MC33078, MC33079, NCV33078, NCV33079 Low Noise Dual/Quad Operational Amplifiers The MC33078/9 series is a family of high quality monolithic amplifiers employing Bipolar technology with innovative high performance concepts for quality audio and data signal processing applications. This family incorporates the use of high frequency PNP input transistors to produce amplifiers exhibiting low input voltage noise with high gain bandwidth product and slew rate. The all NPN output stage exhibits no deadband crossover distortion, large output voltage swing, excellent phase and gain margins, low open loop high frequency output impedance and symmetrical source and sink AC frequency performance. The MC33078/9 family offers both dual and quad amplifier versions and is available in the plastic DIP and SOIC packages (P and D suffixes). http://onsemi.com MARKING DIAGRAMS DUAL 8 MC33078P AWL YYWWG PDIP-8 P SUFFIX CASE 626 8 1 1 Features * * * * * * * * * * * * * 8 Dual Supply Operation: $5.0 V to $18 V Low Voltage Noise: 4.5 nV/ Hz Low Input Offset Voltage: 0.15 mV Low T.C. of Input Offset Voltage: 2.0 mV/C Low Total Harmonic Distortion: 0.002% High Gain Bandwidth Product: 16 MHz High Slew Rate: 7.0 V/ms High Open Loop AC Gain: 800 @ 20 kHz Excellent Frequency Stability Large Output Voltage Swing: +14.1 V/ -14.6 V ESD Diodes Provided on the Inputs NCV Prefix for Automotive and Other Applications Requiring Unique Site and Control Change Requirements These Devices are Pb-Free, Halogen Free/BFR Free and are RoHS Compliant Q4 Q3 Q9 Q5 Neg Pos J1 Amplifier Biasing D3 Q11 R7 C2 Q8 Q3 D4 Z1 Q1 R1 D2 C1 R3 1 1 33078 ALYW G QUAD 14 PDIP-14 P SUFFIX CASE 646 14 1 MC33079P AWLYYWWG 1 14 14 1 SOIC-14 D SUFFIX CASE 751A MC33079DG AWLYWW 1 R4 Q7 R6 A WL, L YY, Y WW, W G or G = Assembly Location = Wafer Lot = Year = Work Week = Pb-Free Package C3 R9 Q6 Q2 8 VCC R2 D1 SOIC-8 D SUFFIX CASE 751 Q10 Q12 Vout ORDERING INFORMATION See detailed ordering and shipping information in the package dimensions section on page 10 of this data sheet. R5 VEE Figure 1. Representative Schematic Diagram (Each Amplifier) (c) Semiconductor Components Industries, LLC, 2011 November, 2011 - Rev. 9 1 Publication Order Number: MC33078/D MC33078, MC33079, NCV33078, NCV33079 PIN CONNECTIONS Output 1 DUAL QUAD CASE 626/751 CASE 646/751A 1 8 VCC 1 + 2 Inputs 1 VEE 3 7 Output 2 2 + 4 Output 1 Inputs 1 6 VCC Inputs 2 5 Inputs 2 (Dual, Top View) Output 2 1 14 2 13 * 1 3 ) * ) 12 4 4 11 5 ) 10 3 * 9 )2 6 * Output 4 7 8 Inputs 4 VEE Inputs 3 Output 3 (Quad, Top View) MAXIMUM RATINGS Rating Symbol Value Unit VS +36 V Input Differential Voltage Range VIDR Note 1 V Input Voltage Range VIR Note 1 V Output Short Circuit