PD - 97583 AUTOMOTIVE GRADE AUIRLR2905Z Features HEXFET(R) Power MOSFET Logic Level Advanced Process Technology Ultra Low On-Resistance 175C Operating Temperature Fast Switching Repetitive Avalanche Allowed up to Tjmax Lead-Free, RoHS Compliant Automotive Qualified * V(BR)DSS D G S Description 55V RDS(on) max. 13.5m ID (Silicon Limited) 60A ID (Package Limited) 42A D Specifically designed for Automotive applications, this HEXFET(R) Power MOSFET utilizes the latest processing techniques to achieve extremely low onresistance per silicon area. Additional features of this design are a 175C junction operating temperature, fast switching speed and improved repetitive avalanche rating . These features combine to make this design an extremely efficient and reliable device for use in Automotive applications and a wide variety of other applications. S G D-Pak AUIRLR2905Z G D S Gate Drain Source Absolute Maximum Ratings Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only; and functional operation of the device at these or any other condition beyond those indicated in the specifications is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Ambient temperature (T A) is 25C, unless otherwise specified. Parameter ID @ TC = 25C ID @ TC = 100C ID @ TC = 25C IDM PD @TC = 25C VGS EAS EAS (tested ) IAR EAR TJ TSTG c h g j Parameter Junction-to-Case Junction-to-Ambient (PCB mount) Junction-to-Ambient i d Units 60 43 42 240 110 c Pulsed Drain Current Power Dissipation Linear Derating Factor Gate-to-Source Voltage Single Pulse Avalanche Energy (Thermally Limited) Single Pulse Avalanche Energy Tested Value Avalanche Current Repetitive Avalanche Energy Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case ) Mounting Torque, 6-32 or M3 screw Thermal Resistance RJC RJA RJA Max. Continuous Drain Current, VGS @ 10V (Silicon Limited) Continuous Drain Current, VGS @ 10V Continuous Drain Current, VGS @ 10V (Package Limited) A W 0.72 16 57 85 See Fig.12a, 12b, 15, 16 W/C V mJ A mJ -55 to + 175 C 300 10 lbf in (1.1N m) y y Typ. Max. Units --- --- --- 1.38 40 110 C/W HEXFET(R) is a registered trademark of International Rectifier. *Qualification standards can be found at http://www.irf.com/ www.irf.com 1 10/28/2010 AUIRLR2905Z Static Electrical Characteristics @ TJ = 25C (unless otherwise specified) Parameter V(BR)DSS V(BR)DSS/TJ RDS(on) Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance VGS(th) Gate Threshold Voltage Forward Transconductance Drain-to-Source Leakage Current gfs IDSS IGSS Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Min. Typ. Max. Units 55 --- --- --- --- 1.0 25 --- --- --- --- --- 0.053 11 --- --- --- --- --- --- --- --- --- --- 13.5 20 22.5 3.0 --- 20 250 200 -200 V V/C m m m V S A nA Conditions VGS = 0V, ID = 250A Reference to 25C, ID = 1mA VGS = 10V, ID = 36A VGS = 5.0V, ID = 30A VGS = 4.5V, ID = 15A VDS = VGS, ID = 250A VDS = 25V, ID = 36A VDS = 55V, VGS = 0V VDS = 55V, VGS = 0V, TJ = 125C VGS = 16V VGS = -16V e e e Dynamic Electrical Characteristics @ TJ = 25C (unless otherwise specified) Parameter Min. Typ. Max. Units Conditions Qg Qgs Qgd td(on) tr td(off) tf LD Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Internal Drain Inductance --- --- --- --- --- --- --- --- 23 8.5 12 14 130 24 33 4.5 35 --- --- --- --- --- --- --- LS Internal Source Inductance --- 7.5 --- 6mm (0.25in.) from package Ciss Coss Crss Coss Coss Coss eff. Input Capacitance Output Capacitance Reverse Transfer Capacitance Output Capacitance Output Capacitance Effective Output Capacitance --- --- --- --- --- --- 1570 230 130 840 180 290 --- --- --- --- --- --- S and center of die contact VGS = 0V VDS = 25V = 1.0MHz VGS = 0V, VDS = 1.0V, = 1.0MHz VGS = 0V, VDS = 44V, = 1.0MHz VGS = 0V, VDS = 0V to 44V nC ns nH pF