SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Rev. 02 — 14 March 2003 Product data
1. Description
The SC16C2550 is a 2 channel Universal Asynchronous Receiver and Transmitter
(UART) used for serial data communications. Its principal function is to convert
parallel data into serial data and vice versa. The UART can handle serial data rates
up to 5 Mbits/s.
The SC16C2550 is pin compatible with the ST16C2550. It will power-up to be
functionally equivalent to the 16C2450. The SC16C2550 provides enhanced UART
functions with 16-byte FIFOs, modem control interface, DMA mode data transfer. The
DMA mode data transfer is controlled by the FIFO trigger levels and the TXRDY and
RXRDY signals. On-board status registers provide the user with error indications and
operational status. System interrupts and modem control features may be tailored by
software to meet specific user requirements. An internal loop-back capability allows
on-board diagnostics. Independent programmable baud rate generators are provided
to select transmit and receive baud rates.
The SC16C2550 operates at 5 V, 3.3 V and 2.5 V and the Industrial temperature
range, and is available in plastic PLCC44, LQFP48 and DIP40 packages.
2. Features
2 channel UART
5 V, 3.3 V and 2.5 V operation
Industrial temperature range
Pin and functionally compatible to 16C2450 and software compatible with
INS8250, SC16C550
Up to 5 Mbits/s data rate at 5 V and 3.3 V, and 3 Mbits/s at 2.5 V
16 byte transmit FIFO to reduce the bandwidth requirement of the external CPU
16 byte receive FIFO with error flags to reduce the bandwidth requirement of the
external CPU
Independent transmit and receive UART control
Four selectable Receive FIFO interrupt trigger levels
Automatic software/hardware flow control
Programmable Xon/Xoff characters
Software selectable Baud Rate Generator
Sleep mode
Standard asynchronous error and framing bits (Start, Stop, and Parity Overrun
Break)
Transmit, Receive, Line Status, and Data Set interrupts independently controlled
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 2 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
Fully programmable character formatting:
5-, 6-, 7-, or 8-bit characters
Even-, Odd-, or No-Parity formats
1-, 112-, or 2-stop bit
Baud generation (DC to 1.5 Mbit/s)
False start-bit detection
Complete status reporting capabilities
3-State output TTL drive capabilities for bi-directional data bus and control bus
Line Break generation and detection
Internal diagnostic capabilities:
Loop-back controls for communications link fault isolation
Prioritized interrupt system controls
Modem control functions (CTS, RTS, DSR, DTR, RI, DCD).
3. Ordering information
Table 1: Ordering information
Type number Package
Name Description Version
SC16C2550IN40 DIP40 plastic dual in-line package; 40 leads (600 mil) SOT129-1
SC16C2550IA44 PLCC44 plastic leaded chip carrier; 44 leads SOT187-2
SC16C2550IB48 LQFP48 plastic low profile quad flat package; 48 leads; body 7 ×7×1.4 mm SOT313-2
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 3 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
4. Block diagram
Fig 1. SC16C2550 block diagram.
TRANSMIT
FIFO
REGISTER TXA, TXB
RECEIVE
SHIFT
REGISTER
RECEIVE
FIFO
REGISTER RXA, RXB
INTERCONNECT BUS LINES
AND
CONTROL SIGNALS
SC16C2550
TRANSMIT
SHIFT
REGISTER
MODEM
CONTROL
LOGIC
DTRA, DTRB
RTSA, RTSB
OP2A, OP2B
CLOCK AND
BAUD RATE
GENERATOR
CTSA, CTSB
RIA, RIB
CDA, CDB
DSRA, DSRB
XTAL2XTAL1
DATA BUS
AND
CONTROL LOGIC
D0–D7
IOR
IOW
RESET
A0–A2
CSA
CSB
REGISTER
SELECT
LOGIC
INTA, INTB
TXRDYA, TXRD YB
RXRDYA, RXRDYB
INTERRUPT
CONTROL
LOGIC
002aaa119
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 4 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
5. Pinning information
5.1 Pinning
Fig 2. DIP40 pin configuration.
SC16C2550IN40
002aaa105
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
D0
D1
D2
D3
D4
D5
D6
D7
RXB
RXA
TXA
TXB
OP2B
CSA
CSB
XTAL1
XTAL2
IOW
CDB
GND
VCC
RIA
CDA
DSRA
CTSA
RESET
DTRB
DTRA
RTSA
OP2A
INTA
INTB
A0
A1
A2
CTSB
RTSB
RIB
DSRB
IOR
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 5 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
Fig 3. PLCC44 pin configuration.
SC16C2550IA44
002aaa103
7
8
9
10
11
12
13
14
15
16
17
39
38
37
36
35
34
33
32
31
30
29
18
19
20
21
22
23
24
25
26
27
28
6
5
4
3
2
1
44
43
42
41
40
D4
D3
D2
D1
D0
TXRDYA
VCC
RIA
CDA
DSRA
CTSA
XTAL1
XTAL2
IOW
CDB
GND
RXRDYB
IOR
DSRB
RIB
RTSB
CTSB
D5
D6
D7
RXB
RXA
TXRDYB
TXA
TXB
OP2B
CSA
CSB
RESET
DTRB
DTRA
RTSA
OP2A
RXRDYA
INTA
INTB
A0
A1
A2
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 6 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
5.2 Pin description
Fig 4. LQFP48 pin configuration.
SC16C2550IB48
002aaa104
1
2
3
4
5
6
7
8
9
10
11
12
36
35
34
33
32
31
30
29
28
27
26
25
13
14
15
16
17
18
19
20
21
22
23
24
48
47
46
45
44
43
42
41
40
39
38
37
D4
D3
D2
D1
D0
TXRDYA
VCC
RIA
CDA
DSRA
CTSA
N.C.
XTAL1
XTAL2
IOW
CDB
GND
RXRDYB
IOR
DSRB
RIB
RTSB
CTSB
N.C.
D5
D6
D7
RXB
RXA
TXRDYB
TXA
TXB
OP2B
CSA
CSB
N.C.
RESET
DTRB
DTRA
RTSA
OP2A
RXRDYA
INTA
INTB
A0
A1
A2
N.C.
Table 2: Pin description
Symbol Pin Type Description
DIP40 PLCC44 LQFP48
A0 28 31 28 I Address 0 select bit. Internal register address selection.
A1 27 30 27 I Address 1 select bit. Internal register address selection.
A2 26 29 26 I Address 2 select bit. Internal register address selection.
CSA, CSB 14, 15 16, 17 10, 11 I Chip Select A, B (Active-LOW). This function is associated with individual
channels, A through B. These pins enable data transfers between the user
CPU and the SC16C2550 for the channel(s) addressed. Individual UART
sections (A, B) are addressed by providing a logic 0 on the respective CSA,
CSB pin.
D0-D7 1-8 2-9 44-48,
1-3 I/O Data bus (bi-directional). These pins are the 8-bit, 3-State data bus for
transferring information to or from the controlling CPU. D0 is the least
significant bit and the first data bit in a transmit or receive serial data
stream.
GND 20 22 17 I Signal and power ground.
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 7 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
INTA,
INTB 30, 29 33, 32 30, 29 O Interrupt A, B (3-State). This function is associated with individual channel
interrupts, INTA, INTB. INTA, INTB are enabled when MCR bit 3 is set to a
logic 1, interrupts are enabled in the interrupt enable register (IER), and is
active when an interrupt condition exists. Interrupt conditions include:
receiver errors, available receiver buffer data, transmit buffer empty, or
when a modem status flag is detected.
IOR 21 24 19 I Read strobe (Active-LOW strobe). A logic 0 transition on this pin will load
the contents of an internal register defined by address bits A0-A2 onto the
SC16C2550 data bus (D0-D7) for access by external CPU.
IOW182015IWrite strobe (Active-LOW strobe). A logic 0 transition on this pin will
transfer the contents of the data bus (D0-D7) from the external CPU to an
internal register that is defined by address bits A0-A2.
OP2A,
OP2B 31, 13 35, 15 32, 9 O Output 2 (user-defined). This function is associated with individual
channels, A through B. The state at these pin(s) are defined by the user
and through MCR register bit 3. INTA, INTB are set to the active mode and
OP2 to logic 0 when MCR[3] is set to a logic 1. INTA, INTB are set to the
3-State mode and OP2 to a logic 1 when MCR[3] is set to a logic 0. See
bit 3, Modem Control Register (MCR[3]). Since these bits control both the
INTA, INTB operation and OP2 outputs, only one function should be used
at one time, INT or OP2.
RESET 35 39 36 I Reset (Active-HIGH). A logic 1 on this pin will reset the internal registers
and all the outputs. The UART transmitter output and the receiver input will
be disabled during reset time. (See Section 7.11 “SC16C2550 external
reset condition” for initialization details.)
RXRDYA,
RXRDYB - 34, 23 31, 18 O Receive Ready A, B (Active-LOW). This function is associated with
PLCC44 and LQFP48 packages only. This function provides the
RX FIFO/RHR status for individual receive channels (A-B). RXRDYn is
primarily intended for monitoring DMA mode 1 transfers for the receive data
FIFOs. A logic 0 indicates there is a receive data to read/upload, i.e.,
receive ready status with one or more RX characters available in the
FIFO/RHR. This pin is a logic 1 when the FIFO/RHR is empty or when the
programmed trigger level has not been reached. This signal can also be
used for single mode transfers (DMA mode 0).
TXRDYA,
TXRDYB - 1, 12 43, 6 O Transmit Ready A, B (Active-LOW). This function is associated with
PLCC44 and LQFP48 packages only. These outputs provide the
TX FIFO/THR status for individual transmit channels (A-B). TXRDYn is
primarily intended for monitoring DMA mode 1 transfers for the transmit
data FIFOs. An individual channel’s TXRDYA, TXRDYB buffer ready status
is indicated by logic 0, i.e., at lease one location is empty and available in
the FIFO or THR. This pin goes to a logic 1 (DMA mode 1) when there are
no more empty locations in the FIFO or THR. This signal can also be used
for single mode transfers (DMA mode 0).
VCC 40 44 42 I Power supply input.
XTAL1 16 18 13 I Crystal or external clock input. Functions as a crystal input or as an
external clock input. A crystal can be connected between this pin and
XTAL2 to form an internal oscillator circuit. This configuration requires an
external 1 M resistor between the XTAL1 and XTAL2 pins. Alternatively,
an external clock can be connected to this pin to provide custom data rates.
(See Section 6.8 “Programmable baud rate generator”.) See Figure 5.
Table 2: Pin description
…continued
Symbol Pin Type Description
DIP40 PLCC44 LQFP48
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 8 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
XTAL2 17 19 14 O Output of the crystal oscillator or buffered clock. (See also XTAL1.)
Crystal oscillator output or buffered clock output. Should be left open if an
external clock is connected to XTAL1. For extended frequency operation,
this pin should be tied to VCC via a 2 k resistor.
CDA,
CDB 38, 19 42, 21 40, 16 I Carrier Detect (Active-LOW). These inputs are associated with individual
UART channels A through B. A logic 0 on this pin indicates that a carrier
has been detected by the modem for that channel.
CTSA,
CTSB 36, 25 40, 28 38, 23 I Clear to Send (Active-LOW). These inputs are associated with individual
UART channels, A through B. A logic 0 on the CTS pin indicates the
modem or data set is ready to accept transmit data from the SC16C2550.
