HIN
up to 500 V or 600 V
TO
LOAD
VDD VB
VS
HO
LO
COM
HIN
LIN
VSS
SD
VCC
LIN
VDD
SD
VSS
VCC
Features
Floating channel designed for bootstrap operation
Fully operational to +500 V or +600 V
Tolerant to negative transient voltage, dV/dt immune
Gate drive supply range from 10 V to 20 V
Undervoltage lockout for both channels
3.3 V logic compatible
Separate logic supply range from 3.3 V to 20 V
Logic and power ground ± 5V offset
CMOS Schmitt-triggered inputs with pull-down
Cycle by cycle edge-triggered shutdown logic
Matched propagation delay for both channels
Outputs in phase with inputs
RoHS compliant
Description
HIGH AND LOW SIDE DRIVER
Product Summary
VOFFSET (IRS2110) 500 V max.
(IRS2113) 600 V max.
IO+/- 2 A/2 A
VOUT 10 V - 20 V
ton/off (typ.) 130 ns & 120 ns
Delay Matching (IRS2110) 10 ns max.
(IRS2113) 20 ns max.
www.irf.com 1
The IRS2110/IRS2113 are high voltage, high speed
power MOSFET and IGBT drivers with independent
high-side and low-side referenced output channels. Pro-
prietary HVIC and latch immune CMOS technologies
enable ruggedized monolithic construction. Logic in-
puts are compatible with standard CMOS or LSTTL out-
put, down to 3.3 V logic. The output drivers feature a
high pulse current buffer stage designed for minimum
driver cross-conduction. Propagation delays are
matched to simplify use in high frequency applications.
The floating channel can be used to drive an N-channel
power MOSFET or IGBT in the high-side configuration
which operates up to 500 V or 600 V.
IRS2110(-1,-2,S)PbF
IRS2113(-1,-2,S)PbF
(Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connec-
tions only. Please refer to our Application Notes and DesignTips for proper circuit board layout.
Typical Connection
Packages
14-Lead PDIP
IRS2110 and IRS2113
14-Lead PDIP
(w/o lead 4)
IRS2110-1 and IRS2113-1
16-Lead PDIP
(w/o leads 4 & 5)
IRS2110-2 and IRS2113-2
16-Lead SOIC
IRS2110S and
IRS2113S
Data Sheet No. PD60249
www.irf.com 2
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
Recommended Operating Conditions
The input/output logic timing diagram is shown in Fig. 1. For proper operation, the device should be used within the
recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at a 15 V differential.
Typical ratings at other bias conditions are shown in Figs. 36 and 37.
Note 2: Logic operational for VS of -4 V to +500 V. Logic state held for VS of -4 V to -VBS. (Refer to the Design Tip DT97-3)
Note 3: When VDD < 5 V, the minimum VSS offset is limited to -VDD.
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-
eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions. Additional information is shown in Figs. 28 through 35.
Symbol Definition Min. Max. Units
V B High-side floating supply voltage (IRS2110) -0.3 520 (Note 1)
(IRS2113) -0.3 620 (Note 1)
VS
High-side floating supply offset voltage VB - 20 VB + 0.3
VHO
High-side floating output voltage VS - 0.3 VB + 0.3
VCC
Low-side fixed supply voltage -0.3 20 (Note 1)
VLO
Low-side output voltage -0.3 VCC + 0.3
VDD
Logic supply voltage -0.3 VSS+20
(Note 1)
VSS Logic supply offset voltage VCC - 20 VCC + 0.3
VIN Logic input voltage (HIN, LIN, & SD) VSS - 0.3 VDD + 0.3
dVs/dt Allowable offset supply voltage transient (Fig. 2) 50 V/ns
PDPackage power dissipation @ TA +25 °C (14 lead DIP) 1.6
(16 lead SOIC) 1.25
RTHJA Thermal resistance, junction to ambient (14 lead DIP) 75
(16 lead SOIC) 100
TJJunction temperature 150
TSStorage temperature -55 150
TLLead temperature (soldering, 10 seconds) 300
°C/W
W
V
°C
Symbol Definition Min. Max. Units
VB
High-side floating supply absolute voltage VS + 10 VS + 20
VS High-side floating supply offset voltage (IRS2110) Note 2 500
(IRS2113) Note 2 600
VHO
High-side floating output voltage VS
VB
VCC
Low-side fixed supply voltage 10 20
VLO
Low-side output voltage 0 VCC
VDD Logic supply voltage VSS + 3 VSS + 20
VSS Logic supply offset voltage -5 (Note 3) 5
VIN Logic input voltage (HIN, LIN & SD) VSS VDD
TAAmbient temperature -40 125 °C
V
Note 1: All supplies are fully tested at 25 V, and an internal 20 V clamp exists for each supply.
