MITSUBISHI SEMICONDUCTOR TRIAC BCR8PM MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE OUTLINE DRAWING BCR8PM Dimensions in mm 10.5 MAX 2.8 8.5 17 5.0 1.2 5.2 TYPE NAME 3.20.2 VOLTAGE CLASS 13.5 MIN 3.6 1.3 MAX 0.8 2.54 IT (RMS) ........................................................................ 8A VDRM ..............................................................400V/600V IFGT !, IRGT !, IRGT # ......................... 30mA (20mA) 5 Viso ........................................................................ 1500V UL Recognized: File No. E80276 123 0.5 4.5 * * * * * 2.54 2.6 Measurement point of case temperature 2 1 1 T1 TERMINAL 2 T2 TERMINAL 3 3 GATE TERMINAL TO-220F APPLICATION Switching mode power supply, light dimmer, electric flasher unit, control of household equipment such as TV sets * stereo * refrigerator * washing machine * infrared kotatsu * carpet, solenoid drivers, small motor control, copying machine, electric tool, other general purpose control applications MAXIMUM RATINGS Symbol Voltage class Parameter 8 12 Unit VDRM Repetitive peak off-state voltage 1 400 600 V VDSM Non-repetitive peak off-state voltage 1 500 720 V Symbol Conditions Parameter IT (RMS) RMS on-state current Commercial frequency, sine full wave 360 conduction, Tc =88C ITSM Surge on-state current I2t I2t PGM Peak gate power dissipation PG (AV) Average gate power dissipation VGM for fusing Ratings Unit 8 A 60Hz sinewave 1 full cycle, peak value, non-repetitive 80 A Value corresponding to 1 cycle of half wave 60Hz, surge on-state current 26 A2s 5 W 0.5 W Peak gate voltage 10 V IGM Peak gate current 2 Tj Junction temperature Storage temperature Tstg -- Viso Weight Typical value Isolation voltage Ta=25C, AC 1 minute, T 1 * T2 * G terminal to case A -40 ~ +125 C -40 ~ +125 C 2.0 g 1500 V 1. Gate open. Feb.1999 MITSUBISHI SEMICONDUCTOR TRIAC BCR8PM MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE ELECTRICAL CHARACTERISTICS Symbol Limits Test conditions Parameter Min. Typ. Max. Unit IDRM Repetitive peak off-state current Tj=125C, V DRM applied -- -- 2.0 mA VTM On-state voltage Tc=25C, ITM=12A, Instantaneous measurement -- -- 1.6 V -- -- 1.5 V -- -- 1.5 V 1.5 ! VFGT ! VRGT ! Gate trigger voltage 2 @ Tj=25C, VD =6V, RL=6, RG=330 VRGT # # -- -- IFGT ! ! -- -- 30 5 mA -- -- 30 5 mA -- -- 30 5 mA 0.2 -- -- V -- -- 3.7 C/ W 3 -- -- V/s IRGT ! Gate trigger current 2 @ Tj=25C, VD =6V, RL=6, RG=330 # IRGT # VGD Gate non-trigger voltage Tj=125C, VD=1/2VDRM R th (j-c) Thermal resistance Junction to case 4 (dv/dt) c Critical-rate of rise of off-state commutating voltage V 2. Measurement using the gate trigger characteristics measurement circuit. 3. The critical-rate of rise of the off-state commutating voltage is shown in the table below. 