Status can be tested by reading MSR[4]. This pin has no effect on the
UART’s transmit or receive operation.
DSRA,
DSRB 37, 22 41, 25 39, 20 I Data Set Ready (Active-LOW). These inputs are associated with
individual UART channels, A through B. A logic 0 on this pin indicates the
modem or data set is powered-on and is ready for data exchange with the
UART. This pin has no effect on the UART’s transmit or receive operation.
DTRA,
DTRB 33, 34 37, 38 34, 35 O Data Terminal REady (Active-LOW). These outputs are associated with
individual UART channels, A through B. A logic 0 on this pin indicates that
the SC16C2550 is powered-on and ready. This pin can be controlled via
the modem control register. Writing a logic 1 to MCR[0] will set the DTR
output to logic 0, enabling the modem. This pin will be a logic 1 after writing
a logic 0 to MCR[0], or after a reset. This pin has no effect on the UART’s
transmit or receive operation.
RIA, RIB 39, 23 43, 26 41, 21 I Ring Indicator (Active-LOW). These inputs are associated with individual
UART channels, A through B. A logic 0 on this pin indicates the modem has
received a ringing signal from the telephone line. A logic 1 transition on this
input pin will generate an interrupt.
RTSA,
RTSB 32, 24 36, 27 33, 22 O Request to Send (Active-LOW). These outputs are associated with
individual UART channels, A through B. A logic 0 on the RTS pin indicates
the transmitter has data ready and waiting to send. Writing a logic 1 in the
modem control register MCR[1] will set this pin to a logic 0, indicating data
is available. After a reset this pin will be set to a logic 1. This pin has no
effect on the UART’s transmit or receive operation.
RXA, RXB 10, 9 11, 10 5, 4 I Receive data A, B. These inputs are associated with individual serial
channel data to the SC16C2550 receive input circuits, A-B. The RX signal
will be a logic 1 during reset, idle (no data), or when the transmitter is
disabled. During the local loop-back mode, the RX input pin is disabled and
TX data is connected to the UART RX input, internally.
TXA, TXB 11, 12 13, 14 7, 8 O Transmit data A, B. These outputs are associated with individual serial
transmit channel data from the SC16C2550. The TX signal will be a logic 1
during reset, idle (no data), or when the transmitter is disabled. During the
local loop-back mode, the TX output pin is disabled and TX data is
internally connected to the UART RX input.
Table 2: Pin description
…continued
Symbol Pin Type Description
DIP40 PLCC44 LQFP48
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 9 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
6. Functional description
The SC16C2550 provides serial asynchronous receive data synchronization,
parallel-to-serial and serial-to-parallel data conversions for both the transmitter and
receiver sections. These functions are necessary for converting the serial data
stream into parallel data that is required with digital data systems. Synchronization for
the serial data stream is accomplished by adding start and stop bits to the transmit
data to form a data character (character orientated protocol). Data integrity is insured
by attaching a parity bit to the data character. The parity bit is checked by the receiver
for any transmission bit errors. The electronic circuitry to provide all these functions is
fairly complex, especially when manufactured on a single integrated silicon chip. The
SC16C2550 represents such an integration with greatly enhanced features. The
SC16C2550 is fabricated with an advanced CMOS process.
The SC16C2550 is an upward solution that provides a dual UART capability with
16 bytes of transmit and receive FIFO memory, instead of none in the 16C2450. The
SC16C2550 is designed to work with high speed modems and shared network
environments that require fast data processing time. Increased performance is
realized in the SC16C2550 by the transmit and receive FIFOs. This allows the
external processor to handle more networking tasks within a given time. For example,
the ST16C2450 without a receive FIFO, will require unloading of the RHR in
93 microseconds (this example uses a character length of 11 bits, including start/stop
bits at 115.2 kbits/s). This means the external CPU will have to service the receive
FIFO less than every 100 microseconds. However, with the 16 byte FIFO in the
SC16C2550, the data buffer will not require unloading/loading for 1.53 ms. This
increases the service interval, giving the external CPU additional time for other
applications and reducing the overall UART interrupt servicing time. In addition, the
four selectable receive FIFO trigger interrupt levels is uniquely provided for maximum
data throughput performance especially when operating in a multi-channel
environment. The FIFO memory greatly reduces the bandwidth requirement of the
external controlling CPU, increases performance, and reduces power consumption.
The SC16C2550 is capable of operation up to 5 Mbits/s with a 80 MHz clock. With a
crystal or external clock input of 7.3728 MHz, the user can select data rates up to
460.8 kbits/s.
The rich feature set of the SC16C2550 is available through internal registers.
Selectable receive FIFO trigger levels, selectable TX and RX baud rates, and modem
interface controls are all standard features. Following a power-on reset or an external
reset, the SC16C2550 is software compatible with the previous generation,
ST16C2450.
6.1 UART A-B functions
The UART provides the user with the capability to bi-directionally transfer information
between an external CPU, the SC16C2550 package, and an external serial device. A
logic 0 on chip select pins CSA and/or CSB allows the user to configure, send data,
and/or receive data via UART channels A-B. Individual channel select functions are
shown in Table 3.
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 10 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
6.2 Internal registers
The SC16C2550 provides two sets of internal registers (A and B) consisting of
12 registers each for monitoring and controlling the functions of each channel of the
UART. These registers are shown in Table 4. The UART registers function as data
holding registers (THR/RHR), interrupt status and control registers (IER/ISR), a FIFO
control register (FCR), line status and control registers (LCR/LSR), modem status
and control registers (MCR/MSR), programmable data rate (clock) control registers
(DLL/DLM), and a user accessible scratchpad register (SPR).
[1] These registers are accessible only when LCR[7] is a logic 0.
[2] These registers are accessible only when LCR[7] is a logic 1.
[3] Enhanced Feature Register, Xon1, 2 and Xoff1, 2 are accessible only when the LCR is set to
‘BF(HEX)’.
Table 3: Serial port selection
Chip Select Function
CSA-CSB = 1 none
CSA = 0 UART channel A
CSB = 0 UART channel B
Table 4: Internal registers decoding
A2 A1 A0 READ mode WRITE mode
General register set (THR/RHR, IER/ISR, MCR/MSR, FCR, LSR, SPR)[1]
0 0 0 Receive Holding Register Transmit Holding Register
0 0 1 Interrupt Enable Register
0 1 0 Interrupt Status Register FIFO Control Register
0 1 1 Line Control Register
1 0 0 Modem Control Register
1 0 1 Line Status Register n/a
1 1 0 Modem Status Register n/a
1 1 1 Scratchpad Register Scratchpad Register
Baud rate register set (DLL/DLM)[2]
0 0 0 LSB of Divisor Latch LSB of Divisor Latch
0 0 1 MSB of Divisor Latch MSB of Divisor Latch
Enhanced register set (EFR, Xon/off 1-2)[3]
0 1 0 Enhanced Feature Register Enhanced Feature Register
1 0 0 Xon1 word Xon1 word
1 0 1 Xon2 word Xon2 word
1 1 0 Xoff1 word Xoff1 word
1 1 1 Xoff2 word Xoff2 word
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 11 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
6.3 FIFO operation
The 16 byte transmit and receive data FIFOs are enabled by the FIFO Control
Register (FCR) bit 0. The user can set the receive trigger level via FCR bits 6-7, but
not the transmit trigger level. The receiver FIFO section includes a time-out function
to ensure data is delivered to the external CPU. An interrupt is generated whenever
the Receive Holding Register (RHR) has not been read following the loading of a
character or the receive trigger level has not been reached.
6.4 Hardware flow control
When automatic hardware flow control is enabled, the SC16C2550 monitors the CTS
pin for a remote buffer overflow indication and controls the RTS pin for local buffer
overflows. Automatic hardware flow control is selected by setting EFR[6] (RTS) and
EFR[7] (CTS) to a logic 1. If CTS transitions from a logic 0 to a logic 1 indicating a
flow control request, ISR[5] will be set to a logic 1 (if enabled via IER[6,7]), and the
SC16C2550 will suspend TX transmissions as soon as the stop bit of the character in
process is shifted out. Transmission is resumed after the CTS input returns to a
logic 0, indicating more data may be sent.
With the Auto RTS function enabled, an interrupt is generated when the receive FIFO
reaches the programmed trigger level. The RTS pin will not be forced to a logic 1
(RTS off), until the receive FIFO reaches the next trigger level. However, the RTS pin
will return to a logic 0 after the data buffer (FIFO) is unloaded to the next trigger level
below the programmed trigger. However, under the above described conditions, the
SC16C2550 will continue to accept data until the receive FIFO is full.
6.5 Software flow control
When software flow control is enabled, the SC16C2550 compares one or two
sequential receive data characters with the programmed Xon/Xoff or Xoff1,2
character value(s). If received character(s) match the programmed values, the
SC16C2550 will halt transmission (TX) as soon as the current character(s) has
completed transmission. When a match occurs, the receive ready (if enabled via Xoff
IER[5]) flags will be set and the interrupt output pin (if receive interrupt is enabled) will
be activated. Following a suspension due to a match of the Xoff characters’ values,
the SC16C2550 will monitor the receive data stream for a match to the Xon1,2
character value(s). If a match is found, the SC16C2550 will resume operation and
clear the flags (ISR[4]).
Reset initially sets the contents of the Xon/Xoff 8-bit flow control registers to a logic 0.
Following reset, the user can write any Xon/Xoff value desired for software flow
control. Different conditions can be set to detect Xon/Xoff characters and
suspend/resume transmissions. When double 8-bit Xon/Xoff characters are selected,
Table 5: Flow control mechanism
Selected trigger level
(characters) INT pin activation Negate RTS or
send Xoff Assert RTS or
send Xon
1141
4484
8 8 12 8
14 14 14 10
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 12 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
the SC16C2550 compares two consecutive receive characters with two software flow
control 8-bit values (Xon1, Xon2, Xoff1, Xoff2) and controls TX transmissions
accordingly. Under the above described flow control mechanisms, flow control
characters are not placed (stacked) in the user accessible RX data buffer or FIFO.
In the event that the receive buffer is overfilling and flow control needs to be executed,
the SC16C2550 automatically sends an Xoff message (when enabled) via the serial
TX output to the remote modem. The SC16C2550 sends the Xoff1,2 characters as
soon as received data passes the programmed trigger level. To clear this condition,
the SC16C2550 will transmit the programmed Xon1,2 characters as soon as receive
data drops below the programmed trigger level.
6.6 Special feature software flow control
A special feature is provided to detect an 8-bit character when EFR[5] is set. When
8-bit character is detected, it will be placed on the user-accessible data stack along
with normal incoming RX data. This condition is selected in conjunction with
EFR[0-3]. Note that software flow control should be turned off when using this special
mode by setting EFR[0-3] to a logic 0.
The SC16C2550 compares each incoming receive character with Xoff2 data. If a
match exists, the received data will be transferred to the FIFO, and ISR[4] will be set
to indicate detection of a special character. Although the Internal Register Table
(Table 7) shows each X-Register with eight bits of character information, the actual
number of bits is dependent on the programmed word length. Line Control Register
bits LCR[0-1] define the number of character bits, i.e., either 5 bits, 6 bits, 7 bits or
8 bits. The word length selected by LCR[0-1] also determine the number of bits that
will be used for the special character comparison. Bit 0 in the X-registers corresponds
with the LSB bit for the receive character.