www.irf.com 3
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
Symbol Definition Min. Typ.Max.UnitsTest Conditions
ton Turn-on propagation delay 130 160 VS = 0 V
toff Turn-off propagation delay 120 150
tsd Shutdown propagation delay 130 160
trTurn-on rise time 25 35
tfTurn-off fall time 17 25
MT Delay matching, HS & LS (IRS2110) 10
turn-on/off (IRS2113) 20
ns
Dynamic Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15 V, CL = 1000 pF, TA = 25 °C and VSS = COM unless otherwise specified. The dynamic
electrical characteristics are measured using the test circuit shown in Fig. 3.
Symbol Definition Min. Typ.Max.UnitsTest Conditions
VIH Logic 1 input voltage 9.5
VIL Logic 0 input voltage 6.0
VOH High level output voltage, VBIAS - VO 1.4 IO = 0 A
VOL Low level output voltage, VO 0.15 IO = 20 mA
ILK Offset supply leakage current 50 VB=VS = 500 V/600 V
IQBS Quiescent VBS supply current 125 230
IQCC Quiescent VCC supply current 180 340
IQDD Quiescent VDD supply current 15 30
IIN+ Logic 1 input bias current 20 40 VIN = VDD
IIN- Logic 0 input bias current 5.0 VIN = 0 V
VBSUV+ VBS supply undervoltage positive going 7.5 8.6 9.7
threshold
VBSUV- VBS supply undervoltage negative going 7.0 8.2 9.4
threshold
VCCUV+ VCC supply undervoltage positive going 7.4 8.5 9.6
threshold
VCCUV- VCC supply undervoltage negative going 7.0 8.2 9.4
threshold
IO+ Output high short circuit pulsed current 2.0 2.5 VO = 0 V, VIN = VDD
PW 10 µs
IO- Output low short circuit pulsed current 2.0 2.5 VO = 15 V, VIN = 0V
PW 10 µs
Static Electrical Characteristics
VBIAS (VCC, VBS, VDD) = 15 V, TA = 25 °C and VSS = COM unless otherwise specified. The VIN, VTH, and IIN parameters
are referenced to VSS and are applicable to all three logic input leads: HIN, LIN, and SD. The VO and IO parameters are
referenced to COM and are applicable to the respective output leads: HO or LO.
V
µA
V
A
VS = 500 V/600 V
VIN = 0 V or VDD
www.irf.com 4
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
Functional Block Diagram
Lead Definitions
Symbol Description
VB
SD
LIN
VDD
PULSE
GEN
RSQ
VSS
UV
DETECT
DELAY
HV
LEVEL
SHIFT
VCC
PULSE
FILTER
UV
DETECT
VDD/VCC
LEVEL
SHIFT
VDD/VCC
LEVEL
SHIFT LO
VS
COM
RSQR
S
R Q
HIN
HO
VDD Logic supply
HIN Logic input for high-side gate driver output (HO), in phase
SD Logic input for shutdown
LIN Logic input for low-side gate driver output (LO), in phase
VSS Logic ground
VBHigh-side floating supply
HO High-side gate drive output
VSHigh-side floating supply return
VCC Low-side supply
LO Low-side gate drive output
COM Low-side return
www.irf.com 5
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
Lead Assignments
Part Number
14 Lead PDIP
IRS2110/IRS2113
16 Lead SOIC (Wide Body)
IRS2110S/IRS2113S
14 Lead PDIP w/o lead 4
IRS2110-1/IRS2113-1
16 Lead PDIP w/o leads 4 & 5
IRS2110-2/IRS2113-2
www.irf.com 6
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test
Circuit
Figure 3. Switching Time Test Circuit Figure 4. Switching Time Waveform Definition
Figure 6. Delay Matching Waveform DefinitionsFigure 5. Shutdown Waveform Definitions






 
 
! !



