06/29/11
IRFHM8363PbF
HEXFET® Power MOSFET
Notes through are on page 9
Features and Benefits
www.irf.com 1
Applications
Power Stage for high frequency buck converters
Battery Protection charge and discharge switches
PD - 97678A
V
DS
30 V
V
gs max
± 20 V
R
DS(on) max
(@V
GS
= 10V)
14.9
(@V
GS
= 4.5V)
20.4
Q
g typ
6.7 nC
I
D
(@T
c(Bottom)
= 25°C)
10
i
A
mΩ
Absolute Maximum Ratings
Parameter Units
V
DS
Drain-to-Source Voltage
V
GS
Gate-to-Source Voltage
I
D
@ T
A
= 25°C Continuous Drain Current, V
GS
@ 10V
I
D
@ T
A
= 70°C Continuous Drain Current, V
GS
@ 10V
I
D
@ T
C(Bottom)
= 25°C Continuous Drain Current, V
GS
@ 10V
I
D
@ T
C(Bottom)
= 100°C Continuous Drain Current, V
GS
@ 10V
I
D
@ T
C
= 25°C Continuous Drain Current, V
GS
@ 10V (Package Limited)
I
DM
Pulsed Drain Current
c
P
D
@T
A
= 25°C
Power Dissipation
g
P
D
@T
C(Bottom)
= 25°C
Power Dissipation
g
Linear Derating Factor
g
T
J
Operating Junction and
T
STG
Storage Temperature Range
V
W
A
°C
Max.
11
18
hi
116
± 20
30
8.6
29
hi
10
i
-55 to + 150
2.7
0.02
19
PQFN Dual 3.3X3.3 mm
D
D
D
D
S
G
G
S
D
D
*
6
6
*
'
'
'
'
7
2
3
9
,
(
:
Note
Form
Quantity
IRFHM8363TRPBF
PQFN Dual 3.3mm x 3.3mm
Tape and Reel
4000
IRFHM8363TR2PBF
PQFN Dual 3.3mm x 3.3mm
Tape and Reel
400
Orderable part number Package Type
Standard Pack
Features
Benefits
Low Thermal Resistance to PCB (< 6.7°C/W)
Enable better thermal dissipation
Low Profile (<1.0mm)
results in
Increased Power Density
Industry-Standard Pinout
Multi-Vendor Compatibility
Compatible with Existing Surface Mount Techniques
Easier Manufacturing
RoHS Compliant Containing no Lead, no Bromide and no Halogen
Environmentally Friendlier
MSL1, Consumer Qualification
Increased Reliability
IRFHM8363PbF
2www.irf.com
D
S
G
Thermal Resistance
Parameter Typ. Max. Units
RθJC (Bottom)
Junction-to-Case
f
–––
6.7
RθJC (Top)
Junction-to-Case
f
–––
72 °C/W
RθJA
Junction-to-Ambient
g
–––
47
RθJA (<10s)
Junction-to-Ambient
g
–––
32
Static @ T
J
= 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BV
DSS
Drain-to-Source Breakdown Voltage 30 ––– ––– V
ΔΒ
V
DSS
/
Δ
T
J
Breakdown Voltage Temp. Coefficient ––– 0.022 ––– V/°C
R
DS(on)
Static Drain-to-Source On-Resistance ––– 12.2 14.9
––– 16.3 20.4
V
GS(th)
Gate Threshold Voltage 1.35 1.8 2.35 V
Δ
V
GS(th)
Gate Threshold Voltage Coefficient ––– -6.3 ––– mV/°C
I
DSS
Drain-to-Source Leakage Current ––– ––– 1.0
––– –– 150
I
GSS
Gate-to-Source Forward Leakage ––– ––– 100
Gate-to-Source Reverse Leakage ––– ––– -100
gfs Forward Transconductance 20 ––– ––– S
Q
g
Total Gate Charge ––– 15 ––– nC
Q
g
Total Gate Charge ––– 6.7 –––
Q
gs1
Pre-Vth Gate-to-Source Charge ––– 2.1 –––
Q
gs2
Post-Vth Gate-to-Source Charge ––– 1.0 –––
Q
gd
Gate-to-Drain Charge ––– 2.0 –––
Q
godr