6.7 Hardware/software and time-out interrupts
The interrupts are enabled by IER[0-3]. Care must be taken when handling these
interrupts. Following a reset, if Interrupt Enable Register (IER) bit 1 = 1, the
SC16C2550 will issue a Transmit Holding Register interrupt. This interrupt must be
serviced prior to continuing operations. The LSR register provides the current
singular highest priority interrupt only. It could be noted that CTS and RTS interrupts
have lowest interrupt priority. A condition can exist where a higher priority interrupt
may mask the lower priority CTS/RTS interrupt(s). Only after servicing the higher
pending interrupt will the lower priority CTS/RTS interrupt(s) be reflected in the status
register. Servicing the interrupt without investigating further interrupt conditions can
result in data errors.
When two interrupt conditions have the same priority, it is important to service these
interrupts correctly. Receive Data Ready and Receive Time Out have the same
interrupt priority (when enabled by IER[3]). The receiver issues an interrupt after the
number of characters have reached the programmed trigger level. In this case, the
SC16C2550 FIFO may hold more characters than the programmed trigger level.
Following the removal of a data byte, the user should re-check LSR[0] for additional
characters. A Receive Time Out will not occur if the receive FIFO is empty. The
time-out counter is reset at the center of each stop bit received or each time the
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 13 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
receive holding register (RHR) is read. The actual time-out value is 4 character time,
including data information length, start bit, parity bit, and the size of stop bit, i.e., 1×,
1.5×, or 2× bit times.
6.8 Programmable baud rate generator
The SC16C2550 supports high speed modem technologies that have increased input
data rates by employing data compression schemes. For example, a 33.6 kbit/s
modem that employs data compression may require a 115.2 kbit/s input data rate.
A 128.0 kbit/s ISDN modem that supports data compression may need an input
data rate of 460.8 kbit/s. The SC16C2550 can support a standard data rate of
921.6 kbit/s.
A single baud rate generator is provided for the transmitter and receiver, allowing
independent TX/RX channel control. The programmable Baud Rate Generator is
capable of operating with a frequency of up to 80 MHz. To obtain maximum data rate,
it is necessary to use full rail swing on the clock input. The SC16C2550 can be
configured for internal or external clock operation. For internal clock oscillator
operation, an industry standard microprocessor crystal is connected externally
between the XTAL1 and XTAL2 pins. Alternatively, an external clock can be
connected to the XTAL1 pin to clock the internal baud rate generator for standard or
custom rates (see Table 6).
The generator divides the input 16× clock by any divisor from 1 to 216 1. The
SC16C2550 divides the basic external clock by 16. The basic 16× clock provides
table rates to support standard and custom applications using the same system
design. The rate table is configured via the DLL and DLM internal register functions.
Customized Baud Rates can be achieved by selecting the proper divisor values for
the MSB and LSB sections of baud rate generator.
Programming the Baud Rate Generator Registers DLM (MSB) and DLL (LSB)
provides a user capability for selecting the desired final baud rate. The example in
Table 6 shows the selectable baud rate table available when using a 1.8432 MHz
external clock input.
Fig 5. Crystal oscillator connection.
002aaa169
X1
1.8432 MHz
C1
68 pF C2
68 pF
XTAL1
XTAL2
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 14 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
6.9 DMA operation
The SC16C2550 FIFO trigger level provides additional flexibility to the user for block
mode operation. LSR[5,6] provide an indication when the transmitter is empty or has
an empty location(s). The user can optionally operate the transmit and receive FIFOs
in the DMA mode (FCR[3]). When the transmit and receive FIFOs are enabled and
the DMA mode is de-activated (DMA Mode 0), the SC16C2550 activates the interrupt
output pin for each data transmit or receive operation. When DMA mode is activated
(DMA Mode 1), the user takes the advantage of block mode operation by loading or
unloading the FIFO in a block sequence determined by the receive trigger level and
the transmit FIFO. In this mode, the SC16C2550 sets the TXRDY (or RXRDY) output
pin when characters in the transmit FIFO is below 16, or the characters in the receive
FIFOs are above the receive trigger level.
6.10 Loop-back mode
The internal loop-back capability allows on-board diagnostics. In the loop-back mode,
the normal modem interface pins are disconnected and reconfigured for loop-back
internally (see Figure 6). MCR[0-3] register bits are used for controlling loop-back
diagnostic testing. In the loop-back mode, the transmitter output (TX) and the receiver
input (RX) are disconnected from their associated interface pins, and instead are
connected together internally. The CTS, DSR, CD, and RI are disconnected from
their normal modem control inputs pins, and instead are connected internally to RTS,
DTR, MCR[3] (OP2) and MCR[2] (OP1). Loop-back test data is entered into the
transmit holding register via the user data bus interface, D0-D7. The transmit UART
serializes the data and passes the serial data to the receive UART via the internal
loop-back connection. The receive UART converts the serial data back into parallel
Table 6: Baud rate generator programming table using a 1.8432 MHz clock
Output
baud rate Output
16 ×clock divisor
(decimal)
Output
16 ×clock divisor
(HEX)
DLM
program value
(HEX)
DLL
program value
(HEX)
50 2304 900 09 00
75 1536 600 06 00
110 1047 417 04 17
150 768 300 03 00
300 384 180 01 80
600 192 C0 00 C0
1200 96 60 00 60
2400 48 30 00 30
3600 32 20 00 20
4800 24 18 00 18
7200 16 10 00 10
9600 12 0C 00 0C
19.2 k 6 06 00 06
38.4 k 3 03 00 03
57.6 k 2 02 00 02
115.2 k 1 01 00 01
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 15 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
data that is then made available at the user data interface D0-D7. The user optionally
compares the received data to the initial transmitted data for verifying error-free
operation of the UART TX/RX circuits.
In this mode, the receiver and transmitter interrupts are fully operational. The Modem
Control Interrupts are also operational.
Fig 6. Internal loop-back mode diagram.
TRANSMIT
FIFO
REGISTER
TXA, TXB
RECEIVE
SHIFT
REGISTER
RECEIVE
FIFO
REGISTER RXA, RXB
INTERCONNECT BUS LINES
AND
CONTROL SIGNALS
SC16C2550
TRANSMIT
SHIFT
REGISTER
MODEM
CONTROL
LOGIC
CLOCK AND
BAUD RATE
GENERATOR
XTAL2XTAL1
DATA BUS
AND
CONTROL LOGIC
D0–D7
IOR
IOW
RESET
A0–A2
CSA, CSB REGISTER
SELECT
LOGIC
INTA, INTB
TXRDYA, TXRD YB
RXRDYA, RXRDYB
INTERRUPT
CONTROL
LOGIC
002aaa120
MCR[4] = 1
CTSA, CTSB
RTSA, RTSB
DSRA, DSRB
DTRA, DTRB
RIA, RIB
(OP1A, OP1B)
CDA, CDB
(OP2A, OP2B)
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 16 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
7. Register descriptions
Table 7 details the assigned bit functions for the SC16C2550 internal registers. The
assigned bit functions are more fully defined in Section 7.1 through Section 7.11.
[1] The value shown in represents the register’s initialized HEX value; X = n/a.
[2] Accessible only when LCR[7] is logic 0.
[3] Baud rate registers accessible only when LCR[7] is logic 1.
[4] Enhanced Feature Register, Xon-1,2 and Xoff-1,2 are accessible only when LCR is set to ‘BFHex’.
Table 7: SC16C2550 internal registers
Shaded bits are only accessible when EFR[4] is set.
A2 A1 A0 Register Default[1] Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
General Register Set[2]
0 0 0 RHR XX bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0 0 0 THR XX bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0 0 1 IER 00 CTS
interrupt RTS
interrupt Xoff
interrupt Sleep
mode modem
status
interrupt
receive
line
status
interrupt
transmit
holding
register
interrupt
receive
holding
register
0 1 0 FCR 00 RCVR
trigger
(MSB)
RCVR
trigger
(LSB)
reserved
0reserved
0DMA
mode
select
XMIT
FIFO
reset
RCVR
FIFO
reset
FIFOs
enable
0 1 0 ISR 01 FIFOs
enabled FIFOs
enabled INT
priority
bit 4
INT
priority
bit 3
INT
priority
bit 2
INT
priority
bit 1
INT
priority
bit 0
INT
status
0 1 1 LCR 00 divisor
latch
enable
set break set parity even
parity parity
enable stop bits word
length
bit 1
word
length
bit 0
1 0 0 MCR 00 0 IR
enable 0 loop back OP2/INT
enable (OP1) RTS DTR
1 0 1 LSR 60 FIFO
data
error
THR and
TSR
empty
THR
empty break
interrupt framing
error parity
error overrun
error receive
data
ready
1 1 0 MSR X0 CD RI DSR CTS CD RI DSR CTS
1 1 1 SPR FF bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
Special Register Set[3]
0 0 0 DLL XX bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
0 0 1 DLM XX bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
Enhanced Register Set[4]
0 1 0 EFR 00 Auto
CTS Auto
RTS Special
char.
select
Enable
IER[4-7],
ISR[4,5],
FCR[4,5],
MCR[5-7]
Cont-3
Tx, Rx
Control
Cont-2
Tx, Rx
Control
Cont-1
Tx, Rx
Control
Cont-0
Tx, Rx
Control
1 0 0 Xon-1 00 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
1 0 1 Xon-2 00 bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
1 1 0 Xoff-1 00 bit 7 bit 6 bit 5 bit 4 bit 3 bit 2 bit 1 bit 0
1 1 1 Xoff-2 00 bit 15 bit 14 bit 13 bit 12 bit 11 bit 10 bit 9 bit 8
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 17 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
7.1 Transmit (THR) and Receive (RHR) Holding Registers
The serial transmitter section consists of an 8-bit Transmit Hold Register (THR) and
Transmit Shift Register (TSR). The status of the THR is provided in the Line Status
Register (LSR). Writing to the THR transfers the contents of the data bus (D7-D0) to
the TSR and UART via the THR, providing that the THR is empty. The THR empty
flag in the LSR register will be set to a logic 1 when the transmitter is empty or when
data is transferred to the TSR. Note that a write operation can be performed when the
THR empty flag is set (logic 0 = at least one byte in FIFO/THR, logic 1 = FIFO/THR
empty).
The serial receive section also contains an 8-bit Receive Holding Register (RHR) and
a Receive Serial Shift Register (RSR). Receive data is removed from the SC16C2550
and receive FIFO by reading the RHR register. The receive section provides a
mechanism to prevent false starts. On the falling edge of a start or false start bit, an
internal receiver counter starts counting clocks at the 16× clock rate. After 7-12
clocks, the start bit time should be shifted to the center of the start bit. At this time the
start bit is sampled, and if it is still a logic 0 it is validated. Evaluating the start bit in
this manner prevents the receiver from assembling a false character. Receiver status
codes will be posted in the LSR.
7.2 Interrupt Enable Register (IER)
The Interrupt Enable Register (IER) masks the interrupts from receiver ready,
transmitter empty, line status and modem status registers. These interrupts would
normally be seen on the INTA, INTB output pins.
