VND830E-E Double channel high-side driver Features Type RDS(on) IOUT VCC VND830E-E 65 m(1) 9.5 A(1) 36 V 1. Per each channel. Output current: 9.5 A CMOS compatible inputs On-state open-load detection Off-state open-load detection Output stuck to VCC detection Open drain status outputs Undervoltage shutdown Overvoltage clamp Thermal shutdown Current and power limitation Very low standby current Protection against loss of ground and loss of VCC Reverse battery protection Very low electromagnetic susceptibility Optimized electromagnetic emission Description The VND830E-E is a monolithic device made by using STMicroelectronicsTM VIPowerTM M0-3 technology. It is intended for driving resistive or inductive loads with one side connected to ground. Active VCC pin voltage clamp protects the device against low energy spikes (see ISO7637 transient compatibility table). The device detects open-load condition both in on-state and off-state. Output shorted to VCC is detected in the off-state. Output current limitation protects the device in overload condition. In case of long duration overload, the device limits the dissipated power to safe level up to thermal shutdown intervention. Thermal shutdown with automatic restart allows the device to recover normal operation as soon as fault condition disappears. Table 1. Device summary Order codes Package SO-16L May 2010 Tube Tape and reel VND830E-E VND830ETR-E Doc ID 17461 Rev 1 1/26 www.st.com 1 VND830E-E Contents Contents 1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 3 2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.1 4 Solution 1: a resistor in the ground line (RGND only) . . . . . . . . . . . . . . 16 3.1.2 Solution 2: a diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . 17 Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.3 MCU I/O protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4 Open-load detection in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 3.5 Maximum demagnetization energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 SO-16L thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5.1 6 3.1.1 3.2 4.1 5 GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 16 ECOPACK(R) packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Doc ID 17461 Rev 1 2/26 List of tables VND830E-E List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. 3/26 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 5 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 Thermal data (per island) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Power outputs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Switching (VCC = 13 V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 Logic input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 VCC - output diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Status pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Open-load detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Electrical transient requirements on VCC pin (part 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical transient requirements on VCC pin (part 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Electrical transient requirements on VCC pin (part 3) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 SO-16L mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 Doc ID 17461 Rev 1 VND830E-E List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 Status timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Switching time waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 Off-state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 High level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Status leakage current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Status low output voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 Status clamp voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 On-state resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 On-state resistance vs VCC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Open-load on-state detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Open-load off-state detection threshold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Input high level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Input low level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 ILIM vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Undervoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Open-load detection in off-state . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Maximum turn-off current versus load inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 SO-16L PC board(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 Rthj-amb vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . . . . . . . . . 20 SO-16 L thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . 21 Thermal fitting model of a quad channel HSD in SO-16L . . . . . . . . . . . . . . . . . . . . . . . . . . 21 SO-16L package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Doc ID 17461 Rev 1 4/26 Block diagram and pin description 1 VND830E-E Block diagram and pin description Figure 1. Block diagram Vcc Vcc CLAMP OVERVOLTAGE UNDERVOLTAGE CLAMP 1 GND OUTPUT1 INPUT1 DRIVER 1 CLAMP 2 STATUS1 CURRENT LIMITER 1 DRIVER 2 LOGIC OUTPUT2 OVERTEMP. 1 OPEN-LOAD ON 1 CURRENT LIMITER 2 INPUT2 OPEN-LOAD OFF 1 OPEN-LOAD ON 2 STATUS2 OPEN-LOAD OFF 2 OVERTEMP. 2 Figure 2. Configuration diagram (top view) 1 VCC 5/27 VCC N.C. OUTPUT 1 GND OUTPUT 1 INPUT 1 OUTPUT 1 STATUS 1 STATUS 2 OUTPUT 2 OUTPUT 2 INPUT 2 OUTPUT 2 8 VCC Table 2. 16 9 VCC Suggested connections for unused and not connected pins Connection / pin Status N.C. Output Input Floating X X X X To ground - X - Through 10 K resistor Doc ID 17461 Rev 1 VND830E-E Electrical specifications 2 Electrical specifications 2.1 Absolute maximum ratings Stressing the device above the rating listed in Table 3 may cause permanent damage to the device. These are stress ratings only and operation of the device at these or any other conditions above those indicated in the operating sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. Refer also to the STMicroelectronics SURE Program and other relevant quality document. Table 3. Absolute maximum ratings Symbol VCC Parameter DC supply voltage Value Unit 41 V - VCC Reverse DC supply voltage - 0.3 V - IGND DC reverse ground pin current - 200 mA Internally limited A -6 A IOUT - IOUT DC output current Reverse DC output current IIN DC input current +/- 10 mA ISTAT DC status current +/- 10 mA VESD Electrostatic discharge (Human Body Model: R = 1.5 K; C = 100 pF) - INPUT - STATUS - OUTPUT - VCC 4000 4000 5000 5000 V V V V EMAX Maximum switching energy (L = 0.45 mH; RL = 0 ; Vbat = 13.5 V; Tjstart = 150 C; IL = 13.5 A) 57 mJ Power dissipation TC = 25 C 8.3 W Internally limited C Ptot Tj Junction operating temperature Tc Case operating temperature - 40 to 150 C Storage temperature - 55 to 150 C Tstg Doc ID 17461 Rev 1 6/27 Electrical specifications VND830E-E 2.2 Thermal data Table 4. Thermal data (per island) Symbol Rthj-lead Rthj-amb Parameter Value Thermal resistance junction-lead Unit 15 Thermal resistance junction-ambient 65 C/W (1) 47 (2) C/W 2 1. When mounted on a standard single-sided FR-4 board with 0.5 cm of Cu (at least 35 m thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. 2. When mounted on a standard single-sided FR-4 board with 6 cm2 of Cu (at least 35 m thick) connected to all VCC pins. Horizontal mounting and no artificial air flow. 2.3 Electrical characteristics Values specified in this section are for 8 V < VCC < 36 V; -40 C < Tj < 150 C, unless otherwise stated. (Per each channel) Figure 3. Current and voltage conventions IS VF1 (1) IIN1 ISTAT1 VIN1 IOUT1 OUTPUT 1 STATUS 1 VSTAT1 VCC VCC INPUT 1 IIN2 VOUT1 INPUT 2 IOUT2 VIN2 ISTAT2 OUTPUT 2 STATUS 2 VSTAT2 VOUT2 GND IGND 1. VFn = VCCn - VOUTn during reverse battery condition. Table 5. 