR Scan range 0.150 1000 MHz
fCPU SR Operating frequency 120 MHz
VDD_LV SR L V operating voltages 1.28 V
SEMI CC T Peak level VDD = 5V, T
A=2C,
LQFP176 package
Test conforming to IEC 61967-2,
fOSC = 40 MHz/fCPU = 120 MHz
No PLL frequency
modulation 18 dBµ
V
± 2% PLL frequency
modulation ——14
3
3All values need to be confirmed durin g device validation.
dBµ
V
Table 32. ESD absolute maximum ratings1,2
1All ESD testing is in conformity with CDF-AEC-Q100 Stress Test Qualification for Automotive Grade Integra ted
Circuits.
2A device will be defined as a failure if after exposure to ESD pulses the device no longer meets the device
specification requirements. Complete DC parametric and functional testing shall be performed per applicable
device specification at room temperature followed by hot temperature, unless specified otherwise in the device
specification.
Symbol Ratings Conditions Class Max value3
3Data based on characterization results, not tested in production.
Unit
VESD(HBM) Electrostatic discharge voltage
(Human Body Model) TA = 25 °C
conforming to AEC-Q100-002 H1C 2000 V
VESD(MM) Electrostatic discharge voltage
(Machin e Model) TA = 25 °C
conforming to AEC-Q100-003 M2 200
VESD(CDM) Electrostatic discharge voltage
(Charged Device Model) TA = 25 °C
conforming to AEC-Q100-011 C3A 500
750 (corners)
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale64
4.11.3.2 Static latch-up (LU)
Two complementary static tests are required on six parts to assess the latch-up performance:
A supply over-voltage is applied to each power supply pin.
A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with the EIA/JESD 78 IC latch-up standard.
4.12 Fast external crystal oscillator (4–40 MHz) electrical
characteristics
The device provides an oscillator/resonator driver. Figure 10 describes a simple model of the internal oscillator driver and
provides an example of a connection for an oscillator or a resonator.
Table 34 provides the parameter description of 4 MHz to 40 MHz crystals used for the design simulatio ns.
Figure 10. Crystal oscillator and resonator connection scheme
NOTE
XTAL/EXTA L must not be directly used to drive external circuits.
Table 33. Latch-up results
Symbol Parameter Conditions Class
LU Static latch-up class TA = 125 °C
conforming to JESD 78 II level A
C2
C1
Crystal
XTAL
EXTAL
Resonator
XTAL
EXTAL
DEVICE
DEVICE
DEVICE EXTAL
XTAL
I
R
VDD
R
D
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 65
Figure 11. Fast external crystal oscillator (4 to 40 MHz) electrical characteristics
Table 34. Crystal description
Nominal
frequency
(MHz)
NDK crystal
reference
Crystal
equivalent
series
resistance
ESR
Crystal
motional
capacitance
(Cm) fF
Crystal
motional
inductance
(Lm) mH
Load on
xtalin/xtalout
C1 = C2
(pF)1
1The values specified for C1 and C2 are the same as used in simulatio ns. It shou ld be ensured that the testing
includes all the parasitics (from the board, probe, crystal, etc.) as the AC / transient behavior depends upon them.
Shunt
capacitance
between
xtalout
and xtalin
C02 (pF)
2The value of C0 specified here includ es 2 p F additional capacitance for parasitics (to be seen with bond-pads,
package, etc.).
4 NX8045GB 300 2.68 591.0 21 2.93
8
NX5032GA
3002.46160.717 3.01
10 150 2.93 86.6 15 2.91
12 120 3.11 56.5 15 2.93
16 120 3.90 25.3 10 3.00
40 NX5032GA 50 6.18 2.56 8 3.49
Table 35. Fast external crysta l oscillator (4 to 40 MHz) electrical characteristics
Symbol C Parameter Conditions1Value2
Unit
Min Typ Max
fFXOSC SR Fast external crystal
oscillator frequency 4.0 40.0 MHz
gmFXOSC CC C Fast external crystal
oscillator
transconductance
VDD = 3.3 V ± 10% 43—20
3mA/V
VDD = 5.0 V ± 10% 43—20
3
VFXOSCOP
TMXOSCSU
VXTAL
VFXOSC
valid internal clock
90%
10%
1/fMXOSC
S_MTRANS bit (ME_GS register)
1
0
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale66
4.13 Slow external cryst al oscillator (32 kHz) electrical characteristics
The device provides a low power oscillator/resonator driver.
VFXOSC CC T Oscillation
amplitude at EXTAL fOSC = 40 MHz
For both VDD = 3.3 V ±
10%, VDD = 5.0 V ±
10%
—0.95 V
VFXOSCOP CC P Oscillation
operating point ——1.8 V
IFXOSC,4 CC T Fast external crystal
oscillator
consumption
VDD = 3.3 V ± 10%,
fOSC = 40 MHz —22.2
mA
VDD = 5.0 V ± 10%,
fOSC = 40 MHz —2.32.5
VDD = 3.3 V ± 10%,
fOSC = 16 MHz —1.31.5
VDD = 5.0 V ± 10%,
fOSC = 16 MHz —1.61.8
TFXOSCSU CC T Fast external crystal
oscillator start-up
time
fOSC = 40 MHz
For both VDD = 3.3 V ±
10%, VDD = 5.0 V ±
10%
—— 5ms
VIH SR P Input high level
CMOS
(Schmitt Trigger)
Oscillator bypass
mode 0.65VDD_HV_A —V
DD_HV_A +0.4 V
VIL SR P Input low level
CMOS
(Schmitt Trigger)
Oscillator bypass
mode 0.3 0.35VDD_HV_A V
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2All values need to be confirmed during device validation.
3Based on ATE Cz
4Stated values take into account only analog module consumpti on but not the digital contributor (clock tree and
enabled peripherals).
Table 35. Fast external crysta l oscillator (4 to 40 MHz) electrical characteristics
Symbol C Parameter Conditions1Value2
Unit
Min Typ Max
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 67
Figure 12. Crystal oscillator and resonator connection scheme
NOTE
OSC32K_XTAL/OSC32K_EXTAL must not be directly used to driv e external circuits.
l
Figure 13. Equivalent circuit of a quartz crystal
Table 36. Crystal motional characteristics1
Symbol Parameter Conditions Value Unit
Min Typ Max
LmMotional inductance 11 .796 KH
CmMotional capacitance 2 fF
C1/C2 Load capacitance at OSC32K_XTAL and
OSC32K_EXTAL with respect to ground2—1828pF
Rm3Motional resistance AC coupled @ C0 = 2.85 pF4——65k
AC coupled @ C0 = 4.9 pF(4) ——50
AC coupled @ C0 = 7.0 pF(4) ——35
AC coupled @ C0 = 9.0 pF(4) ——30
OSC32K_XTAL
OSC32K_EXTAL
DEVICE
C2
C1
Crystal
OSC32K_XTAL
OSC32K_EXTAL
R
P
Resonator
DEVICE
C0
C2C1 C2
Rm
C1
Lm
Cm
Crystal
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale68
Figure 14. Slow external crystal oscillator (32 kHz) electrical characteristics
1The crystal used is Epson Toyocom MC306.
2This is the recommended range of load capacitance at OSC32K_XTAL and OSC32K_EXTAL with respect to
ground. It includes all the parasitics due to board traces, crystal and package.
3Maximum ESR (Rm) of the crystal is 50 k
4C0 Includes a parasitic capacitance of 2.0 pF between OSC32K_XTAL and OSC32K _EXTAL pi ns.
