Data Sheet No. PD60249 IRS2110(-1,-2,S)PbF IRS2113(-1,-2,S)PbF HIGH AND LOW SIDE DRIVER Features * * * * * * * * * * * * * Floating channel designed for bootstrap operation Fully operational to +500 V or +600 V Tolerant to negative transient voltage, dV/dt immune Gate drive supply range from 10 V to 20 V Undervoltage lockout for both channels 3.3 V logic compatible Separate logic supply range from 3.3 V to 20 V Logic and power ground 5V offset CMOS Schmitt-triggered inputs with pull-down Cycle by cycle edge-triggered shutdown logic Matched propagation delay for both channels Outputs in phase with inputs RoHS compliant Product Summary VOFFSET (IRS2110) (IRS2113) 500 V max. 600 V max. IO+/- 2 A/2 A VOUT ton/off (typ.) 10 V - 20 V 130 ns & 120 ns Delay Matching (IRS2110) (IRS2113) 10 ns max. 20 ns max. Packages Description The IRS2110/IRS2113 are high voltage, high speed power MOSFET and IGBT drivers with independent high-side and low-side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. Logic inputs are compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high-side configuration which operates up to 500 V or 600 V. 14-Lead PDIP IRS2110 and IRS2113 16-Lead PDIP (w/o leads 4 & 5) IRS2110-2 and IRS2113-2 14-Lead PDIP (w/o lead 4) IRS2110-1 and IRS2113-1 Typical Connection 16-Lead SOIC IRS2110S and IRS2113S up to 500 V or 600 V HO V DD V DD VB HIN HIN VS SD SD LIN LIN V CC V SS V SS COM V CC TO LOAD LO (Refer to Lead Assignments for correct pin configuration). This diagram shows electrical connections only. Please refer to our Application Notes and DesignTips for proper circuit board layout. www.irf.com 1 IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF Absolute Maximum Ratings Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions. Additional information is shown in Figs. 28 through 35. Symbol Definition VB High-side floating supply voltage VS Min. Max. (IRS2110) -0.3 520 (Note 1) (IRS2113) -0.3 620 (Note 1) VB + 0.3 High-side floating supply offset voltage VB - 20 VHO High-side floating output voltage VS - 0.3 VB + 0.3 VCC Low-side fixed supply voltage -0.3 20 (Note 1) VLO Low- side output voltage -0.3 VCC + 0.3 VDD Logic supply voltage -0.3 Units V VSS+20 (Note 1) VSS Logic supply offset voltage VCC - 20 VCC + 0.3 VIN Logic input voltage (HIN, LIN, & SD) VSS - 0.3 VDD + 0.3 dVs/dt PD Allowable offset supply voltage transient (Fig. 2) Package power dissipation @ TA +25 C -- 50 (14 lead DIP) -- 1.6 (16 lead SOIC) -- 1.25 (14 lead DIP) -- 75 (16 lead SOIC) -- 100 Junction temperature -- 150 TS Storage temperature -55 150 TL Lead temperature (soldering, 10 seconds) -- 300 RTHJA TJ Thermal resistance, junction to ambient V/ns W C/W C Note 1: All supplies are fully tested at 25 V, and an internal 20 V clamp exists for each supply. Recommended Operating Conditions The input/output logic timing diagram is shown in Fig. 1. For proper operation, the device should be used within the recommended conditions. The VS and VSS offset ratings are tested with all supplies biased at a 15 V differential. Typical ratings at other bias conditions are shown in Figs. 36 and 37. Symbol VB VS Definition High-side