7/27 Power outputs Symbol Parameter VCC Test conditions Min. Typ. Operating supply voltage 5.5 13 36 V VUSD Undervoltage shutdown 3 4 5.5 V VOV Overvoltage shutdown 36 RON On-state resistance IOUT = 2 A; Tj = 25C IOUT = 2 A; VCC > 8 V Doc ID 17461 Rev 1 Max. Unit V 65 130 m m VND830E-E Electrical specifications Table 5. Symbol IS Power outputs (continued) Parameter Test conditions Supply current Min. Typ. Max. Unit Off-state; VCC = 13 V; VIN = VOUT = 0 V 12 40 A Off-state; VCC = 13 V; VIN = VOUT = 0 V; Tj = 25C 12 25 A On-state; VCC = 13 V; VIN = 5 V; IOUT = 0 A 5 7 mA 0 50 A -75 0 A IL(off1) Off-state output current VIN = VOUT = 0 V IL(off2) Off-state output current VIN = 0 V; VOUT = 3.5 V IL(off3) Off-state output current VIN = VOUT = 0 V; VCC = 13 V; Tj = 125C 5 A IL(off4) Off-state output current VIN = VOUT = 0 V; VCC = 13 V; Tj =25C 3 A Table 6. Symbol Switching (VCC = 13 V) Parameter Test conditions Min. Typ. Max. Unit td(on) Turn-on delay time RL = 6.5 from VIN rising edge to VOUT = 1.3 V - 50 - s td(off) Turn-off delay time RL = 6.5 from VIN falling edge to VOUT = 11.7 V - 50 - s dVOUT/dt(on) Turn-on voltage slope RL = 6.5 from VOUT = 1.3 V to VOUT = 10.4 V - See Figure 21 - V/s dVOUT/dt(off) Turn-off voltage slope RL = 6.5 from VOUT = 11.7 V to VOUT = 1.3 V - See Figure 22 - V/s Test conditions Min. Typ. Table 7. Symbol Logic input Parameter VIL Input low level IIL Low level input current VIH Input high level IIH High level input current VI(hyst) Input hysteresis voltage VICL Input clamp voltage VIN = 1.25 V Max. Unit 1.25 V 1 A 3.25 V VIN = 3.25 V 10 0.5 IIN = 1 mA IIN = -1 mA Doc ID 17461 Rev 1 6 A V 6.8 -0.7 8 V V 8/27 Electrical specifications Table 8. Symbol VF Table 9. Symbol VND830E-E VCC - output diode Parameter Test conditions Forward on voltage -IOUT = 1.2 A; Tj = 150 C Min. Typ. Max. Unit - - 0.6 V Status pin Parameter Test conditions Min. Typ. Max. Unit VSTAT Status low output voltage ISTAT = 1.6 mA 0.5 V ILSTAT Status leakage current Normal operation; VSTAT = 5 V 10 A CSTAT Status pin Input capacitance Normal operation; VSTAT = 5 V 100 pF VSCL Status clamp voltage ISTAT = 1 mA ISTAT = - 1 mA 8 V V Table 10. Protections(1) Symbol Typ. Max. Unit Shutdown temperature 150 175 200 C TR Reset temperature 135 Thyst Thermal hysteresis 7 tSDL Status delay in overload conditions Tj > TTSD Ilim Current limitation VCC = 13 V 5.5 V < VCC < 36 V Turn-off output clamp voltage IOUT = 2 A; L = 6 mH Vdemag Test conditions 6.8 - 0.7 Min. TTSD Parameter 6 C 15 C 20 s 9.5 13.5 18 18 A A VCC-41 VCC-48 VCC-55 V 1. To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles. Table 11. Open-load detection Symbol Parameter IOL Open-load on-state detection VIN = 5 V threshold tDOL(on) Open-load on-state detection IOUT = 0 A delay VOL tDOL(off) 9/27 Test conditions Open-load off-state voltage detection threshold VIN = 0 V Open-load detection delay at turn-off Doc ID 17461 Rev 1 Min. 50 1.5 Typ. Max. Unit 115 200 mA 200 s 3.5 V 1000 s 2.9 VND830E-E Electrical specifications Figure 4. Status timings OPEN- LOAD STATUS TIMING (with external pull-up) IOUT < IOL VOUT > VOL VINn OVERTEMP STATUS TIMING Tj > TTSD VINn VSTATn VSTATn tSDL tDOL(off) tSDL tDOL(on) Figure 5. Switching time waveforms Table 12. Truth table Conditions Inputn Outputn Statusn Normal operation L H L H H H Current limitation L H H L X X Overtemperature L H L L H L Undervoltage L H L L X X Doc ID 17461 Rev 1 H (Tj < TTSD) H (Tj > TTSD) L 10/27 Electrical specifications Table 12. VND830E-E Truth table (continued) Conditions Inputn Outputn Statusn Overvoltage L H L L H H Output voltage > VOLn L H H H L H Output current < IOLn L H L H H L Table 13. Electrical transient requirements on VCC pin (part 1) Test levels ISO T/R 7637/1 test pulse I II III IV Delays and impedance 1 -25 V -50 V -75 V -100 V 2 ms, 10 2 +25 V +50 V +75 V +100 V 0.2 ms, 10 3a -25 V -50 V -100 V -150 V 0.1 s, 50 3b +25 V +50 V +75 V +100 V 0.1 s, 50 4 -4 V -5 V -6 V -7 V 100 ms, 0.01 5 +26.5 V +46.5 V +66.5 V +86.5 V 400 ms, 2 Table 14. Electrical transient requirements on VCC pin (part 2) ISO T/R Test levels results 7637/1 test pulse I II III IV 1 C C C C 2 C C C C 3a C C C C 3b C C C C 4 C C C C 5 C E E E Table 