Table 37. Slow external crystal oscillator (32 kHz) elec tric a l ch aract eris t ic s
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, T A = 40 to 125 °C, unless otherwise specified.
Value2
2All values need to be confirmed durin g device validation.
Unit
Min Typ Max
fSXOSC SR Slow external crystal oscillator
frequency 32 32.768 40 kHz
gmSXOSC CC Slow external crystal oscillator
transconductance VDD = 3.3 V ± 10%, 133
3Based on ATE CZ
—33
3µA/V
VDD = 5.0 V ± 10% 153—35
3
VSXOSC CC T Oscillation amplitude 1.2 1.4 1.7 V
ISXOSCBIAS CC T Oscillation bias current 1.2 4.4 µ A
ISXOSC CC T Slow external crystal oscillator
consumption ——7µA
TSXOSCSU CC T Slow external crystal oscillator
start-up time ——2
4
4S tart-up time has been measured with EPSON TOYOCOM MC306 crystal. V ariation may be seen with other crystal.
s
OSCON bit (OSC_CTL register)
TLPXOSC32KSU
1
VOSC32K_XTAL
VLPXOSC32K
valid internal clock
90%
10%
1/fLPXOSC32K
0
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 69
4.14 FMPLL electrical characteristics
The device provides a frequency-modulated phase-locked loop (FMPLL) module to generate a fast system clock from the main
oscillator driver.
4.15 Fast internal RC oscillator (16 MHz) electrical characteristics
The device provides a 16 MHz main internal RC oscillator. This is used as the default clock at the power-up of the device and
can also be used as input to PLL.
Table 38. FMPLL electrical charact eristics
Symbol C Parameter Conditions1
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise spe cified.
Value2
2All values need to be confirmed during device validation.
Unit
Min Typ Max
fPLLIN SR FMPLL reference clock3
3PLLIN clock retrieved directly from 4-40 MHz XOSC or 16 MIRC. Input characteristics are granted when oscillator
is used in functional mode. When bypass mode is used, oscillator input clock should verify fPLLIN and PLLIN.
—464MHz
PLLIN SR FMPLL reference clock duty
cycle(3) —4060%
fPLLOUT CC P F MPLL output clock
frequency —16120MHz
fCPU SR System clock frequency 120 + 2%4
4fCPU 120 + 2% MHz can be achieved at 125 °C.
MHz
fFREE CC P Free-running frequency 20 150 MHz
tLOCK CC P FMPLL lock time Stable oscillator (f PLLIN = 16
MHz) 40 100 µs
tLTJIT CC FMPLL long term jitter fPLLIN = 40 MHz (resonator),
fPLLCLK @ 120 MHz, 4000
cycles
—— 6
(for < 1ppm) ns
IPLL CC C FMPLL consumption TA = 25 °C 3 mA
Table 39. Fast internal RC oscillator (16 MHz) electrical characteristics
Symbol C Parameter Conditions1Value2
Unit
Min Typ Max
fFIRC CC P Fast internal RC oscillator high
frequency TA = 25 °C, trimmed 16 MHz
SR 12 20
IFIRCRUN3, CC T Fast internal RC oscillator high
frequency current in running
mode
TA = 25 °C, trimmed 200 µA
IFIRCPWD CC D Fast internal RC oscillator high
frequency current in power
down mode
TA = 25 °C 100 nA
DT
A = 55 °C 200 nA
DT
A = 125 °C 1 µA
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale70
4.16 Slow internal RC oscillator (128 kHz) electrical characteristics
The device provides a 128 kHz low power internal RC oscillator. This can be used as the reference clock for the RTC module.
IFIRCSTOP CC T Fast internal RC oscillator high
frequency and system clock
current in stop mode
TA = 25 °C sysclk = off 500 µA
sysclk = 2 MHz 600
sysclk = 4 MHz 700
sysclk = 8 MHz 900
sysclk = 16 MHz 1250
TFIRCSU CC C Fast internal RC oscillator
start-up time TA = 55 °C VDD = 5.0 V ± 10% 2.0 µs
—V
DD = 3.3 V ± 10% 5
—T
A = 125 °C VDD = 5.0 V ± 10% 2.0
—V
DD = 3.3 V ± 10% 5
FIRCPRE CC C Fast internal RC oscillator
precision after software
trimming of fFIRC
TA = 25 °C 1—+1%
FIRCTRIM CC C Fast internal RC oscillator
trimming step TA = 25 °C 1.6 %
FIRCVAR CC C Fast internal RC oscillator
variatio n over temperature and
supply with respect to fFIRC at
TA= 25 °C in high-frequency
configuration
5—+5%
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, T A = 40 to 125 °C, unless otherwise specified.
2All values need to be confirmed durin g device validation.
3This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is
ON.
Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics
Symbol C Parameter Conditions1Value2
Unit
Min Typ Max
fSIRC CC P Slow internal RC oscillator low
frequency TA = 25 °C, trimmed 128 kHz
SR untrimmed, across
temperatures 84 205
ISIRC3, CC C Slow internal RC oscillator low
frequency current TA = 25 °C, trimmed 5 µA
TSIRCSU CC P S low internal RC oscillator start-up
time TA = 25 °C, VDD = 5.0 V ± 10% 8 12 µs
Table 39. Fast internal RC oscillator (16 MHz) electrical characteristics
Symbol C Parameter Conditions1Value2
Unit
Min Typ Max
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 71
4.17 ADC electrical characteristics
4.17.1 Introduction
The device provides two Successive Approximation Register (SAR) analog-to-digital converters (10-bit and 12-bit).
NOTE
Due to ADC limitations, the two ADCs cannot sample a shared channel at the same time
i.e., their sampling windows cannot overlap if a shared channel is selected. If this is done,
neither of the ADCs can guarantee their conversion accuracies.
SIRCPRE CC C Slow internal RC oscillator precision
after software trimming of fSIRC
TA = 25 °C 2—+2%
SIRCTRIM CC C Slow internal RC oscillator trimming
step ——2.7
SIRCVAR CCCVariation in f
SIRC across
temperature and fluctuation in
supply voltage, post trimming
10 +10 %
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, T A = 40 to 125 °C, unless otherwise specified.
2All values need to be confirmed durin g device validation.
3This does not include consumption linked to clock tree toggling and peripherals consumption when RC oscillator is
ON.
Table 40. Slow internal RC oscillator (128 kHz) electrical characteristics (continued)
Symbol C Parameter Conditions1Value2
Unit
Min Typ Max
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale72
Figure 15. ADC_0 characteristic and error definitions
4.17.1.1 Input impedance and ADC accuracy
T o preserve the accuracy of the A/D converter, it is necessary that analog input pins have low AC impedance. Placing a capacitor
with good high frequency characteristics at the input pin of the device, can be effective: the capacitor shoul d be as large as
possible, ideally infinite. This capacitor contributes to attenuating the noise present on the input pin; furthermore, it sources
charge during the sampling phase, when the analog signal source is a high-impedance source. A real filter, can typically be
obtained by using a series resistance with a capacitor on the in put pin (simple RC Filter). The RC filtering may be limited
according to the value of source impedance of the transducer or circuit supplying the analog signal to be measured. The filter
at the input pins must be designed taking into account the dynamic characteristics of the input signal (bandwidth) and the
equivalent input impedance of the ADC itself.