ID = 36A VDS = 44V VGS = 5.0V VDD = 28V ID = 36A RG = 15 VGS = 5.0V Between lead, e e D G f Diode Characteristics Parameter Min. Typ. Max. Units IS Continuous Source Current --- --- 42 ISM (Body Diode) Pulsed Source Current --- --- 240 VSD trr Qrr ton (Body Diode) Diode Forward Voltage Reverse Recovery Time Reverse Recovery Charge Forward Turn-On Time --- --- --- --- 22 14 1.3 33 21 c Notes: Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11). Limited by TJmax, starting TJ = 25C, L = 0.089mH RG = 25, IAS = 36A, VGS =10V. Part not recommended for use above this value. Pulse width 1.0ms; duty cycle 2%. Coss eff. is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS . 2 Conditions MOSFET symbol A V ns nC showing the integral reverse p-n junction diode. TJ = 25C, IS = 36A, VGS = 0V TJ = 25C, IF = 36A, VDD = 28V di/dt = 100A/s e e Intrinsic turn-on time is negligible (turn-on is dominated by LS+LD) Limited by TJmax , see Fig.12a, 12b, 15, 16 for typical repetitive avalanche performance. This value determined from sample failure population, starting TJ = 25C, L = 0.089mH, RG = 25, IAS = 36A, VGS =10V. When mounted on 1" square PCB (FR-4 or G-10 Material) . For recommended footprint and soldering techniques refer to application note #AN-994. R is measured at TJ approximately 90C. www.irf.com AUIRLR2905Z Qualification Information Automotive (per AEC-Q101) Qualification Level Moisture Sensitivity Level Machine Model Comments: This part number(s) passed Automotive qualification. IR's Industrial and Consumer qualification level is granted by extension of the higher Automotive level. D-PAK MSL1 Class M2 (200V) AEC-Q101-002 ESD Human Body Model Class H1B (1000V) AEC-Q101-001 Charged Device Model RoHS Compliant Class C5 (1125V) AEC-Q101-005 Yes Qualification standards can be found at International Rectifiers web site: http//www.irf.com/ Exceptions to AEC-Q101 requirements are noted in the qualification report. www.irf.com 3 AUIRLR2905Z 1000 1000 ID, Drain-to-Source Current (A) TOP 100 BOTTOM 10 3.0V 1 0.1 60s PULSE WIDTH Tj = 25C TOP ID, Drain-to-Source Current (A) VGS 10V 9.0V 7.0V 5.0V 4.5V 4.0V 3.5V 3.0V 100 BOTTOM 10 3.0V 60s PULSE WIDTH Tj = 175C 1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) 10 100 Fig 2. Typical Output Characteristics 60 T J = 25C 100.0 T J = 175C 10.0 VDS = 10V 60s PULSE WIDTH 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 VGS, Gate-to-Source Voltage (V) Fig 3. Typical Transfer Characteristics 10.0 Gfs, Forward Transconductance (S) 1000.0 ID, Drain-to-Source Current () 1 VDS, Drain-to-Source Voltage (V) Fig 1. Typical Output Characteristics 4 VGS 10V 9.0V 7.0V 5.0V 4.5V 4.0V 3.5V 3.0V T J = 175C 50 40 T J = 25C 30 20 10 VDS = 8.0V 380s PULSE WIDTH 0 0 10 20 30 40 50 ID, Drain-to-Source Current (A) Fig 4. Typical Forward Transconductance Vs. Drain Current www.irf.com ance AUIRLR2905Z 2500 VGS, Gate-to-Source Voltage (V) 2000 C, Capacitance (pF) 12 VGS = 0V, f = 1 MHZ C iss = C gs + C gd, C ds SHORTED C rss = C gd C oss = C ds + C gd Ciss 1500 1000 500 Coss Crss VDS= 44V VDS= 28V VDS= 11V 10 8 6 4 2 0 0 1 ID= 36A 10 0 100 20 30 40 50 QG Total Gate Charge (nC) VDS, Drain-to-Source Voltage (V) Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage 1000.0 1000 ID, Drain-to-Source Current (A) ISD, Reverse Drain Current (A) 10 100.0 T J = 175C 10.0 T J = 25C 1.0 OPERATION IN THIS AREA LIMITED BY R DS(on) 100 10 100sec 1msec 1 Tc = 25C Tj = 175C Single Pulse VGS = 0V 10msec 0.1 0.1 0.2 0.6 1.0 1.4 1.8 VSD, Source-to-Drain Voltage (V) Fig 7. Typical Source-Drain Diode Forward Voltage www.irf.com 2.2 1 10 100 1000 VDS , Drain-toSource Voltage (V) Fig 8. Maximum Safe Operating Area 5 AUIRLR2905Z 60 2.0 RDS(on) , Drain-to-Source On Resistance (Normalized) LIMITED BY