15. Electrical transient requirements on VCC pin (part 3) Class 11/27 Contents C All functions of the device are performed as designed after exposure to disturbance. E One or more functions of the device is not performed as designed after exposure to disturbance and cannot be returned to proper operation without replacing the device. Doc ID 17461 Rev 1 VND830E-E Electrical specifications Figure 6. Waveforms NORMAL OPERATION INPUTn OUTPUT VOLTAGEn STATUSn UNDERVOLTAGE VUSDhyst VCC VUSD INPUTn OUTPUT VOLTAGEn STATUS undefined OVERVOLTAGE VCC VOV VCC INPUTn OUTPUT VOLTAGEn STATUSn OPEN-LOAD with external pull-up INPUTn VOUT > VOL OUTPUT VOLTAGEn VOL STATUSn OPEN-LOAD without external pull-up INPUTn OUTPUT VOLTAGEn STATUSn Tj TTSD TR OVERTEMPERATURE INPUTn OUTPUT CURRENTn STATUSn Doc ID 17461 Rev 1 12/27 Electrical specifications VND830E-E 2.4 Electrical characteristics curves Figure 7. Off-state output current Figure 8. High level input current lih (A) IL(off1) (A) 6 0.9 5.5 0.8 Off state Vcc=13V Vin=Vout=0V 0.7 5 Vin=3.25V 4.5 0.6 4 0.5 3.5 3 0.4 2.5 0.3 2 0.2 1.5 0.1 1 0 0.5 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 Figure 9. 50 75 100 125 150 175 150 175 Tc (C) Tc (C) Input clamp voltage Figure 10. Status leakage current Vicl (V) Ilstat (A) 12 0.2 11 0.195 Iin=1mA Vstat=5V 10 0.19 9 0.185 8 0.18 7 0.175 6 0.17 5 0.165 4 0.16 3 0.155 2 0.15 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (C) Figure 11. 75 100 125 Tc (C) Status low output voltage Figure 12. Status clamp voltage Vstat (V) Vscl (V) 0.8 10 0.7 9 Istat=1.6mA Istat=1mA 0.6 8 0.5 7 0.4 6 0.3 5 0.2 4 0.1 3 0 2 -50 -25 0 25 50 75 100 125 150 175 -50 Tc (C) 13/27 50 -25 0 25 50 75 Tc (C) Doc ID 17461 Rev 1 100 125 150 175 VND830E-E Electrical specifications Figure 13. On-state resistance vs Tcase Figure 14. On-state resistance vs VCC Ron (mOhm) Ron (mOhm) 160 120 140 105 Iout=2A Vcc=8V; 13V & 36V 120 Tc=150C 90 100 75 80 60 60 45 40 30 20 15 Tc=25C Tc=25 Tc=-40C Iout=2A 0 0 -50 -25 0 25 50 75 100 125 150 175 5 10 15 20 Tc (C) 25 30 35 40 Vcc (V) Figure 15. Open-load on-state detection threshold Figure 16. Open-load off-state detection threshold Vol (V) Iol (mA) 5 150 4.5 140 Vin=0V 4 Vcc=13V Vin=5V 130 3.5 120 3 110 2.5 2 100 1.5 90 1 80 0.5 0 70 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 50 75 100 125 150 175 Tc (C) Tc (C) Figure 17. Input high level Figure 18. Input low level Vih (V) Vil (V) 3.6 2.6 3.4 2.4 3.2 2.2 3 2 2.8 1.8 2.6 1.6 2.4 1.4 2.2 1.2 2 1 -50 -25 0 25 50 75 100 125 150 175 -50 Tc (C) -25 0 25 50 75 100 125 150 175 Tc (C) Doc ID 17461 Rev 1 14/27 Electrical specifications VND830E-E Figure 19. Input hysteresis voltage Figure 20. Overvoltage shutdown Vhyst (V) Vov (V) 2 70 65 1.75 60 1.5 55 50 1.25 45 1 40 35 0.75 30 0.5 25 20 0.25 15 0 10 -50 -25 0 25 50 75 100 125 150 175 -50 -25 0 25 Tc (C) 50 75 100 125 150 175 150 175 Tc (C) Figure 21. Turn-on voltage slope Figure 22. Turn-off voltage slope dVout/dt(on) (Vms) dVout/dt(off) (Vms) 800 500 700 450 Vcc=13V Rl=6.5Ohm 600 Vcc=13V Rl=6.5Ohm 400 350 500 300 400 250 200 300 150 200 100 100 50 0 0 -50 -25 0 25 50 75 100 125 150 -50 175 -25 0 25 Figure 23. ILIM vs Tcase 50 75 100 125 Tc (C) Tc (C) Figure 24. Undervoltage shutdown Ilim (A) Vusd (V) 30 10 9 25 8 Vcc=13V 20 7 6 15 5 10 4 3 5 2 1 0 -50 -25 0 25 50 75 100 125 150 175 -50 15/27 -25 0 25 50 75 Tc (C) Tc (C) Doc ID 17461 Rev 1 100 125 150 175 VND830E-E 3 Application information Application information Figure 25. Application schematic +5V +5V +5V VCC Rprot STATUS1 Dld C Rprot INPUT1 OUTPUT1 Rprot STATUS2 Rprot INPUT2 OUTPUT2 GND RGND VGND 3.1 DGND GND protection network against reverse battery This section provides two solutions for implementing a ground protection network against reverse battery. 