R1163x SERIES
3-MODE 150mA LDO REGULATOR with the Reverse Current Protection
NO.EA-118-111027
1
OUTLINE
The R1163x Series consist of CMOS-based voltage regulator ICs with high output voltage accuracy and low
supply current. These ICs perform with the chip enabl e function and realize a standby mode with ultra low sup ply
current. To prevent the destruction by over current, the current limit circuit is included. The R1163x Series have
3-mode. One is standby mode with CE or standby control pin. Other two modes are realized with ECO pin. Fast
Transient Mode (FT mode) and Low Power Mode (LP mode) are alternative with ECO pin. Consumption current
is reduced at Low Power Mode compared with Fast Transient Mode. The output voltage is maintained between
FT mode and LP mode.
Further, the reverse current protection circuit is built-in. Therefore, if a higher voltage than VDD pin is forced to
the output pin, the reverse current to VDD pin is very small (Max. 0.1μA) , so it is suitable for backup circuit.
Since the packages for these ICs are SOT-23-5, SON-6, and DFN(PLP)1616-6 packages, high density
mounting of the ICs on boards is possible.
FEATURES
Supply Current..................................................... Typ. 6.0μA (Low Power Mode),
Typ. 70μA (Fast Transient Mode )
Standby Mode...................................................... Typ. 0.6μA
Reverse Current................................................... Max. 0.1μA
Input Voltage Range ............................................ 2.0V to 6.0V
Output Voltage Range.......................................... 1.5V to 5.0V (0.1V steps)
(For other voltages, please refer to MARK INFORMATIONS.)
Output Voltage Accuracy......................................±1.5% (±2.5% at Low Power M ode)
Temperature-Drift Coefficient of Output Voltage..Typ. ±100ppm/°C
Dropout Voltage ................................................... Typ. 0.25V (IOUT=150mA, VOUT=2.8V)
Ripple Rejection................................................... Typ. 70dB (f=1kHz, Fast Transient Mode)
Line Regulation....................................................Typ. 0.02%/V (Fast T ransient Mode)
Packages ............................................................ DFN(PLP)1616-6, SOT-23-5, SON-6
Built-in fold-back protection circuit.......................Typ. 40mA (Current at short mode)
Performs with Ceramic Capacitors ...................... CIN=Ceramic 1.0μF, COUT=Ceramic 0.47μF
APPLICATIONS
Precision Voltage References.
Power source for electrical appliances such as cameras, VCRs and hand-held communication equipment.
Power source for battery-powered equipment.
R1163x
2
BLOCK DIAGRAM
R1163xxx1B R1163xxx1D
V
DD
GND
V
OUT
ECO
CE
Vref
Current Limit
Reverse Detector
VDD
GND
VOUT
ECO
CE
Vref
Current Limit
Reverse
Detecto
r
R1163xxx1E
VDD
GND
VOUT
ECO
CE
Vref
Current Limit
Reverse Detector
R1163x
3
SELECTION GUIDE
The output voltage, auto discharge function, and package, etc. for the ICs can be selected at the users
request.
Product Name Package Quantity per Reel Pb Free Halogen Free
R1163Kxx1-TR DFN(PLP)1616-6 5,000 pcs Yes Yes
R1163Nxx1-TR-FE SOT-23-5 3,000 pcs Yes Yes
R1163Dxx1-TR-FE SON-6 3,000 pcs Yes Yes
xx : The output voltage can be designated in the range from 1.5V(15) to 5.0V(50) in 0.1V steps.
(For other voltages, please refer to MARK INFORMA TIONS.)
: The auto discharge function at off state are options as follows.
(B) without auto discharge function at off state
(D) with auto discharge function at off state
(E) without auto discharge function at off state, ECO logic reverse type (Low Power mode at ECO="H")
R1163x
4
PIN CONFIGURATIONS
DFN(PLP)1616-6 SOT-23-5 SON-6
1 2 3
6 5 4
32 1
45 6
Top View Bottom View
123
4
5
(mar k si de)
Top V i ew Bottom View
6 5 4 4 5 6
1 2 3 3 2 1
PIN DISCRIPTIONS
DFN(PLP)1616-6
Pin No Symbol Pin Description
1 VOUT Output pin
2 GND Ground Pin
3 ECO/ECO MODE alternative pin
4 CE Chip Enable pin ("H" Active)
5 NC No Connection
6 VDD Input Pin
) Tab is GND level. (They are con nected to the reverse side of this IC.)
The tab is better to be connected to the GND, but leaving it open is also acceptable.
SOT-23-5
Pin No Symbol Pin Description
1 VDD Input Pin
2 GND Ground Pin
3 CE Chip Enable Pin ("H" Active)
4 ECO/ECO MODE alternative pin
5 VOUT Output pin
SON-6
Pin No Symbol Pin Description
1 VDD Input Pin
2 NC No Connection
3 VOUT Output pin
4 ECO/ECO MODE alternative pin
5 GND Ground Pin
6 CE Chip Enable Pin ("H" Active)
*) Tab suspension leads are GND level. (They are co nnected to the reverse side of this IC.)
The tab suspension leads should be open and do not connect to other wires or land patterns.
R1163x
5
ABSOLUTE MAXIMUM RATINGS
Symbol Item Rating Unit
VIN Input Voltage 6.5 V
VECO Input Voltage (ECO/ECO Pin) 0.3 ~ 6.5 V
VCE Input Voltage (CE Pin) 0.3 ~ 6.5 V
VOUT Output Voltage 0.3 ~ 6.5 V
IOUT Output Current 180 mA
Power Dissip ation (DFN(PLP)1616-6)* 560
Power Dissipation (SOT-23-5) * 420
PD
Power Dissipation (SON-6) * 500
mW
Topt Operating Temperature Range 40 ~ 85 °C
Tstg Storage Temperature Range 55 ~ 125 °C
) For Power Dissipation, please refer to PACKAGE INFORMATION.
ABSOLUTE MAXIMUM RATINGS
Electronic and mechanical stress momentarily exceeded absolute maximum ratings may cause the
permanent damages and may degrade the life time and safety for both device and system u sing the device
in the field.
The functional operation at or over these absolute maximum ratings is not assured.
RECOMMENDED OPERATING CONDITIONS (ELECTRICAL CHARACTERISTICS)
All of electronic equipment sho uld b e designed that the mounted semiconductor devices operate within the
recommended operating conditions. The semiconductor devices cannot operate normally over the
recommended operating conditions, even if when they are used over such conditions by momentary
electronic noise or su rge. And the semicondu ctor devices may receive seriou s damage when they continu e
to operate over the recommended operating conditions.