Table 8: Interrupt Enable Register bits description
Bit Symbol Description
7 IER[7] CTS interrupt.
Logic 0 = Disable the CTS interrupt (normal default condition).
Logic 1 = Enable the CTS interrupt. The SC16C2550 issues an
interrupt when the CTS pin transitions from a logic 0 to a logic 1.
6 IER[6] RTS interrupt.
Logic 0 = Disable the RTS interrupt (normal default condition).
Logic 1 = Enable the RTS interrupt. The SC16C2550 issues an
interrupt when the RTS pin transitions from a logic 0 to a logic 1.
5 IER[5] Xoff interrupt.
Logic 0 = Disable the software flow control, receiveXoff interrupt
(normal default condition).
Logic 1 = Enable the software flow control, receive Xoff interrupt.
4 IER[4] Sleep mode.
Logic 0 = Disable sleep mode (normal default condition).
Logic 1 = Enable sleep mode.
3 IER[3] Modem Status Interrupt. This interrupt will be issued whenever
there is a modem status change as reflected in MSR[0-3].
Logic 0 = Disable the modem status register interrupt (normal
default condition).
Logic 1 = Enable the modem status register interrupt.
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 18 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
7.2.1 IER versus Transmit/Receive FIFO interrupt mode operation
When the receive FIFO (FCR[0] = logic 1), and receive interrupts (IER[0] = logic 1)
are enabled, the receive interrupts and register status will reflect the following:
The receive RXRDY interrupt (Level 2 ISR interrupt) is issued to the external CPU
when the receive FIFO has reached the programmed trigger level. It will be cleared
when the receive FIFO drops below the programmed trigger level.
Receive FIFO status will also be reflected in the user accessible ISR register when
the receive FIFO trigger level is reached. Both the ISR register receive status bit
and the interrupt will be cleared when the FIFO drops below the trigger level.
The receive data ready bit (LSR[0]) is set as soon as a character is transferred
from the shift register (RSR) to the receive FIFO. It is reset when the FIFO is
empty.
When the Transmit FIFO and interrupts are enabled, an interrupt is generated
when the transmit FIFO is empty due to the unloading of the data by the TSR and
UART for transmission via the transmission media. The interrupt is cleared either
by reading the ISR register, or by loading the THR with new data characters.
2 IER[2] Receive Line Status interrupt. This interrupt will be issued
whenever a receive data error condition exists as reflected in
LSR[1-4].
Logic 0 = Disable the receiver line status interrupt (normal
default condition).
Logic 1 = Enable the receiver line status interrupt.
1 IER[1] Transmit Holding Register interrupt. In the 16C450 mode, this
interrupt will be issued whenever the THR is empty, and is
associated with LSR[5]. In the FIFO modes, this interrupt will be
issued whenever the FIFO is empty.
Logic 0 = Disable the Transmit Holding Register Empty (TXRDY)
interrupt (normal default condition).
Logic 1 = Enable the TXRDY (ISR level 3) interrupt.
0 IER[0] Receive Holding Register. In the 16C450 mode, this interrupt will
be issued when the RHR has data, or is cleared when the RHR is
empty. In the FIFO mode, this interrupt will be issued when the
FIFO has reached the programmed trigger level or is cleared when
the FIFO drops below the trigger level.
Logic 0 = Disable the receiver ready (ISR level 2, RXRDY)
interrupt (normal default condition).
Logic 1 = Enable the RXRDY (ISR level 2) interrupt.
Table 8: Interrupt Enable Register bits description
…continued
Bit Symbol Description
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 19 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
7.2.2 IER versus Receive/Transmit FIFO polled mode operation
When FCR[0] = logic 1, resetting IER[0-3] enables the SC16C2550 in the FIFO
polled mode of operation. In this mode, interrupts are not generated and the user
must poll the LSR register for TX and/or RX data status. Since the receiver and
transmitter have separate bits in the LSR either or both can be used in the polled
mode by selecting respective transmit or receive control bit(s).
LSR[0] will be a logic 1 as long as there is one byte in the receive FIFO.
LSR[1-4] will provide the type of receive errors, or a receive break, if encountered.
LSR[5] will indicate when the transmit FIFO is empty.
LSR[6] will indicate when both the transmit FIFO and transmit shift register are
empty.
LSR[7] will show if any FIFO data errors occurred.
7.3 FIFO Control Register (FCR)
This register is used to enable the FIFOs, clear the FIFOs, set the receive FIFO
trigger levels, and select the DMA mode.
7.3.1 DMA mode
Mode 0 (FCR bit 3 = 0): Set and enable the interrupt for each single transmit or
receive operation, and is similar to the 16C450 mode. Transmit Ready (TXRDY) on
PLCC44 and LQFP48 packages will go to a logic 0 whenever the FIFO (THR, if FIFO
is not enabled) is empty. Receive Ready (RXRDY) on PLCC44 and LQFP48
packages will go to a logic 0 whenever the Receive Holding Register (RHR) is loaded
with a character.
Mode 1 (FCR bit 3 = 1): Set and enable the interrupt in a block mode operation. The
transmit interrupt is set when the transmit FIFO is empty. TXRDY on PLCC and
LQFP48 packages remains a logic 0 as long as one empty FIFO location is available.
The receive interrupt is set when the receive FIFO fills to the programmed trigger
level. However, the FIFO continues to fill regardless of the programmed level until the
FIFO is full. RXRDY on PLCC44 and LQFP48 packages transitions LOW when the
FIFO reaches the trigger level, and transitions HIGH when the FIFO empties.
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 20 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
7.3.2 FIFO mode
Table 9: FIFO Control Register bits description
Bit Symbol Description
7-6 FCR[7]
(MSB),
FCR[6]
(LSB)
RCVR trigger. These bits are used to set the trigger level for the
receive FIFO interrupt.
Logic 0 (or cleared) = normal default condition.
Logic 1 = RX trigger level.
An interrupt is generated when the number of characters in the
FIFO equals the programmed trigger level. However, the FIFO will
continue to be loaded until it is full. Refer to Table 10.
5-4 FCR[5-4] Not used; initialized to logic 0.
3 FCR[3] DMA mode select.
Logic 0 = Set DMA mode ‘0’
Logic 1 = Set DMA mode ‘1’
Transmit operation in mode ‘0’: When the SC16C2550 is in the
16C450 mode (FIFOs disabled; FCR[0] = logic 0) or in the FIFO
mode (FIFOs enabled; FCR[0] = logic 1; FCR[3] = logic 0), and
when there are no characters in the transmit FIFO or transmit
holding register, the TXRDY pin in PLCC44 or LQFP48 packages
will be a logic 0. Once active, the TXRDY pin will go to a logic 1
after the first character is loaded into the transmit holding register.
Receive operation in mode ‘0’: When the SC16C2550 is in
mode ‘0’ (FCR[0] = logic 0), or in the FIFO mode (FCR[3] = logic 0)
and there is at lease one character in the receive FIFO, the
RXRDY pin will be a logic 0. Once active, the RXRDY pin on
PLCC44 and LQFP48 packages will go to a logic 1 when there are
no more characters in the receiver.
Transmit operation in mode ‘1’: When the SC16C2550 is in
FIFO mode (FCR[0] = logic 1; FCR[3] = logic 1), the TXRDY pin on
PLCC44 and LQFP48 packages will be a logic 1 when the transmit
FIFO is completely full. It will be a logic 0 if one or more FIFO
locations are empty.
Receive operation in mode ‘1’: When the SC16C2550 is in FIFO
mode (FCR[0] = logic 1; FCR[3] = logic 1) and the trigger level has
been reached, or a Receive Time-Out has occurred, the RXRDY
pin on PLCC44 and LQFP48 packages will go to a logic 0. Once
activated, it will go to a logic 1 after there are no more characters in
the FIFO.
2 FCR[2] XMIT FIFO reset.
Logic 0 = Transmit FIFO not reset (normal default condition).
Logic 1 = Clears the contents of the transmit FIFO and resets
the FIFO counter logic (the transmit shift register is not cleared
or altered). This bit will return to a logic 0 after clearing the FIFO.
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 21 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
7.4 Interrupt Status Register (ISR)
The SC16C2550 provides four levels of prioritized interrupts to minimize external
software interaction. The Interrupt Status Register (ISR) provides the user with four
interrupt status bits. Performing a read cycle on the ISR will provide the user with the
highest pending interrupt level to be serviced. No other interrupts are acknowledged
until the pending interrupt is serviced. A lower level interrupt may be seen after
servicing the higher level interrupt and re-reading the interrupt status bits. Table 11
“Interrupt source” shows the data values (bits 0-3) for the four prioritized interrupt
levels and the interrupt sources associated with each of these interrupt levels.
1 FCR[1] RCVR FIFO reset.
Logic 0 = Receive FIFO not reset (normal default condition).
Logic 1 = Clears the contents of the receive FIFO and resets the
FIFO counter logic (the receive shift register is not cleared or
altered). This bit will return to a logic 0 after clearing the FIFO.
0 FCR[0] FIFOs enabled.
Logic 0 = Disable the transmit and receive FIFO (normal default
condition).
Logic 1 = Enable the transmit and receive FIFO. This bit must
be a ‘1’ when other FCR bits are written to, or they will not
be programmed.
Table 10: RCVR trigger levels
FCR[7] FCR[6] RX FIFO trigger level
0001
0104
1008
1114
Table 9: FIFO Control Register bits description
…continued
Bit Symbol Description
Table 11: Interrupt source
Priority
level ISR[5] ISR[4] ISR[3] ISR[2] ISR[1] ISR[0] Source of the interrupt
1 000110LSR(Receiver Line Status
Register)
2 000100RXRDY (Received Data
Ready)
2 001100RXRDY (Receive Data
time-out)
3 000010TXRDY (Transmitter
Holding Register Empty)
4 000000MSR (Modem Status
Register)
5 010000RXRDY (Received Xoff
signal) / Special character
6 100000CTS, RTS change of state
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 22 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
7.5 Line Control Register (LCR)
The Line Control Register is used to specify the asynchronous data communication
format. The word length, the number of stop bits, and the parity are selected by
writing the appropriate bits in this register.
Table 12: Interrupt Status Register bits description
Bit Symbol Description
7-6 ISR[7-6] FIFOs enabled. These bits are set to a logic 0 when the FIFOs are
not being used in the 16C450 mode. They are set to a logic 1
when the FIFOs are enabled in the SC16C2550 mode.
Logic 0 or cleared = default condition.
5-4 ISR[5-4] INT priority bits 4-3. These bits are enabled when EFR[4] is set to
a logic 1. ISR[4] indicates that matching Xoff character(s) have
been detected. ISR[5] indicates that CTS, RTS have been
generated. Note that once set to a logic 1, the ISR[4] bit will stay a
logic 1 until Xon character(s) are received.
Logic 0 or cleared = default condition.
3-1 ISR[3-1] INT priority bits 2-0. These bits indicate the source for a pending
interrupt at interrupt priority levels 1, 2, and 3 (see Table 11).
Logic 0 or cleared = default condition.
0 ISR[0] INT status.
Logic 0 = An interrupt is pending and the ISR contents may be
used as a pointer to the appropriate interrupt service routine.
Logic 1 = No interrupt pending (normal default condition).