Duration (Note 2) tSC Indefinite sec Supply Voltage (VCC to VEE) Maximum Junction Temperature TJ +150 C Storage Temperature Tstg -60 to +150 C ESD Protection at any Pin MC33078/NCV33078 MC33079/NCV33079 - Human Body Model - Machine Model - Human Body Model - Machine Model Vesd 600 200 550 150 V Maximum Power Dissipation PD Note 2 mW Operating Temperature Range TA -40 to +85 C Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability. 1. Either or both input voltages must not exceed the magnitude of VCC or VEE. 2. Power dissipation must be considered to ensure maximum junction temperature (TJ) is not exceeded (see Figure 2). http://onsemi.com 2 MC33078, MC33079, NCV33078, NCV33079 DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = -15 V, TA = 25C, unless otherwise noted.) Symbol Characteristics |VIO| Input Offset Voltage (RS = 10 W, VCM = 0 V, VO = 0 V) (MC33078) TA = +25C TA = -40 to +85C (MC33079) TA = +25C TA = -40 to +85C Average Temperature Coefficient of Input Offset Voltage RS = 10 W, VCM = 0 V, VO = 0 V, TA = Tlow to Thigh DVIO/DT Input Bias Current (VCM = 0 V, VO = 0 V) TA = +25C TA = -40 to +85C IIB Input Offset Current (VCM = 0 V, VO = 0 V) TA = +25C TA = -40 to +85C IIO Common Mode Input Voltage Range (DVIO = 5.0 mV, VO = 0 V) VICR Large Signal Voltage Gain (VO = $10 V, RL = 2.0 kW) TA = +25C TA = -40 to +85C AVOL Min Typ Max - - - - 0.15 - 0.15 - 2.0 3.0 2.5 3.5 - 2.0 - - - 300 - 750 800 - - 25 - 150 175 13 14 - Unit mV mV/C nA nA V dB 90 85 110 - - - Output Voltage Swing (VID = $1.0V) RL = 600 W RL = 600 W RL = 2.0 kW RL = 2.0 kW RL = 10 kW RL = 10 kW VO+ VO- VO+ VO- VO+ VO- - - +13.2 - +13.5 - +10.7 -11.9 +13.8 -13.7 +14.1 -14.6 - - - -13.2 - -14 V Common Mode Rejection (Vin = 13V) CMR 80 100 - dB Power Supply Rejection (Note 3) VCC/VEE = +15 V/ -15 V to +5.0 V/ -5.0 V PSR 80 105 - dB +15 -20 +29 -37 - - - - - - 4.1 - 8.4 - 5.0 5.5 10 11 Output Short Circuit Current (VID = 1.0 V, Output to Ground) Source Sink ISC Power Supply Current (VO = 0 V, All Amplifiers) (MC33078) TA = +25C (MC33078) TA = -40 to +85C (MC33079) TA = +25C (MC33079) TA = -40 to +85C ID 3. Measured with VCC and VEE differentially varied simultaneously. http://onsemi.com 3 mA mA MC33078, MC33079, NCV33078, NCV33079 AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = -15 V, TA = 25C, unless otherwise noted.) Symbol Min Typ Max Unit SR 5.0 7.0 - V/ms GBW 10 16 - MHz Unity Gain Bandwidth (Open Loop) BW - 9.0 - MHz Gain Margin (RL = 2.0 kW) CL = 0 pF CL = 100 pF Am - - -11 -6.0 - - Phase Margin (RL = 2.0 kW) CL = 0 pF CL = 100 pF fm - - 55 40 - - Characteristics Slew Rate (Vin = -10 V to +10 V, RL = 2.0 kW, CL = 100 pF AV = +1.0) Gain Bandwidth Product (f = 100 kHz) Deg CS - -120 - dB Power Bandwidth (VO = 27 Vpp, RL = 2.0 kW, THD $ 1.0%) BWp - 120 - kHz Total Harmonic Distortion (RL = 2.0 kW, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0) THD - 0.002 - % Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz) |ZO| - 37 - W Differential Input Resistance (VCM = 0 V) Rin - 175 - kW Differential Input Capacitance (VCM = 0 V) Cin - 12 - pF Equivalent Input Noise Voltage (RS = 100 W, f = 1.0 kHz) en - 4.5 - nV/ Hz Equivalent Input Noise Current (f = 1.0 kHz) in - 0.5 - Hz pA/ P, D MAXIMUM POWER DISSIPATION (mW) Channel Separation (f = 20 Hz to 20 kHz) dB 2400 800 2000 I, IB INPUT BIAS CURRENT (nA) MC33078P & MC33079P 1600 MC33079D 1200 800 MC33078D 400 0 -55 -40 -20 VCM = 0 V TA = 25C 600 400 200 0 0 20 40 60 80 100 120 140 160 TA, AMBIENT TEMPERATURE (C) 0 Figure 2. Maximum Power Dissipation versus Temperature 10 15 VCC, | VEE |, SUPPLY VOLTAGE (V) 20 Figure 3. Input Bias Current versus Supply Voltage 1000 2.0 VCC = +15 V VEE = -15 V VCM = 0 V 800 V, IO INPUT OFFSET VOLTAGE (mV) I, IB INPUT BIAS CURRENT (nA) 5.0 600 400 200 0 -55 -25 0 25 50 75 TA, AMBIENT TEMPERATURE (C) 100 VCC = +15 V VEE = -15 V RS = 10 W 1.0 VCM = 0 V AV = +1 Unit 2 0 Figure 4. Input Bias Current versus Temperature Unit 3 -1.0 -2.0 -55 125 Unit 1 -25 0 25 50 75 TA, AMBIENT TEMPERATURE (C) 100 125 Figure 5. Input Offset Voltage versus Temperature http://onsemi.com 4 I, IB INPUT BIAS CURRENT (nA) 600 VCC = +15 V VEE = -15 V TA = 25C 500 400 300 200 100 0 -15 -10 -5.0 0 5.0 10 15 VCM, COMMON MODE VOLTAGE (V) V ICR , INPUT COMMON MODE VOLTAGE RANGE (V) MC33078, MC33079, NCV33078, NCV33079 VCC -0 VCC -0.5 +VCM VCC -1.5 Voltage Range VEE +1.5 VEE +1.0 -VCM VEE +0.5 VEE +0 -55 VCC = +15 V VEE = -15 V 25C VCC -5.0 125C VEE +5.0 125C 25C VEE +3.0 -55C VEE +1.0 7.0 4.0 3.0 2.0 100 15 V 4.0 VCM = 0 V RL = VO = 0 V 10 V 5.0 V MC33079 15 V 10 V MC33078 5.0 V 4.0 V -25 Supply Voltages 0 25 50 75 TA, AMBIENT TEMPERATURE (C) 100 125 50 VCC = +15 V VEE = -15 V RL < 100 W VID = 1.0 V Sink 40 Source 30 20 10 -55 Figure 9. Output Short Circuit Current versus Temperature 3.0 1.0 0 -55 75 Figure 8. Output Saturation Voltage versus Load Resistance to Ground 2.0 6.0 5.0 50 0 25 50 75 TA, AMBIENT TEMPERATURE (C) 1.0 9.0 8.0 25 RL, LOAD RESISTANCE TO GROUND (kW) 0 10 I, CC SUPPLY CURRENT (mA) | I|, SC OUTPUT SHORT CIRCUIT CURRENT (mA) VCC -3.0 0 Figure 7. Input Common Mode Voltage Range versus Temperature CMR, COMMON MODE REJECTION (dB) Vsat , OUTPUT SATURATION VOLTAGE (V) -55C -25 TA, AMBIENT TEMPERATURE (C) Figure 6. Input Bias Current versus Common Mode Voltage VCC -1.0 VCC = +3.0 V to +15 V VEE = -3.0 V to -15 V DVIO = 5.0 mV VO = 0 V VCC -1.0 