R1163x
6
ELECTRICAL CHARACTERISTICS
R1163xxx1B/D Topt=25°C
Symbol Item Conditions Min. Typ. Max. Unit
FT Mode VIN=Set VOUT+1V, VECO=VIN
1mA
<
=
IOUT
<
=
30mA ×0.985 ×1.015
VOUT Output Voltage LP Mode VIN=Set VOUT + 1V, VECO=GND
1mA
<
=
IOUT
<
=
30mA ×0.975 ×1.025 V
VOUT > 2.0V 1.2 0 1.2 %
ΔVOUT Output Voltage Deviation
between FT Mode and LP Mode VIN=Set VOUT+1V,
IOUT=30mA VOUT
<
=
2.0V 24 0 24 mV
IOUT Output Current VINVOUT=1.0V 150 mA
FT Mode VIN=Set VOUT+1V, VECO=VIN
1mA
<
=
IOUT
<
=
150mA 20 40
ΔVOUT/
ΔIOUT Load Regulation LP Mode VIN=Set VOUT+1V, VECO=GND
1mA
<
=
IOUT
<
=
150mA 20 45
mV
VDIF Dropout Voltage Refer to the following table
ISS1 Supply Current (FT Mode) VIN=Set VOUT+1V
VECO=VIN 70 100
μA
ISS2 Supply Current (LP Mode) VIN=Set VOUT+1V
VECO=GND 6.0 10.0
μA
Istandby Supply Current (Standby) VIN=Set VOUT+1V, VCE=GND
VECO=GND or V IN 0.6 1.0
μA
FT Mode
Set VOUT+0.5V
<
=
VIN
<
=
6.0V
IOUT=30mA, VECO=VIN
If VOUT
<
=
1.6V,
then 2.2V
<
=
VIN
<
=
6.0V
0.02 0.10
ΔVOUT/
ΔVIN Line Regulation
LP Mode
Set VOUT + 0.5V
<
=
VIN
<
=
6.0V
IOUT =30mA, VECO=GND
If VOUT
<
=
1.6V,
then 2.2V
<
=
VIN
<
=
6.0V
0.05 0.20
%/V
f=1kHz 70
RR Ripple Rejection (FT Mode )
Ripple 0.2Vp-p,
VIN=Set VOUT+1V,
IOUT=30mA, VECO=VIN
If VOUT
<
=
1.7V, then
VIN=Set VOUT+1.2V f=10kHz 60 dB
VIN Input Voltage 2.0 6.0 V
ΔVOUT/
ΔTopt Output Voltage
Temperature Coefficient IOUT=30mA
40°C
<
=
Topt
<
=
85°C ±100 ppm
/°C
ISC Short Current Limit VOUT=0V 40 mA
IPD CE Pull-down Current 0.3 0.6 μA
RPDE ECO Pull-down Resistance 2 5 30 MΩ
VCEH CE, ECO Input Voltage "H" 1.0 6.0 V
VCEL CE, ECO Input Voltage "L" 0 0.35 V
Output Noise "H" (FT Mode) BW=10Hz to 100kHz 30
en Output Noise "L" (LP Mode) BW=10Hz to 100kHz 40
μ
Vrms
RLOW Low Output Nch Tr.
ON Resistan ce (of D version) VCE=0V 60 Ω
IREV Reverse Current VOUT>0.5V, 0V
<
=
VIN
<
=
6V 0 0.1
μA
R1163x
7
R1163xxx1E Topt=25°C
Symbol Item Conditions Min. Typ. Max. Unit
FT Mode VIN=Set VOUT+1V, VECO=GND
1mA
<
=
IOUT
<
=
30mA ×0.985 ×1.015
VOUT Output Voltage LP Mode VIN=Set VOUT +1V, VECO=VIN
1mA
<
=
IOUT
<
=
30mA ×0.975 ×1.025 V
VOUT > 2.0V 1.2 0 1.2 %
ΔVOUT Output Voltage Deviation
between FT Mode and LP Mode VIN=Set VOUT+1V,
IOUT=30mA VOUT
<
=
2.0V 24 0 24 mV
IOUT Output Current VINVOUT=1.0V 150 mA
FT Mode VIN=Set VOUT+1V, VECO=GND
1mA
<
=
IOUT
<
=
150mA 20 40
ΔVOUT/
ΔIOUT Load Regulation LP Mode VIN=Set VOUT+1V, VECO=VIN
1mA
<
=
IOUT
<
=
150mA 20 45
mV
VDIF Dropout Voltage Refer to the following table
ISS1 Supply Current (FT Mode) VIN=Set VOUT+1V
VECO=GND 70 100
μA
ISS2 Supply Current (LP Mode) VIN=Set VOUT+1V
VECO=VIN 6.0 10.0
μA
Istandby Supply Current (Standby) VIN=Set VOUT+1V, VCE=GND
VECO=GND or V IN 0.6 1.0
μA
FT Mode
Set VOUT+0.5V
<
=
VIN
<
=
6.0V
IOUT=30mA, VECO=GND
If VOUT
<
=
1.6V,
then 2.2V
<
=
VIN
<
=
6.0V
0.02 0.10
ΔVOUT/
ΔVIN Line Regulation
LP Mode
Set VOUT + 0.5V
<
=
VIN
<
=
6.0V
IOUT=30mA, VECO=VIN
If VOUT
<
=
1.6V,
then 2.2V
<
=
VIN
<
=
6.0V
0.05 0.20
%/V
f = 1kHz 70
RR Ripple Rejection (FT Mode)
Ripple 0.2Vp-p
VIN=Set VOUT+1V,
IOUT=30mA,
VECO=GND
If VOUT
<
=
1.7V, then
VIN=Set VOUT+1.2V f = 10kHz 60
dB
VIN Input Voltage 2.0 6.0 V
ΔVOUT/
ΔTopt Output Voltage
Temperature Coefficient IOUT = 30mA
40°C
<
=
Topt
<
=
85°C ±100 ppm
/°C
ISC Short Current Limit VOUT = 0V 40 mA
IPD CE Pull-down Current 0.3 0.6 μA
VCEH CE, ECO Input Voltage "H" 1.0 6.0 V
VCEL CE, ECO Input Voltage "L" 0 0.4 V
Output Noise "H" (FT Mode) BW = 10Hz to 100kHz 30
en Output Noise "L" (LP Mode) BW = 10Hz to 100kHz 40
μ
Vrms
IREV Reverse Current VOUT>0.5V, 0V
<
=
VIN
<
=
6V 0 0.1
μA
R1163x
8
ELECTRICAL CHARACTERISTICS by OUTPUT VOLTAGE
Topt=25°C
Dropout Voltage (mV)
VDIF (ECO=H) VDIF (ECO=L)
Output Voltage
VOUT (V) Condition Typ. Max. Typ. Max.
