www.irf.com 1
04/30/09
IRF6727MPbF
IRF6727MTRPbF
DirectFET Power MOSFET
Description
The IRF6727MPbF combines the latest HEXFET® Power MOSFET Silicon technology with the advanced DirectFETTM packaging to achieve
the lowest on-state resistance in a package that has the footprint of a MICRO-8 and only 0.7 mm profile. The DirectFET package is
compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection
soldering techniques, when application note AN-1035 is followed regarding the manufacturing methods and processes. The DirectFET pack-
age allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%.
The IRF6727MPbF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction and
switching losses. The reduced total losses make this product ideal for high efficiency DC-DC converters that power the latest generation of
processors operating at higher frequencies. The IRF6727MPbF has been optimized for parameters that are critical in synchronous buck
operating from 12 volt bus converters including Rds(on) and gate charge to minimize losses.
Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details)
Fig 1. Typical On-Resistance vs. Gate Voltage
Typical values (unless otherwise specified)
Fig 2. Typical Total Gate Charge vs. Gate-to-Source Voltage
Click on this section to link to the appropriate technical paper.
Click on this section to link to the DirectFET Website.
Surface mounted on 1 in. square Cu board, steady state.
TC measured with thermocouple mounted to top (Drain) of part.
Repetitive rating; pulse width limited by max. junction temperature.
Starting TJ = 25°C, L = 0.77mH, RG = 25, IAS = 25A.
Notes:
DirectFET ISOMETRIC
MX
l RoHS Compliant and Halogen Free
l Low Profile (<0.7 mm)
l Dual Sided Cooling Compatible
l Ultra Low Package Inductance
l Optimized for High Frequency Switching
lIdeal for CPU Core DC-DC Converters
l Optimized for both Sync.FET and some Control FET
application
l Low Conduction and Switching Losses
l Compatible with existing Surface Mount Techniques
l 100% Rg tested
SQ SX ST MQ MX MT MP
0 5 10 15 20
VGS, Gate -to -Source Voltage (V)
0
1
2
3
4
Typical RDS(on) (m)
ID = 32A
TJ = 25°C
TJ = 125°C
Qg tot Qgd Qgs2 Qrr Qoss Vgs(th)
49nC 16nC 5.3nC 45nC 28nC 1.8V
Absolute Maximum Ratin
g
s
Parameter Units
VDS Drain-to-Source Voltage V
VGS Gate-to-Source Voltage
ID @ TA = 25°C Continuous Drain Current, VGS @ 10V
e
ID @ TA = 70°C Continuous Drain Current, VGS @ 10V
e
A
ID @ TC = 25°C Continuous Drain Current, VGS @ 10V
f
IDM Pulsed Drain Current
g
EAS Single Pulse Avalanche Energy
h
mJ
IAR Avalanche Current
g
A
25
Max.
26
180
260
±20
30
32
250
0 5 10 15 20 25 30 35 40 45 50 55
QG, Total Gate Charge (nC)
0.0
1.0
2.0
3.0
4.0
5.0
VGS, Gate-to-Source Voltage (V)
VDS= 24V
VDS= 15V
ID= 25A
VDSS VGS RDS(on) RDS(on)
30V max ±20V max 1.22m@ 10V 1.84m@ 4.5V
PD - 96122A
IRF6727MPbF
2www.irf.com
Pulse width 400µs; duty cycle 2%.