100 D VCM 140 120 CMR = 20Log 100 80 60 40 Figure 10. Supply Current versus Temperature ADM + D VCM D VO D VO x ADM VCC = +15 V VEE = -15 V VCM = 0 V DVCM = 1.5 V TA = 25C 1.0 k 10 k 100 k f, FREQUENCY (Hz) 1.0 M Figure 11. Common Mode Rejection versus Frequency http://onsemi.com 5 125 160 20 100 125 -25 10 M MC33078, MC33079, NCV33078, NCV33079 DVO/ADM +PSR = 20Log 120 DVO/ADM -PSR = 20Log DVCC DVCC DVCC +PSR 100 GWB, GAIN BANDWIDTH PRODUCT (MHz) PSR, POWER SUPPLY REJECTION (dB) 140 - ADM DVO + 80 -PSR VEE 60 40 VCC = +15 V VEE = -15 V TA = 25C 20 0 100 1.0 k 10 k 100 k f, FREQUENCY (Hz) 30 20 10 0 0 10 M 1.0 M RL = 10 kW CL = 0 pF f = 100 kHz TA = 25C 20 20 20 TA = 25C 15 VO , OUTPUT VOLTAGE (Vp) GWB, GAIN BANDWIDTH PRODUCT (MHz) 15 Figure 13. Gain Bandwidth Product versus Supply Voltage 15 10 VCC = +15 V VEE = -15 V f = 100 kHz RL = 10 kW CL = 0 pF 5.0 0 -55 -25 RL = 10 kW RL = 2.0 kW 5.0 0 -5.0 RL = 2.0 kW -10 RL = 10 kW -15 0 25 50 75 100 -20 125 VO 0 A, VOL OPEN LOOP VOLTAGE GAIN (dB) 30 25 20 VCC = +15 V VCC = -15 V RL = 2.0 kW AV = +1.0 THD 1.0% TA = 25C 5.0 10 100 1.0 k 10 k 100 k 10 15 20 Figure 15. Maximum Output Voltage versus Supply Voltage 35 10 5.0 VCC |VEE| , SUPPLY VOLTAGE (V) Figure 14. Gain Bandwidth Product versus Temperature 15 VO + 10 TA, AMBIENT TEMPERATURE (C) VO, OUTPUT VOLTAGE (Vpp ) 10 VCC |VEE| , SUPPLY VOLTAGE (V) Figure 12. Power Supply Rejection versus Frequency 0 5.0 1.0 M 110 100 90 80 10 M RL = 2.0 kW f 10 Hz DVO = 2/3 (VCC -VEE) TA = 25C 0 f, FREQUENCY (Hz) 5.0 10 15 VCC |VEE| , SUPPLY VOLTAGE (V) Figure 16. Output Voltage versus Frequency Figure 17. Open Loop Voltage Gain versus Supply Voltage http://onsemi.com 6 20 110 50 105 | Z|, O OUTPUT IMPEDANCE () VCC = +15 V VEE = -15 V RL = 2.0 kW f 10 Hz DVO = -10 V to +10 V 100 95 90 -55 -25 0 25 50 75 CS, CHANNEL SEPARATION (dB) 20 10 AV = 1000 125 AV = 10 100 k Figure 19. Output Impedance versus Frequency Drive Channel VCC = +15 V VEE = -15 V RL = 2.0 KW DVOD = 20 Vpp TA = 25C MC33078 140 MC33079 100 W 10 kW - 120 VOM + 100 W 100 10 100 DVOA CS = 20 Log 1.0 k f, FREQUENCY (Hz) DVOM 10 k VCC = +15 V VEE = -15 V VO = 1.0 Vrms TA = 25C 0.1 VO + 2.0 kW 0.001 10 100 k 100 1.0 k f, FREQUENCY (Hz) 10 k 100 k Figure 21. Total Harmonic Distortion versus Frequency 10 SR, SLEW RATE (V/s) AV = 100 RA 0.05 Vin Vin = 2/3 (VCC -VEE) TA = 25C 9.0 AV = 1000 0.1 + 10 kW VO 2.0 kW AV = 10 AV = 1.0 0.005 - 0.01 1.0 0.01 10 M 1.0 Figure 20. Channel Separation versus Frequency VCC = +15 V VEE = -15 V 0.5 f = 2.0 kHz TA = 25C AV = 1.0 1.0 M Figure 18. Open Loop Voltage Gain versus Temperature Measurement Channel THD, TOTAL HARMONIC DISTORTION (%) 10 k AV = 100 f, FREQUENCY (Hz) 150 110 