Gate Charge Overdrive ––– 1.6 –––
Q
sw
Switch Charge (Q
gs2
+ Q
gd
)––– 3.0 –––
Q
oss
Output Charge ––– 7.6 ––– nC
R
G
Gate Resistance ––– 1.6
–––
Ω
t
d(on)
Turn-On Delay Time ––– 14 –––
t
r
Rise Time ––– 94 –––
t
d(off)
Turn-Off Delay Time ––– 12 –––
t
f
Fall Time ––– 33 –––
C
iss
Input Capacitance –– 1165 –––
C
oss
Output Capacitance ––– 260 –––
C
rss
Reverse Transfer Capacitance ––– 100 –––
Avalanche Characteristics
Parameter Units
E
AS
Single Pulse Avalanche Energy
d
mJ
I
AR
Avalanche Current
c
A
Diode Characteristics
Parameter Min. Typ. Max. Units
I
S
Continuous Source Current
(Body Diode)
I
SM
Pulsed Source Current
(Body Diode)
c
V
SD
Diode Forward Voltage ––– ––– 1.3 V
t
rr
Reverse Recovery Time ––– 17 26 ns
Q
rr
Reverse Recovery Charge ––– 24 36 nC
t
on
Forward Turn-On Time Time is dominated by parasitic Inductance
V
DS
= V
GS
, I
D
= 25μA
μA
V
GS
= 4.5V, I
D
= 8.0A
e
V
GS
= 4.5V
V
DS
= 24V, V
GS
= 0V, T
J
= 125°C
mΩ
V
DS
= 24V, V
GS
= 0V
V
GS
= 10V, V
DS
= 15V, I
D
= 10A
Typ.
–––
R
G
=1.8Ω
V
DS
= 10V, I
D
= 10A
I
D
= 10A
I
D
= 10A
V
GS
= 0V
V
DS
= 10V
V
DS
= 24V, V
GS
= 0V
V
DD
= 15V, V
GS
= 4.5V
T
J
= 25°C, I
F
= 10A, V
DD
= 15V
di/dt = 280A/μs
e
T
J
= 25°C, I
S
= 10A, V
GS
= 0V
e
showing the
integral reverse
p-n junction diode.
Conditions
Max.
29
10
ƒ = 1.0MHz
Conditions
V
GS
= 0V, I
D
= 250μA
Reference to 2C, I
D
= 1.0mA
V
GS
= 10V, I
D
= 10A
e
––– –– 116
––– –– 10
i
MOSFET symbol
nA
ns
A
pF
nC
V
DS
= 15V
–––
V
GS
= 20V
V
GS
= -20V
IRFHM8363PbF
www.irf.com 3
Fig 2. Typical Output Characteristics
Fig 1. Typical Output Characteristics
Fig 3. Typical Transfer Characteristics
Fig 6. Typical Gate Charge vs.Gate-to-Source Voltage
Fig 5. Typical Capacitance vs.Drain-to-Source Voltage
Fig 4. Normalized On-Resistance vs. Temperature
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 10V
7.0V
5.0V
4.5V
3.5V
3.0V
2.8V
BOTTOM 2.5V
60μs PULSE WIDTH
Tj = 25°C
2.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
2.5V
60μs PULSE WIDTH
Tj = 150°C
VGS
TOP 10V
7.0V
5.0V
4.5V
3.5V
3.0V
2.8V
BOTTOM 2.5V
1234567
VGS, Gate-to-Source Voltage (V)
1.0
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 25°C
TJ = 150°C
VDS = 15V
60μs PULSE WIDTH
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.6
0.8
1.0
1.2
1.4
1.6
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 10A
VGS = 10V
110 100
VDS, Drain-to-Source Voltage (V)
10
100
1000
10000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
02468101214161820
QG, Total Gate Charge (nC)
0.0
2.0
4.0
6.0
8.0
10.0
12.0
14.0
VGS, Gate-to-Source Voltage (V)
VDS= 24V
VDS= 15V
VDS= 6.0V
ID= 10A
IRFHM8363PbF
4www.irf.com
Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case (Bottom)
Fig 8. Maximum Safe Operating Area
Fig 9. Maximum Drain Current vs.