Table 13: Line Control Register bits description
Bit Symbol Description
7 LCR[7] Divisor latch enable. The internal baud rate counter latch and
Enhance Feature mode enable.
Logic 0 = Divisor latch disabled (normal default condition).
Logic 1 = Divisor latch enabled.
6 LCR[6] Set break. When enabled, the Break control bit causes a break
condition to be transmitted (the TX output is forced to a logic 0
state). This condition exists until disabled by setting LCR[6] to a
logic 0.
Logic 0 = no TX break condition (normal default condition)
Logic 1 = forces the transmitter output (TX) to a logic 0 for
alerting the remote receiver to a line break condition.
5-3 LCR[5-3] Programs the parity conditions (see Table 14).
2 LCR[2] Stop bits. The length of stop bit is specified by this bit in
conjunction with the programmed word length (see Table 15).
Logic 0 or cleared = default condition.
1-0 LCR[1-0] Word length bits 1, 0. These two bits specify the word length to be
transmitted or received (see Table 16).
Logic 0 or cleared = default condition.
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 23 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
Table 14: LCR[5-3] parity selection
LCR[5] LCR[4] LCR[3] Parity selection
X X 0 no parity
X 0 1 ODD parity
0 1 1 EVEN parity
001forced parity ‘1’
111forced parity ‘0’
Table 15: LCR[2] stop bit length
LCR[2] Word length Stop bit length (bit times)
0 5, 6, 7, 8 1
15 1-
12
1 6, 7, 8 2
Table 16: LCR[1-0] word length
LCR[1] LCR[0] Word length
005
016
107
118
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 24 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
7.6 Modem Control Register (MCR)
This register controls the interface with the modem or a peripheral device.
Table 17: Modem Control Register bits description
Bit Symbol Description
7 MCR[7] Reserved; set to ‘0’.
6 MCR[6] IR enable.
Logic 0 = Enable the standard modem receive and transmit
input/output interface (normal default condition).
Logic 1 = Enable infrared IrDA receive and transmit inputs/outputs.
While in this mode, the TX/RX output/inputs are routed to the
infrared encoder/decoder. The data input and output levels will
conform to the IrDA infrared interface requirement. As such, while
in this mode, the infrared TX output will be a logic 0 during idle data
conditions.
5 MCR[5] Reserved; set to ‘0’.
4 MCR[4] Loop-back. Enable the local loop-back mode (diagnostics). In this
mode the transmitter output (TX) and the receiver input (RX), CTS,
DSR, CD, and RI are disconnected from the SC16C2550 I/O pins.
Internally the modem data and control pins are connected into a
loop-back data configuration (see Figure 6). In this mode, the receiver
and transmitter interrupts remain fully operational. The Modem
Control Interrupts are also operational, but the interrupts’ sources are
switched to the lower four bits of the Modem Control. Interrupts
continue to be controlled by the IER register.
Logic 0 = Disable loop-back mode (normal default condition).
Logic 1 = Enable local loop-back mode (diagnostics).
3 MCR[3] OP2/INT enable
Logic 0 = Forces INT (A-B) outputs to the 3-State mode and sets
OP2 to a logic 1 (normal default condition).
Logic 1 = Forces the INT (A-B outputs to the active mode and sets
OP2 to a logic 0.
2 MCR[2] (OP1). OP1A/OP1B are not available as an external signal in the
SC16C2550. This bit is instead used in the Loop-back mode only. In
the loop-back mode, this bit is used to write the state of the modem RI
interface signal.
1 MCR[1] RTS
Logic 0 = Force RTS output to a logic 1 (normal default condition).
Logic1=Force RTS output to a logic 0.
0 MCR[0] DTR
Logic 0 = Force DTR output to a logic 1 (normal default condition).
Logic 1 = Force DTR output to a logic 0.
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 25 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
7.7 Line Status Register (LSR)
This register provides the status of data transfers between the SC16C2550 and
the CPU.
Table 18: Line Status Register bits description
Bit Symbol Description
7 LSR[7] FIFO data error.
Logic 0 = No error (normal default condition).
Logic 1 = At least one parity error, framing error or break
indication is in the current FIFO data. This bit is cleared when
there are no remaining error flags associated with the remaining
data in the FIFO.
6 LSR[6] THR and TSR empty. This bit is the Transmit Empty indicator. This
bit is set to a logic 1 whenever the transmit holding register and the
transmit shift register are both empty. It is reset to logic 0 whenever
either the THR or TSR contains a data character. In the FIFO
mode, this bit is set to ‘1’ whenever the transmit FIFO and transmit
shift register are both empty.
5 LSR[5] THR empty. This bit is the Transmit Holding Register Empty
indicator. This bit indicates that the UART is ready to accept a new
character for transmission. In addition, this bit causes the UART to
issue an interrupt to CPU when the THR interrupt enable is set.
The THR bit is set to a logic 1 when a character is transferred from
the transmit holding register into the transmitter shift register. The
bit is reset to a logic 0 concurrently with the loading of the
transmitter holding register by the CPU. In the FIFO mode, this bit
is set when the transmit FIFO is empty; it is cleared when at least
1 byte is written to the transmit FIFO.
4 LSR[4] Break interrupt.
Logic 0 = No break condition (normal default condition).
Logic 1 = The receiver received a break signal (RX was a logic 0
for one character frame time). In the FIFO mode, only one break
character is loaded into the FIFO.
3 LSR[3] Framing error.
Logic 0 = No framing error (normal default condition).
Logic 1 = Framing error. The receive character did not have a
valid stop bit(s). In the FIFO mode, this error is associated with
the character at the top of the FIFO.
2 LSR[2] Parity error.
Logic 0 = No parity error (normal default condition.
Logic 1 = Parity error. The receive character does not have
correct parity information and is suspect. In the FIFO mode, this
error is associated with the character at the top of the FIFO.
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 26 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
7.8 Modem Status Register (MSR)
This register provides the current state of the control interface signals from the
modem, or other peripheral device to which the SC16C2550 is connected. Four bits
of this register are used to indicate the changed information. These bits are set to a
logic 1 whenever a control input from the modem changes state. These bits are set to
a logic 0 whenever the CPU reads this register.
1 LSR[1] Overrun error.
Logic 0 = No overrun error (normal default condition).
Logic1=Overrun error. A data overrun error occurred in the
receive shift register. This happens when additional data arrives
while the FIFO is full. In this case, the previous data in the shift
register is overwritten. Note that under this condition, the data
byte in the receive shift register is not transferred into the FIFO,
therefore the data in the FIFO is not corrupted by the error.
0 LSR[0] Receive data ready.
Logic 0 = No data in receive holding register or FIFO (normal
default condition).
Logic 1 = Data has been received and is saved in the receive
holding register or FIFO.
Table 18: Line Status Register bits description
…continued
Bit Symbol Description
Table 19: Modem Status Register bits description
Bit Symbol Description
7 MSR[7] CD. During normal operation, this bit is the complement of the CD
input. Reading this bit in the loop-back mode produces the state of
MCR[3] (OP2).
6 MSR[6] RI. During normal operation, this bit is the complement of the RI
input. Reading this bit in the loop-back mode produces the state of
MCR[2] (OP1).
5 MSR[5] DSR. During normal operation, this bit is the complement of the
DSR input. During the loop-back mode, this bit is equivalent to
MCR[0] (DTR).
4 MSR[4] CTS. During normal operation, this bit is the complement of the
CTS input. During the loop-back mode, this bit is equivalent to
MCR[1] (RTS).
3 MSR[3] CD [1]
Logic 0 = No CD change (normal default condition).
Logic 1 = The CD input to the SC16C2550 has changed state
since the last time it was read. A modem Status Interrupt will be
generated.
2 MSR[2] RI [1]
Logic 0 = No RI change (normal default condition).
Logic 1 = The RI input to the SC16C2550 has changed from a
logic 0 to a logic 1. A modem Status Interrupt will be generated.
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 27 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
[1] Whenever any MSR bit 0-3 is set to logic 1, a Modem Status Interrupt will be generated.
7.9 Scratchpad Register (SPR)
The SC16C2550 provides a temporary data register to store 8 bits of user
information.
7.10 Enhanced Feature Register (EFR)
Enhanced features are enabled or disabled using this register.
Bits 0 through 4 provide single or dual character software flow control selection.
When the Xon1 and Xon2 and/or Xoff1 and Xoff2 modes are selected, the double
8-bit words are concatenated into two sequential numbers.
1 MSR[1] DSR [1]
Logic 0 = No DSR change (normal default condition).
Logic1=TheDSR input to the SC16C2550 has changed state
since the last time it was read. A modem Status Interrupt will be
generated.
0 MSR[0] CTS [1]
Logic 0 = No CTS change (normal default condition).
Logic 1 = The CTS input to the SC16C2550 has changed state
since the last time it was read. A modem Status Interrupt will be
generated.
Table 19: Modem Status Register bits description
…continued
Bit Symbol Description
Table 20: Enhanced Feature Register bits description
Bit Symbol Description
7 EFR[7] Automatic CTS flow control.
Logic0=Automatic CTS flow control is disabled (normal default
condition).
Logic 1 = Enable Automatic CTS flow control. Transmission will stop
when CTS goes to a logical 1. Transmission will resume when the CTS
pin returns to a logical 0.
6 EFR[6] Automatic RTS flow control. Automatic RTS may be used for hardware flow
control by enabling EFR[6]. When Auto-RTS is selected, an interrupt will
be generated when the receive FIFO is filled to the programmed trigger
level and RTS will go to a logic 1 at the next trigger level. RTS will return to
a logic 0 when data is unloaded below the next lower trigger level
(programmed trigger level 1). The state of this register bit changes with the
status of the hardware flow control. RTS functions normally when
hardware flow control is disabled.
0 = Automatic RTS flow control is disabled (normal default condition).
1 = Enable Automatic RTS flow control.
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 28 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
[1] When using a software flow control the Xon/Xoff characters cannot be used for data transfer.
5 EFR[5] Special Character Detect.
Logic 0 = Special character detect disabled (normal default condition).
Logic 1 = Special character detect enabled. The SC16C2550 compares
each incoming receive character with Xoff2 data. If a match exists, the
received data will be transferred to FIFO and ISR[4] will be set to
indicate detection of special character. Bit-0 in the X-registers
corresponds with the LSB bit for the receive character. When this feature
is enabled, the normal software flow control must be disabled (EFR[3-0]
must be set to a logic 0).
4 EFR[4] Enhanced function control bit. The content of IER[7-4], ISR[5-4], FCR[5-4],
and MCR[7-5] can be modified and latched. After modifying any bits in the
enhanced registers, EFR[4] can be set to a logic 0 to latch the new values.
This feature prevents existing software from altering or overwriting the
SC16C2550 enhanced functions.
Logic 0 = disable/latch enhanced features. IER[7-4], ISR[5-4], FCR[5-4],
and MCR[7-5] are saved to retain the user settings, then IER[7-4]
ISR[5-4], FCR[5-4], and MCR[7-5] are set to a logic 0 to be compatible
with SC16C554 mode. (Normal default condition.)
Logic 1 = Enables the enhanced functions. When this bit is set to a
logic 1, all enhanced features of the SC16C2550 are enabled and user
settings stored during a reset will be restored.
3-0 EFR[3-0] Cont-3-0 Tx, Rx control. Logic 0 or cleared is the default condition.