1.5
<
=
VOUT < 1.6 400 680 420 680
1.6
<
=
VOUT < 1.7 380 550 390 550
1.7
<
=
VOUT < 1.8 350 520 370 520
1.8
<
=
VOUT < 2.0 340 490 350 490
2.0
<
=
VOUT < 2.8 290 425 300 430
2.8
<
=
VOUT
<
=
5.0
IOUT=150mA
250 350 250 350
TYPICAL APPLICATION
C1 R1163x
Series
V
DD
V
OUT
CE GND
V
OUT
ECO
C2
(External Components)
Ex. C1: Ceramic Capacitor 1.0μF
C2: Ceramic Ca pacitor 0.47μF Murata GRM40B474K
Kyocera CM105B474K
TECHNICAL NOTES
When using these ICs, consider the following p oints:
Phase Compensation
In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For
this purpose, be sure to use a 0.47μF or more ceramic capacitor C2.
(Test these ICs with as same external components as ones to be used on the PCB.)
When a tant alum cap acit or is u sed with this IC, if th e equivalent series re sisto r (ESR) of the ca p acitor is l arge,
output voltage may be unstable.
PCB Layout
Make VDD and GND lines sufficient. If their impedance is high, noise pickup or unstable operation may result.
Connect a capacitor C1 with as much as 1.0μF capacitor between VDD and GND pin as close as possible.
Set external components such as an output capacitor C2, as close as possible to the ICs and make wiring as
short as possible.
R1163x
9
TEST CIRCUITS
R1163x
Series
V
DD
CE
V
OUT
GND
C2
ECO
VV
OUT
C1 I
OUT
C1=Ceramic 1.0μF
C2=Ceramic 0.47μF
Basic Test Circuit
ISS
AR1163x
Series
VDD
CE
VOUT
GND
C2
ECO
VOUT
C1
C1=Ceramic 1.0μF
C2=Ceramic 0.47μF
Test Circuit for Supply Current
Pulse
Generator
VDD
CE
VOUT
GND
C2 IOUT
R1163x
Series
ECO
C1=Ceramic 1.0μF
C2=Ceramic 0.47μF
P.G.
Test Circuit for Ripple Rejection, Line Transient Response
R1163x
10
V
DD
CE
V
OUT
GND
C2
C1
V
OUT
V I
OUT b
I
OUT a
R1163x
Series
ECO
C1=Ceramic 1.0μF
C2=Ceramic 0.47μF
Test Circuit for Load Transient Response
Pulse
Generator
V
DD
CE
V
OUT
GND
C2 I
OUT
R1163x
Series
ECO
C1=Ceramic 1.0μF
C2=Ceramic 0.47μF
P.G.
C1
Test Circuit for Output Voltage at Mode alternative point
Pulse
Generator
P.G.
C1
C1=Ceramic 1.0
μ
F
C2=Ceramic 0.47μF
V
DD
CE
V
OUT
GND
C2 I
OUT
R1163x
Series
ECO CE pin Input Waveform
0V Set V
OUT
+1.0V
Test Circuit for Turn On Speed with CE pin
R1163x
11
TYPICAL CHARACTERISTICS
Unless otherwise provided, cap acitors are ceramic type.
1) Output Voltage vs. Output Current
R1163x151x ECO=H R1163x151x ECO=L
0 300200100 400
Output Current I
OUT
(mA)
Output Voltage H VOUT
H(V)
0.0
0.2
0.4
0.6
0.8
1.2
1.0
1.4
1.6
V
IN
=2V
V
IN
=2.5V
3.5V
0 300200100 400
Output Current I
OUT
(mA)
Output Voltage L V
OUT
L(V)
0.0
0.2
0.4
0.6
0.8
1.2
1.0
1.4
1.6
V
IN
=2V
V
IN
=2.5V
3.5V
R1163x281x ECO=H R1163x281x ECO=L
0 300200100 400
Output Current I
OUT
(mA)
Output Voltage H V
OUT
H(V)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
V
IN
=3.1V
V
IN
=3.3V
V
IN
=3.8V
4.8V
0 300200100 400
Output Current I
OUT
(mA)
Output Voltage L V
OUT
L(V)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
V
IN
=3.1V
V
IN
=3.3V
V
IN
=3.8V
4.8V
R1163x40x ECO=H R1163x40x ECO =L
0 300200100 400
Output Current I
OUT
(mA)
Output Voltage H V
OUT
H(V)
0.0
0.5
1.0
2.0
3.0
4.0
1.5
2.5
3.5
4.5
V
IN
=4.3V
V
IN
=4.5V
V
IN
=5V
6V
0 300200100 400
Output Current I
OUT
(mA)
Output Voltage L V
OUT
L(V)
0.0
0.5
1.0
2.0
3.0
4.0
1.5
2.5
3.5
4.5
V
IN
=4.3V
V
IN
=4.5V
V
IN
=5V
6V
R1163x
12
2) Output Voltage vs. Input Voltage
R1163x151x ECO=H R1163x15x ECO=L
02 51436
Input Voltage V
IN
(V)
Output Voltage H V
OUT
H(V)
0.0
0.2
0.4
0.6
0.8
1.2
1.0
1.4
1.6
I
OUT
=1mA
I
OUT
=30mA
I
OUT
=50mA
02 51436
Input Voltage V
IN
(V)
Output Voltage L V
OUT
L(V)
0.0
0.2
0.4
0.6
0.8
1.2
1.0
1.4
1.6
I
OUT
=1mA
I
OUT
=30mA
I
OUT
=50mA
R1163x28x ECO=H R1163x28x ECO =L
02 51436
Input Voltage V
IN
(V)
Output Voltage H V
OUT
H(V)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
I
OUT
=1mA
I
OUT
=30mA
I
OUT
=50mA
02 51436
Input Voltage V
IN
(V)
Output Voltage L VOUT
L(V)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
I
OUT
=1mA
I
OUT
=30mA
I
OUT
=50mA
R1163x40x ECO=H R1163x40x ECO =L