In fact a current sink contributor is represented by the char ge sharing ef fects with the sampling capacitance: being CS and Cp2
substantially two switched capacitances, with a frequency equal to the conversion rate of the ADC, it can be seen as a resistive
(2)
(1)
(3)
(4)
(5)
Offset Error OSE
Offs et Error OSE
Gain Error GE
1 LSB (ideal)
Vin(A) (LSBideal)
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Differ ential non-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfer curve
code out
1023
1022
1021
1020
1019
1018
5
4
3
2
1
0
7
6
1 2 3 4 5 6 7 1017 1018 1019 1020 1021 1022 1023
1 LSB ideal = VDD_ADC / 1024
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 73
path to ground. For instance, assuming a conversion rate of 1MHz, with CS+Cp2 equal to 3pF , a resistance of 330K is obtained
(Reqiv = 1 / (fc*(CS+Cp2)), where fc represents the conversion rate at the considered channel). To minimize the error induced
by the voltage partitioning between this resistance (sampled voltage on CS+Cp2) and the sum of RS + RF, the external circuit
must be designed to respect the following relation
Eqn. 4
The formula above provides a constraint for external network design, in particular on resist ive path.
Figure 16. Input equivalent circuit
A second aspect involving the capacitance network shall be considered. Assuming the three capacitances CF, CP1 and CP2
initially charged at the source voltage VA (refer to the equivalent circuit reported in Figure 16): when the sampling phase is
started (A/D switch close), a charge sharing phenomena is installed.
Figure 17. Transient behavior during sampling phase
R
F
C
F
R
S
R
L
R
SW
C
P2
C
S
V
DD
Sampling
Source Filter Current Limiter
EXTERNAL CIRCUIT INTERNAL CIRCUIT SCHEME
RS Source Impedance
RF Filter Resistance
CF Filter Capacitance
RL Current Limite r Resistance
RSW Channel Selection Switch Impedance
RAD Sampling Switch Impedance
CP Pin Capacitance (two contribut ions, CP1 and CP2)
CS Sampling Capacitance
C
P1
R
AD
Channel
Selection
V
A
VA
VA1
VA2
t
TS
VCS Voltage Transient on CS
V <0.5 LSB
12
1 < (RSW + RAD) CS << TS
2
= R
L
(C
S
+ C
P1
+ C
P2
)
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale74
In particular two different transient periods can be distinguished:
A first and quick char ge transfer from the internal capacitance CP1 and CP2 to the sampling capacitance CS occurs (CS
is supposed initially completely discharged):considering a worst case (since the time constant in reality would be
faster) in which CP2 is reported in parallel to CP1 (call CP = CP1 + CP2), the two capacitances CP and CS are in series,
and the time constant is
Eqn. 5
This relation can again be simplified considering CS as an additional worst condition. In reality, transient is faster , but the A/D
converter circuitry has been designed to be robust also in very worst case : the sampling time T s is always much longer than the
internal time co nst a n t .
Eqn. 6
The charge of CP1 and CP2 is redistributed on CS,determining a new value of the voltage VA1 on the capacitance according to
the following equation
Eqn. 7
A second charge transfer involves also CF (that is typically bigger than the on-chip capacitance) through the resistance
RL: again considering the worst case in which CP2 and CS were in parallel to CP1 (since the time constant in reality
would be faster), the time constant is:
Eqn. 8
In this case, the time constant depends on the external circuit: in particular imposing that the transient is completed well before
the end of sampling time TS, a constraints on RL sizing is obtained:
Eqn. 9
Of course, RL shall be sized also according to the current limitation constraints, in combination with RS (sourc e imp edance)
and RF (filter resistance). Being CF definitively bigger than CP1, CP2 and CS, then the final voltage VA2 (at the end of the char ge
transfer transient) will be much higher than VA1. The following equation must be respected (charge balance assuming now CS
already charged at VA1):
Eqn. 10
The two transients above are not influenced by the voltage source that, due to the presence of the RFCF filter, is not able to
provide the extra charge to compensate the voltage drop on CS with respect to the ideal source VA; the time constant RFCF of
the filter is very high with respect to the sampling time (TS). The filter is typically designed to act as anti-aliasing
1RSW RAD
+=CPCS
CPCS
+
---------------------
1RSW RAD
+CSTS
«
VA1 CSCP1 CP2
++VACP1 CP2
+=
2RL
CSCP1 CP2
++
8.5 2
8.5 RLCSCP1 CP2
++=T
S
VA2 CSCP1 CP2 CF
+++VACF
VA1
+C
P1 CP2
+C
S
+=
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 75
Figure 18. Spectral representation of input signal
Calling f0 the bandwidth of the source signal (and as a consequence the cut-off frequency of the anti-aliasing filter, fF),
according to the Nyquist theorem the conversion rate fC must be at least 2f0; it means that the constant time of the filter is greater
than or at least equal to twice the conversion period (TC). Again the conversion period TC is longer than the sampling time TS,
which is just a portion of it, even when fixed channel continuous conversion mode is sel ected (fastest conversion rate at a
specific channel): in conclusion it is evident that the time constant of the filter RFCF is definitively much higher than the
sampling time TS, so the charge level on CS cannot be modified by the analog signal source during the time in which the
sampling switch is closed.
The considerations above lead to impose new constraints on the external circuit, to reduce the accuracy error due to the voltage
drop on CS; from the two charge balance equations above, it is simple to derive Equation 11 between the ideal and real sampled
voltage on CS:
Eqn. 11
From this formula, in the worst case (when VA is maximum, that is for instance 5 V), assuming to accept a maximum error of
half a count, a constraint is evident on CF value:
ADC_0 (10-bit) Eqn. 12
ADC_1 (12-bit) Eqn. 13
f0f
Analog Source Bandwidth (VA)
f0f
Sampled Signal Spectrum (fC = conversion Rate )
fC
f
Anti-Aliasing Filter (fF = RC Filter pole)
fF
2 f0 fC (Nyquist)
fF f0 (Anti-aliasing Filtering Condition)
TC 2 RFCF (Conversion Rate vs. Filter Pole )
Noise
VA
VA2
------------CP1 CP2
+C
FCS
++
CP1 CP2
+C
F
+
--------------------------------------------------------=
CF2048 CS
CF8192 CS
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale76
4.17.1.2 ADC electrical characteristics
Table 41. ADC input leakage current
Symbol C Parameter Conditions Value Unit
Min Typ Max
ILKG CC C Input leakage current TA=40 °C No current injection on adjacent pin 1 nA
CT
A=25 °C 1
CT
A= 105 °C 8 200
PT
A= 125 °C 45 400
Table 42. ADC conversion characteristics (10-bit ADC_0)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
VSS_ADC0 SR Voltage on
VSS_HV_ADC0
(ADC_0 reference)
pin with respect to
ground (VSS_HV)2
0.1 0.1 V
VDD_ADC0 SR Voltage on
VDD_HV_ADC0 pin
(ADC_0 reference)
with respect to
ground (VSS_HV)
—V
DD_HV_A 0.1 VDD_HV_A +0.1 V
VAINx SR Analog input voltage3—V
SS_ADC0 0.1 VDD_ADC0 +0.1 V
fADC0 SR ADC_0 analog
frequency 6—32 + 2% MHz
tADC0_PU SR ADC_0 power up
delay 1.5 µs
tADC0_S CC T Sample time4fADC = 32 MHz 500 ns
tADC0_C CC P Conversion time5,6 fADC = 32 MHz 0.625 µs
fADC = 30 MHz 0.700
CSCC DADC_0 input
sampling capacitance ——3pF
CP1 CC DADC_0 input pin
capacitance 1 ——3pF
CP2 CC DADC_0 input pin
capacitance 2 ——1pF
CP3 CC DADC_0 input pin
capacitance 3 ——1pF
RSW1 CC DInternal resistance of
analog source ——3 k
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 77
RSW2 CC DInternal resistance of
analog source 2 k
RAD CC DInternal resistance of
analog source ——2 k
IINJ SR Input current Injection Current
injection on
one ADC_0
input, different
from the
converted one
VDD =
3.3 V ± 10% 5— 5mA
VDD =
5.0 V ± 10% 5 5
| INL | CC TAbsolute value for
integral non-linearity No overload 0.5 1.5 LSB
| DNL | CC TAbsolute differential
non-linearity No overload 0.5 1.0 LSB
| OFS | CC TAbsolute offset error 0.5 LSB
| GNE | CC TAbsolute gain error ——0.6 LSB
TUEP CC PTotal unadjusted
error7 for precise
channels, input only
pins
Without current injection 20.6 2LSB
TWith current injection 3 3
TUEX CC TTotal unadjusted
error(7) for extended
channel
Without current injection 3 1 3 LSB
TWith current injection 4 4
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2Analog and digital VSS_HV must be common (to be tied together externally).