30 TA, AMBIENT TEMPERATURE (C) 160 130 100 VCC = +15 V VEE = -15 V VO = 0 V TA = 25C 40 0 1.0 k THD, TOTAL HARMONIC DISTORTION (%) A, VOL OPEN LOOP VOLTAGE GAIN (dB) MC33078, MC33079, NCV33078, NCV33079 Falling 8.0 7.0 Rising 6.0 5.0 4.0 - 3.0 DVin 2.0 + VO 2.0 kW 1.0 0.001 0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 VO, OUTPUT VOLTAGE (Vrms) 8.0 0 9.0 4 Figure 22. Total Harmonic Distortion versus Output Voltage 6 8 10 14 12 16 VCC |VEE| , SUPPLY VOLTAGE (V) 18 Figure 23. Slew Rate versus Supply Voltage http://onsemi.com 7 20 MC33078, MC33079, NCV33078, NCV33079 Falling Rising 6.0 DVin 4.0 2.0 -55 -25 VO + 2.0 kW 0 25 50 75 TA, AMBIENT TEMPERATURE (C) 100 120 100 40 135 20 Phase 25C 20 -55C 30 8.0 125C 125C 6.0 40 50 4.0 VCC = +15 V VEE = -15 V VO = 0 V 0 e, nV/ Hz n INPUT REFERRED NOISE VOLTAGE () 1 25C -55C 60 1.0 k 10 k 100 k f, FREQUENCY (Hz) 1.0 M 10 DVin 125C VO + 25C CL -55C 60 40 VCC = +15 V VEE = -15 V DVin = 100 mV 20 0 10 70 1000 100 100 1.0 k 10 k CL, OUTPUT LOAD CAPACITANCE (pF) CL, OUTPUT LOAD CAPACITANCE (pF) Figure 26. Open Loop Gain Margin and Phase Margin versus Load Capacitance Figure 27. Overshoot versus Output Load Capacitance 10 VCC = +15 V VEE = -15 V TA = 25C 50 30 20 10 8.0 5.0 Voltage 3.0 2.0 Current 100 180 10 M Gain 100 80 1.0 10 80 1.0 k 10 k 0.1 100 k Vn, REFERRED NOISE VOLTAGE (nV/ Hz) 2.0 100 - os, OVERSHOOT (%) CL 10 10 m, PHASE MARGIN (DEGREES) VO + 2.0 kW 10 100 in, INPUT REFERRED NOISE CURRENT ( pA/ Hz ) A, m OPEN LOOP GAIN MARGIN (dB) 12 Vin 90 Gain Figure 25. Voltage Gain and Phase versus Frequency 0 - Phase 60 Figure 24. Slew Rate versus Temperature 14 45 80 0 1.0 125 0 VCC = +15 V VEE = -15 V RL = 2.0 kW TA = 25C , EXCESS PHASE (DEGREES) VCC = +15 V VEE = -15 V DVin = 20 V 8.0 SR, SLEW RATE (V/s) A, VOL OPEN LOOP VOLTAGE GAIN (dB) 10 1000 100 VCC = +15 V VEE = -15 V f = 1.0 kHz TA = 25C Vn(total) = (inRs)2 ) en2 ) 4KTRS 10 1.0 10 100 1.0 k 10 k 100 k 1.0 M f, FREQUENCY (Hz) RS, SOURCE RESISTANCE (W) Figure 28. Input Referred Noise Voltage and Current versus Frequency Figure 29. Total Input Referred Noise Voltage versus Source Resistance http://onsemi.com 8 MC33078, MC33079, NCV33078, NCV33079 14 Am, GAIN MARGIN (dB) 12 60 Gain 10 R1 8.0 R2 6.0 4.0 2.0 0 50 Phase - 40 VO + m , PHASE MARGIN (DEGREES) 70 30 VCC = +15 V VEE = -15 V RT = R1 +R2 AV = +100 VO = 0 V TA = 25C 20 10 10 100 1.0 k 10 k 0 100 k RT, DIFFERENTIAL SOURCE RESISTANCE (W) V, O OUTPUT VOLTAGE (5.0 V/DIV) V, O OUTPUT VOLTAGE (5.0 V/DIV) Figure 30. Phase Margin and Gain Margin versus Differential Source Resistance VCC = +15 V VEE = -15 V AV = -1.0 RL = 2.0 kW CL = 100 pF TA = 25C t, TIME (2.0 ms/DIV) t, TIME (2.0 ms/DIV) Figure 