floating supply absolute voltage High-side floating supply offset voltage Min. Max. VS + 10 VS + 20 (IRS2110) Note 2 500 (IRS2113) Note 2 600 VB VHO High-side floating output voltage VS VCC Low-side fixed supply voltage 10 20 VLO Low- side output voltage 0 VCC VDD Logic supply voltage VSS + 3 VSS + 20 VSS Logic supply offset voltage VIN Logic input voltage (HIN, LIN & SD) VSS VDD TA Ambient temperature -40 125 -5 (Note 3) Units V 5 C Note 2: Logic operational for VS of -4 V to +500 V. Logic state held for VS of -4 V to -VBS. (Refer to the Design Tip DT97-3) Note 3: When VDD < 5 V, the minimum VSS offset is limited to -VDD. www.irf.com 2 IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF Dynamic Electrical Characteristics VBIAS (VCC , VBS, VDD ) = 15 V, CL = 1000 pF, TA = 25 C and VSS = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Fig. 3. Symbol Definition Min. Typ. Max. Units Test Conditions ton Turn-on propagation delay -- 130 160 toff Turn-off propagation delay -- 120 150 tsd Shutdown propagation delay -- 130 160 tr Turn-on rise time -- 25 35 -- 17 25 -- -- -- -- 10 20 tf MT Turn-off fall time Delay matching, HS & LS turn-on/off (IRS2110) (IRS2113) VS = 0 V VS = 500 V/600 V ns Static Electrical Characteristics VBIAS (VCC, VBS, VDD) = 15 V, TA = 25 C and VSS = COM unless otherwise specified. The VIN, VTH, and IIN parameters are referenced to VSS and are applicable to all three logic input leads: HIN, LIN, and SD. The VO and IO parameters are referenced to COM and are applicable to the respective output leads: HO or LO. Symbol Definition Min. Typ. Max. Units Test Conditions VIH Logic "1" input voltage 9.5 -- -- VIL Logic "0" input voltage -- -- 6.0 VOH High level output voltage, VBIAS - VO -- -- 1.4 VOL Low level output voltage, VO -- -- 0.15 IO = 20 mA ILK Offset supply leakage current -- -- 50 VB=VS = 500 V/600 V IQBS Quiescent VBS supply current -- 125 230 IQCC Quiescent VCC supply current -- 180 340 IQDD Quiescent VDD supply current -- 15 30 IIN+ Logic "1" input bias current -- 20 40 VIN = VDD IIN- Logic "0" input bias current -- -- 5.0 VIN = 0 V 7.5 8.6 9.7 7.0 8.2 9.4 7.4 8.5 9.6 7.0 8.2 9.4 VCCUV- VBS supply undervoltage positive going threshold VBS supply undervoltage negative going threshold VCC supply undervoltage positive going threshold VCC supply undervoltage negative going threshold IO+ Output high short circuit pulsed current 2.0 2.5 -- IO- Output low short circuit pulsed current 2.0 2.5 -- VBSUV+ VBSUVVCCUV+ V A VIN = 0 V or VDD V A www.irf.com IO = 0 A VO = 0 V, VIN = VDD PW 10 s VO = 15 V, VIN = 0V PW 10 s 3 IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF Functional Block Diagram VB UV DETECT VDD R Q S HIN HV LEVEL SHIFT VDD /VCC LEVEL SHIFT PULSE FILTER PULSE GEN R R Q HO S VS SD VCC LIN S VDD /VCC LEVEL SHIFT R Q UV DETECT LO DELAY COM VSS Lead Definitions Symbol Description V DD HIN SD LIN VSS VB HO VS V CC LO COM www.irf.com Logic supply Logic input for high-side gate driver output (HO), in phase Logic input for shutdown Logic input for low-side gate driver output (LO), in phase Logic ground High-side floating supply High-side gate drive output High-side