[ /Title (CD74H C670, CD74H CT670) /Subject (HighSpeed CMOS Logic 4x4 Register CD54HC670, CD74HC670, CD74HCT670 Data sheet acquired from Harris Semiconductor SCHS195C High-Speed CMOS Logic 4x4 Register File January 1998 - Revised October 2003 Features Description * Simultaneous and Independent Read and Write Operations * Fanout (Over Temperature Range) - Standard Outputs . . . . . . . . . . . . . . . 10 LSTTL Loads - Bus Driver Outputs . . . . . . . . . . . . . 15 LSTTL Loads The 'HC670 and CD74HCT670 are 16-bit register files organized as 4 words x 4 bits each. Read and write address and enable inputs allow simultaneous writing into one location while reading another. Four data inputs are provided to store the 4-bit word. The write address inputs (WA0 and WA1) determine the location of the stored word in the register. When write enable (WE) is low the word is entered into the address location and it remains transparent to the data. The outputs will reflect the true form of the input data. When (WE) is high data and address inputs are inhibited. Data acquisition from the four registers is made possible by the read address inputs (RA1 and RA0). The addressed word appears at the output when the read enable (RE) is low. The output is in the high impedance state when the (RE) is high. Outputs can be tied together to increase the word capacity to 512 x 4 bits. * Wide Operating Temperature Range . . . -55oC to 125oC Ordering Information * Expandable to 512 Words of n-Bits * Three-State Outputs * Organized as 4 Words x 4 Bits Wide * Buffered Inputs * Typical Read Time = 16ns for 'HC670 VCC = 5V, CL = 15pF, TA = 25oC * Balanced Propagation Delay and Transition Times TEMP. RANGE (oC) PACKAGE CD54HC670F3A -55 to 125 16 Ld CERDIP CD74HC670E -55 to 125 16 Ld PDIP PART NUMBER * Significant Power Reduction Compared to LSTTL Logic ICs * HC Types - 2V to 6V Operation - High Noise Immunity: NIL = 30%, NIH = 30% of VCC at VCC = 5V * HCT Types - 4.5V to 5.5V Operation - Direct LSTTL Input Logic Compatibility, VIL= 0.8V (Max), VIH = 2V (Min) - CMOS Input Compatibility, Il 1A at VOL, VOH CD74HC670M -55 to 125 16 Ld SOIC CD74HC670MT -55 to 125 16 Ld SOIC CD74HC670M96 -55 to 125 16 Ld SOIC CD74HCT670E -55 to 125 16 Ld PDIP CD74HCT670M -55 to 125 16 Ld SOIC CD74HCT670MT -55 to 125 16 Ld SOIC CD74HCT670M96 -55 to 125 16 Ld SOIC NOTE: When ordering, use the entire part number. The suffix 96 denotes tape and reel. The suffix T denotes a small-quantity reel of 250. Pinout CD54HC670 (CERDIP) CD74HC670, CD74HCT670 (PDIP, SOIC) TOP VIEW D1 1 16 VCC D2 2 15 D0 D3 3 14 WA0 RA1 4 13 WA1 RA0 5 12 WE Q3 6 11 RE Q2 7 10 Q0 GND 8 9 Q1 CAUTION: These devices are sensitive to electrostatic discharge. Users should follow proper IC Handling Procedures. Copyright (c) 2003, Texas Instruments Incorporated 1 CD54HC670, CD74HC670, CD74HCT670 Functional Diagram D0 D1 D2 D3 WE 15 10 1 9 2 7 3 6 12 Q0 Q1 Q2 Q3 11 RE RA1 4 5 14 13 RA0 WA0 WA1 WRITE MODE SELECT TABLE INPUTS OPERATING MODE Write Data Data Latched READ MODE SELECT TABLE WE DN INTERNAL LATCHES (NOTE 1) L L L L H H H X No Change INPUTS OPERATING MODE Read NOTE: Disabled 1. The Write Address (WA0 and WA1) to the "internal latches" must be stable while WE is LOW for conventional operation. RE INTERNAL LATCHES (NOTE 2) OUTPUT QN L L L L H H H X (Z) NOTE: 2. The selection of the "internal latches" by Read Address (RA0 and RA1) are not constrained by WE or RE operation. H = High Voltage Level L = Low Voltage Level X= Don't Care Z = High Impedance "Off" State 2 CD54HC670, CD74HC670, CD74HCT670 