02 51436
Input Voltage V
IN
(V)
Output Voltage H V
OUT
H(V)
0.0
0.5
1.0
1.5
2.5
3.5
2.0
3.0
4.0
4.5
I
OUT
=1mA
I
OUT
=30mA
I
OUT
=50mA
02 51436
Input Voltage V
IN
(V)
Output Voltage L VOUT
L(V)
0.0
0.5
1.0
1.5
2.5
3.5
2.0
3.0
4.0
4.5
I
OUT
=1mA
I
OUT
=30mA
I
OUT
=50mA
R1163x
13
3) Supply Current vs. Input Voltage
R1163x151x ECO=H R1163x151x ECO=L
0241356
Input Voltage V
IN
(V)
0
20
40
10
30
50
60
70
80
Supply Current H I
SS
H
(μA)
0241356
Input Voltage V
IN
(V)
0
2
4
1
3
5
6
7
8
Supply Current I
SS
(μA)
R1163x281x ECO=H R1163x281x ECO=L
0241356
Input Voltage V
IN
(V)
0
20
40
10
30
50
60
70
80
Supply Current H I
SS
H
(μA)
0241356
Input Voltage V
IN
(V)
0
2
4
1
3
5
6
7
8
Supply Current I
SS
(μA)
R1163x401x ECO=H R1163x401x ECO=L
0241356
Input Voltage V
IN
(V)
0
20
40
10
30
50
60
70
80
Supply Current H I
SS
H
(μA)
0241356
Input Voltage V
IN
(V)
0
2
4
1
3
5
6
7
8
Supply Current I
SS
(μA)
R1163x
14
4) Output Voltage vs. Temperature
R1163x151x ECO=H R1163x151x ECO=L
1.46
1.48
1.47
1.53
1.52
1.50
1.49
1.51
-50 0-25 50 7525 100
Temperature Topt(°C)
Output Voltage H
V
OUT
H(V)
1.46
1.48
1.47
1.53
1.52
1.50
1.49
1.51
-50 0-25 50 7525 100
Temperature Topt(°C)
Output Voltage L
VOUT
L(V)
R1163x281x ECO=H R1163x281x ECO=L
2.76
2.77
2.83
2.81
2.79
2.78
2.82
2.80
-50 0-25 50 7525 100
Temperature Topt(°C)
Output Voltage H
V
OUTH(V)
2.76
2.77
2.83
2.81
2.79
2.78
2.82
2.80
-50 0-25 50 7525 100
Temperature Topt(°C)
Output Voltage L
V
OUT
L(V)
R1163x401x ECO=H R1163x401x ECO=L
3.97
3.99
3.98
4.05
4.03
4.01
4.00
4.04
4.02
-50 0-25 50 7525 100
Temperature Topt(°C)
Output Voltage H
V
OUTH(V)
3.98
3.99
4.06
4.05
4.03
4.01
4.00
4.04
4.02
-50 0-25 50 7525 100
Temperature Topt(°C)
Output Voltage L
V
OUT
L(V)
R1163x
15
5) Supply Current vs. Temperature
R1163x151x ECO=H R1163x151x ECO=L
-50 0 50-25 25 75 100
Temperature Topt(°C)
0
20
40
10
30
50
60
70
90
80
Supply Current H I
SS
H
(μA)
V
IN
=2.5V
-50 0 50-25 25 75 100
Temperature Topt(°C)
0
2
4
1
3
5
6
7
10
9
8
Supply Current I
SS
(μA)
V
IN
=2.5V
R1163x281x ECO=H R1163x281x ECO=L
-50 0 50-25 25 75 100
Temperature Topt(°C)
0
20
40
10
30
50
60
70
90
80
Supply Current H I
SS
H
(μA)
V
IN
=3.8V
-50 0 50-25 25 75 100
Temperature Topt(°C)
0
2
4
1
3
5
6
7
10
9
8
Supply Current I
SS
(μA)
V
IN
=3.8V
R1163x401x ECO=H R1163x401x ECO=L
-50 0 50-25 25 75 100
Temperature Topt(°C)
0
20
40
10
30
50
60
70
90
80
Supply Current H I
SS
H
(μA)
V
IN
=5.0V
-50 0 50-25 25 75 100
Temperature Topt(°C)
0
2
4
1
3
5
6
7
10
9
8
Supply Current I
SS
(μA)
V
IN
=5.0V
R1163x
16
6) Standby Current vs. Input Voltage
02 51436
Input Voltage V
IN
(V)
Standby Current ISTB(μA)
0.0
0.5
1.0
1.5
2.0
2.5 Topt=85°C
Topt=25°C
Topt=-40°C
7) Reverse Current vs. Output Voltage
V
IN
=1V
1.5 3.0 5.52.0 5.04.03.52.5 4.5 6.0
Output Voltage V
OUT
(V)
0.000
0.004
0.008
0.012
0.016
0.018
0.002
0.006
0.010
0.014
0.020 Topt=85°C
Topt=25°C
Topt=-40°C
I
REV1
(μA)
0.0 0.8 1.80.2 0.4 1.61.21.00.6 1.4 2.0
Output Voltage VOUT(V)
0.0
0.4
0.8
0.2
0.6
1.0
1.2 Topt=85°C
Topt=25°C
Topt=-40°C
VIN=0V
IREV3(μA)
8) Dropout Voltage vs. Output Current
R1163x151x ECO=H R1163x151x ECO=L
0 50 12525 10075 150
Output Current I
OUT
(mA)
Dropout Voltage L V
DIF
_L(V)
0.0
0.1
0.2
0.3
0.4
0.5 Topt=85°C
Topt=25°C
Topt=-40°C
0 50 12525 10075 150
Output Current I
OUT
(mA)
Dropout Voltage L VDIF_L(V)
0.0
0.1
0.2
0.3
0.4
0.5 Topt=85°C
Topt=25°C
Topt=-40°C
R1163x
17
R1163x161x ECO=H R1163x161x ECO=L
0 50 12525 10075 150
Output Current I
OUT
(mA)
Dropout Voltage H V
DIF
_H(V)
0.0
0.1
0.2
0.3
0.4
0.5 Topt=85°C
Topt=25°C
Topt=-40°C
0 50 12525 10075 150
Output Current I
OUT
(mA)
Dropout Voltage L V
DIF
_L(V)
0.0
0.1
0.2
0.3
0.4
0.5 Topt=85°C
Topt=25°C
Topt=-40°C
R1163x171x ECO=H R1163x171x ECO=L
0 50 12525 10075 150
Output Current I
OUT
(mA)
Dropout Voltage H VDIF_H(V)
0.0
0.1
0.2
0.3
0.4
0.5 Topt=85°C
Topt=25°C
Topt=-40°C
0 50 12525 10075 150
Output Current I
OUT
(mA)
Dropout Voltage L V
DIF
_L(V)
0.0
0.1