 
!






"#




10
µF0.1
µF
V =15V
cc
936
5
7
1
2
13
12
11
10
HIN
SD
LIN
HO
LO
0.1
µF10
µF
10
µF
CL
CL
VB
+
-S
V
(0 to 500V/600V)
15V
10
µF0.1
µF
V =15V
cc
936
5
7
1
2
13
12
11
10 HO
0.1
µF
OUTPUT
MONITOR
10KF6
10KF6
200
µH10KF6 100µF
+
IRF820
HV = 10 to 500V/600V
dVS>50 V/ns
dt
www.irf.com 7
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
0
50
100
150
200
250
10 12 14 16 18 20
Turn-Off Time (ns)
Figure 8A. Turn-Off Time vs. Temperature
Figure 7A. Turn-On Time vs. Temperature Figure 7B. Turn-On Time vs. Supply Voltage
Figure 7C. Turn-On Time vs. V
DD Supply Voltage
Figure 8B. Turn-Off Time vs. Supply Voltage Figure 8C. Turn-Off Time vs. VDD Supply Voltage
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature(oC)
Turn-on Delay Time (ns)
0
50
100
150
200
250
10 12 14 16 18 20
Turn-on Delay Time (ns)
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature(oC)
Turn-Off Time (ns)
Max.
Max.
Max.
Typ.
Typ.
Typ.
Typ.
Max.
Turn-On Delay Time (ns)
Turn-On Delay Time (ns)
Turn-Off Time (ns)
Turn-Off Time (ns)
0
50
100
150
200
250
0 2 4 6 8 10 12 14 16 18 20
V
DD
Supply Voltage (V)
Max.
Typ.
Turn-On Delay Time (ns)
0
50
100
150
200
250
0 2 4 6 8 10 12 14 16 18 20
Max.
Typ.
VDD Supply Voltage (V)
Turn-Off Delay Time (ns)
Turn-Off Delay Time (ns)
VBIAS Supply Voltage (V)
VBIAS Supply Voltage (V)
www.irf.com 8
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
Figure 9B. Shutdown Time vs. Supply Voltage
Figure 9A. Shutdown Time vs. Temperature
Figure 9C. Shutdown Time
vs. VDD Supply Voltage
Figure 10A. Turn-On Rise Time
vs. Temperature
Figure 10B. Turn-On Rise Time vs. Voltage
0
20
40
60
80
100
10 12 14 16 18 20
Turn-On Rise Time (ns)
Max.
Typ.
Figure 11A. Turn-Off Fall Time vs. Temperature
0
10
20
30
40
50
-50 -25 0 25 50 75 100 125
Turn-Off Fall Time (ns)
Max.
Typ.
0
50
100
150
200
250
-50 -25 0 25 50 75 100 125
Temperature (oC)
SD Propagation Delay (ns)
0
50
100
150
200
250
10 12 14 16 18 20
SD Propagation delay (ns)
Max.
Typ.
Max.
Typ.
SD Propagation Delay (ns)
Turn-On Rise Time (ns) SD Propagation Delay (ns)
Turn-On Rise Time (ns)
Turn-Off Fall Time (ns)
Temperature (oC)
0
20
40
60
80
100
-50 -25 0 25 50 75 100 125
Max.
Typ.
0
50
100
150
200
250
0 2 4 6 8 10 12 14 16 18 20
VDD Supply Voltage (V)
Max.
Typ.
Shutdown Delay Time (ns)
VBIAS Supply Voltage (V) Temperature (oC)
VBIAS Supply Voltage (V)
www.irf.com 9
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
Figure 11B. Turn-Off Fall Time vs. Voltage
0
10
20
30
40
50
10 12 14 16 18 20
Turn-Off Fall Time (ns)
Max.