Absolute Maximum Ratings Thermal Information DC Supply Voltage, VCC . . . . . . . . . . . . . . . . . . . . . . . . -0.5V to 7V DC Input Diode Current, IIK For VI < -0.5V or VI > VCC + 0.5V . . . . . . . . . . . . . . . . . . . . . .20mA DC Output Diode Current, IOK For VO < -0.5V or VO > VCC + 0.5V . . . . . . . . . . . . . . . . . . . .20mA DC Drain Current, per Output, IO For -0.5V < VO < VCC + 0.5V. . . . . . . . . . . . . . . . . . . . . . . . . .35mA DC Output Source or Sink Current per Output Pin, IO For VO > -0.5V or VO < VCC + 0.5V . . . . . . . . . . . . . . . . . . . .25mA DC VCC or Ground Current, ICC . . . . . . . . . . . . . . . . . . . . . . . . .50mA Thermal Resistance (Typical, Note 3) JA (oC/W) E (PDIP) Package . . . . . . . . . . . . . . . . . . . . . . . . . . 67 M (SOIC) Package. . . . . . . . . . . . . . . . . . . . . . . . . . 73 Maximum Junction Temperature . . . . . . . . . . . . . . . . . . . . . . . 150oC Maximum Storage Temperature Range . . . . . . . . . .-65oC to 150oC Maximum Lead Temperature (Soldering 10s) . . . . . . . . . . . . . 300oC (SOIC - Lead Tips Only) Operating Conditions Temperature Range, TA . . . . . . . . . . . . . . . . . . . . . . -55oC to 125oC Supply Voltage Range, VCC HC Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2V to 6V HCT Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4.5V to 5.5V DC Input or Output Voltage, VI, VO . . . . . . . . . . . . . . . . . 0V to VCC Input Rise and Fall Time 2V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1000ns (Max) 4.5V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 500ns (Max) 6V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400ns (Max) CAUTION: Stresses above those listed in "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. NOTE: 3. The package thermal impedance is calculated in accordance with JESD 51-7. DC Electrical Specifications TEST CONDITIONS SYMBOL VI (V) IO (mA) High Level Input Voltage VIH - - Low Level Input Voltage VIL High Level Output Voltage CMOS Loads VOH PARAMETER VCC (V) 25oC -40oC TO 85oC -55oC TO 125oC MIN TYP MAX MIN MAX MIN MAX UNITS HC TYPES - VIH or VIL High Level Output Voltage TTL Loads Low Level Output Voltage CMOS Loads VOL VIH or VIL Low Level Output Voltage TTL Loads Input Leakage Current II VCC or GND - 2 1.5 - - 1.5 - 1.5 - V 4.5 3.15 - - 3.15 - 3.15 - V 6 4.2 - - 4.2 - 4.2 - V 2 - - 0.5 - 0.5 - 0.5 V 4.5 - - 1.35 - 1.35 - 1.35 V 6 - - 1.8 - 1.8 - 1.8 V -0.02 2 1.9 - - 1.9 - 1.9 - V -0.02 4.5 4.4 - - 4.4 - 4.4 - V -0.02 6 5.9 - - 5.9 - 5.9 - V - - - - - - - - - V -6 4.5 3.98 - - 3.84 - 3.7 - V -7.8 6 5.48 - - 5.34 - 5.2 - V 0.02 2 - - 0.1 - 0.1 - 0.1 V 0.02 4.5 - - 0.1 - 0.1 - 0.1 V 0.02 6 - - 0.1 - 0.1 - 0.1 V - - - - - - - - - V 6 4.5 - - 0.26 - 0.33 - 0.4 V 7.8 6 - - 0.26 - 0.33 - 0.4 V - 6 - - 0.1 - 1 - 1 A 3 CD54HC670, CD74HC670, CD74HCT670 DC Electrical Specifications (Continued) TEST CONDITIONS PARAMETER Quiescent Device Current 25oC -40oC TO 85oC -55oC TO 125oC SYMBOL VI (V) IO (mA) VCC (V) ICC VCC or GND 0 6 - - 8 - 80 - 160 A VIL or VIH VO = VCC or GND 6 - - 0.5 - 5.0 - 10 A Three- State Leakage Current MIN TYP MAX MIN MAX MIN MAX UNITS HCT TYPES High Level Input Voltage VIH - - 4.5 to 5.5 2 - - 2 - 2 - V Low Level Input Voltage VIL - - 4.5 to 5.5 - - 0.8 - 0.8 - 0.8 V High Level Output Voltage CMOS Loads VOH VIH or VIL -0.02 4.5 4.4 - - 4.4 - 4.4 - V -6 4.5 3.98 - - 3.84 - 3.7 - V 0.02 4.5 - - 0.1 - 0.1 - 0.1 V 6 4.5 - - 0.26 - 0.33 - 0.4 V 0.1 - 1 - 1 A High Level Output Voltage TTL Loads Low Level Output Voltage CMOS Loads VOL VIH or VIL