32. Non-inverting Amplifier Slew Rate e, n INPUT NOISE VOLTAGE (100 nV/DIV) Figure 31. Inverting Amplifier Slew Rate V, O OUTPUT VOLTAGE (5.0 V/DIV) VCC = +15 V VEE = -15 V AV = +1.0 RL = 2.0 kW CL = 100 pF TA = 25C VCC = +15 V VEE = -15 V RL = 2.0 kW CL = 100 pF AV = +1.0 TA = 25C t, TIME (200 ms/DIV) VCC = +15 V VEE = -15 V BW = 0.1 Hz to 10 Hz TA = 25C t, TIME (1.0 sec/DIV) Figure 33. Non-inverting Amplifier Overshoot Figure 34. Low Frequency Noise Voltage versus Time http://onsemi.com 9 MC33078, MC33079, NCV33078, NCV33079 0.1 mF 10 W 100 kW 2.0 kW + D.U.T. + 1/2 4.7 mF 4.3 kW Scope x1 Rin = 1.0 MW MC33078 100 kW Voltage Gain = 50,000 22 mF 2.2 mF 110 kW 24.3 kW 0.1 mF Note: All capacitors are non-polarized. Figure 35. Voltage Noise Test Circuit (0.1 Hz to 10 Hzp-p) ORDERING INFORMATION Device Package MC33078DG MC33078DR2G 98 Units / Rail SOIC-8 (Pb-Free) NCV33078DR2G* MC33078P Shipping 2500 / Tape & Reel PDIP-8 50 Units / Rail MC33078PG PDIP-8 (Pb-Free) MC33079DG SOIC-14 (Pb-Free) 55 Units / Rail MC33079DR2G NCV33079DR2G* SOIC-14 (Pb-Free) 2500 / Tape & Reel MC33079P PDIP-14 MC33079PG PDIP-14 (Pb-Free) 25 Units / Rail For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. *NCV devices are qualified for automotive use. http://onsemi.com 10 MC33078, MC33079, NCV33078, NCV33079 PACKAGE DIMENSIONS PDIP-8 N SUFFIX CASE 626-05 ISSUE M D A D1 E 8 5 E1 1 4 NOTE 5 F c E2 END VIEW TOP VIEW NOTE 3 e/2 A L A1 C SEATING PLANE E3 e 8X SIDE VIEW b 0.010 M C A END VIEW http://onsemi.com 11 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: INCHES. 3. DIMENSION E IS MEASURED WITH THE LEADS RESTRAINED PARALLEL AT WIDTH E2. 4. DIMENSION E1 DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. DIM A A1 b C D D1 E E1 E2 E3 e L INCHES NOM MAX ---- 0.210 ---- ---- 0.018 0.022 0.010 0.014 0.365 0.400 ---- ---- 0.310 0.325 0.250 0.280 0.300 BSC ---- ---- 0.430 0.100 BSC 0.115 0.130 0.150 MIN ---- 0.015 0.014 0.008 0.355 0.005 0.300 0.240 MILLIMETERS MIN NOM MAX ---- ---- 5.33 0.38 ---- ---- 0.35 0.46 0.56 0.20 0.25 0.36 9.02 9.27 10.02 0.13 ---- ---- 7.62 7.87 8.26 6.10 6.35 7.11 7.62 BSC ---- ---- 10.92 2.54 BSC 2.92 3.30 3.81 MC33078, MC33079, NCV33078, NCV33079 PACKAGE DIMENSIONS SOIC-8 NB CASE 751-07 ISSUE AK -X- NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: MILLIMETER. 3. DIMENSION A AND B DO NOT INCLUDE MOLD PROTRUSION. 4. MAXIMUM MOLD PROTRUSION 0.15 (0.006) PER SIDE. 5. DIMENSION D DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.127 (0.005) TOTAL IN EXCESS OF THE D DIMENSION AT MAXIMUM MATERIAL CONDITION. 6. 