IRG4BC40UPbF
UltraFast Speed IGBT
INSULATED GATE BIPOLAR TRANSISTOR
E
C
G
n-channel
Features
UltraFast: optimized for high operating
frequencies 8-40 KHz in hard switching, >200
kHz in resonant mode
Generation 4 IGBT design provides tighter
parameter distribution and higher efficiency than
Generation 3
Industry standard TO-220AB package
Lead-Free
Generation 4 IGBTs offer highest efficiency available
IGBTs optimized for specified application conditions
Designed to be a "drop-in" replacement for equivalent
industry-standard Generation 3 IR IGBTs
Benefits
Parameter Min. Typ. Max. Units
RθJC Junction-to-Case ------ ------ 0.77
RθCS Case-to-Sink, flat, greased surface ------ 0.50 ------ °C/W
RθJA Junction-to-Ambient, typical socket mount ------ ------ 80
Wt Weight ------ 2 (0.07) ------ g (oz)
Absolute Maximum Ratings
Parameter Max. Units
VCES Collector-to-Emitter Voltage 600 V
IC @ TC = 25°C Continuous Collector Current 40
IC @ TC = 100°C Continuous Collector Current 20 A
ICM Pulsed Collector Current 160
ILM Clamped Inductive Load Current 160
VGE Gate-to-Emitter Voltage ±20 V
EARV Reverse Voltage Avalanche Energy 15 mJ
PD @ TC = 25°C Maximum Power Dissipation 160
PD @ TC = 100°C Maximum Power Dissipation 65
TJOperating Junction and -55 to +150
TSTG Storage Temperature Range °C
Soldering Temperature, for 10 sec. 300 (0.063 in. (1.6mm) from case)
Mounting torque, 6-32 or M3 screw. 10 lbfin (1.1Nm)
Thermal Resistance
VCES = 600V
VCE(on) typ. = 1.72V
@VGE = 15V, IC = 20A
02/18/10
W
www.irf.com 1
TO-220AB
PD - 95428A
IRG4BC40UPbF
2www.irf.com
Notes:
Repetitive rating; VGE = 20V, pulse width limited by
max. junction temperature. ( See fig. 13b )
VCC = 80%(VCES), VGE = 20V, L = 10µH, RG = 10,
(see fig. 13a)
Repetitive rating; pulse width limited by maximum
junction temperature.
Pulse width 80µs; duty factor 0.1%.
Pulse width 5.0µs, single shot.
Parameter Min. Typ. Max. Units Conditions
QgTotal Gate Charge (turn-on) ---- 100 150 IC = 20A
Qge Gate - Emitter Charge (turn-on) ---- 16 25 nC VCC = 400V See Fig. 8
Qgc Gate - Collector Charge (turn-on) ---- 40 60 VGE = 15V
td(on) Turn-On Delay Time ---- 34 ---- TJ = 25°C
trRise Time ---- 19 ---- ns IC = 20A, VCC = 480V
td(off) Turn-Off Delay Time ---- 110 175 VGE = 15V, RG = 10
tfFall Time ---- 120 180 Energy losses include "tail"
Eon Turn-On Switching Loss ---- 0.32 ----
Eoff Turn-Off Switching Loss ---- 0.35 ---- mJ See Fig. 10, 11, 13, 14
Ets Total Switching Loss ---- 0.67 1.0
td(on) Turn-On Delay Time ---- 30 ---- TJ = 150°C,
trRise Time ---- 19 ---- ns IC = 20A, VCC = 480V
td(off) Turn-Off Delay Time ---- 220 ---- VGE = 15V, RG = 10
tfFall Time ---- 160 ---- Energy losses include "tail"
Ets Total Switching Loss ---- 1.4 ---- mJ See Fig. 13, 14
LEInternal Emitter Inductance ---- 7.5 ---- nH Measured 5mm from package
Cies Input Capacitance ---- 2100 ---- VGE = 0V