Low Level Output Voltage TTL Loads Input Leakage Current Quiescent Device Current II VCC and GND 0 5.5 - ICC VCC or GND 0 5.5 - - 8 - 80 - 160 A VIL or VIH VO = VCC or GND 5.5 - - 0.5 - 5.0 - 10 A VCC -2.1 - 4.5 to 5.5 - 100 360 - 450 - 490 A Three- State Leakage Current Additional Quiescent Device Current Per Input Pin: 1 Unit Load ICC (Note 4) NOTE: 4. For dual-supply systems theoretical worst case (VI = 2.4V, VCC = 5.5V) specification is 1.8mA. HCT Input Loading Table INPUT UNIT LOADS WE 0.3 WA0 0.2 WA1 0.4 RE 1.5 DATA 0.15 RA0 0.4 RA1 0.7 NOTE: Unit Load is ICC limit specific in DC Electrical Specifications Table, e.g., 360A max. at 25oC. 4 CD54HC670, CD74HC670, CD74HCT670 Prerequisite for Switching Specifications 25oC PARAMETER -40oC TO 85oC -55oC TO 125oC SYMBOL VCC (V) MIN TYP MAX MIN TYP MAX MIN TYP MAX UNITS tSU, th 2 60 - - 75 - - 90 - - ns 4.5 12 - - 15 - - 18 - - ns 6 10 - - 13 - - 15 - - ns 2 5 - - 5 - - 5 - - ns 4.5 5 - - 5 - - 5 - - ns 6 5 - - 5 - - 5 - - ns 2 80 - - 100 - - 120 - - ns 4.5 16 - - 20 - - 24 - - ns 6 14 - - 17 - - 20 - - ns 2 100 - - 125 - - 150 - - ns 4.5 20 - - 25 - - 30 - - ns 6 17 - - 21 - - 26 - - ns HC TYPES Setup Time Data to WE Write to WE Hold Time Data to WE Write to WE Pulse Width WE Latch Time WE to RA0, RA1 tH, tW tW tLATCH HCT TYPES Setup Time Data to WE tSU, th 4.5 12 - - 15 - - 18 - - ns Hold Time Data to WE Write to WE tH, tW 4.5 5 - - 5 - - 5 - - ns Setup Time Write to WE tSU 4.5 18 - - 23 - - 27 - - ns Pulse Width WE tW 4.5 20 - - 25 - - 30 - - ns tLATCH 4.5 25 - - 31 - - 38 - - ns Latch Time WE to RA0, RA1 Switching Specifications PARAMETER HC TYPES Propagation Delay Reading Any Word Write Enable to Output CL = 50pF, Input tr, tf = 6ns SYMBOL TEST CONDITIONS tPLH, tPHL CL = 50pF tPLH, tPHL -40oC TO 85oC 25oC -55oC TO 125oC VCC (V) MIN TYP MAX MIN MAX MIN MAX UNITS 2 - - 195 - 245 - 295 ns 4.5 - - 39 - 49 - 59 ns CL = 15pF 5 - 16 - - - - - ns CL = 50pF 6 - - 33 - 42 - 50 ns CL = 50pF 2 - - 250 - 315 - 375 ns 4.5 - - 50 - 63 - 75 ns CL = 15pF 5 - 21 - - - - - ns CL = 50pF 6 - - 43 - 54 - 64 ns 5 CD54HC670, CD74HC670, CD74HCT670 Switching Specifications PARAMETER Data to Output Output Disable Time Output Enable Time Output Transition Time CL = 50pF, Input tr, tf = 6ns (Continued) -40oC TO 85oC 25oC -55oC TO 125oC SYMBOL TEST CONDITIONS VCC (V) MIN TYP MAX MIN MAX MIN MAX UNITS tPLH, tPHL CL = 50pF 2 - - 256 - 315 - 375 ns 4.5 - - 50 - 63 - 75 ns CL = 15pF 5 - 21 - - - - - ns CL = 50pF 6 - - 43 - 54 - 64 ns CL = 50pF 2 - - 150 - 190 - 225 ns 4.5 - - 30 - 38 - 45 ns CL = 15pF 5 - 12 - - - - - ns CL = 50pF 6 - - 26 - 33 - 38 ns CL = 50pF 2 - - 150 - 190 - 225 ns 4.5 - - 30 - 38 - 45 ns CL = 15pF 5 - 12 - - - - - ns CL = 50pF 6 - - 26 - 33 - 38 ns CL = 50pF 2 - - 75 - 95 - 110 ns 4.5 - - 15 - 19 - 22 ns tPLZ, tPHZ tPZL, tPZH tTHL, tTLH 6 - - 13 - 10 - 19 ns Input Capacitance CI CL = 50pF - 10 - 10 - 10 - 10 pF Three-State Output Capacitance CO - - 20 - 20 - 20 - 20 pF Power Dissipation Capacitance (Notes 5, 6) CPD CL = 15pF 5 - 59 - - - - - pF CL = 50pF 4.5 - - 40 - 50 - 53 ns CL = 15pF 5 - 17 - - - - - ns CL = 50pF 4.5 - - 50 - 63 - 75 ns CL = 15pF 5 - 21 - - - - - ns CL = 50pF 4.5 - - 50 - 63 - 75 ns CL = 15pF 5 - 21 - - - - - ns CL = 50pF 4.5 - - 35 - 44 - 53 ns CL = 15pF 5 - 14 - - - - - ns CL = 50pF 4.5 - - 38 - 48 - 57 ns CL = 15pF 5 - 16 - - - - - ns tTLH, tTHL CL = 50pF 4.5 - - 15 - 19 - 22 ns Input Capacitance CI CL = 50pF - 10 - 10 - 10 - 10 pF Three-State Output Capacitance CO - - 20 - 20 - 20 - 20 pF Power Dissipation Capacitance (Notes 5, 6) CPD CL = 15pF 5 - 66 - - - - - pF HCT TYPES Propagation Delay Reading Any Word tPHL, tPLH Write Enable to Output tPHL, tPLH Data to Output tPHL, tPLH Output Disable Time Output Enable Time Output Transition Time tPLZ, tPHZ tPZL, tPZH NOTES: 5. CPD is used to determine the dynamic power consumption, per output. 