3VAINx may exceed VSS_ADC0 and VDD_ADC0 limits, remaining on absolute maximum ratings, but the results of the
conversion will be clamped respectively to 0x000 or 0x3FF.
4During the sample time the input capacitance CS can be charged/discharged by the external source. The internal
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC0_S. After t he
end of the sample time tADC0_S, changes of the analog input voltage have no effect on the conversion result. V alues
for the sample clock tADC0_S depend on programming.
5This parameter does not include the sample time tADC0_S, but only the time for determining the digital result and
the time to load the result's register with the conversion result
6Refer to ADC conversion table for detailed calculations.
7Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a
combination of Offset, Gain and Integral Linearity errors.
Table 42. ADC conversion characteristics (10-bit ADC_0) (continued)
Symbol C Parameter Conditions1Value Unit
Min Typ Max
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale78
Figure 19. ADC_1 characteristic and error definitions
Table 43. Conversion characteristics (12-bit ADC_1)
Symbol Parameter Conditions1Value Unit
Min Typ Max
VSS_ADC1 SR Voltage on
VSS_HV_ADC1
(ADC_1 reference)
pin with respect to
ground (VSS_HV)2
0.1 0.1 V
(2)
(1)
(3)
(4)
(5)
Offset Error OSE
Offset Error OSE
Gain Error GE
1 LSB (ideal)
Vin(A) (LSBideal)
(1) Example of an actual transfer curve
(2) The ideal transfer curve
(3) Different ial non-linearity error (DNL)
(4) Integral non-linearity error (INL)
(5) Center of a step of the actual transfe r curve
code out
4095
4094
4093
4092
4091
4090
5
4
3
2
1
0
7
6
1 2 3 4 5 6 7 4090 4091 4092 4093 4094 4095
1 LSB ideal = AVDD / 4096
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 79
VDD_ADC13SR Voltage on
VDD_HV_ADC1
pin (ADC_1
reference) with
respect to ground
(VSS_HV)
—V
DD_HV_A 0.1 VDD_HV_A +0.1 V
VAINx3,4 SR Analog input
voltage5—V
SS_ADC1 0.1 VDD_ADC1 +0.1 V
fADC1 SR ADC_1 analog
frequency 8 + 2% 32 + 2% MHz
tADC1_PU SR ADC_1 power up
delay 1.5 µs
tADC1_S CC Sample time6
VDD=5.0 V 440 ns
Sample time(6)
VDD=3.3 V —530
tADC1_C CC Conversion time7, 8
VDD=5.0 V fADC1 = 32 MHz 2
µs
Conversion time(7),
(6)
VDD =5.0 V
fADC 1= 30 MHz 2.1
Conversion time(7),
(6)
VDD=3.3 V
fADC 1= 20 MHz 3
Conversion time(7),
(6)
VDD =3.3 V
fADC1 = 15 MHz 3.01
CSCC ADC_1 input
sampling
capacitance
—5pF
CP1 CC ADC_1 input pin
capacitance 1 —3pF
CP2 CC ADC_1 input pin
capacitance 2 —1pF
CP3 CC ADC_1 input pin
capacitance 3 —1.5pF
RSW1 CC Internal resistance
of analog source —1k
RSW2 CC Internal resistance
of analog source —2k
RAD CC Internal resistance
of analog source —0.3k
Table 43. Conversion cha r acteristics (12-bit ADC_1) (continued)
Symbol Parameter Conditions1Value Unit
Min Typ Max
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale80
IINJ SR Input current
Injection Current
injection
on one
ADC_1
input,
different
from the
converted
one
VDD = 3.3
V ± 10% 5 5 mA
VDD = 5.0
V ± 10% 5 5
INLP CC Absolute Integral
non-linearity-Precis
e channels
No overload 1 3 LSB
INLS CC Absolute Integral
non-linearity-
Standard channels
No overload 1.5 5 LSB
DNL CC Absolute
Differential
non-linearity
No overload 0.5 1 LSB
OFS CC Absolute Offset
error —2LSB
GNE CC Absolute Gain error —2LSB
TUEP9CC Total Unadjusted
Error for precise
channels, input
only pins
Without current
injection 6 6 LSB
With current injection 8 8 LSB
TUES(9) CC Total Unadjusted
Error for standard
channel Without current
injection 10 10 LSB
With current injection 12 12 LSB
1VDD = 3.3 V ± 10% / 5.0 V ± 10%, TA = 40 to 125 °C, unless otherwise specified.
2Analog and digital VSS_HV must be common (to be tied together externally).
3PA 3, PA 7, PA10, PA 11 an d PE12 ADC_1 channels are coming from VDD_HV_B domain hence VDD_HV_ADC1
should be within ±100 mV of VDD_HV_B when these channels are used for ADC_1.
4VDD_HV_ADC1 can operate at 5V condition while VDD_HV_B can operate at 3.3V provided that ADC_1 channels
coming from VDD_HV_B domain are limi te d in max swin g a s VDD_HV_B.
5VAINx may exceed VSS_ADC1 and VDD_ADC1 limits, remaining on absolute maximum ratings, but the results of the
conversion will be clamped respectively to 0x000 or 0xFFF.
6During the sample time the input capacitance CS can be charged/discharged by the external source. The internal
resistance of the analog source must allow the capacitance to reach its final voltage level within tADC1_S. After the
end of the sample time tADC1_S, changes of the analog input voltage have no effect on the conversion result. V alues
for the sample clock tADC1_S depend on programming.
7Conversion time = Bit evaluation time + Sampling time + 1 Clock cycle delay.
8Refer to ADC conversion table for detailed calculations.
Table 43. Conversion cha r acteristics (12-bit ADC_1) (continued)
Symbol Parameter Conditions1Value Unit
Min Typ Max
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 81
4.18 Fast Ethernet Controller
MII signals use CMOS signal levels compatible with devices operating at 3.3 V. Signals are not TTL compatible. They follow
the CMOS electrical characteristics.