751-01 THRU 751-06 ARE OBSOLETE. NEW STANDARD IS 751-07. A 8 5 S B 0.25 (0.010) M Y M 1 4 -Y- K G C N DIM A B C D G H J K M N S X 45 _ SEATING PLANE -Z- 0.10 (0.004) H D 0.25 (0.010) M Z Y S X S M J SOLDERING FOOTPRINT* 1.52 0.060 7.0 0.275 4.0 0.155 0.6 0.024 1.270 0.050 SCALE 6:1 mm inches *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. http://onsemi.com 12 MILLIMETERS MIN MAX 4.80 5.00 3.80 4.00 1.35 1.75 0.33 0.51 1.27 BSC 0.10 0.25 0.19 0.25 0.40 1.27 0_ 8_ 0.25 0.50 5.80 6.20 INCHES MIN MAX 0.189 0.197 0.150 0.157 0.053 0.069 0.013 0.020 0.050 BSC 0.004 0.010 0.007 0.010 0.016 0.050 0 _ 8 _ 0.010 0.020 0.228 0.244 MC33078, MC33079, NCV33078, NCV33079 PACKAGE DIMENSIONS PDIP-14 CASE 646-06 ISSUE P 14 8 1 7 NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH. 3. DIMENSION L TO CENTER OF LEADS WHEN FORMED PARALLEL. 4. DIMENSION B DOES NOT INCLUDE MOLD FLASH. 5. ROUNDED CORNERS OPTIONAL. B A F L N C -T- SEATING PLANE H G D 14 PL J K 0.13 (0.005) M M http://onsemi.com 13 DIM A B C D F G H J K L M N INCHES MIN MAX 0.715 0.770 0.240 0.260 0.145 0.185 0.015 0.021 0.040 0.070 0.100 BSC 0.052 0.095 0.008 0.015 0.115 0.135 0.290 0.310 --- 10 _ 0.015 0.039 MILLIMETERS MIN MAX 18.16 19.56 6.10 6.60 3.69 4.69 0.38 0.53 1.02 1.78 2.54 BSC 1.32 2.41 0.20 0.38 2.92 3.43 7.37 7.87 --- 10 _ 0.38 1.01 MC33078, MC33079, NCV33078, NCV33079 PACKAGE DIMENSIONS SOIC-14 NB CASE 751A-03 ISSUE K D A B 14 8 NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. 2. CONTROLLING DIMENSION: MILLIMETERS. 3. DIMENSION b DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE PROTRUSION SHALL BE 0.13 TOTAL IN EXCESS OF AT MAXIMUM MATERIAL CONDITION. 4. DIMENSIONS D AND E DO NOT INCLUDE MOLD PROTRUSIONS. 5. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE. A3 E H L 1 0.25 M DETAIL A 7 B 13X M b 0.25 M C A S B S DETAIL A h A X 45 _ M A1 e DIM A A1 A3 b D E e H h L M C SEATING PLANE MILLIMETERS MIN MAX 1.35 1.75 0.10 0.25 0.19 0.25 0.35 0.49 8.55 8.75 3.80 4.00 1.27 BSC 5.80 6.20 0.25 0.50 0.40 1.25 0_ 7_ INCHES MIN MAX 0.054 0.068 0.004 0.010 0.008 0.010 0.014 0.019 0.337 0.344 0.150 0.157 0.050 BSC 0.228 0.244 0.010 0.019 0.016 0.049 0_ 7_ SOLDERING FOOTPRINT* 6.50 14X 1.18 1 1.27 PITCH 14X 0.58 DIMENSIONS: MILLIMETERS *For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. ON Semiconductor and are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. PUBLICATION ORDERING INFORMATION LITERATURE FULFILLMENT: Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800-282-9855 Toll Free USA/Canada Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910 Japan Customer Focus Center Phone: 81-3-5817-1050 http://onsemi.com 14 ON Semiconductor Website: www.onsemi.com Order Literature: http://www.onsemi.com/orderlit For additional information, please contact your local Sales Representative MC33078/D