Coes Output Capacitance ---- 140 ---- pF VCC = 30V See Fig. 7
Cres Reverse Transfer Capacitance ---- 34 ---- = 1.0MHz
Switching Characteristics @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units Conditions
V(BR)CES Collector-to-Emitter Breakdown Voltage 600 ---- ---- V VGE = 0V, IC = 250µA
V(BR)ECS Emitter-to-Collector Breakdown Voltage 18 ---- ---- V VGE = 0V, IC = 1.0A
V(BR)CES/TJTemperature Coeff. of Breakdown Voltage ---- 0.63 ---- V/°C VGE = 0V, IC = 1.0mA
VCE(on) Collector-to-Emitter Saturation Voltage ---- 1.72 2.1 IC = 20A VGE = 15V
---- 2.15 ---- V IC = 40A
---- 1.7 ---- IC = 20A, TJ = 150°C
VGE(th) Gate Threshold Voltage 3.0 ---- 6.0 VCE = VGE, IC = 250µA
VGE(th)/TJTemperature Coeff. of Threshold Voltage ---- -13 ---- mV/°C VCE = VGE, IC = 250µA
gfe Forward Transconductance 11 18 ---- S VCE = 100V, IC = 20A
---- ---- 250 VGE = 0V, VCE = 600V
ICES Zero Gate Voltage Collector Current ---- ---- 2.0 µA VGE = 0V, VCE = 10V, TJ = 25°C
---- ---- 2500 VGE = 0V, VCE = 600V, TJ = 150°C
IGES Gate-to-Emitter Leakage Current ---- ---- ±100 nA VGE = ±20V
Electrical Characteristics @ TJ = 25°C (unless otherwise specified)
See Fig. 2, 5
IRG4BC40UPbF
www.irf.com 3
Fig. 1 - Typical Load Current vs. Frequency
(For square wave, I=IRMS of fundamental; for triangular wave, I=IPK)
Fig. 2 - Typical Output Characteristics
TC = 25°C
Fig. 3 - Typical Transfer Characteristics
1
10
100
1000
4681012
C
I , Collector-to-Emitter Current (A)
GE
T = 25°C
T = 150°C
J
J
V , Gate-to-Emitter Voltage (V)
A
V = 10V
5µs PULSE WIDTH
CC
1
10
100
1000
0.1 1 10
CE
C
I , Collector-to-Emitter Current (A)
V , Collector-to-Emitter Voltage (V)
T = 150°C
T = 25°C
J
J
V = 15V
20µs PULSE WIDTH
GE
A
0
10
20
30
40
50
60
0.1 1 10 100
f, Frequency (kHz)
A
60% of rated
voltage
I
Ideal diodes
Square wave:
For both:
Duty cycle: 50%
T = 125°C
T = 90°C
Gate drive as specified
sink
J
Triangular wave:
I
Clamp voltage:
80% of rated
Power Dissipation = 28W
Load Current ( A )
IRG4BC40UPbF
4www.irf.com
Fig. 6 - Maximum Effective Transient Thermal Impedance, Junction-to-Case
Fig. 5 - Collector-to-Emitter Voltage vs.
Junction Temperature
Fig. 4 - Maximum Collector Current vs. Case
Temperature
1.0
1.5
2.0
2.5
-60 -40 -20 0 20 40 60 80 100 120 140 160
CE
V , Collector-to-Emitter Voltage (V)
V = 15V
80µs PULSE WIDTH
GE
A
I = 40A
I = 20A
I = 10A
T , Junction Temperature (°C)
J
C
C
C
0.01
0.1
1
0.00001 0.0001 0.001 0.01 0.1 1 10
t , Rectangular Pulse Duration (sec)
1
thJC
D = 0.50
0.01
0.02
0.05
0.10
0.20
SINGLE PULSE
(THERMAL RESPONSE)
Thermal Response (Z )
P
t
2
1
t
DM
Notes:
1. Duty factor D = t / t
2. Peak T = P x Z + T
12
JDM
thJC
C
0
10
20
30
40
25 50 75 100 125 150
Maximum DC Collector Current (A)
T , Case Temperature (°C)
C
V = 15V
GE
A
IRG4BC40UPbF
www.irf.com 5
Fig. 9 - Typical Switching Losses vs. Gate
Resistance
Fig. 8 - Typical Gate Charge vs.