0.2
0.3
0.4
0.5 Topt=85°C
Topt=25°C
Topt=-40°C
R1163x181x ECO=H R1163x181x ECO=L
0 50 12525 10075 150
Output Current I
OUT
(mA)
Dropout Voltage H VDIF_H(V)
0.0
0.1
0.2
0.3
0.4
0.5 Topt=85°C
Topt=25°C
Topt=-40°C
0 50 12525 10075 150
Output Current I
OUT
(mA)
Dropout Voltage L V
DIF
_L(V)
0.0
0.1
0.2
0.3
0.4
0.5 Topt=85°C
Topt=25°C
Topt=-40°C
R1163x
18
R1163x211x ECO=H R1163x211x ECO=L
0 50 12525 10075 150
Output Current I
OUT
(mA)
Dropout Voltage H V
DIF
_H(V)
0.0
0.1
0.2
0.3
0.4 Topt=85°C
Topt=25°C
Topt=-40°C
0 50 12525 10075 150
Output Current I
OUT
(mA)
Dropout Voltage L V
DIF
_L(V)
0.0
0.1
0.2
0.3
0.4 Topt=85°C
Topt=25°C
Topt=-40°C
R1163x281x ECO=H R1163x281x ECO=L
0 50 12525 10075 150
Output Current I
OUT
(mA)
0.00
0.10
0.20
0.05
0.15
0.25
0.30 Topt=85°C
Topt=25°C
Topt=-40°C
Dropout Voltage
H V
DIF
_
H(V)
0 50 12525 10075 150
Output Current I
OUT
(mA)
0.00
0.10
0.20
0.05
0.15
0.25
0.30 Topt=85°C
Topt=25°C
Topt=-40°C
Dropout Voltage
L VDIF
_
L(V)
R1163x401x ECO=H R1163x401x ECO=L
0 50 12525 10075 150
Output Current I
OUT
(mA)
0.00
0.10
0.20
0.05
0.15
0.25
0.30 Topt=85°C
Topt=25°C
Topt=-40°C
Dropout Voltage
H V
DIF
_
H(V)
0 50 12525 10075 150
Output Current I
OUT
(mA)
0.00
0.10
0.20
0.05
0.15
0.25
0.30 Topt=85°C
Topt=25°C
Topt=-40°C
Dropout Voltage
L VDIF
_
L(V)
R1163x
19
9) Dropout Voltage vs. Set Output Voltage
R1163x ECO=H R1163x ECO=L
1.5 2.52.0 3.53.0 4.0
Set Output Voltage V
REG
(V)
0.00
0.10
0.20
0.40
0.30
0.50 I
OUT
=10mA
I
OUT
=30mA
I
OUT
=50mA
I
OUT
=100mA
I
OUT
=150mA
Dropout Voltage
H VDIF
_
H(V)
1.5 2.52.0 3.53.0 4.0
Set Output Voltage V
REG
(V)
0.00
0.10
0.20
0.40
0.30
0.50 I
OUT
=10mA
I
OUT
=30mA
I
OUT
=50mA
I
OUT
=100mA
I
OUT
=150mA
Dropout Voltage
L V
DIF
_
L(V)
10) Ripple Rejection vs. Input Bias Voltage
R1163x281x ECO=H R1163x281x ECO=H
2.9 3.13.0 3.2 3.3
Input Voltage VIN(V)
0
20
40
10
30
50
60
70
90
80
Ripple Rejection RR(dB)
f=1kHz
f=10kHz
f=100kHz
CIN=none, COUT=0.47μF,
IOUT=1mA Ripple=0.2Vp-p
2.9 3.13.0 3.2 3.3
Input Voltage VIN(V)
0
20
40
10
30
50
60
70
90
80
Ripple Rejection RR(dB)
CIN=none, COUT=0.47μF,
IOUT=1mA Ripple=0.5Vp-p
f=1kHz
f=10kHz
f=100kHz
R1162x281x ECO=H R1162x281x ECO=H
2.9 3.13.0 3.2 3.3
Input Voltage VIN(V)
0
20
40
10
30
50
60
70
90
80
Ripple Rejection RR(dB)
CIN=none, COUT=0.47μF,
IOUT=30mA Ripple=0.2Vp-p
f=1kHz
f=10kHz
f=100kHz
2.9 3.13.0 3.2 3.3
Input Voltage VIN(V)
0
20
40
10
30
50
60
70
90
80
Ripple Rejection RR(dB)
CIN=none, COUT=0.47μF,
IOUT=30mA Ripple=0.5Vp-p
f=1kHz
f=10kHz
f=100kHz
R1163x
20
R1163x281x ECO=H R1163x281x ECO=H
2.9 3.13.0 3.2 3.3
Input Voltage VIN(V)
0
20
40
10
30
50
60
70
90
80
Ripple Rejection RR(dB)
CIN=none, COUT=0.47μF,
IOUT=50mA Ripple=0.2Vp-p
f=1kHz
f=10kHz
f=100kHz
2.9 3.13.0 3.2 3.3
Input Voltage VIN(V)
0
20
40
10
30
50
60
70
90
80
Ripple Rejection RR(dB)
CIN=none, COUT=0.47μF,
IOUT=50mA Ripple=0.5Vp-p
f=1kHz
f=10kHz
f=100kHz
11) Ripple Rejection vs. Frequency
R1163x151x ECO=H R1163x151x ECO=L
0.1 1 10 100
Frequency f(kHz)
0
20
40
10
30
50
60
70
80
Ripple Rejection RR_H(dB)
CIN=none, COUT=0.47μF,
VIN=2.5VDC+0.2Vp-p
IOUT=1mA
IOUT=30mA
IOUT=50mA
0.1 1 10 100
Frequency f(kHz)
0
20
40
10
30
50
60
70
Ripple Rejection RR_L(dB)
CIN=none, COUT=0.47μF,
VIN=2.5VDC+0.2Vp-p
IOUT=1mA
IOUT=30mA
IOUT=50mA
R1163x281x ECO=H R1163x281x ECO=L
0.1 1 10 100
Frequency f(kHz)
0
20
40
10
30
50
60
70
80
Ripple Rejection RR_H(dB)
CIN=none, COUT=0.47μF,
VIN=3.8VDC+0.2Vp-p
IOUT=1mA
IOUT=30mA
IOUT=50mA
0.1 1 10 100
Frequency f(kHz)
0
20
40
10
30
50
60
70
Ripple Rejection RR_L(dB)
CIN=none, COUT=0.47μF,
VIN=3.8VDC+0.2Vp-p
IOUT=1mA
IOUT=30mA
IOUT=50mA
R1163x
21
R1163x401x ECO=H R1163x401x ECO=L
0.1 1 10 100
Frequency f(kHz)
0
20
40
10
30
50
60
70
80
Ripple Rejection RR_H(dB)
CIN=none, COUT=0.47μF,
VIN=5.0VDC+0.2Vp-p
IOUT=1mA
IOUT=30mA
IOUT=50mA
0.1 1 10 100
Frequency f(kHz)
0
20
40
10
30
50
60
70
Ripple Rejection RR_L(dB)
CIN=none, COUT=0.47μF,
VIN=5.0VDC+0.2Vp-p
IOUT=1mA
IOUT=30mA
IOUT=50mA