Typ.
Figure 12A. Logic 1 Input Threshold
vs. Temperature
0.0
3.0
6.0
9.0
12.0
15.0
-50 -25 0 25 50 75 100 125
Logic "1" Input Threshold (V)
Min.Max
Figure 12B. Logic 1 Input Threshold vs. Voltage Figure 13A. Logic 0 Input Threshold
vs. Temperature
0.0
3.0
6.0
9.0
12.0
15.0
-50 -25 0 25 50 75 100 125
Logic "0" Input Threshold (V)
Max.
Min.
Figure 13B. Logic 0 Input Threshold vs. Voltage
Logic " 1" Input Threshold (V)
0
3
6
9
12
15
0246810 12 14 16 18 20
Max.
0
3
6
9
12
15
0 2 4 6 8 10 12 14 16 18 20
Min.
Logic "0" Input Threshold ( V) Turn-Off Fall Time (ns)
Lo gic “1” Input Threshold (V)
Lo gic “0” Input Threshold (V)
Lo gic “1” Input Threshold (V)Lo gic “0” Input Threshold (V)
VBIAS Supply Voltage (V) Temperature (oC)
Temperature (oC)
Temperature (oC)
VDD Logic Supply Voltage (V)
VDD Logic Supply Voltage (V)
Max.
0.0
1.0
2.0
3.0
4.0
5.0
-50 -25 0 25 50 75 100 125
High Level Output Voltage (V)
Figure 14A. High Level Output Voltage
vs. Temperature (Io = 0 mA)
www.irf.com 10
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
Figure 15A. Low Level Output vs. Temperature
Figure 15B. Low Level Output vs. Supply Voltage Figure 16A. Offset Supply Current vs. Temperature
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Max.
Figure 17A. V
BS Supply Current vs. Temperature
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Max.
Typ.
0.00
0.04
0.08
0.12
0.16
0.20
-50 -25 0 25 50 75 100 125
0.00
0.04
0.08
0.12
0.16
0.20
10 12 14 16 18 20
Max.
Max.
Offset Supply Leakage Current (µA)
Low Level Outout Voltage (V)
Low Level Outout Voltage (V)
VBS Supply Current (µA)
Figure 16B. Offset Supply Current vs. Voltage
0
100
200
300
400
500
0100 200 300 400 500 600
Max.
Temperature (oC)
Temperature (oC)
Offset Supply Leakage Current (µA)
VB Boost Voltage (V)
VCC Supply Voltage (V)
Temperature (oC)
Max
0.0
1.0
2.0
3.0
4.0
5.0
10 12 14 16 18 20
High Level Output Voltage (V)
VBIAS Supply Voltage (V)
Figure 14B. High Level Output Voltage
vs. Supply Voltage (Io = 0 mA)
www.irf.com 11
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
Figure 19B. VDD Supply Current vs. VDD Voltage Figure 20A. Logic 1 Input Current
vs. Temperature
0
20
40
60
80
100
-50 -25 0 25 50 75 100 125
Max.
Typ.
Figure 17B. VBS Supply Current vs. Voltage
0
100
200
300
400
500
10 12 14 16 18 20
Max.
Typ.
Figure 18A. V
CC Supply Current vs. Temperature
0
125
250
375
500
625
-50 -25 0 25 50 75 100 125
Max.
Typ.
Figure 18B. VCC Supply Current vs. Voltage
0
125
250
375
500
625
10 12 14 16 18 20
Max.
Typ.
Figure 19A. V
DD Supply Current
vs. Temperature
0
20
40
60
80
100
-50 -25 0 25 50 75 100 125
Max.
Typ.