floating supply return Low-side supply Low-side gate drive output Low-side return 4 IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF Lead Assignments 14 Lead PDIP 16 Lead SOIC (Wide Body) IRS2110/IRS2113 IRS2110S/IRS2113S 14 Lead PDIP w/o lead 4 16 Lead PDIP w/o leads 4 & 5 IRS2110-1/IRS2113-1 IRS2110-2/IRS2113-2 Part Number www.irf.com 5 IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF HV = 10 to 500V/600V Vcc =15V 10KF6 10 F 0.1 F 9 3 10 5 7 11 12 1 13 + 200 H 0.1 F 6 10KF6 HO OUTPUT MONITOR 100F dVS >50 V/ns dt 10KF6 2 IRF820 Figure 1. Input/Output Timing Diagram Figure 2. Floating Supply Voltage Transient Test Circuit Vcc =15V 10 F 0.1 F 9 3 5 7 10 HIN SD 0.1 F 6 11 CL 1 LO 12 LIN HO VB + 10 15V F VS (0 to 500V/600V) 2 Figure 3. Switching Time Test Circuit 10 F CL 13 ! ! Figure 4. Switching Time Waveform Definition "# ! Figure 5. Shutdown Waveform Definitions www.irf.com Figure 6. Delay Matching Waveform Definitions 6 IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF 250 Turn-On Delay Time (ns) Turn-on Delay Time (ns) Turn-On (ns) Turn-onDelay DelayTime Time (ns) 250 200 150 Max. 100 Typ. 50 150 -25 0 25 50 75 100 Typ. 100 50 0 0 -50 Max. 200 10 125 12 o 14 16 18 20 VBIAS Supply Voltage (V) Temperature( C) Figure 7A. Turn-On Time vs. Temperature Figure 7B. Turn-On Time vs. Supply Voltage 250 250 Turn-On Delay Time (ns) M ax. Turn-Off Time Turn-Off Time (ns)(ns) 200 Typ. 150 100 50 200 150 Max. 100 Typ. 50 0 -50 0 0 2 4 6 8 10 12 14 16 18 20 V DD Supply Voltage (V) Figure 7C. Turn-On Time vs. VDD Supply Voltage 0 25 50 75 100 125 o Temperature( C) Figure 8A. Turn-Off Time vs. Temperature 250 Turn-Off Delay Time Turn-Off Delay Time (ns) (ns) 250 Turn-Off Time (ns) Turn-Off (ns) -25 200 Max. 150 Typ. 100 50 0 10 12 14 16 18 VBIAS Supply Voltage (V) Figure 8B. Turn-Off Time vs. Supply Voltage www.irf.com 20 M ax. 200 150 Typ. 100 50 0 0 2 4 6 8 10 12 14 16 18 20 VDD Supply Voltage (V) Figure 8C. Turn-Off Time vs. V DD Supply Voltage 7 IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF 200 150 Max. 100 Typ. 50 0 -50 250 SDSD Propagation Delay (ns) Propagation delay (ns) SDSD Propagation Delay (ns)(ns) Propagation Delay 250 -25 0 25 50 75 100 200 Max. 150 Typ. 100 50 0 10 125 Temperature (oC) Figure 9A. Shutdown Time vs. Temperature 12 14 16 18 20 VBIAS Supply Voltage (V) Figure 9B. Shutdown Time vs. Supply Voltage 250 100 200 Turn-On Rise Time (ns) Shutdown Delay Time (ns) M ax. 150 Typ. 100 50 80 60 40 Max. Typ. 20 0 0 2 4 6 8 10 12 14 16 V DD Supply Voltage (V) 0 18 20 -50 0 25 50 75 100 125 Temperature ( o C ) Figure 10A. Turn-On Rise Time vs. Temperature Figure 9C. Shutdown Time vs. VDD Supply Voltage 50 Turn-Off Fall Time (ns) 100 80 Turn-Off Fall Time (ns) Turn-On Rise Time (ns) Turn-On Rise Time (ns) -25 60 Max. 40 Typ. 20 40 30 Max. 20 Typ. 10 0 0 10 12 14 16 18 VBIAS Supply Voltage (V) Figure 10B. Turn-On Rise Time vs. Voltage www.irf.com 20 -50 -25 0 25 50 75 100 125 Temperature ( o C ) Figure 11A. Turn-Off Fall Time vs. Temperature 8 IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF 50 Logic "1"Logic Input Threshold "1" Input Threshold (V) (V) 15.0 