Combinations of software flow control can be selected by programming
these bits. See Table 21.
Table 21: Software flow control functions[1]
Cont-3 Cont-2 Cont-1 Cont-0 TX, RX software flow controls
0 0 X X No transmit flow control
1 0 X X Transmit Xon1/Xoff1
0 1 X X Transmit Xon2/Xoff2
1 1 X X Transmit Xon1 and Xon2/Xoff1 and Xoff2
X X 0 0 No receive flow control
X X 1 0 Receiver compares Xon1/Xoff1
X X 0 1 Receiver compares Xon2/Xoff2
1 0 1 1 Transmit Xon1/Xoff1
Receiver compares Xon1 and Xon2, Xoff1 and Xoff2
0 1 1 1 Transmit Xon2/Xoff2
Receiver compares Xon1 and Xon2/Xoff1 and Xoff2
1 1 1 1 Transmit Xon1 and Xon2/Xoff1 and Xoff2
Receiver compares Xon1 and Xon2/Xoff1 and Xoff2
Table 20: Enhanced Feature Register bits description
…continued
Bit Symbol Description
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 29 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
7.11 SC16C2550 external reset condition
8. Limiting values
Table 22: Reset state for registers
Register Reset state
IER IER[7-0] = 0
FCR FCR[7-0] = 0
ISR ISR[7-1] = 0; ISR[0] = 1
LCR LCR[7-0] = 0
MCR MCR[7-0] = 0
LSR LSR[7] = 0; LSR[6-5] = 1; LSR[4-0] = 0
MSR MSR[7-4] = input signals; MSR[3-0] = 0
SPR SFR[7-0] = 1
DLL DLL[7-0] = X
DLM DLM[7-0] = X
Table 23: Reset state for outputs
Output Reset state
TXA, TXB Logic 1
OP2A, OP2B Logic 1
RTSA, RTSB Logic 1
DTRA, DTRB Logic 1
INTA, INTB 3-State condition
Table 24: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134).
Symbol Parameter Conditions Min Max Unit
VCC supply voltage - 7 V
Vnvoltage at any pin GND 0.3 VCC + 0.3 V
Tamb operating temperature 40 +85 °C
Tstg storage temperature 65 +150 °C
Ptot(pack) total power dissipation
per package - 500 mW
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 30 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
9. Static characteristics
[1] Except x2, VOL = 1 V typical.
Table 25: DC electrical characteristics
T
amb
=
40
°
C to +85
°
C; V
CC
= 2.5 V, 3.3 V or 5.0 V
±
10%, unless otherwise specified.
Symbol Parameter Conditions 2.5 V 3.3 V 5.0 V Unit
Min Max Min Max Min Max
VIL(CK) LOW-level clock input voltage 0.3 0.45 0.3 0.6 0.5 0.6 V
VIH(CK) HIGH-level clock input voltage 1.8 VCC 2.4 VCC 3.0 VCC V
VIL LOW-level input voltage
(except X1 clock) 0.3 0.65 0.3 0.8 0.5 0.8 V
VIH HIGH-level input voltage
(except X1 clock) 1.6 - 2.0 - 2.2 - V
VOL LOW-level output voltage
on all outputs[1] IOL =5mA
(databus) -----0.4V
IOL =4mA
(other outputs) ---0.4--V
IOL =2mA
(databus) -0.4----V
IOL = 1.6 mA
(other outputs) -0.4----V
VOH HIGH-level output voltage IOH =5mA
(databus) ----2.4-V
IOH =1mA
(other outputs) --2.0---V
IOH =800 µA
(data bus) 1.85 -----V
IOH =400 µA
(other outputs) 1.85 -----V
ILIL LOW-level input leakage
current -±10 - ±10 - ±10 µA
ICL clock leakage - ±30 - ±30 - ±30 µA
ICC supply current f = 5 MHz - 3.5 - 4.5 - 4.5 mA
Ciinput capacitance - 5 - 5 - 5 pF
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 31 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
10. Dynamic characteristics
[1] Applies to external clock, crystal oscillator max 24 MHz.
[2]
= 333 ns (for Baudratemax = 1.5 Mbits/s)
= 1 µs (for Baudratemax = 460.8 kbits/s)
= 4 µs (for Baudratemax = 115.2 kbits/s)
[3] When in both DMA mode 0 and FIFO enable mode, the write cycle delay should be larger than one x1, clock cycle.
Table 26: AC electrical characteristics
T
amb
=
40
°
C to +85
°
C; V
CC
= 2.5 V, 3.3 V or 5.0 V
±
10%, unless otherwise specified.
Symbol Parameter Conditions 2.5 V 3.3 V 5.0 V Unit
Min Max Min Max Min Max
t1w, t2w clock pulse duration 10 - 6 - 6 - ns
t3w oscillator/clock frequency [1] - 48 - 80 80 MHz
t6s address set-up time 0 - 0 - 0 - ns
t6h address hold time 0 - 0 - 0 - ns
t7d IOR delay from chip select 10 - 10 - 10 - ns
t7w IOR strobe width 25 pF load 77 - 26 - 23 - ns
t7h chip select hold time from IOR 0 - 0 - 0 - ns
t9d read cycle delay 25 pF load 20 - 20 - 20 - ns
t12d delay from IOR to data 25 pF load - 77 - 26 - 23 ns
t12h data disable time 25 pF load - 15 - 15 - 15 ns
t13d IOW delay from chip select 10 - 10 - 10 - ns
t13w IOW strobe width 20 -[2] 20 -[2] 15 -[2] ns
t13h chip select hold time from IOW 0-0-0-ns
t15d write cycle delay [3] 25 - 25 - 20 - ns
t16s data set-up time 20 - 20 - 15 - ns
t16h data hold time 15 - 5 - 5 - ns
t17d delay from IOW to output 25 pF load - 100 - 33 - 29 ns
t18d delay to set interrupt from Modem
input 25 pF load - 100 - 24 - 23 ns
t19d delay to reset interrupt from IOR 25 pF load - 100 - 24 - 23 ns
t20d delay from stop to set interrupt - 1 - 1 - 1 Rclk
t21d delay from IOR to reset interrupt 25 pF load - 100 - 29 - 28 ns
t22d delay from start to set interrupt - 100 - 45 - 40 ns
t23d delay from IOW to transmit start 8 24 8 24 8 24 Rclk
t24d delay from IOW to reset interrupt - 100 - 45 - 40 ns
t25d delay from stop to set RXRDY -1-1-1R
clk
t26d delay from IOR to reset RXRDY - 100 - 45 - 40 ns
t27d delay from IOW to set TXRDY - 100 - 45 - 40 ns
t28d delay from start to reset TXRDY -8-8-8R
clk
tRESET Reset pulse width 200 - 40 - 40 - ns
N baud rate divisor 1 216 11 2
16 11 2
16 1R
clk
IOWstrobemax 1
2Baudratemax
()
--------------------------------------
=
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 32 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
10.1 Timing diagrams
Fig 7. General write timing.
DATA
ACTIVE
ACTIVE
VALID
ADDRESS
002aaa109
t6s t13h
t13d t13w t15d
t16s t16h
A0–A2
CSx
IOW
D0–D7
t6h
Fig 8. General read timing.
DATA
ACTIVE
ACTIVE
VALID
ADDRESS
002aaa110
t6s t7h
t7d t7w t9d
t12d t12h
A0–A2
CSx
IOR
D0–D7
t6h
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 33 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
Fig 9. Modem input/output timing.
t17d
ACTIVEIOW
CHANGE OF STATE CHANGE OF STATE
RTS
DTR
DCD
CTS
DSR
CHANGE OF STATE CHANGE OF STATE
CHANGE OF STATE
ACTIVE ACTIVE ACTIVE
t18d t18d
INT
ACTIVE ACTIVE ACTIVEIOR
RI
t19d
002aaa111
t18d
Fig 10. External clock timing.
t
2w
EXTERNAL
CLOCK
002aaa112
t
1w
t
3w
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 34 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
Fig 11. Receive timing.
D0 D1 D2 D3 D4 D5 D6 D7
ACTIVE
ACTIVE
16 BAUD RATE CLOCK
002aaa113
t21d
NEXT
DATA
START
BIT
STOP
BIT
PARITY
BIT
START
BIT
t20d
RX
INT
IOR
DATA BITS (5-8)
5 DATA BITS
6 DATA BITS
7 DATA BITS
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 35 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
Fig 12. Receive ready timing in non-FIFO mode.
D0 D1 D2 D3 D4 D5 D6 D7
ACTIVE
DATA
READY
ACTIVE
002aaa114
t
26d
NEXT
DATA
START
BIT
STOP
BIT
PARITY
BIT
START
BIT
t
25d
RX
RXRDY
IOR
DATA BITS (5–8)
Fig 13. Receive ready timing in FIFO mode.
D0 D1 D2 D3 D4 D5 D6 D7
ACTIVE
DATA
READY
ACTIVE
002aaa115
t
26d
STOP
BIT
PARITY
BIT
START
BIT
t
25d
RX
RXRDY
IOR
DATA BITS (5–8)
FIRST BYTE THAT
REACHES THE
TRIGGER LEVEL
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 36 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
Fig 14. Transmit timing.
D0 D1 D2 D3 D4 D5 D6 D7
ACTIVE TX READ Y
ACTIVE
16 BAUD RATE CLOCK
002aaa116
t
24d
NEXT
DATA
START
BIT
STOP
BIT
PARITY
BIT
START
BIT
t
22d
TX
INT
IOW
DATA BITS (5–8)
5 DATA BITS
6 DATA BITS
7 DATA BITS
ACTIVE
t
23d
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 37 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
Fig 15. Transmit ready timing in non-FIFO mode.
D0 D1 D2 D3 D4 D5 D6 D7
TRANSMITTER
NOT READY
002aaa117
NEXT
DATA
START
BIT
STOP
BIT
PARITY
BIT
START
BIT
t27d
TX
TXRDY
IOW
DATA BITS (5-8)
ACTIVE
D0–D7 BYTE #1
ACTIVE
TRANSMITTER READY
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 38 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
Fig 16. Transmit ready timing in FIFO mode (DMA mode ‘1’).
D0 D1 D2 D3 D4 D5 D6 D7
FIFO FULL
002aaa118
STOP
BIT
PARITY
BIT
START
BIT
t
27d
TX
TXRDY
IOW
DATA BITS (5-8)
ACTIVE
D0–D7 BYTE #16
5 DATA BITS
6 DATA BITS
7 DATA BITS
t
28d
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 39 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
11. Package outline
Fig 17. DIP40 package outline (SOT129-1).
UNIT A
max. 1 2 b1cD E e M
H
L
REFERENCES
OUTLINE
VERSION EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC EIAJ
mm
inches
DIMENSIONS (inch dimensions are derived from the original mm dimensions)
SOT129-1 95-01-14
99-12-27
A
min. A
max. bZ
max.
w
ME
e1
1.70
1.14 0.53
0.38 0.36
0.23 52.50
51.50 14.1
13.7 3.60
3.05 0.2542.54 15.24 15.80
15.24 17.42
15.90 2.254.7 0.51 4.0
0.067
0.045 0.021
0.015 0.014
0.009 2.067
2.028 0.56
0.54 0.14
0.12 0.010.10 0.60 0.62
0.60 0.69
0.63 0.089 0.19 0.020 0.16
051G08 MO-015 SC-511-40
MH
c
(e )
1
ME
A
L
seating plane
A1
wM
b1
e
D
A2
Z
40
1
21
20
b
E
pin 1 index
0 5 10 mm
scale
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
(1)
(1)(1)
DIP40: plastic dual in-line package; 40 leads (600 mil) SOT129-1
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 40 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
Fig 18. PLCC44 package outline (SOT187-2).