4.18.1 MII Receive Signal Timing (RXD[3:0], RX_DV, RX_ER, and RX_CLK)
The receiver functions correctly up to a RX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency
requirement. In addition, the system clock frequency must exceed four times the RX_CLK frequency in 2:1 mode and two times
the RX_CLK frequency in 1:1 mode.
Figure 20. MII receive si gna l timing diagram
4.18.2 MII Transmit Signal Timing (TXD[3:0], TX_EN, TX_ER, TX_CLK)
The transmitter functions correctly up to a TX_CLK maximum frequency of 25 MHz +1%. There is no minimum frequency
requirement. In addition, the system clock frequency must exceed four times the TX_CLK frequency in 2:1 mode and two times
the TX_CLK frequency in 1:1 mode.
The transmit outputs (TXD[3:0], TX_EN, TX_ER) can be programmed to transition from either the ri sing or falling edge of
TX_CLK, and the timing is the same in either case. This options allo ws the use of non-compliant MII PHYs.
Refer to the Fast Ethernet Controller (FEC) chapter of the MPC5646C Reference Manual for details of this option and how to
enable it.
9Total Unadjusted Error: The maximum error that occurs without adjusting Offset and Gain errors. This error is a
combination of Offset, Gain and Integral Linearity errors.
Table 44. MII Receive Signal Timing
Spec Characteristic Min Max Unit
M1 RXD[3:0], RX_DV,
RX_ER to RX_CLK
setup
5—ns
M2 RX_CLK to
RXD[3:0], RX_DV,
RX_ER hold
5—ns
M3 RX_CLK pulse width
high 35% 65% RX_CLK period
M4 RX_CLK pulse width
low 35% 65% RX_CLK period
M1 M2
RX_CLK (input)
RXD[3:0] (inputs)
RX_DV
RX_ER
M3
M4
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale82
Figure 21. MII transmit signal timing diagram
4.18.3 MII Async Inputs Signal Timing (CRS and COL)
Figure 22. MII async inputs timing diagram
4.18.4 MII Serial Management Channel Timing (MDIO and MDC)
The FEC functions correctly with a maximum MDC frequen cy of 2.5 MHz.
Table 45. MII transmit signal timing1
1Output pads configured with SRE = 0b11.
Spec Characteristic Min Max Unit
M5 TX_CLK to TXD[3:0],
TX_EN, TX_ER
invalid
5—ns
M6 TX_CLK to TXD[3:0],
TX_EN, TX_ER valid —25ns
M7 TX_CLK pulse width
high 35% 65% TX_CLK period
M8 TX_CLK pulse width
low 35% 65% TX_CLK period
Table 46. MII Async Inputs Signal Timing1
1Output pads configured with SRE = 0b11.
Spec Characteristic Min Max Unit
M9 CRS, COL minimum
pulse width 1.5 TX_CLK period
M6
TX_CLK (input)
TXD[3:0] (outputs)
TX_EN
TX_ER
M5
M7
M8
CRS, COL
M9
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 83
Figure 23. MII serial management channel timing diagr am
Table 47. MII serial management channel timing1
1Output pads configured with SRE = 0b11.
Spec Characteristic Min Max Unit
M10 MDC falling edge to
MDIO output invalid
(minimum
propagation delay)
0—ns
M11 MDC falling edge to
MDIO output valid
(max prop delay)
—25ns
M12 MDIO (input) to MDC
rising edge setup 28 ns
M13 MDIO (input) to MDC
rising edge hold 0—ns
M14 MDC pulse width
high 40% 60% MDC period
M15 MDC pulse width low 40% 60% MDC period
M11
MDC (output)
MDIO (output)
M12 M13
MDIO (input)
M10
M14 M15
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale84
4.19 On-chip peripherals
4.19.1 Current consumption
Table 48. On-chip peripherals current consumption1
Symbol C Parameter Conditions Value2
Unit
Typ
IDD_HV_A(CAN) CC D CAN
(FlexCAN)
supply current
on VDD_HV_A
500
Kbps Total (static +
dynamic)
consumption:
FlexCAN in loop-back
mode
XTAL@8 MHz used
as CAN engine clock
source
Message sending
period is 580 µs
7.652
fperiph + 84.73 µA
125
Kbps 8.0743
fperiph + 26.757
IDD_HV_A(eMIOS) CC D eMIOS supply
current on
VDD_HV_A
Static consumption:
eMIOS channel OFF
Global prescaler enabled
28.7
fperiph
Dynamic consumption:
It does not change varying the
frequency (0.003 mA)
3
IDD_HV_A(SCI) CC D SCI (LINFlex)
supply current
on VDD_HV_A
Tota l (static + dynamic)
consumption:
LIN mode
Baudrate: 20 Kbps
4.7804
fperiph + 30.946
IDD_HV_A(SPI) CC D SPI (DSPI)
supply current
on VDD_HV_A
Ballast static consumption (only
clocked) 1
Ballast dynamic consumption
(continuous communication):
Baudrate: 2 Mbit
Transmission every 8 µs
Frame: 16 bits
16.3
fperiph
IDD_HV_A(ADC) CC D ADC supply
current on
VDD_HV_A
VDD =
5.5 V Ballast static
consumption (no
conversion)
0.0409
fperiph mA
VDD =
5.5 V Ballast dynamic
consumption
(continuous
conversion)
0.0049
fperiph
IDD_HV_ADC0 CC D ADC_0 supply
current on
VDD_HV_ADC0
VDD =
5.5 V Analog static
consumption (no
conversion)
—µA
Analog dynamic
consumption
(continuous
conversion)
—mA
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 85
IDD_HV_ADC1 CC D ADC_1 supply
current on
VDD_HV_ADC1
VDD =
5.5 V Analog static
consumption (no
conversion)
300
fperiph µA
VDD =
5.5 V Analog dynamic
consumption
(continuous
conversion)
6mA
IDD_HV(FLASH) CC D CFlash +
DFlash supply
current on
VDD_HV_ADC
VDD =
5.5 V 13.25 mA
IDD_HV(PLL) CC D PLL supply
current on
VDD_HV
VDD =
5.5 V 0.0031
fperiph
1Operating conditions: TA = 25 °C, fperiph = 8 MHz to 120 MHz.
2fperiph is in absolute value.
Table 48. On-chip peripherals current consumption1
Symbol C Parameter Conditions Value2
Unit
Typ
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale86
4.19.2 DSPI characteristics
Table 49. DSPI timing
Spec Characteristic Symbol Unit
Min Max
1 DSPI Cycle Time tSCK Refer
note1—ns
Internal delay between pad associated to SCK and pad
associated to CSn in master mode for CSn1->0 tCSC —115ns
Internal delay between pad associated to SCK and pad
associated to CSn in master mode for CSn1->1 tASC 15 ns
2 CS to SCK Delay2tCSC 7—ns
3 After SCK Delay3tASC 15 ns
4 SCK Duty Cycle tSDC 0.4 tSCK 0.6 tSCK ns
Slave Setup Time
(SS active to SCK setup time) tSUSS 5—ns
Slave Hold Time
(SS active to SCK hold time) tHSS 10 ns
5 Slave Access Time
(SS active to SOUT valid)4tA42 ns
6 Slave SOUT Disable Time
(SS inactive to SOUT High-Z or invalid) tDIS 25 ns
7 CSx to PCSS time tPCSC 0—ns
8PCSS
to PCSx time tPASC 0—ns
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 87
9 Data Setup Time for Inputs
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)5
Master (MTFE = 1, CPHA = 1)
tSUI 36
5
36
36
ns
ns
ns
ns
10 Data Hold Time for Inputs
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)5
Master (MTFE = 1, CPHA = 1)
tHI 0
4
0
0
ns
ns
ns
ns
11 Data Valid (after SCK edge)
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)
Master (MTFE = 1, CPHA = 1)
tSUO
12
37
12
12
ns
ns
ns
ns
12 Data Hold Time for Outputs
Master (MTFE = 0)
Slave
Master (MTFE = 1, CPHA = 0)
Master (MTFE = 1, CPHA = 1)
tHO 06
9.5
07
08
ns
ns
ns
ns
1This value of this parameter is dependent upon the external device delays and the other parameters mentioned in
this table.