6. PD = CPD VCC2 fi + CL VCC2 fO where fi = Input Frequency, fO = Output Frequency, CL = Output Load Capacitance, VCC = Supply Voltage. 6 CD54HC670, CD74HC670, CD74HCT670 Test Circuits and Waveforms tWL + tWH = tfCL trCL 50% 10% 10% tf = 6ns tr = 6ns tTLH 90% INVERTING OUTPUT tPHL FIGURE 3. HC TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC tPLH FIGURE 4. HCT TRANSITION TIMES AND PROPAGATION DELAY TIMES, COMBINATION LOGIC trCL tfCL VCC tfCL GND 1.3V 0.3V GND tH(H) tH(L) VCC DATA INPUT 3V 2.7V CLOCK INPUT 50% tH(H) tTLH 1.3V 10% tPLH 10% GND tTHL 90% 50% 10% 90% 3V 2.7V 1.3V 0.3V GND tTHL trCL tWH FIGURE 2. HCT CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH INPUT INVERTING OUTPUT GND NOTE: Outputs should be switching from 10% VCC to 90% VCC in accordance with device truth table. For fMAX, input duty cycle = 50%. VCC 90% 50% 10% 1.3V 1.3V tWL tf = 6ns tPHL 1.3V 0.3V tWH FIGURE 1. HC CLOCK PULSE RISE AND FALL TIMES AND PULSE WIDTH INPUT 2.7V 0.3V GND tr = 6ns DATA INPUT 50% tH(L) 3V 1.3V 1.3V 1.3V GND tSU(H) tSU(H) tSU(L) tTLH 90% OUTPUT tTHL 90% 50% 10% tTLH 90% 1.3V OUTPUT tREM 3V SET, RESET OR PRESET GND tTHL 1.3V 10% FIGURE 5. HC SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS tPHL 1.3V GND IC CL 50pF GND 90% tPLH 50% IC tSU(L) tPHL tPLH I fCL 3V NOTE: Outputs should be switching from 10% VCC to 90% VCC in accordance with device truth table. For fMAX, input duty cycle = 50%. tREM VCC SET, RESET OR PRESET tfCL = 6ns CLOCK 50% 50% tWL CLOCK INPUT tWL + tWH = trCL = 6ns VCC 90% CLOCK I fCL CL 50pF FIGURE 6. HCT SETUP TIMES, HOLD TIMES, REMOVAL TIME, AND PROPAGATION DELAY TIMES FOR EDGE TRIGGERED SEQUENTIAL LOGIC CIRCUITS 7 CD54HC670, CD74HC670, CD74HCT670 Test Circuits and Waveforms 6ns (Continued) 6ns OUTPUT DISABLE 90% 50% 10% OUTPUTS ENABLED 2.7 1.3 OUTPUT HIGH TO OFF 50% OUTPUTS DISABLED FIGURE 7. HC THREE-STATE PROPAGATION DELAY WAVEFORM OTHER INPUTS TIED HIGH OR LOW OUTPUT DISABLE IC WITH THREESTATE OUTPUT GND 1.3V tPZH 90% OUTPUTS ENABLED OUTPUTS ENABLED 0.3 10% tPHZ tPZH 90% 3V tPZL tPLZ OUTPUT LOW TO OFF 50% OUTPUT HIGH TO OFF 6ns GND 10% tPHZ tf OUTPUT DISABLE tPZL tPLZ OUTPUT LOW TO OFF 6ns tr VCC 1.3V OUTPUTS DISABLED OUTPUTS ENABLED FIGURE 8. HCT THREE-STATE PROPAGATION DELAY WAVEFORM OUTPUT RL = 1k CL 50pF VCC FOR tPLZ AND tPZL GND FOR tPHZ AND tPZH NOTE: Open drain waveforms tPLZ and tPZL are the same as those for three-state shown on the left. The test circuit is Output RL = 1k to VCC, CL = 50pF. FIGURE 9. HC AND HCT THREE-STATE PROPAGATION DELAY TEST CIRCUIT 8 PACKAGE OPTION ADDENDUM www.ti.com 28-Aug-2010 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Qty Eco Plan (2) Lead/ Ball Finish MSL Peak Temp (3) Samples (Requires Login) CD74HC670E ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Purchase Samples CD74HC670EE4 ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type Purchase Samples CD74HC670M ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Purchase Samples CD74HC670M96 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Contact TI Distributor or Sales Office CD74HC670M96E4 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Contact TI Distributor or Sales Office CD74HC670M96G4 ACTIVE SOIC D 16 2500 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Contact