PACKAGE ID , Drain Current (A) 50 40 30 20 10 0 25 50 75 100 125 150 175 ID = 30A VGS = 5.0V 1.5 1.0 0.5 -60 -40 -20 T C , Case Temperature (C) 0 20 40 60 80 100 120 140 160 180 T J , Junction Temperature (C) Fig 10. Normalized On-Resistance Vs. Temperature Fig 9. Maximum Drain Current Vs. Case Temperature Thermal Response ( Z thJC ) 10 1 D = 0.50 0.20 0.10 0.1 0.05 J 0.02 0.01 R1 R1 J 1 0.01 R2 R2 C 1 2 2 Ri (C/W) i (sec) 0.765 0.000269 0.6141 0.001614 Ci= i/Ri Ci i/Ri Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc SINGLE PULSE ( THERMAL RESPONSE ) 0.001 1E-006 1E-005 0.0001 0.001 0.01 t1 , Rectangular Pulse Duration (sec) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 6 www.irf.com AUIRLR2905Z 15V D.U.T RG + V - DD IAS VGS 20V A 0.01 tp Fig 12a. Unclamped Inductive Test Circuit V(BR)DSS EAS, Single Pulse Avalanche Energy (mJ) DRIVER L VDS 240 ID 36A 6.2A BOTTOM 4.3A TOP 200 160 120 80 40 0 tp 25 50 75 100 125 150 175 Starting T J, Junction Temperature (C) I AS Fig 12c. Maximum Avalanche Energy Vs. Drain Current Fig 12b. Unclamped Inductive Waveforms QG 10 V QGS QGD 3.0 Charge Fig 13a. Basic Gate Charge Waveform Current Regulator Same Type as D.U.T. 50K 12V .2F VGS(th) Gate threshold Voltage (V) VG 2.5 ID = 250A 2.0 1.5 .3F D.U.T. + V - DS VGS 1.0 -75 -50 -25 0 25 50 75 100 125 150 175 T J , Temperature ( C ) 3mA IG ID Current Sampling Resistors Fig 14. Threshold Voltage Vs. Temperature Fig 13b. Gate Charge Test Circuit www.irf.com 7 AUIRLR2905Z 1000 Avalanche Current (A) Duty Cycle = Single Pulse 100 Allowed avalanche Current vs avalanche pulsewidth, tav assuming Tj = 25C due to avalanche losses. Note: In no case should Tj be allowed to exceed Tjmax 0.01 10 0.05 0.10 1 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 tav (sec) Fig 15. Typical Avalanche Current Vs.Pulsewidth EAR , Avalanche Energy (mJ) 60 TOP Single Pulse BOTTOM 1% Duty Cycle ID = 36A 50 40 30 20 10 0 25 50 75 100 125 150 Starting T J , Junction Temperature (C) Notes on Repetitive Avalanche Curves , Figures 15, 16: (For further info, see AN-1005 at www.irf.com) 1. Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of T jmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 12a, 12b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. T = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). 175 tav = Average time in avalanche. D = Duty cycle in avalanche = tav *f ZthJC(D, tav ) = Transient thermal resistance, see figure 11) PD (ave) = 1/2 ( 1.3*BV*Iav) = DT/ ZthJC Iav = 2DT/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav Fig 16. Maximum Avalanche Energy Vs. Temperature 8 www.irf.com AUIRLR2905Z D.U.T Driver Gate Drive + - * D.U.T. ISD Waveform Reverse Recovery Current + RG * dv/dt controlled by RG * Driver same type as D.U.T. * I SD controlled by Duty Factor "D" * D.U.T. - Device Under Test P.W. Period VGS=10V Circuit Layout Considerations * Low Stray Inductance * Ground Plane * Low Leakage Inductance Current Transformer - D= Period P.W. + V DD + Body Diode Forward Current di/dt D.U.T. VDS Waveform Diode Recovery dv/dt Re-Applied Voltage - Body Diode VDD Forward Drop Inductor Curent Ripple 5% * ISD VGS = 5V for Logic Level Devices Fig 17. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET(R) Power MOSFETs V DS V GS RG RD D.U.T. + -V DD 10V Pulse Width 1 s Duty Factor 0.1 % Fig 18a. Switching Time Test Circuit VDS 90% 10% VGS td(on) tr t d(off) tf Fig 18b. Switching Time Waveforms www.irf.com 9 AUIRLR2905Z D-Pak (TO-252AA) Package Outline Dimensions are shown in millimeters (inches) D-Pak Part Marking Information Part Number AULR2905Z YWWA IR Logo XX or Date Code Y= Year WW= Work Week A= Automotive, LeadFree XX Lot Code Note: For the most current drawing please refer to IR website at http://www.irf.com/package/ 10 www.irf.com AUIRLR2905Z D-Pak (TO-252AA) Tape & Reel Information Dimensions are shown in millimeters (inches) TR TRR 16.3 ( .641 ) 15.7 ( .619 ) 12.1 ( .476 ) 11.9 ( .469 ) FEED DIRECTION TRL 16.3 ( .641 ) 15.7 ( .619 ) 8.1 ( .318 ) 7.9 ( .312 ) FEED DIRECTION NOTES : 1. CONTROLLING DIMENSION : MILLIMETER. 