2The maximum value is programmable in DSPI_CT ARn [PSSCK] and DSPI_CT ARn [CSSCK]. For MPC5646C, the
spec value of tCSC will be attained only if TDSPI x PSSCKx CSSCK > tCSC.
3The maximum value is programmable in DSPI_CT ARn [P ASC] and DSPI_CT ARn [ASC]. For MPC5646C, the spec
value of tASC will be attained only if TDSPI x PASC x ASC > tASC.
4The parameter value is obtained from tSUSS and tSUO for slave.
5This number is calculated assuming the SMPL_PT bitfield in DSPI_MCR is set to 0b00.
6For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 0) is 2 ns.
7For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 1, CPHA = 0) is 2 n.
8For DSPI1, the Data Hold Time for Outputs in Master (MTFE = 1, CPHA = 1) is 2 ns.
Ta bl e 49. DSPI timing (con t in u ed )
Spec Characteristic Symbol Unit
Min Max
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale88
Figure 24. DSPI classic SPI timing–master, CPHA = 0
Figure 25. DSPI classic SPI timing–master, CPHA = 1
Data Last Data
First Data
First Data Data Last Data
SIN
SOUT
CSx
SCK Output 4
9
12
1
11
10
4
SCK Output
(CPOL = 0)
(CPOL = 1)
3
2
Note: Numbers shown reference Table 49.
Data Last Data
First Data
SIN
SOUT
12 11
10
Last Data
Data
First Data
SCK Output
SCK Output
CSx
9
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 49.
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 89
Figure 26. DSPI classic SPI timing–slave, CPHA = 0
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
12
SCK Input
First Data Last Data
SCK Input
2
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 49.
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale90
Figure 27. DSPI classic SPI timing–slave, CPHA = 1
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 49.
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 91
Figure 28. DSPI modified transfer format timing–master, CPHA = 0
CSx 3
1
4
10
4
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
2
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 49.
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale92
Figure 29. DSPI modified transfer format timing–master, CPHA = 1
CSx
10
9
12 11
SCK Output
SCK Output
SIN
SOUT
First Data Data Last Data
First Data Data Last Data
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown reference Table 49.
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 93
Figure 30. DSPI modified transfer format timing–slave, CPHA = 0
Figure 31. DSPI modified transfer format timing–slave, CPHA = 1
Last Data
First Data
3
4
1
Data
Data
SIN
SOUT
SS
4
5 6
9
11
10
SCK Input
First Data Last Data
SCK Input
2
(CPOL = 0)
(CPOL = 1)
12
Note: Numbers shown reference Table 49.
5 6
9
12
11
10
Last Data
Last Data
SIN
SOUT
SS
First Data
First Data
Data
Data
SCK Input
SCK Input
(CPOL = 0)
(CPOL = 1)
Note: Numbers shown refer ence Table 49.
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale94
Figure 32. DSPI PCS strobe (PCSS) timing
4.19.3 Nexus characteristics
Table 50. Nexus debug port timing1
1JTAG specification s in this table apply when used for debug functiona lity. All Nexus timing relative to MCKO is
measured from 50% of MCKO and 50% of the respective signal. Nexus timing specified at VDDE =4.0–5.5V,
TA=T
L to TH, and CL= 30 pF with SRC = 0b11.
Spec Characteristic Symbol Min Max Unit
1 MCKO Cycle
Time2
2MCKO can run up to 1/2 of full system frequency. It can also run at system frequency when it is <60 MHz.
tMCYC 16.3 ns
2 MCKO Duty Cycle tMDC 40 60 %
3 MCKO Low to
MDO, MSEO,
EVTO Data Valid3
3MDO, MSEO, and EVTO data is held valid until next MCKO low cycle.
tMDOV –0.1 0.25 tMCYC
4 EVTI Pulse Width tEVTIPW 4.0 tTCYC
5 EVTO Pulse
Width tEVTOPW 1t
MCYC
6 TCK Cycle Time4
4The system clock frequency needs to be three times faster than the TCK frequency.
tTCYC 40 ns
7 TCK Duty Cycle tTDC 40 60 %
8TDI, TMS Data
Setup Time tNTDIS, tNTMSS 8—ns
9TDI, TMS Data
Hold Time tNTDIH, tNTMSH 5—ns
10 TCK Low to TDO
Data Valid tJOV 025ns
CSx
78
PCSS
Note: Numbers shown refer ence Table 49.
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 95
Figure 33. Nexus output timing
1
2
MCKO
MDO
MSEO
EVTO Ou tp ut Data Valid
3
EVTI 4
5
MPC5646C Microcontroller DataSheet, Rev. 5.1
Electrical Characteristics
Freescale96
Figure 34. Nexus TDI, TMS, TDO timing
4.19.4 JTAG characteristics
Table 51. JTAG characteristics
No. Symbol C Parameter Value Unit
Min Typ Max
1t
JCYC CC D TCK cycle time 64 ns
2t
TDIS CC D TDI setup time 10 ns
3t
TDIH CC D TDI hold time 5 ns
4t
TMSS CC D TMS setup time 10 ns
5t
TMSH CC D TMS hold time 5 ns
TDO
8
9
TMS, TDI
10
TCK
6
7
Electrical Characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 97
Figure 35. Timing diagram - JTAG boundary scan
6t
TDOV CC D TCK low to TDO valid 33 ns
7t
TDOI CC D TCK low to TDO invalid 6 ns
—t
TDC CC D TCK Duty Cycle 40 60 %
—t
TCKRISE CC D TCK Rise and Fall Times 3 ns
Table 51. JTAG characteristics (continued)
No. Symbol C Parameter Value Unit
Min Typ Max
INPUT DATA VALID
OUTPUT DATA VALID
DATA INPUTS
DATA OUTPUTS
DATA OUTPUTS
TCK
Note: Numbers shown reference Table 51.
3/5
2/4
7
6
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package characteristics
Freescale98
5 Package characteristics
5.1 Package mechanical data
5.1.1 176 LQFP package mechanical drawing
Package characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 99
Figure 36. 176 LQFP mechanical drawing (Part 1 of 3)
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package characteristics
Freescale100
Figure 37. 176 LQFP mechanical drawing (Part 2 of 3)
Package characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 101
Figure 38. 176 LQFP mechanical drawing (Part 3 of 3)
5.1.2 208 LQFP package mechanical drawing
E
E
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package characteristics
Freescale102
Figure 39. 208 LQFP mechanical drawing (Part 1 of 3)
Package characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 103
Figure 40. 208 LQFP mechanical drawing (Part 2 of 3)
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package characteristics
Freescale104
Figure 41. 208 LQFP mechanical drawing (Part 3 of 3)
Package characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 105
MPC5646C Microcontroller DataSheet, Rev. 5.1
Package characteristics
Freescale106
5.1.3 256 MAPBGA package mechanical drawing
Figure 42. 256 MAPBGA mechanical drawing (Part 1 of 2)
Package characteristics
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 107
Figure 43. 256 MAPBGA mechanical drawing (Part 2 of 2)
MPC5646C Microcontroller DataSheet, Rev. 5.1
Ordering information
Freescale108
6 Ordering information
Figure 44. Commercial product code structure
Qualification Status
Power Architecture
Automotive Platform
Core Version
Flash Size (core dependent)
Product
Optional fields
MPC56 CF0 LL
Example code: 46
Temperature spec.