Gate-to-Emitter Voltage
Fig. 7 - Typical Capacitance vs.
Collector-to-Emitter Voltage
0
1000
2000
3000
4000
1 10 100
CE
C, Capacitance (pF)
V , Collector-to-Emitter Voltage (V)
A
V = 0V, f = 1MHz
C = C + C , C SHORTED
C = C
C = C + C
GE
ies ge gc ce
res gc
oes ce gc
C
ies
C
res
C
oes
0
4
8
12
16
20
0 20 40 60 80 100 120
GE
V , Gate-to-Emitter Voltage (V)
g
Q , Total Gate Charge (nC)
A
V = 400V
I = 20A
CE
C
0.1
1
10
-60 -40 -20 0 20 40 60 80 100 120 140 160
Total Switching Losses (mJ)
R = 10
V = 15V
V = 480V
A
I = 40A
I = 20A
I = 10A
G
GE
CC
C
C
C
T , Junction Temperature (°C)
J
0.6
0.7
0.8
0.9
1.0
1.1
0 102030405060
G
Total Switching Losses (mJ)
R , Gate Resistance (
)
A
V = 480V
V = 15V
T = 25°C
I = 20A
CC
GE
J
C
Fig. 10 - Typical Switching Losses vs.
Junction Temperature
IRG4BC40UPbF
6www.irf.com
Fig. 12 - Turn-Off SOA
Fig. 11 - Typical Switching Losses vs.
Collector-to-Emitter Current
0.0
1.0
2.0
3.0
4.0
0 1020304050
C
Total Switching Losses (mJ)
R = 10
T = 150°C
V = 480V
V = 15V
I , Collector-to-Emitter Current (A)
G
J
CC
GE
1
10
100
1000
1 10 100 100
0
C
CE
GE
V , Collector-to-Emitter Voltage (V)
I , Collector-to-Emitter Current (A)
SAFE OPERATING AREA
V = 20V
T = 125°C
GE
J
IRG4BC40UPbF
www.irf.com 7
D.U.T.
50V
L
V *
C
cd
* Driver same type as D.U.T.; Vc = 80% of Vce(max)
* Note: Due to the 50V power supply, pulse width and inductor
will increase to obtain rated Id.
1000V
Fig. 13a - Clamped Inductive
Load Test Circuit
Fig. 13b - Pulsed Collector
Current Test Circuit
t=5µs
d(on)
t
t
f
t
r
90%
t
d(off)
10%
90%
10%
5%
V
C
I
C
E
on
E
off
ts on off
E = (E +E )
c
d
e
Fig. 14b - Switching Loss
Waveforms
50V
Driver*
1000V
D.U.T.
I
C
C
V
c
de
L
Fig. 14a - Switching Loss
Test Circuit
* Driver same type
as D.U.T., VC = 480V
0 - VCC
RLICM
VCC
=
480µF
Pulsed Collector Current
Test Circuit
IRG4BC40UPbF
8www.irf.com
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 02/2010
TO-220AB Package Outline (Dimensions are shown in millimeters (inches))
TO-220AB Part Marking Information
(;$03/(
,17+($66(0%/</,1(&
7+,6,6$1,5)
/27&2'(
$66(0%/('21:: 3$57180%(5
$66(0%/<
/27&2'(
'$7(&2'(
<($5 
/,1(&
:((.
/2*2
5(&7,),(5
,17(51$7,21$/
Note: "P" in assembly line
position indicates "Lead-Free"
Note: For the most current drawing please refer to IR website at http://www.irf.com/package/