0
10
20
30
40
50
60
0 2 4 6 8 10 12 14 16 18 20
VDD Supply Current (µA) VBS Supply Current (µA)
VCC Supply Current (µA)
VCC Supply Current (µA)
VDD Supply Current (µA)
VBS Supply Current (µA)
VCC Supply Current (µA)
VCC Supply Current (µA)
VDD Supply Current (µA)
VDD Supply Current (µA)
Logic 1 Input Bias Current (µA)
VBS Floating Supply Voltage (V) Temperature (oC)
VCC Fixed Supply Voltage (V) Temperature (oC)
VDD Logic Supply Voltage (V) Temperature (oC)
www.irf.com 12
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
Figure 20B. Logic 1 Input Current
vs. VDD Voltage
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Max.
Typ.
Min.
Figure 22. V
BS Undervoltage (+) vs. Temperature
Figure 23. VBS Undervoltage (-)
vs. Temperature
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Max.
Typ.
Min.
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Max.
Typ.
Min.
Figure 24. VCC Undervoltage (+)
vs. Temperature
Logic 1 Input Bias Current (µA)
0
10
20
30
40
50
60
0246810 12 14 16 18 20
Logic 1 Input Bias Current (µA)
VBS Undervoltage Lockout + (V)
VBS Undervoltage Lockout - (V)
VCC Undervoltage Lockout + (V)
VDD Logic Supply Voltage (V)
Temperature (oC)
Temperature (oC) Temperature (oC)
Max
0
1
2
3
4
5
6
-50 -25 0 25 50 75 100 125
Logic "0" Input Bias Current (µA)
Temperature (°C)
Figure 21A. Logic "0" Input Bias Current
vs. Temperature
Max
0
1
2
3
4
5
6
10 12 14 16 18 20
Logic "0" Input Bias Current (µA)
Supply Voltage (V)
Figure 21B. Logic "0" Input Bias Current
vs. Voltage
www.irf.com 13
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
Figure 26B. Output Source Current vs. Voltage
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
Output Source Current (A)
Min.
Typ.
Figure 27A. Output Sink Current
vs. Temperature
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Output Sink Current (A)
Min.
Typ.
Figure 27B. Output Sink Current vs. Voltage
0.00
1.00
2.00
3.00
4.00
5.00
10 12 14 16 18 20
Output Sink Current (A)
Min.
Typ.
Figure 28. IRS2110/IRS2113 TJ vs. Frequency
(IRFBC20) RGATE = 33 , VCC = 15 V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
320 V
140 V
10 V
Figure 25. VCC Undervoltage (-) vs. Temperature
6.0
7.0
8.0
9.0
10.0
11.0
-50 -25 0 25 50 75 100 125
Temperature (°C)
Max.
Typ.
Min.
Figure 26A. Output Source Current
vs. Temperature
0.00
1.00
2.00
3.00
4.00
5.00
-50 -25 0 25 50 75 100 125
Temperature (°C)
Output Source Current (A)
Min.
Typ.
VCC Undervoltage Lockout - (V)
Output Source Current (A)
Output Source Current (A)
Output Sink Current (A)
Output Sink Current (A)
Junction Tempera ture (oC)
Temperature (oC) Temperature (oC)
Temperature (oC)
VBIAS Supply Voltage (V)
VBIAS Supply Voltage (V) Frequency (kHz)
PDF created with pdfFactory trial version www.pdffactory.com
www.irf.com 14
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
Figure 29. IRS2110/IRS2113 TJ vs. Frequency
(IRFBC30) RGATE = 22
, VCC = 15 V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
p()
320 V
140 V
10 V
Figure 30. IRS2110/IRS2113 TJ vs. Frequency
(IRFBC40) RGATE = 15
, VCC = 15 V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
320 V 140 V
10 V
Figure 31. IRS2110/IRS2113 TJ vs. Frequency
(IRFPE50) RGATE = 10
, VCC = 15 V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
320 V
140 V
10 V
Figure 32. IRS2110S/IRS2113S TJ vs. Frequency
(IRFBC20) RGATE = 33
, VCC = 15 V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
320 V
140 V
10 V
Figure 33. IRS2110S/IRS2113S TJ vs. Frequency
(IRFBC30) RGATE = 22
, VCC = 15 V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
320 V
140 V
10 V
Figure 34. IRS2110S/IRS2113S TJ vs. Frequency
(IRFBC40) RGATE = 15
, VCC = 15 V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
320 V 140 V
10 V
Junction Temperature (oC)
Junction Temperature (oC)Junction Temperature (oC)
Junction Temperature (oC)
Junction Temperature (oC)
Junction Temperature (oC)
Frequency (kHz) Frequency (kHz)
Frequency (kHz) Frequency (kHz)
Frequency (kHz) Frequency (kHz)
www.irf.com 15
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
Figure 35. IRS2110S/IRS2113S TJ vs. Frequency
(IRFPE50) RGATE = 10
, VCC = 15 V
0
25
50
75
100
125
150
1E+2 1E+3 1E+4 1E+5 1E+6
p()
320 V 140 V 10 V
Figure 36. Maximum VS Negative Offset vs.