12) Input Transient Response
R1163x151x ECO=H R1163x151x ECO=L
1.46
1.48
1.58
1.54
1.52
1.56
1.50
-2
0
-1
4
3
2
1
02010 60 804030 70 9050 100
Time t(μs)
Input Voltage V
IN
(V)
C
IN
=none, C
OUT
=0.47μF I
OUT
=30mA
Output Voltage V
OUT
(V)
Input Voltage
Output Voltage
0.5
1.0
3.5
2.5
2.0
3.0
1.5
-2
0
-1
4
3
2
1
0.0 0.20.1 0.6 0.80.40.3 0.7 0.90.5 1.0
Time t(ms)
Input Voltage V
IN
(V)
C
IN
=none, C
OUT
=0.47μF I
OUT
=10mA
Output Voltage V
OUT
(V)
Input Voltage
Output Voltage
R1163x151x ECO=L R1163x281x ECO=H
0.5
1.0
3.5
2.5
2.0
3.0
1.5
-2
0
-1
4
3
2
1
0.0 0.20.1 0.6 0.80.40.3 0.7 0.90.5 1.0
Time t(ms)
Input Voltage V
IN
(V)
C
IN
=none, C
OUT
=1μF I
OUT
=10mA
Output Voltage V
OUT
(V)
Input Voltage
Output Voltage
2.76
2.78
2.88
2.84
2.82
2.86
2.80
0
2
1
6
5
4
3
02010 60 804030 70 9050 100
Time t(μs)
Input Voltage V
IN
(V)
C
IN
=none, C
OUT
=1μF I
OUT
=30mA
Output Voltage V
OUT
(V)
Input Voltage
Output Voltage
R1163x
22
R1163x281x ECO=H
2.0
2.5
5.0
4.0
3.5
4.5
3.0
0
2
1
6
5
4
3
0.0 0.20.1 0.6 0.80.40.3 0.7 0.90.5 1.0
Time t(ms)
Input Voltage V
IN
(V)
C
IN
=none, C
OUT
=1μF I
OUT
=10mA
Output Voltage V
OUT
(V)
Input Voltage
Output Voltage
13) Load Transient Response
R1163x151x ECO=H R1163x151x ECO=H
1.3
1.4
1.9
1.7
1.6
1.8
1.5
-150
-50
-100
150
100
50
0
042121686141810 20
Time t(μs)
Output Current I
OUT
(mA)
V
IN
=2.5V, C
IN
=1μF C
OUT
=0.47μF
Output Voltage V
OUT
(V)
Output Current
Output Voltage
1.3
1.4
1.9
1.7
1.6
1.8
1.5
-150
-50
-100
150
100
50
0
042121686141810 20
Time t(μs)
Output Current I
OUT
(mA)
V
IN
=2.5V, C
IN
=1μF C
OUT
=1.0μF
Output Voltage V
OUT
(V)
Output Current
Output Voltage
R1163x151x ECO=H R1163x151x ECO=H
1.3
1.4
1.9
1.7
1.6
1.8
1.5
-120
-60
-90
60
30
0
-30
042121686141810 20
Time t(μs)
Output Current I
OUT
(mA)
V
IN
=2.5V, C
IN
=1μF C
OUT
=0.47μF
Output Voltage V
OUT
(V)
Output Current
Output Voltage
1.3
1.4
1.9
1.7
1.6
1.8
1.5
-120
-60
-90
60
30
0
-30
042121686141810 20
Time t(μs)
Output Current I
OUT
(mA)
V
IN
=2.5V, C
IN
=1μF C
OUT
=1.0μF
Output Voltage V
OUT
(V)
Output Current
Output Voltage
R1163x
23
R1163x151x ECO=L R1163x151x ECO=L
1.3
1.4
1.9
1.7
1.6
1.8
1.5
-40
-20
-30
20
10
0
-10
0.0 0.40.2 1.2 1.60.80.6 1.4 1.81.0 2.0
Time t(ms)
Output Current IOUT(mA)
VIN=2.5V, CIN=1μF COUT=0.47μF
Output Voltage V
OUT
(V)
Output Current
Output Voltage
1.3
1.4
1.9
1.7
1.6
1.8
1.5
-40
-20
-30
20
10
0
-10
0.0 0.40.2 1.2 1.60.80.6 1.4 1.81.0 2.0
Time t(ms)
Output Current I
OUT
(mA)
V
IN
=3.8V, C
IN
=1μF C
OUT
=1μF
Output Voltage V
OUT
(V)
Output Current
Output Voltage
R1163x281x ECO=H R1163x281x ECO=H
2.6
2.7
3.2
3.0
2.9
3.1
2.8
-150
-50
-100
150
100
50
0
042121686141810 20
Time t(μs)
Output Current IOUT(mA)
VIN=3.8V, CIN=1μF COUT=0.47μF
Output Voltage V
OUT
(V)
Output Current
Output Voltage
2.6
2.7
3.2
3.0
2.9
3.1
2.8
-150
-50
-100
150
100
50
0
042121686141810 20
Time t(μs)
Output Current I
OUT
(mA)
V
IN
=3.8V, C
IN
=1μF C
OUT
=1μF
Output Voltage V
OUT
(V)
Output Current
Output Voltage
R1163x281x ECO=H R1163x281x ECO=H
2.6
2.7
3.2
3.0
2.9
3.1
2.8
-120
-60
-90
60
30
0
-30
042121686141810 20
Time t(μs)
Output Current IOUT(mA)
VIN=3.8V, CIN=1μF COUT=0.47μF
Output Voltage V
OUT
(V)
Output Current
Output Voltage
2.6
2.7
3.2
3.0
2.9
3.1
2.8
-120
-60
-90
60
30
0
-30
042121686141810 20
Time t(μs)
Output Current I
OUT
(mA)
V
IN
=3.8V, C
IN
=1μF C
OUT
=1μF
Output Voltage V
OUT
(V)
Output Current
Output Voltage
R1163x
24
R1163x281x ECO=L R1163x281x ECO=L
2.4
2.6
3.6
3.2
3.0
3.4
2.8
-40
-20
-30
20
10
0
-10
0.0 0.40.2 1.2 1.60.80.6 1.4 1.81.0 2.0
Time t(ms)
Output Current I
OUT
(mA)
V
IN
=3.8V, C
IN
=1μF C
OUT
=0.47μF
Output Voltage V
OUT
(V)
Output Current
Output Voltage
2.4
2.6
3.6
3.2
3.0
3.4
2.8
-40
-20
-30
20
10
0
-10
0.0 0.40.2 1.2 1.60.80.6 1.4 1.81.0 2.0
Time t(ms)
Output Current IOUT(mA)
VIN=3.8V, CIN=1μF COUT=1μF
Output Voltage V
OUT
(V)
Output Current
Output Voltage
14) Turn on speed with CE pin
R1163x151x ECO=H R1163x151x ECO=L
-5
-4
3