UNIT A A1
min. A4
max. bpeywv β
REFERENCES
OUTLINE
VERSION EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC JEITA
mm 4.57
4.19 0.51 3.05 0.53
0.33
0.021
0.013
16.66
16.51 1.27 17.65
17.40 2.16 45o
0.18 0.10.18
DIMENSIONS (mm dimensions are derived from the original inch dimensions)
Note
1. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.
SOT187-2
D(1) E(1)
16.66
16.51
HDHE
17.65
17.40
ZD(1)
max. ZE(1)
max.
2.16
b1
0.81
0.66
k
1.22
1.07
0.180
0.165 0.02 0.12
A3
0.25
0.01 0.656
0.650 0.05 0.695
0.685 0.085
0.007 0.0040.007
Lp
1.44
1.02
0.057
0.040
0.656
0.650 0.695
0.685
eDeE
16.00
14.99
0.63
0.59
16.00
14.99
0.63
0.59 0.085
0.032
0.026 0.048
0.042
2939
44
1
6
717
28
18
40
detail X
(A )
3
bp
wM
A1
AA4
Lp
b1
βk
X
y
e
E
B
D
H
E
e
E
H
vMB
D
ZD
A
ZE
e
vMA
pin 1 index
112E10 MS-018 EDR-7319
0 5 10 mm
scale
99-12-27
01-11-14
inches
PLCC44: plastic leaded chip carrier; 44 leads SOT187-2
D
e
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 41 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
Fig 19. LQFP48 package outline (SOT313-2).
UNIT A
max. A1A2A3bpcE
(1) eH
ELL
pZywv θ
REFERENCES
OUTLINE
VERSION EUROPEAN
PROJECTION ISSUE DATE
IEC JEDEC EIAJ
mm 1.60 0.20
0.05 1.45
1.35 0.25 0.27
0.17 0.18
0.12 7.1
6.9 0.5 9.15
8.85 0.95
0.55 7
0
o
o
0.12 0.10.21.0
DIMENSIONS (mm are the original dimensions)
Note
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.
0.75
0.45
SOT313-2 MS-026136E05 99-12-27
00-01-19
D(1) (1)(1)
7.1
6.9
HD
9.15
8.85
E
Z
0.95
0.55
D
bp
e
E
B
12
D
H
bp
E
H
vMB
D
ZD
A
ZE
e
vMA
1
48
37
36 25
24
13
θ
A1
A
Lp
detail X
L
(A )
3
A2
X
y
c
wM
wM
0 2.5 5 mm
scale
pin 1 index
LQFP48: plastic low profile quad flat package; 48 leads; body 7 x 7 x 1.4 mm SOT313-2
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 42 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
12. Soldering
12.1 Introduction
This text gives a very brief insight to a complex technology. A more in-depth account
of soldering ICs can be found in our
Data Handbook IC26; Integrated Circuit
Packages
(document order number 9398 652 90011).
There is no soldering method that is ideal for all IC packages. Wave soldering is often
preferred when through-hole and surface mount components are mixed on one
printed-circuit board. Wave soldering can still be used for certain surface mount ICs,
but it is not suitable for fine pitch SMDs. In these situations reflow soldering is
recommended.
12.2 Surface mount packages
12.2.1 Reflow soldering
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and
binding agent) to be applied to the printed-circuit board by screen printing, stencilling
or pressure-syringe dispensing before package placement.
Several methods exist for reflowing; for example, convection or convection/infrared
heating in a conveyor type oven. Throughput times (preheating, soldering and
cooling) vary between 100 and 200 seconds depending on heating method.
Typical reflow peak temperatures range from 215 to 250 °C. The top-surface
temperature of the packages should preferably be kept:
below 220 °C for all the BGA packages and packages with a thickness 2.5mm
and packages with a thickness <2.5 mm and a volume 350 mm3 so called
thick/large packages
below 235 °C for packages with a thickness <2.5 mm and a volume <350 mm3 so
called small/thin packages.
12.2.2 Wave soldering
Conventional single wave soldering is not recommended for surface mount devices
(SMDs) or printed-circuit boards with a high component density, as solder bridging
and non-wetting can present major problems.
To overcome these problems the double-wave soldering method was specifically
developed.
If wave soldering is used the following conditions must be observed for optimal
results:
Use a double-wave soldering method comprising a turbulent wave with high
upward pressure followed by a smooth laminar wave.
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 43 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
For packages with leads on two sides and a pitch (e):
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be
parallel to the transport direction of the printed-circuit board;
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the
transport direction of the printed-circuit board.
The footprint must incorporate solder thieves at the downstream end.
For packages with leads on four sides, the footprint must be placed at a 45° angle
to the transport direction of the printed-circuit board. The footprint must
incorporate solder thieves downstream and at the side corners.
During placement and before soldering, the package must be fixed with a droplet of
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe
dispensing. The package can be soldered after the adhesive is cured.
Typical dwell time is 4 seconds at 250 °C. A mildly-activated flux will eliminate the
need for removal of corrosive residues in most applications.
12.2.3 Manual soldering
Fix the component by first soldering two diagonally-opposite end leads. Use a low
voltage (24 V or less) soldering iron applied to the flat part of the lead. Contact time
must be limited to 10 seconds at up to 300 °C.
When using a dedicated tool, all other leads can be soldered in one operation within
2 to 5 seconds between 270 and 320 °C.
12.3 Through-hole mount packages
12.3.1 Soldering by dipping or by solder wave
The maximum permissible temperature of the solder is 260 °C; solder at this
temperature must not be in contact with the joints for more than 5 seconds. The total
contact time of successive solder waves must not exceed 5 seconds.
The device may be mounted up to the seating plane, but the temperature of the
plastic body must not exceed the specified maximum storage temperature (Tstg(max)).
If the printed-circuit board has been pre-heated, forced cooling may be necessary
immediately after soldering to keep the temperature within the permissible limit.
12.3.2 Manual soldering
Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the
seating plane or not more than 2 mm above it. If the temperature of the soldering iron
bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit
temperature is between 300 and 400 °C, contact may be up to 5 seconds.
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 44 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
12.4 Package related soldering information
[1] For more detailed information on the BGA packages refer to the
(LF)BGA Application Note
(AN01026); order a copy from your Philips Semiconductors sales office.
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the
maximum temperature (with respect to time) and body size of the package, there is a risk that internal
or external package cracks may occur due to vaporization of the moisture in them (the so called
popcorn effect). For details, refer to the Drypack information in the
Data Handbook IC26; Integrated
Circuit Packages; Section: Packing Methods
.
[3] For SDIP packages, the longitudinal axis must be parallel to the transport direction of the
printed-circuit board.
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom
side, the solder cannot penetrate between the printed-circuit board and the heatsink. On versions with
the heatsink on the top side, the solder might be deposited on the heatsink surface.
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave
direction. The package footprint must incorporate solder thieves downstream and at the side corners.
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it
is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.
[7] Wave soldering is suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.
Table 27: Suitability of IC packages for wave, reflow and dipping soldering methods
Mounting Package[1] Soldering method
Wave Reflow[2] Dipping
Through-hole
mount DBS, DIP, HDIP, SDIP, SIL suitable[3] suitable
Surface mount BGA, LBGA, LFBGA,
SQFP, TFBGA, VFBGA not suitable suitable
DHVQFN, HBCC, HBGA,
HLQFP, HSQFP, HSOP,
HTQFP, HTSSOP,
HVQFN, HVSON, SMS
not suitable[4] suitable
PLCC[5], SO, SOJ suitable suitable
LQFP, QFP, TQFP not recommended[5][6] suitable
SSOP, TSSOP, VSO,
VSSOP not recommended[7] suitable
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
Product data Rev. 02 — 14 March 2003 45 of 47
9397 750 11204 © Koninklijke Philips Electronics N.V. 2003. All rights reserved.
13. Revision history
Table 28: Revision history
Rev Date CPCN Description
02 20030314 - Product data (9397 750 11204). ECN 853-2368 29624 of 07 March 2003.
Modifications:
Maximum data rate changed from 1.5 Mbits/s to 5 Mbits/s at 5 V and 3.3 V, and 3 Mbits/s
at 2.5 V.
Section 6.8 on page 13, second paragraph: change from “... frequency up to 24 MHz. to
“... frequency up to 80 MHz.” Delete “(parallel resonant 22-33 pF load)”.
Figure 5 on page 13: capacitors’ values changed to 68 pF.
Table 7 on page 16: added shading.
Tables 25 and 26 replaced with Table 25 “DC electrical characteristics” on page 30.
Tables 27 and 28 replaced with Table 26 “AC electrical characteristics” on page 31.
01 20020904 - Product data (9397 750 08831). ECN 853-2368 28865 of 04 September 2002.
9397 750 11204
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
© Koninklijke Philips Electronics N.V. 2003. All rights reserved.
Product data Rev. 02 — 14 March 2003 46 of 47
Contact information
For additional information, please visit http://www.semiconductors.philips.com.
For sales office addresses, send e-mail to: sales.addresses@www.semiconductors.philips.com.Fax: +31 40 27 24825
14. Data sheet status
[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at
URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.
15. Definitions
Short-form specification — The data in a short-form specification is
extracted from a full data sheet with the same type number and title. For
detailed information see the relevant data sheet or data handbook.
Limiting values definition — Limiting values given are in accordance with
the Absolute Maximum Rating System (IEC 60134). Stress above one or
more of the limiting values may cause permanent damage to the device.
These are stress ratings only and operation of the device at these or at any
other conditions above those given in the Characteristics sections of the
specification is not implied. Exposure to limiting values for extended periods
may affect device reliability.
Application information — Applications that are described herein for any
of these products are for illustrative purposes only. Philips Semiconductors
make no representation or warranty that such applications will be suitable for
the specified use without further testing or modification.
16. Disclaimers
Life support — These products are not designed for use in life support
appliances, devices, or systems where malfunction of these products can
reasonably be expected to result in personal injury. Philips Semiconductors
customers using or selling these products for use in such applications do so
at their own risk and agree to fully indemnify Philips Semiconductors for any
damages resulting from such application.
Right to make changes — Philips Semiconductors reserves the right to
make changes in the products - including circuits, standard cells, and/or
software - described or contained herein in order to improve design and/or
performance. When the product is in full production (status ‘Production’),
relevant changes will be communicated via a Customer Product/Process
Change Notification (CPCN). Philips Semiconductors assumes no
responsibility or liability for the use of any of these products, conveys no
licence or title under any patent, copyright, or mask work right to these
products, and makes no representations or warranties that these products are
free from patent, copyright, or mask work right infringement, unless otherwise
specified.
Level Data sheet status[1] Product status[2][3] Definition
I Objective data Development This data sheet contains data from the objective specification for product development. Philips
Semiconductors reserves the right to change the specification in any manner without notice.