Package Code
Qualifica tion Status
M = MC status
S = Auto qualified
P = PC status
PC = Power Architecture
Automotive Platform
56 = Power Architecture in 90 nm
Core Version
4 = e200z4d core ver sion (highest core version in the case
of multiple cores)
Flash Memory Size
4 = 1.5 MB
5 = 2 MB
6 = 3 MB
Product Version
B = Body
C = Gateway
Optional fields
C = CSE module available
Blank = none of these options available
Fab and mask version indicator
F = ATMC
0 = First version of the mask
Temperature spec.
C = –40 °C to 85 °C
V = –40 °C to 105 °C
M = –40 °C to 125 °C
R = Tape & Reel (blank if Tray)
R
Package Code
LU = 176 LQFP
LT = 208 LQFP
MJ = 256 MAPBGA
CPU Frequency
1 = e200z4d operates u p to 120 MHz
8 = e200z4d operates up to 80 MHz
Shipping Method
R = Tape and reel
Blank = Tray
1
CPU Frequency
Fab and mask indicator
M
B
Revision history
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 109
7 Revision history
Table 52 summarizes revisions to this document.
Table 52. Revision history
Revision Date Changes
1 15 April 2010 Initial Release
2 17 Aug 2010 Editing and formatting upda tes throughout the document.
Upd ated Voltage regulator capacitance connection figure.
Adde d a new sub-section “VDD_BV Options”
Program and erase specifications:
-Updated Tdwprogram TYP to 22 us
-Updated T128Kpperase Max to 5000 ms
-Added tESUS para meter
Adde d 208 MAPBGA thermal characteristics
Added recommendation in the Voltage regulator electrical characteristics section.
Added Crystal description table in Fast external crystal oscillator (4 to 140 MHz)
electrical characteristics section and corrected the cross-reference to the same.
Adde d new sections - Pad types, System pins and functional ports
Updated TYP numbers in the Flash program and erase specifications table
Adde d a new table: Program and erase specifications (Data Flash)
Flash read access timing table: Added Data flash memory numbers
Flash power supply DC electrical characteristics table: Updated IDFREAD and
IDFMOD values for Data flash, Removed IDFLPW parameter
Updated feature list.
Bole r o 3M family comparison table: Updated ADC channels and added ADC
footnotes.
Bolero 3M block diagram: Upd ated ADC channels and added legends.
Bolero 3M series block summary: Added new blocks.
Functional Port Pin Descriptions table: Added OSC32k_XTAL and
OSC32k_EXTAL function at PB8 and PB9 port pins.
Electrical Characteristics: Replaced VSS with VSS_HV throughout the section.
Absolute maximum ratings, Recommen ded operating conditions (3.3 V) and
Recommended operating conditions (5.0 V) tables: VRC_CTRL min is updated to
"0".
Recommen ded operating conditions (3.3 V) and Recommended operatin g
conditions (5.0 V) tables: Clarified VIN parameter, clarified footnote 2 in both
tables.
LQFP thermal characteristics section: Updated numbers for LQFP packages.
Low voltage power domain el ectrical characteristics table: Cla ri fi ed fo otnotes
based upon review comments.
Code flash memory—Program and erase specifications: Updated tESRT to 20 ms.
ADC electrical characteristics section: Replace ADC0 with ADC_0 and ADC1 with
ADC_1 throughout the document.
DSPI characteristics section: Replaced PCSx with CSx in all figures and tables.
MPC5646C Microcontroller DataSheet, Rev. 5.1
Revision history
Freescale110
3 28 April 2011 Replaced VIL min from –0.4 V to –0.3 V in the following tables:
- I/O input DC electrical characteristics
- Reset electrical characteristics
- Fast external crystal oscillator (4 to 40 MHz) electrical characteristics
Upd ated Crystal oscillator an d resonator connection scheme figure
Specified NPN transistor as the recommended BCP68 transistor throughout the
document
Code and Data flash memory—Program and erase specifications tables:
Renamed the parameter tESUS to Teslat
Revised the footnotes in the “Functional port pin descriptions” table.
In the “System pin descriptions” table, added a footnote to the A pads regarding
not using IBE.
For ports PB[12–15], changed ANX to ADC0_X.
Revi sed the presentation of the ADC functions on the following ports:
PB[4–7]
PD[0–11]
ADC conversio n characteristics (10-bit ADC_0) table and Conversion
characteristics (12-bit ADC_1) table- Updated footnote 5 and 7 respectively for the
definition of the conversion time.
Data flash memory—Program and erase specifications: Updated T wprogram to 500
µs and T16Kpperase to 500 µs. Corrected Teslat classification from “C” to “D”.
Cod e flash memory—Program and erase spe ci fications: Corrected Teslat
classification from “C” to “D”.
Flash Start-up time/Switch-off time: Changed TFLARSTEXIT classification from “C”
to “D”.
Functional port pin descrip tion: Added a footnote at the PB [9] port pin.
Absolute maximum ratings table: Added footnote 1.
Low voltage power domain electrical characteristics table: Updated IDDHALT,
IDDSTOP, IDDSTBY3, IDDSTDBY2, IDDSTDBY1.
Slow external crystal oscillator (32 kHz) electrical characteristics table: Updated
gmSXOSC, VSXOSC, ISXOSCBIAS and ISXOSC.
FMPLL electrical characteristics table: Updated tLTJIT.
Fast internal RC oscillator (16 MHz) electrical characteristics table: Updated
TFIRCSU and IFIRCPWD.
MII serial management channel timing table: Updated M12
JTAG characteristics table: Updated tTDOV.
Low voltage monitor electrica l characteristics table: Updated VLVDHV3H,
VLVDHV3L, VLVDHV5H, VLVDHV5L.
DSPI electric als table: Updated spec 1, 5, 6. Updated footnote 2 an d 3. Added
tCSC, tASC, tSUSS, tHSS.
IO consumption table: Updated all parameter values.
DSPI electricals: Updated tCSC max to 115 ns.
Low voltage power domain electrical characteristics table: Added footnote 9.
ADC electrical characteristics: Added 2 notes above 10-bit and 12-bit conversion
tables.
Table 52. Revision history (continued)
Revision Date Changes
Revision history
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 111
4 23 June 2011 Interchanged the denominator with numerator in Equation 11 of Input impedance
and ADC accuracy section
Removed the note (All ADC conversion characteristics described in the table
below are applicable only for the precision channels. The data for semi-precision
and extended channels is awaited and same will be subsequently updated in later
revs.) in the ADC electrical characteristics section.
In On-chip peripherals current consumption table, replaced IDD_HV_ADC with
IDD_HV_ADC0 and IDD_HV_ADC1 values as per ADC specs
In ADC conversion characteristics (10-bit ADC_0) table, the minimum sample time
of ADC0 changed to 500 at 32 MHz
In ADC conversion characteristics (10-bit ADC_0) table, removed the entry for
sample time at 30 MHz
In Conversion characteristics (12-bit ADC_1)table, changed TUEX to TUES and
INLX to INLS (Extended channels are not supported by the device. So, changed
to standard channel.)