VBS Supply Voltage
-10.0
-8.0
-6.0
-4.0
-2.0
0.0
10 12 14 16 18 20
Typ.
Figure 37. Maximum VSS Positive Offset vs.
VCC Supply Voltage
0.0
4.0
8.0
12.0
16.0
20.0
10 12 14 16 18 20
Typ.
Junction Temperature (oC)
VS Offset Supply Voltage (V)
VSS Logic Supply Offset Voltage (V)
Frequency (kHz) VBS Floating Supply Voltage (V)
VCC Fixed Supply Voltage (V)
www.irf.com 16
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
01-6010
01-3002 03 (MS-001AC)
14-Lead PDIP
Case Outlines
14-Lead PDIP w/o Lead 4 01-6010
01-3008 02 (MS-001AC)
www.irf.com 17
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
16-Lead SOIC (wide body) 01 6015
01-3014 03 (MS-013AA)
16 Lead PDIP w/o Leads 4 & 5 01-6015
01-3010 02
www.irf.com 18
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
CAR RIER TAPE D IM ENSION FOR 16SOIC W
Code Min Max Min Max
A 11.90 12.10 0.468 0.476
B 3.90 4.10 0.153 0.161
C 15.70 16.30 0.618 0.641
D 7.40 7.60 0.291 0.299
E 10.80 11.00 0.425 0.433
F 10.60 10.80 0.417 0.425
G 1.50 n/a 0.059 n/a
H 1.50 1.60 0.059 0.062
Metric Imperial
REEL DIM ENSIONS FOR 16SO ICW
Code Min Max Min Max
A 329.60 330.25 12.976 13.001
B 20.95 21.45 0.824 0.844
C 12.80 13.20 0.503 0.519
D 1.95 2.45 0.767 0.096
E 98.00 102.00 3.858 4.015
F n/a 22.40 n/a 0.881
G 18.50 21.10 0.728 0.830
H 16.40 18.40 0.645 0.724
Metric Imperial
E
F
A
C
D
G
A
BH
N
OT E : CO NTROLLING
D
IMENSION IN MM
LOADED TAPE FEED DIR ECTION
A
H
F
E
G
D
B
C
Tape & Reel
16-Lead SOIC
www.irf.com 19
IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF
ORDER INFORMATION
14-Lead PDIP IRS2110PbF
14-Lead PDIP IRS2110-1PbF
14-Lead PDIP IRS2113PbF
14-Lead PDIP IRS2113-1PbF
16-Lead PDIP IRS2110-2PbF
16-Lead PDIP IRS2113-2PbF
16-Lead SOIC IRS2110SPbF
16-Lead SOIC IRS2113SPbF
16-Lead SOIC Tape & Reel IRS2110STRPbF
16-Lead SOIC Tape & Reel IRS2113STRPbF
LEADFREE PART MARKING INFORMATION
Lead Free Released
Non-Lead Free
Released
Part number
Date code
IRxxxxxx
YWW?
?XXXX
Pin 1
Identifier
IR logo
Lot Code
(Prod mode - 4 digit SPN code)
Assembly site code
Per SCOP 200-002
P
?MARKING CODE
S
The SOIC-14 is MSL3 qualified.
The SOIC-16 is MSL3 qualified.
This product has been designed and qualified for the industrial level.
Qualification standards can be found at www.irf.com
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105
Data and specifications subject to change without notice. 1/22/2007