1
0
2
-2
-3
-1
-0.5
0.5
0.0
3.5
2.5
1.5
3.0
2.0
1.0
-8 0 16 24832-4 12 20428
Time t(μs)
CE Input Voltage V
CE
(V)
Output Voltage V
OUT
(V)
V
IN
=2.5V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=0mA
Output Voltage
CE Input Voltage
-5
-4
3
1
0
2
-2
-3
-1
-0.5
0.5
0.0
3.5
2.5
1.5
3.0
2.0
1.0
-40 40 800 12020 60-20 100
Time t(ms)
CE Input Voltage V
CE
(V)
Output Voltage V
OUT
(V)
V
IN
=2.5V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=0mA
Output Voltage
CE Input Voltage
R1163x151x ECO=H R1163x151x ECO=L
-5
-4
3
1
0
2
-2
-3
-1
-0.5
0.5
0.0
3.5
2.5
1.5
3.0
2.0
1.0
-8 0 16 24832-4 12 20428
Time t(μs)
CE Input Voltage V
CE
(V)
Output Voltage V
OUT
(V)
V
IN
=2.5V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=30mA
Output Voltage
CE Input Voltage
-5
-4
3
1
0
2
-2
-3
-1
-0.5
0.5
0.0
3.5
2.5
1.5
3.0
2.0
1.0
-0.2 0 0.4 0.60.2 0.8-0.1 0.3 0.50.1 0.7
Time t(ms)
CE Input Voltage V
CE
(V)
Output Voltage V
OUT
(V)
V
IN
=2.5V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=30mA
Output Voltage
CE Input Voltage
R1163x
25
R1163x151x ECO=H R1163x151x ECO=L
-5
-4
3
1
0
2
-2
-3
-1
-0.5
0.5
0.0
3.5
2.5
1.5
3.0
2.0
1.0
-8 0 16 24832-4 12 20428
Time t(μs)
CE Input Voltage V
CE
(V)
Output Voltage V
OUT
(V)
V
IN
=2.5V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=150mA
Output Voltage
CE Input Voltage
-5
-4
3
1
0
2
-2
-3
-1
-0.5
0.5
0.0
3.5
2.5
1.5
3.0
2.0
1.0
-0.2 0 0.4 0.60.2 0.8-0.1 0.3 0.50.1 0.7
Time t(ms)
CE Input Voltage V
CE
(V)
Output Voltage V
OUT
(V)
V
IN
=2.5V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=150mA
Output Voltage
CE Input Voltage
R1163x281x ECO=H R1163x281x ECO=L
-10
-8
6
2
0
4
-4
-6
-2
-1
1
0
7
5
3
6
4
2
-20 0 40 6020 80-10 30 5010 70
Time t(μs)
CE Input Voltage VCE
(V)
Output Voltage V
OUT
(V)
V
IN
=3.8V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=0mA
Output Voltage
CE Input Voltage
-10
-8
6
2
0
4
-4
-6
-2
-1
1
0
7
5
3
6
4
2
-20 0 40 6020 80-10 30 5010 70
Time t(ms)
CE Input Voltage V
CE
(V)
Output Voltage V
OUT
(V)
V
IN
=3.8V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=0mA
Output Voltage
CE Input Voltage
R1163x281x ECO=H R1163x281x ECO=L
-10
-8
6
2
0
4
-4
-6
-2
-1
1
0
7
5
3
6
4
2
-20 0 40 6020 80-10 30 5010 70
Time t(μs)
CE Input Voltage VCE
(V)
Output Voltage V
OUT
(V)
V
IN
=3.8V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=30mA
Output Voltage
CE Input Voltage
-10
-8
6
2
0
4
-4
-6
-2
-1
1
0
7
5
3
6
4
2
-0.1 0 0.16 0.240.08 0.32-0 0.12 0.20.04 0.28
Time t(ms)
CE Input Voltage V
CE
(V)
Output Voltage V
OUT
(V)
V
IN
=3.8V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=30mA
Output Voltage
CE Input Voltage
R1163x
26
R1163x281x ECO=H R1163x281x ECO=L
-10
-8
6
2
0
4
-4
-6
-2
-1
1
0
7
5
3
6
4
2
-20 0 40 6020 80-10 30 5010 70
Time t(μs)
CE Input Voltage V
CE
(V)
Output Voltage V
OUT
(V)
V
IN
=3.8V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=150mA
Output Voltage
CE Input Voltage
-10
-8
6
2
0
4
-4
-6
-2
-1
1
0
7
5
3
6
4
2
-0.1 0 0.16 0.240.08 0.32-0 0.12 0.20.04 0.28
Time t(ms)
CE Input Voltage VCE
(V)
Output Voltage V
OUT
(V)
V
IN
=3.8V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=150mA
Output Voltage
CE Input Voltage
R1163x401x ECO=H R1163x401x ECO=L
-12
-10
-8
6
2
0
4
-4
-6
-2
-1
1
0
8
7
5
3
6
4
2
-20 0 40 6020 80-10 30 5010 70
Time t(μs)
CE Input Voltage V
CE
(V)
Output Voltage V
OUT
(V)
V
IN
=5.0V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=0mA
Output Voltage
CE Input Voltage
-12
-10
-8
6
2
0
4
-4
-6
-2
-1
1
0
8
7
5
3
6
4
2
-8 0 16 24832-4 12 20428
Time t(ms)
CE Input Voltage VCE
(V)
Output Voltage V
OUT
(V)
V
IN
=5.0V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=0mA
Output Voltage
CE Input Voltage
R1163x401x ECO=H R1163x401x ECO=L
-12
-10
-8
6
2
0
4
-4
-6
-2
-1
1
0
8
7
5
3
6
4
2
-20 0 40 6020 80-10 30 5010 70
Time t(μs)
CE Input Voltage V
CE
(V)
Output Voltage V
OUT
(V)
V
IN
=5.0V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=30mA