Table 52. Revision history (continued)
Revision Date Changes
MPC5646C Microcontroller DataSheet, Rev. 5.1
Revision history
Freescale112
NOTE
This revision history uses cli ck able cross-references for ease of navigation. The numbers
and titles in each cross-reference are relative to the latest published release.
5 21 June 2012 Upd ated the pins 23 and 24 of Figure 2.176-pin LQFP configuration
Upd ated unit of measure in Table 43 Conversion characte ristics (12-bit ADC_1)
Modified the value to typical value in Table 48 On-chip peripheral s current
consumption
Added footnote to tESRT parameter in Table 25 Code flash memory—Program and
erase specifications
Added footnote to tESRT p arameter in Table 26 Data flash memory—Program and
erase specifications
Updated Table 28 Flash memory read access timing.
Upd ated Notes 2 and Notes 3 of Table 9 Recommended operating condi tions
(3.3 V) and Table 10 Recommended operati ng conditions (5.0 V) respectively.
Updated the footnote1 of Table 9 Recommended operating conditions (3.3 V) and
Table 10 Recommended operating conditions (5.0 V)
Updated V DD_HV_A to VDD_BV for CDEC2 and IDD_HV_A in Table 22 Voltage
regulator electrical characteristic s and deleted footnote3
Upd ated the dedicated number of channels for 12-bit ADC in family comparison
tables
Upd ated the values of fSIRC, parameters and conditions of SIRCVAR in Table 40
Slow internal RC oscillator (128 kHz) electrical characteristics
Updated second footnote in Table 10, Recommended operating conditions (5.0 V)
Updated the value of tADC0_PU in Table 42, ADC conversion characteristics (10-bit
ADC_0)
Upd ated the IDD values in Table 24, Low voltage power domain electrical
characteristics
Added footnote to Table 24, Low voltage power domain ele ctrical characteristics
related to current drawn from VDD_HV_A and VDD_HV_B
Updated entire Section 4.17.1.1, “Input impedance and ADC accuracy”- Updated
the values of VLPREG in Table 22, Voltage regulator electrical characteristics.
Upd ated the values of VLPREG in Table 22, Voltage regulator electrical
characteristics.
Added TA = 25 °C, min and max values of VMREG in Table 22, Voltage regulator
electrical characteristics
Added TA = 25 °C, min and max values of VLPREG in Table 22, Voltage regulator
electrical characteristics
Upd ated the min, max and typical values of VLVDLVCORL and VLVDLVBKPL in
Table 23, Low voltage monitor electrical characteristics
Updated values of gmFXOSC in Table 35, Fast external crystal oscillator (4 to 40
MHz) electrical characteristicsUpdated values of gmSXOSC in Table 37, Slow
external crystal oscillator (32 kHz) electrical characteristics
Updated the footnote 5 for TADC0_C in Table 42, ADC conversion characteristics
(10-bit ADC_0)
Upd ated the footnotes of Table 24, Low voltage power domain ele c trical
characteristics
5.1 15 Aug 2012 Removed Footer: Preliminary tag
Table 52. Revision history (continued)
Revision Date Changes
Abbreviations
MPC5646C Microcontroller DataSheet, Rev. 5.1
Freescale 113
Appendix A
Abbreviations
Table 53 lists abbreviations used but not defined elsewh ere in thi s document.
Table 53. Abbreviations
Abbreviation Meaning
CS Chip select
EVTO Event out
MCKO Message clock out
MDO Message data out
MSEO Message start/end out
MTFE Modified timing format enable
SCK Serial communications clock
SOUT Serial data out
TBD To be defined
TCK Test clock input
TDI Test data input
TDO Test data output
TMS Test mode select
MPC5646C Microcontroller DataSheet, Rev. 5.1
Abbreviations
Freescale114
How to Reach Us:
Home Page:
www.freescale.com
Web Support:
http://www.freescale.com/support
USA/Europe or Locations Not Listed:
Freescale Semiconductor, Inc.
Technical Information Center, EL516
2100 East Elliot Road
Tempe, Arizona 85284
1-800-521-6274 or +1-480-768-2130
www.freescale.com/support
Europe, Middle East, and Africa:
Freescale Halbleiter Deutschland GmbH
Technical Information Center
Schatzbogen 7
81829 Muenchen, Germany
+44 1296 380 456 (English)
+46 8 52200080 (English)
+49 89 92103 559 (German)
+33 1 69 35 48 48 (French)
www.freescale.com/support
Japan:
Freescale Semiconductor Japan Ltd. Headquarters
ARCO Tower 15F
1-8-1, Shimo-Meguro, Meguro-ku,
Tokyo 153-0064
Japan
0120 191014 or +81 3 5437 9125
support.japan@freescale.com
Asia/Pacific:
Freescale Semiconductor China Ltd.
Exchange Building 23F
No. 118 Jianguo Road
Chaoyang District
Beijing 100022
China
+86 10 5879 8000
support.asia@freescale.com
Freescale Semiconductor Literature Distribution Center
1-800-441-2447 or +1-303-675-2140
Fax: +1-303-675-2150
LDCForFreescaleSemiconductor@hibbertgroup.com
Information in this document is provided solely to enable system and
software i mplementers to u se Freescale Sem iconductor product s. There are
no express or implied copyright licenses granted hereunder to design or
fabricate any integrated circuits or integrated circuits based on the
information in this document.
Freescale Semicon ductor reserves the right to m ake changes without further
notice to any prod ucts herein. Fr eescale Semiconducto r makes no warrant y ,
representation or guarantee regarding the suitability of its products for any
particular purpose, nor does Freescale S emiconductor assume any liability
arising out of the applicat ion or use of any product or circuit, an d specif ically
disclaims any and all liability, including without limitation consequential or
incidental damages. “Typical” parameters that may be provided in Freescale
Semiconduct or data sheets and/or specifica tions can and do vary in different
applicatio ns and actual performance may vary ov er time. All operating
parameters, including “Typicals”, must be validated for each customer
application by customer’s technical experts. Freescale Semiconductor does
not convey any license under its patent rights nor the rights of others.
Freescale Semiconductor products are not designed, intended, or authorized
for use as component s in systems intended for surgical implant into the body ,
or other applications intended to support or sustain life, or for any other
application in which the failure of the Freescale Semiconductor product could
create a situation where personal injury or death may occur. Should Buyer
purchase or use Fre escale Semiconductor product s for any such unintended
or unauthoriz ed appli c at io n, Buyer shall indemnify and hold Freesca l e
Semiconductor and its officers, employees, subsidiaries, affiliates, and
distributors harmless agains t all claims, costs, damages, an d expenses, and
reasonable attorney fees arising out of, directly or indirectly, any claim of
personal injury or death associated with such unintended or unauthorized
use, even if such claim alleges that Freescale Semiconductor was n egligent
regarding the design or manufacture of the part.
Freescale™ and the Freescale logo are trademarks of Freescale
Semiconductor, Inc. The described product contains a PowerPC processor
core. The Pow erPC name is a trademark of IBM Cor p. and used unde r license.
All other product or service na mes are the pr operty of the ir respective owners.
© Freescale Semiconductor, Inc. 2010-2012. All rights reserved.
MPC5646C
Rev. 5.1
08/2012