II Preliminary data Qualification This datasheet contains data from the preliminary specification. Supplementary data will be published
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in
order to improve the design and supply the best possible product.
III Product data Production This data sheet contains data from the product specification. Philips Semiconductors reserves the
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant
changes will be communicated via a Customer Product/Process Change Notification (CPCN).
© Koninklijke Philips Electronics N.V. 2003.
Printed in the U.S.A
All rights are reserved. Reproduction in whole or in part is prohibited without the prior
written consent of the copyright owner.
The information presented in this document does not form part of any quotation or
contract, is believed to be accurate and reliable and may be changed without notice. No
liability will be accepted by the publisher for any consequence of its use. Publication
thereof does not convey nor imply any license under patent- or other industrial or
intellectual property rights.
Date of release: 14 March 2003 Document order number: 9397 750 11204
Contents
Philips Semiconductors SC16C2550
Dual UART with 16 bytes of transmit and receive FIFOs
and infrared (IrDA) encoder/decoder
1 Description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
3 Ordering information. . . . . . . . . . . . . . . . . . . . . 2
4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3
5 Pinning information. . . . . . . . . . . . . . . . . . . . . . 4
5.1 Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
5.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 6
6 Functional description . . . . . . . . . . . . . . . . . . . 9
6.1 UART A-B functions . . . . . . . . . . . . . . . . . . . . . 9
6.2 Internal registers. . . . . . . . . . . . . . . . . . . . . . . 10
6.3 FIFO operation . . . . . . . . . . . . . . . . . . . . . . . . 11
6.4 Hardware flow control. . . . . . . . . . . . . . . . . . . 11
6.5 Software flow control . . . . . . . . . . . . . . . . . . . 11
6.6 Special feature software flow control . . . . . . . 12
6.7 Hardware/software and time-out interrupts. . . 12
6.8 Programmable baud rate generator . . . . . . . . 13
6.9 DMA operation . . . . . . . . . . . . . . . . . . . . . . . . 14
6.10 Loop-back mode. . . . . . . . . . . . . . . . . . . . . . . 14
7 Register descriptions . . . . . . . . . . . . . . . . . . . 16
7.1 Transmit (THR) and Receive (RHR)
Holding Registers . . . . . . . . . . . . . . . . . . . . . 17
7.2 Interrupt Enable Register (IER) . . . . . . . . . . . 17
7.2.1 IER versus Transmit/Receive FIFO interrupt
mode operation . . . . . . . . . . . . . . . . . . . . . . . 18
7.2.2 IER versus Receive/Transmit FIFO polled
mode operation . . . . . . . . . . . . . . . . . . . . . . . 19
7.3 FIFO Control Register (FCR) . . . . . . . . . . . . . 19
7.3.1 DMA mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
7.3.2 FIFO mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.4 Interrupt Status Register (ISR) . . . . . . . . . . . . 21
7.5 Line Control Register (LCR) . . . . . . . . . . . . . . 22
7.6 Modem Control Register (MCR). . . . . . . . . . . 24
7.7 Line Status Register (LSR). . . . . . . . . . . . . . . 25
7.8 Modem Status Register (MSR). . . . . . . . . . . . 26
7.9 Scratchpad Register (SPR) . . . . . . . . . . . . . . 27
7.10 Enhanced Feature Register (EFR) . . . . . . . . . 27
7.11 SC16C2550 external reset condition . . . . . . . 29
8 Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 29
9 Static characteristics . . . . . . . . . . . . . . . . . . . 30
10 Dynamic characteristics. . . . . . . . . . . . . . . . . 31
10.1 Timing diagrams. . . . . . . . . . . . . . . . . . . . . . . 32
11 Package outline . . . . . . . . . . . . . . . . . . . . . . . . 39
12 Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . 42
12.2 Surface mount packages . . . . . . . . . . . . . . . . 42
12.2.1 Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 42
12.2.2 Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 42
12.2.3 Manual soldering . . . . . . . . . . . . . . . . . . . . . . 43
12.3 Through-hole mount packages . . . . . . . . . . . 43
12.3.1 Soldering by dipping or by solder wave . . . . . 43
12.3.2 Manual soldering . . . . . . . . . . . . . . . . . . . . . . 43
12.4 Package related soldering information. . . . . . 44
13 Revision history . . . . . . . . . . . . . . . . . . . . . . . 45
14 Data sheet status. . . . . . . . . . . . . . . . . . . . . . . 46
15 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
16 Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Philips Semiconductors - PIP - SC16C2550; Dual UART with 16 bytes of transmit and receive FIFOs and infrared (IrDA) encoder/decoder
Philips Semiconductors Home
Product
catalog
Buy
online
MySemiconductors
Contact
Products
MultiMarket
Semiconductors
Product Selector
Catalog by
Function
Catalog by
System
Cross-reference
Packages
End of Life
information
Distributors Go
Here!
Models
SoC solutions
Product Information
SC16C2550; Dual
UART with 16 bytes
of transmit and
receive FIFOs and
infrared (IrDA)
encoder/decoder
Information as of 2003-04-22
My.Semiconductors.COM.
Your personal service from
Philips Semiconductors.
Please register now !
Stay informed
Use right mouse button to
download datasheet
Download datasheet
General description Features Applications Datasheet
Block diagram Buy online Support & tools Email/translate
Products & packages Parametrics Similar products
top
General description
The SC16C2550 is a 2 channel Universal Asynchronous Receiver and Transmitter (UART) used for serial
data communications. Its principal function is to convert parallel data into serial data and vice versa. The
UART can handle serial data rates up to 5 Mbits/s.
The SC16C2550 is pin compatible with the ST16C2550. It will power-up to be functionally equivalent to the
16C2450. The SC16C2550 provides enhanced UART functions with 16-byte FIFOs, modem control
interface, DMA mode data transfer. The DMA mode data transfer is controlled by the FIFO trigger levels
and the TXRDY and RXRDY signals. On-board status registers provide the user with error indications and
operational status. System interrupts and modem control features may be tailored by software to meet
specific user requirements. An internal loop-back capability allows on-board diagnostics. Independent
programmable baud rate generators are provided to select transmit and receive baud rates.
The SC16C2550 operates at 5 V, 3.3 V and 2.5 V and the Industrial temperature range, and is available in
plastic PLCC44, LQFP48 and DIP40 packages.
file:///G|/imaging/BITTING/CPL/20030424/04232003_9/PHGL/_HTML04232003/SC16C2550IA44.html (1 of 4) [May-13-2003 1:55:49 PM]
Submit Query
Philips Semiconductors - PIP - SC16C2550; Dual UART with 16 bytes of transmit and receive FIFOs and infrared (IrDA) encoder/decoder
top
Features
2 channel UART
5 V, 3.3 V and 2.5 V operation
Industrial temperature range
Pin and functionally compatible to 16C2450 and software compatible with INS8250, SC16C550
Up to 5 Mbits/s data rate at 5 V and 3.3 V, and 3 Mbits/s at 2.5 V
16 byte transmit FIFO to reduce the bandwidth requirement of the external CPU
16 byte receive FIFO with error flags to reduce the bandwidth requirement of the external CPU
Independent transmit and receive UART control
Four selectable Receive FIFO interrupt trigger levels
Automatic software/hardware flow control
Programmable Xon/Xoff characters
Software selectable Baud Rate Generator
Sleep mode
Standard asynchronous error and framing bits (Start, Stop, and Parity Overrun Break)
Transmit, Receive, Line Status, and Data Set interrupts independently controlled
Fully programmable character formatting:
5-, 6-, 7-, or 8-bit characters
Even-, Odd-, or No-Parity formats
1-, 1 1/2 -, or 2-stop bit
Baud generation (DC to 1.5 Mbit/s)
False start-bit detection
Complete status reporting capabilities
3-State output TTL drive capabilities for bi-directional data bus and control bus
Line Break generation and detection
Internal diagnostic capabilities:
Loop-back controls for communications link fault isolation
Prioritized interrupt system controls
Modem control functions (CTS, RTS, DSR, DTR, RI, DCD).
top
Datasheet
Type number Title Publication
release date Datasheet status Page
count File
size
(kB)
Datasheet
SC16C2550 Dual UART with 16
bytes of transmit and
receive FIFOs and
infrared (IrDA)
encoder/decoder
3/14/2003 Product
specification 47 604
0
View
top
Blockdiagram(s)
Block diagram of
SC16C2550IA44
file:///G|/imaging/BITTING/CPL/20030424/04232003_9/PHGL/_HTML04232003/SC16C2550IA44.html (2 of 4) [May-13-2003 1:55:49 PM]
Philips Semiconductors - PIP - SC16C2550; Dual UART with 16 bytes of transmit and receive FIFOs and infrared (IrDA) encoder/decoder
top
Products, packages, availability and ordering
Type number North
American
type
number
Ordering code
(12NC) Marking/Packing
IC packing info Package Device status Buy
online
SC16C2550IA44 9352 700 19512 Standard Marking *
Tube Dry Pack SOT187-2
(PLCC44) Full production -
9352 700 19518 Standard Marking *
Reel Dry Pack,
SMD, 13"
SOT187-2
(PLCC44) Full production -
9352 700 19529 SOT187-2
(PLCC44) Full production -
SC16C2550IB48 9352 700 20128 Standard Marking *
Reel Pack, SMD,
13", Turned
SOT313-2
(LQFP48) Full production -
9352 700 20151 Standard Marking *
Tray Pack, Bakeable,
Single
SOT313-2
(LQFP48) Full production -
9352 700 20157 Standard Marking *
Tray Pack, Bakeable,
Multiple
SOT313-2
(LQFP48) Full production -
SC16C2550IN40 9352 700 24112 Standard Marking *
Tube SOT129-1
(DIP40) Full production -
Products in the above table are all in production. Some variants are discontinued; click here for information
on these variants.
top
Similar products
SC16C2550 links to the similar products page containing an overview of products that are similar in
function or related to the type number(s) as listed on this page. The similar products page includes products
from the same catalog tree(s), relevant selection guides and products from the same functional category.
top
Support & tools
Philips Data Communication Industrial UART Product Line Chart(date 07-Jun-02)
Philips Innovative Uart Solutions(date 19-Dec-02)
New MultiMarket products, Quarterly highlights 1.1. October 2002(date 11-Nov-02)
file:///G|/imaging/BITTING/CPL/20030424/04232003_9/PHGL/_HTML04232003/SC16C2550IA44.html (3 of 4) [May-13-2003 1:55:49 PM]
Philips Semiconductors - PIP - SC16C2550; Dual UART with 16 bytes of transmit and receive FIFOs and infrared (IrDA) encoder/decoder
top
Email/translate this product information
Email this product information.
Translate this product information page from English to:
The English language is the official language used at the semiconductors.philips.com website and webpages.
All translations on this website are created through the use of Google Language Tools and are provided for
convenience purposes only. No rights can be derived from any translation on this website.
About this Web Site
| Copyright © 2003 Koninklijke Philips N.V. All rights reserved. | Privacy Policy |
| Koninklijke Philips N.V. | Access to and use of this Web Site is subject to the following Terms of Use. |
file:///G|/imaging/BITTING/CPL/20030424/04232003_9/PHGL/_HTML04232003/SC16C2550IA44.html (4 of 4) [May-13-2003 1:55:49 PM]
French
Translate