Turn-OffTurn-Off FallFallTime (ns) Time (ns) 40 30 20 Max. Typ. 10 0 10 12 14 16 18 12.0 Min. Max 9.0 6.0 3.0 0.0 20 -50 VBIAS Supply Voltage (V) Input Threshold (V) Logic Logic "0""0"Input Threshold (V) 1" Input Threshold (V) (V) Logic Logic "1" "Input Threshold 15 12 Max. 9 6 3 0 2 4 6 8 10 12 14 16 VDD Logic Supply Voltage (V) 18 Min. 6 3 0 8 10 12 14 16 100 9.0 6.0 Max. Mi n. 3.0 -25 0 25 50 75 100 125 Figure 13A. Logic "0" Input Threshold vs. Temperature 18 20 5.0 4.0 3.0 2.0 Max. 1.0 0.0 -50 -25 0 25 50 75 100 VDD Logic Supply Voltage (V) Temperature ( o C ) Figure 13B. Logic "0" Input Threshold vs. Voltage Figure 14A . High Level Output Voltage vs. Te m perature (Io = 0 m A) www.irf.com 125 12.0 -50 High Level Output Voltage (V) Input Threshold (V) LogicLogic "0""0"Input Threshold (V) 9 6 75 Temperature ( o C ) 12 4 50 0.0 20 15 2 25 15.0 Figure 12B. Logic "1" Input Threshold vs. Voltage 0 0 Temperature ( o C ) Figure 12A. Logic "1" Input Threshold vs. Temperature Figure 11B. Turn-Off Fall Time vs. Voltage 0 -25 125 9 5.0 3.0 2.0 M ax 1.0 0.0 10 12 14 16 18 V BIAS Supply Voltage (V) Low Level Outout Voltage (V) Max. 0.12 0.08 0.04 0.00 12 14 16 18 Max. 0.12 0.08 0.04 0.00 -50 -25 0 25 50 75 Temperature (oC) 125 20 500 400 300 200 100 Max. 0 -50 -25 0 25 50 75 100 125 Temperature (oC) VCC Supply Voltage (V) Figure 15B. Low Level Output vs. Supply Voltage Figure 16A. Offset Supply Current vs. Temperature 500 500 400 VBS Supply Current VBS Supply Current (A)(A) Offset Supply Leakage Current (A) 100 Figure 15A. Low Level Output vs. Temperature 0.20 10 0.16 20 Figure 14B. High Level Output Voltage vs. Supply Voltage (Io = 0 mA) 0.16 0.20 Low Level Outout Voltage (V) 4.0 Offset Supply Leakage Current (A) High Level Output Voltage (V) IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF 300 200 100 Max. 0 400 300 Max. 200 Typ. 100 0 0 100 200 300 400 500 VB Boost Voltage (V) Figure 16B. Offset Supply Current vs. Voltage www.irf.com 600 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 17A. VBS Supply Current vs. Temperature 10 500 625 400 500 V VCC Supply Current Current (A) (A) CC Supply VBS Supply Current Current (A) (A) V BS Supply IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF 300 200 Max. 100 Typ. 375 Max. 250 Typ. 125 0 0 10 12 14 16 18 -50 20 -25 0 625 75 100 125 100 VDD Supply Current (A) VVCC Supply Current Current (A) (A) CCVSupply CC Supply Current (A) 50 Figure 18A. VCC Supply Current vs. Temperature Figure 17B. VBS Supply Current vs. Voltage 500 375 250 Max. 125 Typ. 0 80 60 40 Max. 20 Typ. 0 10 12 14 16 18 20 -50 -25 Figure 18B. VCC Supply Current vs. Voltage Logic "1" Input Bias Current (A) 50 40 30 20 10 0 2 4 6 8 10 12 14 16 18 20 VDD Logic Supply Voltage (V) Figure 19B. VDD Supply Current vs. VDD Voltage www.irf.com 25 50 75 100 125 100 125 Figure 19A. VDD Supply Current vs. Temperature 60 0 0 Temperature (oC) VCC Fixed Supply Voltage (V) VDDSupply Supply Current (A) (A) VDD Current 25 Temperature (oC) VBS Floating Supply Voltage (V) 100 80 60 40 Max. 20 Typ. 0 -50 -25 0 25 50 75 Temperature (oC) Figure 20A. Logic "1" Input Current vs. Temperature 11 IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF Logic "0" Input Bias Current (A) Logic "1"Logic Input Bias (A) "1" Input BiasCurrent Current (A) 60 50 40 30 20 10 0 0 2 4 6 8 10 12 14 16 18 6 5 Max 4 3 2 1 0 -50 20 -25 0 VDD Logic Supply Voltage (V) Max 4 3 2 1 0 12 75 100 125 vs. Temperature 6 10 50 Figure 21A. Logic "0" Input Bias Current VBS Undervoltage Lockout + (V) Logic "0" Input Bias C urrent (A) Figure 20B. Logic "1" Input Current vs. V DD Voltage 5 25 Temperature (C) 14 16 18 Supply Voltage (V) 11.0 10.0 Max. 9.0 Typ. 8.0 Min. 7.0 6.0 -50 20 -25 0 25 50 75 100 125 Temperature (oC) Figure 22. VBS Undervoltage (+) vs. Temperature Figure 21B. Logic "0" Input Bias Current 11.0 VCC Undervoltage Lockout + (V) VBS Undervoltage Lockout - (V) vs. Voltage 11.0 10.0 Max. 9.0 Typ. 8.0 7.0 Min. 6.0 -50 -25 0 25 50 75 Temperature (oC) Figure 23. VBS Undervoltage (-) vs. Temperature www.irf.com 100 125 10.0 Max. 9.0 Typ. 8.0 Min. 7.0 6.0 -50 -25 0 25 50 75 100 125 Temperature (oC) Figure 24. VCC Undervoltage (+) vs. Temperature 12 IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF 5.00 Output Output Source SourceCurrent Current (A) (A) VCC Undervoltage Lockout - (V) 11.0 10.0 Max. 9.0 Typ. 8.0 7.0 Min. -25 0 25 50 75 100 3.00 Typ. Min. 2.00 1.00 0.00 -50 6.0 -50 4.00 125 -25 0 4.00 3.00 2.00 Typ. Min. 0.00 10 100 125 12 14 16 18 4.00 3.00 Typ. Min. 2.00 1.00 0.00 -50 20 -25 0 VBIAS Supply Voltage (V) 25 50 75 320 V Junction Temperature (oC) 150 4.00 3.00 2.00 Typ. Min. 0.00 12 14 16 125 Figure 27A. Output Sink Current vs. Temperature 5.00 10 100 Temperature (oC) Figure 26B. Output Source Current vs. Voltage Output Sink Current (A) Output Sink Current (A) 75 5.00 Output Sink Current (A) Output Sink Current (A) Output Output Source SourceCurrent Current (A) (A) 5.00 1.00 50 Figure 26A. Output Source Current vs. Temperature Figure 25. VCC Undervoltage (-) vs. Temperature 1.00 25 Temperature (C) Temperature (oC) Temperature (C)o Temperature ( C) 18 VBIAS Supply Voltage (V) Figure 27B. Output Sink Current vs. Voltage 20 125 140 V 100 75 10 V 50 25 0 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (kHz) Figure 28. IRS2110/IRS2113 TJ vs. Frequency (IRFBC20) RGATE = 33 , VCC = 15 V www.irf.com PDF created with pdfFactory trial version www.pdffactory.com 13 IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF 320 V 125 140 V 100 75 10 V 50 25 0 1E+2 1E+3 1E+4 1E+5 10 V 75 50 25 75 50 25 1E+5 Junction Temperature (oC) 10 V 1E+4 100 10 V 75 50 25 1E+3 1E+4 1E+5 1E+6 Frequency (kHz) Figure 32. IRS2110S/IRS2113S TJ vs. Frequency (IRFBC20) RGATE = 33 , VCC = 15 V 140 V 125 100 10 V 75 50 25 1E+5 1E+6 Frequency (kHz) Figure 33. IRS2110S/IRS2113S TJ vs. Frequency (IRFBC30) RGATE = 22 , VCC = 15 V 320 V 140 V 150 Junction Temperature (oC) 320 V 150 1E+4 140 V 125 0 1E+2 1E+6 Figure 31. IRS2110/IRS2113 TJ vs. Frequency (IRFPE50) RGATE = 10 , VCC = 15 V 1E+3 1E+6 320 V Frequency (kHz) Junction Temperature (oC) 1E+5 150 100 www.irf.com 1E+4 140 V 125 0 1E+2 1E+3 Figure 30. IRS2110/IRS2113 TJ vs. Frequency (IRFBC40) RGATE = 15 , VCC = 15 V 320 V 150 Junction Temperature (oC) 100 Frequency (kHz) Figure 29. IRS2110/IRS2113 