Notes:
Static @ TJ = 25°C (unless otherwise specified)
Parameter Min. Typ. Max. Units
BVDSS Drain-to-Source Breakdown Voltage 30 ––– ––– V
∆ΒVDSS/TJ Breakdown Voltage Temp. Coefficient ––– 22 ––– mV/°C
RDS(on) Static Drain-to-Source On-Resistance ––– 1.22 1.7 m
––– 1.84 2.4
VGS(th) Gate Threshold Voltage 1.35 1.8 2.35 V
VGS(th)/TJGate Threshold Voltage Coefficient ––– -6.5 ––– mV/°C
IDSS Drain-to-Source Leakage Current ––– ––– 1.0 µA
––– ––– 150
IGSS Gate-to-Source Forward Leakage ––– ––– 100 nA
Gate-to-Source Reverse Leakage ––– ––– -100
gfs Forward Transconductance 160 ––– ––– S
QgTotal Gate Charge ––– 49 74
Qgs1 Pre-Vth Gate-to-Source Charge ––– 12 –––
Qgs2 Post-Vth Gate-to-Source Charge ––– 5.3 ––– nC
Qgd Gate-to-Drain Charge ––– 16 –––
Qgodr Gate Charge Overdrive ––– 16 ––– See Fig. 15
Qsw Switch Charge (Qgs2 + Qgd)––– 21.3 –––
Qoss Output Charge ––– 28 ––– nC
RGGate Resistance ––– 1.5 2.5
td(on) Turn-On Delay Time ––– 21 –––
trRise Time ––– 31 ––– ns
td(off) Turn-Off Delay Time ––– 24 –––
tfFall Time ––– 16 –––
Ciss Input Capacitance ––– 6190 –––
Coss Output Capacitance ––– 1280 ––– pF
Crss Reverse Transfer Capacitance ––– 610 –––
Diode Characteristics
Parameter Min. Typ. Max. Units
ISContinuous Source Current ––– ––– 110
(Body Diode) A
ISM Pulsed Source Current ––– ––– 260
(Body Diode)
g
VSD Diode Forward Voltage ––– 0.77 1.0 V
trr Reverse Recovery Time ––– 27 41 ns
Qrr Reverse Recovery Charge ––– 45 68 nC di/dt = 250A/µs
i
TJ = 25°C, IS = 25A, VGS = 0V
i
showing the
integral reverse
p-n junction diode.
VGS = 4.5V, ID = 25A
i
VDS = VGS, ID = 100µA
TJ = 25°C, IF = 25A
VGS = 4.5V
ID = 25A
VGS = 0V
VDS = 15V
ID = 25A
VDD = 15V, VGS = 4.5V
i
Conditions
VGS = 0V, ID = 250µA
Reference to 25°C, ID = 1mA
VGS = 10V, ID = 32A
i
VGS = 20V
VGS = -20V
VDS = 24V, VGS = 0V
VDS = 15V
VDS = 24V, VGS = 0V, TJ = 125°C
MOSFET symbol
RG = 1.8
VDS = 15V, ID = 25A
Conditions
See Fig. 17
ƒ = 1.0MHz
VDS = 16V, VGS = 0V
IRF6727MPbF
www.irf.com 3
Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient
Used double sided cooling , mounting pad with large heatsink.
Mounted on minimum footprint full size board with metalized
back and with small clip heatsink.
Notes:
Rθ is measured at TJ of approximately 90°C.
Surface mounted on 1 in. square Cu
(still air).
Mounted to a PCB with
small clip heatsink (still air)
Mounted on minimum
footprint full size board with
metalized back and with small
clip heatsink (still air)
1E-006 1E-005 0.0001 0.001 0.01 0.1 110 100 1000
t1 , Rectangular Pulse Duration (sec)
0.001
0.01
0.1
1
10
100
Thermal Response ( Z thJA )
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthja + Tc
Ri (°C/W) τi (sec)
1.1959 0.000163
3.1186 0.009223
22.998 0.9465
17.704 41.2
τJ
τJ
τ1
τ1
τ2
τ2τ3
τ3
R1
R1R2
R2R3
R3
Ci= τi/Ri
Ci= τi/Ri
τA
τA
τ4
τ4
R4
R4
Absolute Maximum Ratin
g
s
Parameter Units
PD @TA = 25°C Power Dissipation
e
W
PD @TA = 70°C Power Dissipation
e
PD @TC = 25°C Power Dissipation
f
TP Peak Soldering Temperature °C
TJ Operating Junction and
TSTG Storage Temperature Range
Thermal Resistance
Parameter Typ. Max. Units
RθJA Junction-to-Ambient
el
––– 45
RθJA Junction-to-Ambient
jl
12.5 ––
RθJA Junction-to-Ambient
kl
20 ––– °C/W
RθJC Junction-to-Case
fl
––– 1.4
RθJ-PCB Junction-to-PCB Mounted 1.0 –––
Linear Derating Factor
e
W/°C
1.8
0.022
270
-40 to + 150
Max.