4. The contact thermal resistance R th (c-f) in case of greasing is 0.5C/W. 5. High sensitivity (I GT20mA) is also available. (IGT item 1) Voltage class VDRM (V) 8 400 (dv/dt) c Symbol Min. R -- SUPPLY VOLTAGE 1. Junction temperature Tj =125C L 10 V/s R 12 Commutating voltage and current waveforms (inductive load) Test conditions Unit -- 2. Rate of decay of on-state commutating current (di/dt)c=-4.0A/ms 3. Peak off-state voltage VD =400V 600 L TIME MAIN CURRENT (di/dt)c TIME MAIN VOLTAGE TIME (dv/dt)c 10 VD PERFORMANCE CURVES RATED SURGE ON-STATE CURRENT 101 7 5 3 2 100 Tj = 125C Tj = 25C 100 7 5 3 2 10-1 0.6 1.0 1.4 1.8 2.2 2.6 3.0 3.4 3.8 ON-STATE VOLTAGE (V) SURGE ON-STATE CURRENT (A) ON-STATE CURRENT (A) MAXIMUM ON-STATE CHARACTERISTICS 102 7 5 3 2 90 80 70 60 50 40 30 20 10 0 100 2 3 4 5 7 101 2 3 4 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz) Feb.1999 MITSUBISHI SEMICONDUCTOR TRIAC BCR8PM MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE GATE TRIGGER CURRENT VS. JUNCTION TEMPERATURE 101 7 5 3 2 PG(AV) = 0.5W PGM = 5W IGM = 2A VGT = 1.5V 100 7 5 3 2 IFGT I IRGT I, IRGT III VGD = 0.2V 10-1 7 5 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 GATE TRIGGER CURRENT (Tj = tC) GATE TRIGGER CURRENT (Tj = 25C) GATE VOLTAGE (V) 3 2 VGM = 10V 100 (%) GATE CHARACTERISTICS 103 7 5 4 3 2 TYPICAL EXAMPLE IRGT III 102 IRGT I IFGT I 7 5 4 3 2 101 -60 -40 -20 0 20 40 60 80 100 120 140 GATE CURRENT (mA) JUNCTION TEMPERATURE (C) MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO CASE) 103 7 5 4 3 2 TYPICAL EXAMPLE 102 7 5 4 3 2 101 -60 -40 -20 0 20 40 60 80 100 120 140 TRANSIENT THERMAL IMPEDANCE (C/W) GATE TRIGGER VOLTAGE (Tj = tC) GATE TRIGGER VOLTAGE (Tj = 25C) 100 (%) GATE TRIGGER VOLTAGE VS. JUNCTION TEMPERATURE 102 2 3 5 7 103 2 3 5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0 10-1 2 3 5 7 100 2 3 5 7 101 2 3 5 7 102 CONDUCTION TIME (CYCLES AT 60Hz) JUNCTION TEMPERATURE (C) 103 7 5 3 2 NO FINS 102 7 5 3 2 101 7 5 3 2 100 7 5 3 2 10-1 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 2 3 5 7 105 CONDUCTION TIME (CYCLES AT 60Hz) MAXIMUM ON-STATE POWER DISSIPATION ON-STATE POWER DISSIPATION (W) TRANSIENT THERMAL IMPEDANCE (C/W) MAXIMUM TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (JUNCTION TO AMBIENT) 16 14 12 360 CONDUCTION 10 RESISTIVE, INDUCTIVE 8 LOADS 6 4 2 0 0 2 4 6 8 10 12 14 16 RMS ON-STATE CURRENT (A) Feb.1999 MITSUBISHI SEMICONDUCTOR TRIAC BCR8PM MEDIUM POWER USE INSULATED TYPE, PLANAR PASSIVATION TYPE CASE TEMPERATURE (C) 160 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 140 120 100 80 60 360 40 CONDUCTION RESISTIVE, 20 INDUCTIVE LOADS 0 0 2 4 6 8 10 12 14 AMBIENT TEMPERATURE (C) ALLOWABLE CASE TEMPERATURE VS. RMS ON-STATE CURRENT 16 ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 ALL FINS ARE BLACK PAINTED ALUMINUM AND GREASED 140 120 120 120 t2.3 100 100 t2.3 100 60 60 t2.3 80 60 40 RESISTIVE, 20 INDUCTIVE LOADS 0 0 2 4 6 RMS ON-STATE CURRENT (A) 60 40 20 HOLDING CURRENT (Tj = tC) HOLDING CURRENT (Tj = 25C) 100 (%) 0 103 7 5 4 3 2 0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 REPETITIVE PEAK OFF-STATE CURRENT VS. JUNCTION TEMPERATURE 100 (%) REPETITIVE PEAK OFF-STATE CURRENT (Tj = tC) REPETITIVE PEAK OFF-STATE CURRENT (Tj = 25C) 80 105 7 TYPICAL EXAMPLE 5 3 2 104 7 5 3 2 103 7 5 3 2 102 -60 -40 -20 0 20 40 60 80 100 120 140 RMS ON-STATE CURRENT (A) JUNCTION TEMPERATURE (C) HOLDING CURRENT VS. JUNCTION TEMPERATURE LACHING CURRENT VS. JUNCTION TEMPERATURE TYPICAL EXAMPLE LACHING CURRENT (mA) AMBIENT TEMPERATURE (C) RMS ON-STATE CURRENT (A) ALLOWABLE AMBIENT TEMPERATURE VS. RMS ON-STATE CURRENT 160 NATURAL CONVECTION NO FINS 140 CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 120 RESISTIVE, INDUCTIVE LOADS 100 NATURAL CONVECTION CURVES APPLY REGARDLESS OF CONDUCTION ANGLE 8 10 12 14 16 102 7 5 4 3 2 101 -60 -40 -20 0 20 40 60 80 100 120 140 JUNCTION TEMPERATURE (C) 103 7 5 3 2 ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, ,,,,,,,,,,, DISTRIBUTION 102 7 5 3 2 101 7 5 3 2 T2+, G- TYPICAL EXAMPLE T2+, G+ TYPICAL T2- , G- EXAMPLE 100 -40 0 40 80 120 160 JUNCTION TEMPERATURE (C) Feb.1999 MITSUBISHI SEMICONDUCTOR TRIAC BCR8PM MEDIUM POWER USE 160 TYPICAL EXAMPLE 140 BREAKOVER VOLTAGE VS. RATE OF RISE OF OFF-STATE VOLTAGE 160 TYPICAL EXAMPLE Tj = 125C 120 100 80 60 40 20 0 -60 -40 -20 0 20 40 60 80 100120 140 BREAKOVER VOLTAGE (dv/dt = xV/s ) BREAKOVER VOLTAGE (dv/dt = 1V/s ) 140 120 100 80 60 III QUADRANT 40 I QUADRANT 20 0 101 2 3 5 7 102 2 3 5 7 103 2 3 5 7 104 RATE OF RISE OF OFF-STATE VOLTAGE (V/s) COMMUTATION CHARACTERISTICS GATE TRIGGER CURRENT VS. GATE CURRENT PULSE WIDTH VOLTAGE WAVEFORM 3 TYPICAL 2 EXAMPLE 102 Tj = 125C 7 IT = 4A 5 = 500s 3 VD = 200V 2 f = 3Hz t (dv/dt)C VD CURRENT WAVEFORM (di/dt)C IT t 101 7 I QUADRANT 5 3 MINIMUM 2 CHARAC100 TERISTICS III QUADRANT 7 VALUE 5 100 2 3 5 7 101 2 3 5 7 102 2 3 5 7 103 RATE OF DECAY OF ON-STATE COMMUTATING CURRENT (A /ms) 100 (%) JUNCTION TEMPERATURE (C) GATE TRIGGER CURRENT (tw) GATE TRIGGER CURRENT (DC) CRITICAL RATE OF RISE OF OFF-STATE COMMUTATING VOLTAGE (V/s) BREAKOVER VOLTAGE (Tj = tC) BREAKOVER VOLTAGE (Tj = 25C) 100 (%) BREAKOVER VOLTAGE VS. JUNCTION TEMPERATURE 100 (%) INSULATED TYPE, PLANAR PASSIVATION TYPE 103 7 5 4 3 2 TYPICAL EXAMPLE IFGT I IRGT I IRGT III 102 7 5 4 3 2 101 0 10 2 3 4 5 7 101 2 3 4 5 7 102 GATE CURRENT PULSE WIDTH (s) GATE TRIGGER CHARACTERISTICS TEST CIRCUITS 6 6 A 6V V A 6V RG TEST PROCEDURE 1 V RG TEST PROCEDURE 2 6 A 6V V RG TEST PROCEDURE 3 Feb.1999