PD-9.315J IRF720 International Rectifier HEXFET Power MOSFET @ Dynamic dv/dt Rating @ Repetitive Avalanche Rated D _ Fast Switching Vpss = 400V Ease of Paralleling L Simple Drive Requirements 6 1] A Rpsvon) = 1.80 Ss Ip = 3.3A Description Third Generation HEXFETs from International Rectifier provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness. The TO-220 package is universally preferred for all commercial-indusirial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry. : TO-220AB Absolute Maximum Ratings Parameter Max. Units Ip @ Tc = 25C Continuous Drain Current, Vas @ 10 V 3.3 Ip @ Tc =100C | Continuous Drain Current, Ves @ 10 V 24 A lbom Pulsed Drain Current @ 13 Pp @ Tc =25C__| Power Dissipation 50 Ww Linear Derating Factor 0.40 Wrc Ves Gate-to-Source Voltage +20 Vv Eas Single Pulse Avalanche Energy @ 190 mJ lag Avalanche Current 3.3 A Ear Repetitive Avalanche Energy 5.0 mJ dv/dt Peak Diode Recovery dv/dt 40 Vins Ty Operating Junction and -55 to +150 Tsta Storage Temperature Range C Soldering Temperature, for 10 seconds 300 (1.6mm from case) Mounting Torque, 6-32 or M3 screw 10 Ibfein (1.1 Nem) Thermal Resistance Parameter Min. Typ. Max. Units | Rac Junction-to-Case _ 2.5 Recs Case-to-Sink, Flat, Greased Surface _ 0.50 _ CW Raa Junction-to-Ambient _ _ 62 239IRF720 Electrical Characteristics @ Ty = 25C (unless otherwise specified) Parameter Min. | Typ. | Max. | Units Test Conditions Verypss Drain-to-Source Breakdown Voltage 400 _ _ V_ | Ves=0V, Ip= 250uA AV(erypss/ATy| Breakdown Voltage Temp. Coefficient _ 0.51 | VPC | Reference to 25C, Ip= 1mA Rosen) Static Drain-to-Source On-Resistance _ = 1.8 Q | Vas=10V, Ip=2.0A @ Veasith) Gate Threshold Voltage 2.0 4.0 V__ | Vos=Ves, lo= 250nA is Forward Transconductance 17 _ _ S | Vps=50V, Ip=2.0A @ loss Drain-to-Source Leakage Current 25 WA Vns=400V, Vas=0V _ _ 250 Vps=320V, Vas=0V, Ty=125C. lass Gate-to-Source Forward Leakage = | 100 nA Ves=20V Gate-to-Source Reverse Leakage _ | -100 Vas=-20V Qg Total Gate Charge _ = 20 Ip=3.3A Qgs Gate-to-Source Charge | | 33 |] nC | Vps=320V Qo Gate-to-Drain (Miller) Charge _ _ 11 Vas=10V See Fig. 6 and 13 ta(on) Turn-On Delay Time | 10 | = Vpp=200V tr Rise Time _ 14 _ ns Ip=3.3A tavorty Turn-Off Delay Time 30 _ Re=182 tr Fall Time _ 13 _ Rp=56Q. See Figure 10 @ Lo Internal Drain Inductance _ 4.5 : mmo. ead ) g nH | from package (i= Ls Internal Source Inductance - i} 75) and center of ap die contact 8 Ciss Input Capacitance | 410 | Ves=0V Coss Output Capacitance | 120 | pF | Vpg=25V Crss Reverse Transfer Capacitance _ 47 _ f=1.0MHz See Figure 5 Source-Drain Ratings and Characteristics Parameter Min. | Typ. | Max. | Units Test Conditions Is Continuous Source Current _ _ 3.4 MOSFET symbol o (Body Diode) , A showing the Isu Pulsed Source Current _ _ 13 integral reverse 8 (Body Diode) p-n junction diode. 8 Vsp Diode Forward Voltage _ _ 1.6 Vs] Ty=25C, Is=3.3A, Vas=0V ter Reverse Recovery Time | 270 | 600 | ns_| Ty=25C, IF=3.3A Qr Reverse Recovery Charge _ 1.4 | 3.0 | wC | di/dt=100A/us @ ton Forward Turn-On Time Intrinsic turn-on time is neglegible (turn-on is dominated by Lg+Lp) Notes; Repetitive rating; pulse width limited by Isns3.3A, di/dis65A/us, Vpp = x GE 2 ce 2 a ze o Vos = 50V B 20us PULSE WIDTH ao 0.0 VGS = 10V 4 60 -40 ~20 0 20 40 60 80 100 120 140 160 Ves, Gate-to-Source Voltage (volts) Ty, Junction Temperature (C) Fig 3. Typical Transfer Characteristics Fig 4. Normalized On-Resistance Vs. Temperature 241IRF720 | 1000 Cgs + Cgg, Cys SHORTED Cgg 800 + Capacitance (pF) 200 Vas, Gate-to-Source Voltage (volts) SEE FIGUAE 13 Vos, Drain-to-Source Voltage (volts) Qe, Total Gate Charge (nC) Fig 5. Typical Capacitance Vs. Fig 6. Typical Gate Charge Vs. Drain-to-Source Voltage Gate-to-Source Voltage tot OPERATION IN THIS AREA LIMITED @ Ros (ON) & = = 8 10 5 & = ~ c 2 S 490 S a 2 g a & Ao. e L a T, my Tg=1500C 4 Veg = OV SINGLE 10 10 0. . . . 2 0.4 2 5 4 2 5 40 2 5 402 2 5 403 Vsp, Source-to-Drain Voltage (volts) Vps, Drain-to-Source Voltage (volts) Fig 7. Typical Source-Drain Diode Fig 8. Maximum Safe Operating Area Forward Voltage 242Ip, Drain Current (Amps) | IRF720 + + Vpp Pulse Width < ips Duty Factor < 0.1% = 25 50 5 100 425 150 Tc, Case Temperature (C) tajon) tr taom) ts Fig 9. Maximum Drain Current Vs. Fig 10b. Switching Time Waveforms Case Temperature 40 0.1 = SINGLE PULSE Pow (THERMAL RESPONSE} Thermal Response (Zajc) (ert e| NOTES: 4. DUTY FACTOR, D=t1/t2 2. PEAK Ty*Ppm X Zthjc + To 10 10-5 10-4 1 10 0.4 1 10 t1, Rectangular Pulse Duration (seconds) Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case 243IRF720 Vary tp to obtain Vos > required las 500 TOP 1.58 2.4A BOTTOM 3.34 400 300 200 100 Eas, Single Pulse Energy (mJ) = 50V Vos 0 25 50 75 100 425 150 Starting Ty, Junction Temperature(C) as -T Te Fig 12c. Maximum Avalanche Energy Fig 12b. Unclamped Inductive Waveforms Vs. Drain Current Current Regulator J 1 : io x a 3 < i w& g [-- ! Ves la = 4 Charge Current Sampting nesistrs Fig 13a. Basic Gate Charge Waveform Fig 13b. Gate Charge Test Circuit Appendix A: Figure 14, Peak Diode Recovery dv/dt Test Circuit - See page 1505 Appendix B: Package Outline Mechanical Drawing See page 1509 Appendix C: Part Marking information See page 1516 International Appendix E: Optional Leadforms See page 1525 Rectifier 244