TJ vs. Frequency (IRFBC30) RGATE = 22 , VCC = 15 V 1E+3 140 V 125 0 1E+2 1E+6 Frequency (kHz) 0 1E+2 320 V 150 Junction Temperature (oC) o Junction Temperature p ( ) ( C) 150 125 10 V 100 75 50 25 0 1E+2 1E+3 1E+4 1E+5 1E+6 Frequency (kHz) Figure 34. IRS2110S/IRS2113S TJ vs. Frequency (IRFBC40) RGATE = 15 , VCC = 15 V 14 IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF 320 V 140 V 10 V 125 100 75 50 25 0 1E+2 -2.0 Typ. -4.0 -6.0 -8.0 -10.0 1E+3 1E+4 1E+5 1E+6 Frequency (kHz) 10 12 14 16 18 20 VBS Floating Supply Voltage (V) Figure 35. IRS2110S/IRS2113S TJ vs. Frequency (IRFPE50) RGATE = 10 , VCC = 15 V VSS Logic Supply Offset Voltage (V) 0.0 VS Offset Supply Voltage (V) Junction Temperature (oC) p ( ) 150 Figure 36. Maximum VS Negative Offset vs. VBS Supply Voltage 20.0 16.0 12.0 8.0 Typ. 4.0 0.0 10 12 14 16 18 20 VCC Fixed Supply Voltage (V) Figure 37. Maximum VSS Positive Offset vs. VCC Supply Voltage www.irf.com 15 IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF Case Outlines 14-Lead PDIP 14-Lead PDIP w/o Lead 4 www.irf.com 01-6010 01-3002 03 (MS-001AC) 01-6010 01-3008 02 (MS-001AC) 16 IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF 16 Lead PDIP w/o Leads 4 & 5 16-Lead SOIC (wide body) www.irf.com 01-6015 01-3010 02 01 6015 01-3014 03 (MS-013AA) 17 IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF Tape & Reel 16-Lead SOIC LOAD ED TA PE FEED DIRECTION A B H D F C N OT E : CO NTROLLING D IM ENSION IN MM E G C A R R I E R T A P E D IM E N S I O N F O R 1 6 S O IC W M e tr ic Im p e ri al Co d e M in M ax M in M ax A 1 1 .9 0 1 2. 10 0. 46 8 0 .4 7 6 B 3 .9 0 4 .1 0 0. 15 3 0 .1 6 1 C 1 5 .7 0 1 6. 30 0. 61 8 0 .6 4 1 D 7 .4 0 7 .6 0 0. 29 1 0 .2 9 9 E 1 0 .8 0 1 1. 00 0. 42 5 0 .4 3 3 F 1 0 .6 0 1 0. 80 0. 41 7 0 .4 2 5 G 1 .5 0 n/ a 0. 05 9 n/ a H 1 .5 0 1 .6 0 0. 05 9 0 .0 6 2 F D C B A E G H R E E L D IM E N S I O N S F O R 1 6 S O IC W M e tr ic Im p e ri al Co d e M in M ax M in M ax A 32 9. 60 3 3 0 .2 5 1 2 .9 7 6 1 3 .0 0 1 B 2 0 .9 5 2 1. 45 0. 82 4 0 .8 4 4 C 1 2 .8 0 1 3. 20 0. 50 3 0 .5 1 9 D 1 .9 5 2 .4 5 0. 76 7 0 .0 9 6 E 9 8 .0 0 1 0 2 .0 0 3. 85 8 4 .0 1 5 F n /a 2 2. 40 n /a 0 .8 8 1 G 1 8 .5 0 2 1. 10 0. 72 8 0 .8 3 0 H 1 6 .4 0 1 8. 40 0. 64 5 0 .7 2 4 www.irf.com 18 IRS2110(-1,-2,S)PbF/IRS2113(-1,-2,S)PbF LEADFREE PART MARKING INFORMATION Part number Date code IRxxxxxx S YWW? Pin 1 Identifier ? MARKING CODE P Lead Free Released Non-Lead Free Released IR logo ?XXXX Lot Code (Prod mode - 4 digit SPN code) Assembly site code Per SCOP 200-002 ORDER INFORMATION 14-Lead PDIP IRS2110PbF 14-Lead PDIP IRS2110-1PbF 14-Lead PDIP IRS2113PbF 14-Lead PDIP IRS2113-1PbF 16-Lead PDIP IRS2110-2PbF 16-Lead PDIP IRS2113-2PbF 16-Lead SOIC IRS2110SPbF 16-Lead SOIC IRS2113SPbF 16-Lead SOIC Tape & Reel IRS2110STRPbF 16-Lead SOIC Tape & Reel IRS2113STRPbF The SOIC-14 is MSL3 qualified. The SOIC-16 is MSL3 qualified. This product has been designed and qualified for the industrial level. Qualification standards can be found at www.irf.com IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 Data and specifications subject to change without notice. 1/22/2007 www.irf.com 19