TI Distributor or Sales Office CD74HC670ME4 ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Purchase Samples CD74HC670MG4 ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Purchase Samples CD74HC670MT ACTIVE SOIC D 16 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Purchase Samples CD74HC670MTE4 ACTIVE SOIC D 16 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Purchase Samples CD74HC670MTG4 ACTIVE SOIC D 16 250 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Purchase Samples Purchase Samples CD74HCT670E ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type CD74HCT670EE4 ACTIVE PDIP N 16 25 Pb-Free (RoHS) CU NIPDAU N / A for Pkg Type CD74HCT670M ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Contact TI Distributor or Sales Office CD74HCT670ME4 ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Contact TI Distributor or Sales Office CD74HCT670MG4 ACTIVE SOIC D 16 40 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM Contact TI Distributor or Sales Office (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. Addendum-Page 1 Purchase Samples PACKAGE OPTION ADDENDUM www.ti.com 28-Aug-2010 OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 2 PACKAGE MATERIALS INFORMATION www.ti.com 29-Jul-2009 TAPE AND REEL INFORMATION *All dimensions are nominal Device CD74HC670M96 Package Package Pins Type Drawing SOIC D 16 SPQ Reel Reel A0 Diameter Width (mm) (mm) W1 (mm) 2500 330.0 16.4 Pack Materials-Page 1 6.5 B0 (mm) K0 (mm) P1 (mm) 10.3 2.1 8.0 W Pin1 (mm) Quadrant 16.0 Q1 PACKAGE MATERIALS INFORMATION www.ti.com 29-Jul-2009 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) CD74HC670M96 SOIC D 16 2500 333.2 345.9 28.6 Pack Materials-Page 2 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All semiconductor products (also referred to herein as "components") are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI's terms and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily performed. TI assumes no liability for applications assistance or the design of Buyers' products. Buyers are responsible for their products and applications using TI components. To minimize the risks associated with Buyers' products and applications, Buyers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use of any TI components in safety-critical applications. In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI's goal is to help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and requirements. Nonetheless, such components are subject to these terms. No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties have executed a special agreement specifically governing such use. Only those TI components which TI has specifically designated as military grade or "enhanced plastic" are designed and intended for use in military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such components to meet such requirements. Products Applications Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers DLP(R) Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps DSP dsp.ti.com Energy and Lighting www.ti.com/energy Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial Interface interface.ti.com Medical www.ti.com/medical Logic logic.ti.com Security www.ti.com/security Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video RFID www.ti-rfid.com OMAP Applications Processors www.ti.com/omap TI E2E Community e2e.ti.com Wireless Connectivity www.ti.com/wirelessconnectivity Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright (c) 2012, Texas Instruments Incorporated