Case (Bottom) Temperature
Fig 7. Typical Source-Drain Diode Forward Voltage
Fig 10. Threshold Voltage vs. Temperature
0.0 0.5 1.0 1.5 2.0 2.5
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 150°C
VGS = 0V
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
0.8
1.0
1.2
1.4
1.6
1.8
2.0
2.2
2.4
2.6
2.8
VGS(th), Gate threshold Voltage (V)
ID = 25μA
ID = 250μA
ID = 1.0mA
ID = 1.0A
1E-006 1E-005 0.0001 0.001 0.01 0.1 1
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
Thermal Response ( Z thJC ) °C/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE ) Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
25 50 75 100 125 150
TC , Case Temperature (°C)
0
5
10
15
20
25
30
ID, Drain Current (A)
Limited by source
bonding technology
i
0 1 10 100
VDS, Drain-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
Tc = 25°C
Tj = 150°C
Single Pulse
100μsec
1msec
10msec
DC
Limited by source
bonding technology
i
IRFHM8363PbF
www.irf.com 5
Fig 13. Maximum Avalanche Energy vs. Drain Current
Fig 12. On-Resistance vs. Gate Voltage
Fig 14b. Unclamped Inductive Waveforms
Fig 14a. Unclamped Inductive Test Circuit
tp
V
(BR)DSS
I
AS
R
G
I
AS
0.01
Ω
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
Fig 15a. Switching Time Test Circuit Fig 15b. Switching Time Waveforms
VGS
VDS
90%
10%
td(on) td(off)
trtf
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1
RD
VGS
RG
D.U.T.
10V
+
-
VDD
VGS
0 5 10 15 20
VGS, Gate -to -Source Voltage (V)
10
15
20
25
30
35
RDS(on), Drain-to -Source On Resistance (mΩ)
ID = 10A
TJ = 25°C
TJ = 125°C
25 50 75 100 125 150
Starting TJ , Junction Temperature (°C)
0
20
40
60
80
100
120
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 2.3A
4.7A
BOTTOM 10A
IRFHM8363PbF
6www.irf.com
Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel
HEXFET® Power MOSFETs
Fig 17. Gate Charge Test Circuit Fig 18. Gate Charge Waveform
Vds
Vgs
Id
Vgs(th)
Qgs1 Qgs2 Qgd Qgodr
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
* VGS = 5V for Logic Level Devices
*
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
1K
VCC
DUT
0
L
S
IRFHM8363PbF
www.irf.com 7
PQFN Dual 3.3x3.3 Package Details
For footprint and stencil design recommendations, please refer to application note AN-1154 at
http://www.irf.com/technical-info/appnotes/an-1154.pdf
Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/
PQFN Dual 3.3x3.3 Part Marking
IRFHM8363PbF
8www.irf.com
PQFN Dual 3.3x3.3 Tape and Reel
IRFHM8363PbF
www.irf.com 9
Qualification standards can be found at International Rectifier’s web site
http://www.irf.com/product-info/reliability
 Higher qualification ratings may be available should the user have such requirements.
Please contact your International Rectifier sales representative for further information:
http://www.irf.com/whoto-call/salesrep/
 Applicable version of JEDEC standard at the time of product release.
Notes:
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 0.58mH, RG = 50Ω, IAS = 10A.
Pulse width 400μs; duty cycle 2%.
Rθ is measured at TJ of approximately 90°C.
When mounted on 1 inch square 2 oz copper pad on 1.5x1.5 in. board of FR-4 material.
Calculated continuous current based on maximum allowable junction temperature.
Current is limited to 10A by source bonding technology.
IR WORLD HEADQUARTERS: 101 N. Sepulveda Blvd., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information. 06/11
Data and specifications subject to change without notice.
MS L 1
(per JE DE C J-S T D-020D
†††
)
RoHS compliant Yes
PQFN Dual 3.3mm x 3.3mm
Qualification information
Moisture Sensitivity Level
Qualification level Cons umer
††
(per JEDE C JES D47F
†††
guidelines )