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS ( INCHES ). 3. OUTLINE CONFORMS TO EIA-481 & EIA-541. 13 INCH 16 mm NOTES : 1. OUTLINE CONFORMS TO EIA-481. www.irf.com 11 AUIRLR2905Z Ordering Information 12 Base part number Package Type AUIRLR2905Z Dpak Standard Pack Form Tube Tape and Reel Tape and Reel Left Tape and Reel Right Complete Part Number Quantity 75 2000 3000 3000 AUIRLR2905Z AUIRLR2905ZTR AUIRLR2905ZTRL AUIRLR2905ZTRR www.irf.com AUIRLR2905Z IMPORTANT NOTICE Unless specifically designated for the automotive market, International Rectifier Corporation and its subsidiaries (IR) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or services without notice. Part numbers designated with the "AU" prefix follow automotive industry and / or customer specific requirements with regards to product discontinuance and process change notification. All products are sold subject to IR's terms and conditions of sale supplied at the time of order acknowledgment. IR warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with IR's standard warranty. Testing and other quality control techniques are used to the extent IR deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. IR assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using IR components. To minimize the risks with customer products and applications, customers should provide adequate design and operating safeguards. Reproduction of IR information in IR data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alterations is an unfair and deceptive business practice. IR is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of IR products or serviced with statements different from or beyond the parameters stated by IR for that product or service voids all express and any implied warranties for the associated IR product or service and is an unfair and deceptive business practice. IR is not responsible or liable for any such statements. IR products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or in other applications intended to support or sustain life, or in any other application in which the failure of the IR product could create a situation where personal injury or death may occur. Should Buyer purchase or use IR products for any such unintended or unauthorized application, Buyer shall indemnify and hold International Rectifier and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that IR was negligent regarding the design or manufacture of the product. IR products are neither designed nor intended for use in military/aerospace applications or environments unless the IR products are specifically designated by IR as military-grade or "enhanced plastic." Only products designated by IR as military-grade meet military specifications. Buyers acknowledge and agree that any such use of IR products which IR has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. IR products are neither designed nor intended IR products are designated by IR as compliant designation "AU". Buyers acknowledge and applications, IR will not be responsible for any for use in automotive applications or environments unless the specific with ISO/TS 16949 requirements and bear a part number including the agree that, if they use any non-designated products in automotive failure to meet such requirements. For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/ WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 www.irf.com 13