89
2.8
IRF6727MPbF
4www.irf.com
Fig 5. Typical Output Characteristics
Fig 4. Typical Output Characteristics
Fig 6. Typical Transfer Characteristics Fig 7. Normalized On-Resistance vs. Temperature
Fig 8. Typical Capacitance vs.Drain-to-Source Voltage Fig 9. Typical On-Resistance vs.
Drain Current and Gate Voltage
0.1 110 100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
BOTTOM 2.3V
60µs PULSE WIDTH
Tj = 25°C
2.3V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
2.3V
60µs PULSE WIDTH
Tj = 150°C
VGS
TOP 10V
5.0V
4.5V
3.5V
3.0V
2.7V
2.5V
BOTTOM 2.3V
1.0 1.5 2.0 2.5 3.0 3.5 4.0
VGS, Gate-to-Source Voltage (V)
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 150°C
TJ = 25°C
TJ = -40°C
VDS = 15V
60µs PULSE WIDTH
-60 -40 -20 020 40 60 80 100 120 140 160
TJ , Junction Temperature (°C)
0.5
1.0
1.5
2.0
Typical RDS(on) (Normalized)
ID = 32A
VGS = 10V
VGS = 4.5V
110 100
VDS, Drain-to-Source Voltage (V)
100
1000
10000
100000
C, Capacitance(pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, C ds SHORTED
Crss = C gd
Coss = Cds + Cgd
Coss
Crss
Ciss
050 100 150 200 250
ID, Drain Current (A)
0
1
2
3
4
5
6
7
Typical RDS(on) (m)
TJ = 25°C
Vgs = 3.5V
Vgs = 4.0V
Vgs = 4.5V
Vgs = 5.0V
Vgs = 8.0V
Vgs = 10V
IRF6727MPbF
www.irf.com 5
Fig 13. Typical Threshold Voltage vs. Junction
Temperature
Fig 12. Maximum Drain Current vs. Case Temperature
Fig 10. Typical Source-Drain Diode Forward Voltage Fig11. Maximum Safe Operating Area
Fig 14. Maximum Avalanche Energy vs. Drain Current
0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
VSD, Source-to-Drain Voltage (V)
0
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 150°C
TJ = 25°C
TJ = -40°C
VGS = 0V
25 50 75 100 125 150
TC , Case Temperature (°C)
0
20
40
60
80
100
120
140
160
180
200
ID, Drain Current (A)
-75 -50 -25 025 50 75 100 125 150
TJ , Temperature ( °C )
0.5
1.0
1.5
2.0
2.5
3.0
Typical VGS(th) Gate threshold Voltage (V)
ID = 100µA
ID = 150µA
ID = 250µA
ID = 1.0mA
ID = 1.0A
0.01 0.10 1.00 10.00 100.00
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
OPERATION IN THIS AREA
LIMITED BY R DS(on)
TA = 25°C
TJ = 150°C
Single Pulse
100µsec
1msec
10msec
DC
25 50 75 100 125 150
Starting TJ , Junction Temperature (°C)
0
200
400
600
800
1000
EAS , Single Pulse Avalanche Energy (mJ)
ID
TOP 2.6A
3.7A
BOTTOM 25A
IRF6727MPbF
6www.irf.com
Fig 15a. Gate Charge Test Circuit Fig 15b. Gate Charge Waveform
Fig 16b. Unclamped Inductive Waveforms
tp
V
(BR)DSS
I
AS
Fig 16a. Unclamped Inductive Test Circuit
Fig 17b. Switching Time Waveforms
Fig 17a. Switching Time Test Circuit
R
G
I
AS
0.01
t
p
D.U.T
L
VDS
+
-V
DD
DRIVER
A
15V
20V
VGS
Vds
Vgs
Id
Vgs(th)
Qgs1
Qgs2QgdQgodr
1K
VCC
DUT
0
L
S
20K
VDS
90%
10%
VGS
t
d(on) trtd(off) tf
VDS
Pulse Width ≤ 1 µs
Duty Factor ≤ 0.1 %
RD
VGS
RG
D.U.T.