Output Voltage
CE Input Voltage
-12
-10
-8
6
2
0
4
-4
-6
-2
-1
1
0
8
7
5
3
6
4
2
Time t(ms)
CE Input Voltage VCE
(V)
Output Voltage V
OUT
(V)
V
IN
=5.0V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=30mA
Output Voltage
CE Input Voltage
-0.1 0 0.16 0.240.08 0.32-0 0.12 0.20.04 0.28
R1163x
27
R1163x401x ECO=H R1163x401x ECO=L
-12
-10
-8
6
2
0
4
-4
-6
-2
-1
1
0
8
7
5
3
6
4
2
-20 0 40 6020 80-10 30 5010 70
Time t(μs)
CE Input Voltage VCE
(V)
Output Voltage V
OUT
(V)
V
IN
=5.0V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=150mA
Output Voltage
CE Input Voltage
-12
-10
-8
6
2
0
4
-4
-6
-2
-1
1
0
8
7
5
3
6
4
2
Time t(ms)
CE Input Voltage V
CE
(V)
Output Voltage V
OUT
(V)
V
IN
=5.0V,
C
IN
=1μF C
OUT
=0.47μF I
OUT
=150mA
Output Voltage
CE Input Voltage
-0.1 0 0.16 0.240.08 0.32-0 0.12 0.20.04 0.28
15) Turn off speed with CE pin
R1163x151xD R1163x281xD
-5
-4
-3
3
2
1
-1
-2
0
-0.5
0.0
3.5
3.0
2.0
1.0
2.5
1.5
0.5
Time t(ms)
CE Input Voltage V
CE
(V)
Output Voltage V
OUT
(V)
V
IN
=2.5V, C
IN
=1μF C
OUT
=0.47μF
Output Voltage
CE Input Voltage
-0.1 0 0.16 0.240.08 0.32-0 0.12 0.20.04 0.28
I
OUT
=0mA
I
OUT
=30mA
I
OUT
=150mA
-5
-4
-3
4
3
2
1
-1
-2
0
-1.0
0.0
8.0
7.0
6.0
4.0
2.0
5.0
3.0
1.0
Time t(ms)
CE Input Voltage V
CE
(V)
Output Voltage V
OUT
(V)
V
IN
=3.8V, C
IN
=1μF C
OUT
=0.47μF
Output Voltage
CE Input Voltage
-0.1 0 0.16 0.240.08 0.32-0 0.12 0.20.04 0.28
I
OUT
=0mA
I
OUT
=30mA
I
OUT
=150mA
R1163x401xD
-6
-4
-3
6
5
2
4
3
-5
1
-1
-2
0
-1
0
11
9
7
10
8
6
4
2
5
3
1
Time t(ms)
CE Input Voltage V
CE
(V)
Output Voltage V
OUT
(V)
V
IN
=5.0V, C
IN
=1μF C
OUT
=0.47μF
Output Voltage
CE Input Voltage
-0.1 0 0.16 0.240.08 0.32-0 0.12 0.20.04 0.28
I
OUT
=0mA
I
OUT
=30mA
I
OUT
=150mA
R1163x
28
16) Output Voltage at Mode alternative point
R1163x151B/D R1163x281B/D
1.48
1.48
1.52
1.52
1.50
1.48
1.50
1.50
1.52
1.48
1.52
1.50
1.48
VIN=2.5V, CIN=Ceramic 1.0μF,
COUT=Ceramic 0.47μF
Time t(ms)
-0.1 0.1 0.5 0.70.3 0.90.0 0.4 0.60.2 0.8
3
1.52
1.50
2
1
-1
0
ECO Input Voltage VECO(V)
I
OUT
=1mA
I
OUT
=10mA
I
OUT
=50mA
I
OUT
=100mA
I
OUT
=150mA
Output Voltage V
OUT
(V)
2.78
2.82
2.80
2.80
2.78
2.82
2.78
2.78
2.80
2.82
2.80
2.82
V
IN
=3.8V, C
IN
=Ceramic 1.0μF,
C
OUT
=Ceramic 0.47μF
Time t(ms)
-0.1 0.1 0.5 0.70.3 0.90.0 0.4 0.60.2 0.8
4
2.80
2.82
2.78
3
2
1
0
-1
ECO Input Voltage V
ECO
(V)
Output Voltage V
OUT
(V)
I
OUT
=1mA
I
OUT
=10mA
I
OUT
=50mA
I
OUT
=100mA
I
OUT
=150mA
1.48
1.49
1.56
1.54
1.53
1.55
1.51
1.50
1.52
-5
-4
3
2
0
-2
1
-1
-3
-10 0 40 6020 908030 5010 70
Time t(ms)
Output Voltage V
OUT
(V)
ECO Input Voltage V
ECO
(V)
I
OUT
=0mA
2.78
2.79
2.86
2.84
2.83
2.85
2.81
2.80
2.82
-4
4
2
3
0
-2
1
-1
-3
-10 0 40 6020 908030 5010 70
Time t(ms)
Output Voltage V
OUT
(V)
ECO Input Voltage V
ECO
(V)
I
OUT
=0mA
R1163x
29
TECHNICAL NOTES
When using these ICs, consider the following p oints:
In these ICs, phase compensation is made for securing stable operation even if the load current is varied. For
this purpose, be sure to use a capacitor COUT with good frequency characteristics and ESR (Equivalent Series
Resist ance) in the range described as follows:
The relations between IOUT (Output Current) and ESR of Output Capacitor are shown below. The conditions
when the white noise level is under 40µV (Avg.) are marked as the hatched area in the graph.
<Test conditions>
(1) Frequency band: 10Hz to 2MHz
R1163x151x ECO=H R1163x151x ECO=L
0 40 80 12020 60 100 140
Load Current IOUT(mA)
Topt=85°C Topt=25°C
Topt=-40°C
0.01
100
1
0.1
10
ESR(Ω)
V
IN
=2.0V to 6.0V, C
IN
=1μF C
OUT
=0.47μF
0 40 80 12020 60 100 140
Load Current IOUT(mA)
0.01
100
1
0.1
10
ESR(Ω)
V
IN
=2.0V to 6.0V, C
IN
=1μF C
OUT
=0.47μF
R1163x281x ECO=H R1163x281x ECO=L
0 40 80 12020 60 100 140
Load Current I
OUT
(mA)
Topt=85°C Topt=25°C
Topt=-40°C
0.01
100
1
0.1
10
ESR(Ω)
VIN=3.1V to 6.0V, CIN=1μF COUT=0.47μF
0 40 80 12020 60 100 140
Load Current I
OUT
(mA)
0.01
100
1
0.1
10
ESR(Ω)
VIN=3.1V to 6.0V, CIN=1μF COUT=0.47μF