VGS
+
-
VDD
IRF6727MPbF
www.irf.com 7
Fig 18. Diode Reverse Recovery Test Circuit for HEXFET® Power MOSFETs
Circuit Layout Considerations
Low Stray Inductance
Ground Plane
Low Leakage Inductance
Current Transformer
P.W. Period
di/dt
Diode Recovery
dv/dt
Ripple 5%
Body Diode Forward Drop
Re-Applied
Voltage
Reverse
Recovery
Current
Body Diode Forward
Current
V
GS
=10V
V
DD
I
SD
Driver Gate Drive
D.U.T. I
SD
Waveform
D.U.T. V
DS
Waveform
Inductor Curent
D = P. W .
Period
*** VGS = 5V for Logic Level Devices
***
+
-
+
+
+
-
-
-
RGVDD
dv/dt controlled by RG
Driver same type as D.U.T.
ISD controlled by Duty Factor "D"
D.U.T. - Device Under Test
D.U.T
**
*
* Use P-Channel Driver for P-Channel Measurements
** Reverse Polarity for P-Channel
DirectFET Board Footprint, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET.
This includes all recommendations for stencil and substrate designs.
G = GATE
D = DRAIN
S = SOURCE
D
D
D
D
G
S
S
IRF6727MPbF
8www.irf.com
DirectFET Part Marking
DirectFET Outline Dimension, MX Outline
(Medium Size Can, X-Designation).
Please see DirectFET application note AN-1035 for all details regarding the assembly of DirectFET. This includes
all recommendations for stencil and substrate designs.
MIN
0.246
0.189
0.152
0.014
0.027
0.027
0.054
0.032
0.015
0.035
0.090
0.0235
0.0008
0.003
MAX
0.250
0.201
0.156
0.018
0.028
0.028
0.056
0.033
0.017
0.039
0.095
0.0274
0.0031
0.007
MIN
6.25
4.80
3.85
0.35
0.68
0.68
1.38
0.80
0.38
0.88
2.28
0.616
0.020
0.08
MAX
6.35
5.05
3.95
0.45
0.72
0.72
1.42
0.84
0.42
1.01
2.41
0.676
0.080
0.17
CODE
A
B
C
D
E
F
G
H
J
K
L
M
R
P
DIMENSIONS
METRIC IMPERIAL
LOGO
GATE MARKING
BATCH NUMBER
PART NUMBER
DATE CODE
Line above the last character of
the date code indicates "Lead-Free"
IRF6727MPbF
www.irf.com 9
Data and specifications subject to change without notice.
This product has been designed and qualified for the Consumer market.
Qualification Standards can be found on IR’s Web site.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.04/2009
DirectFET Tape & Reel Dimension (Showing component orientation).
LOADED TAPE FEED DIRECTION
MIN
7.90
3.90
11.90
5.45
5.10
6.50
1.50
1.50
NOTE: CONTROLLING
DIMENSIONS IN MM CODE
A
B
C
D
E
F
G
H
MAX
8.10
4.10
12.30
5.55
5.30
6.70
N.C
1.60
MIN
0.311
0.154
0.469
0.215
0.201
0.256
0.059
0.059
MAX
0.319
0.161
0.484
0.219
0.209
0.264
N.C
0.063
DIMENSIONS
METRIC IMPERIAL
STANDARD OPTION (QTY 4800)
MIN
330.0
20.2
12.8
1.5
100.0
N.C
12.4
11.9
CODE
A
B
C
D
E
F
G
H
MAX
N.C
N.C
13.2
N.C
N.C
18.4
14.4
15.4
MIN
12.992
0.795
0.504
0.059
3.937
N.C
0.488
0.469
MAX
N.C
N.C
0.520
N.C
N.C
0.724
0.567
0.606
METRIC IMPERIAL
TR1 OPTION (QTY 1000)
IMPERIAL
MIN
6.9
0.75
0.53
0.059
2.31
N.C
0.47
0.47
MAX
N.C
N.C
12.8
N.C
N.C
13.50
12.01
12.01
MIN
177.77
19.06
13.5
1.5
58.72
N.C
11.9
11.9
METRIC
MAX
N.C
N.C
0.50
N.C
N.C
0.53
N.C
N.C
REEL DIMENSIONS
NOTE: Controlling dimensions in mm
Std reel quantity is 4800 parts. (ordered as IRF6727MTRPBF). For 1000 parts on 7"
reel, order IRF6727MTR1PBF