3.1.1 Solution 1: a resistor in the ground line (RGND only) This can be used with any type of load. The following shows how to dimension the RGND resistor: 1. RGND 600 mV / (IS(on)max) 2. RGND (-VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet. Power dissipation in RGND (when VCC < 0 during reverse battery situations) is: PD = (-VCC)2 / RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the maximum on-state currents of the different devices. Doc ID 17461 Rev 1 16/27 Application information VND830E-E Please note that, if the microprocessor ground is not common with the device ground, then the RGND produces a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift varies depending on how many devices are ON in the case of several highside drivers sharing the same RGND. If the calculated power dissipation requires the use of a large resistor, or several devices have to share the same resistor, then ST suggests using Section 3.1.2 described below. 3.1.2 Solution 2: a diode (DGND) in the ground line A resistor (RGND = 1 k) should be inserted in parallel to DGND if the device is driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network produce a shift (~600 mV) in the input threshold and the status output values if the microprocessor ground is not common with the device ground. This shift does not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the absolute maximum rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected. 3.2 Load dump protection Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds the VCC maximum DC rating. The same applies if the device is subjected to transients on the VCC line that are greater than those shown in Table 13. 3.3 MCU I/O protection If a ground protection network is used and negative transients are present on the VCC line, the control pins are pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the microcontroller I/O pins from latching up. The value of these resistors is a compromise between the leakage current of microcontroller and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of microcontroller I/Os: - VCCpeak / Ilatchup Rprot (VOHC - VIH - VGND) / IIHmax Example For the following conditions: VCCpeak = -100 V Ilatchup 20 mA VOHC 4.5 V 5 k Rprot 65 k. The recommended values are: Rprot = 10 k 17/27 Doc ID 17461 Rev 1 VND830E-E 3.4 Application information Open-load detection in off-state Off-state open-load detection requires an external pull-up resistor (RPU) connected between OUTPUT pin and a positive supply voltage (VPU) like the +5 V line used to supply the microprocessor. The external resistor has to be selected according to the following requirements: 1. No false open-load indication when load is connected: in this case it needs to avoid VOUT to be higher than VOlmin; this results in the following condition VOUT = (VPU / (RL + RPU))RL < VOlmin. 2. No misdetection when load is disconnected: in this case the VOUT has to be higher than VOLmax; this results in the following condition RPU < (VPU - VOLmax) / IL(off2). Because Is(OFF) may significantly increase if Vout is pulled high (up to several mA), the pullup resistor RPU should be connected to a supply that is switched OFF when the module is in standby. The values of VOLmin, VOLmax and IL(off2) are available in Chapter 2: Electrical specifications. Figure 26. Open-load detection in off-state V b a tt. V PU V CC R PU IN P U T D R IV E R + L O G IC IL (o ff2 ) OUT + STATUS R V OL RL GROUND Doc ID 17461 Rev 1 18/27 Application information 3.5 VND830E-E Maximum demagnetization energy Figure 27. Maximum turn-off current versus load inductance I LM AX (A) 100 10 A C B 1 0,1 1 10 100 L(mH) A = single pulse at TJstart = 150C B= repetitive pulse at TJstart = 100C C= repetitive pulse at TJstart = 125C Conditions: VCC= 13.5 V VIN, IL Demagnetization Demagnetization Demagnetization t Note: Values are generated with RL = 0 . In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. 19/27 Doc ID 17461 Rev 1 VND830E-E Package and PCB thermal data 4 Package and PCB thermal data 4.1 SO-16L thermal data Figure 28. SO-16L PC board(1) 1. Layout condition of Rth and Zth measurements (PCB FR4 area = 41 mm x 48 mm, PCB thickness = 2 mm, Cu thickness = 35 m, Copper areas: 0.5 cm2, 6 cm2). Figure 29. Rthj-amb vs PCB copper area in open box free air condition 70 RTH j-amb (C/W) 65 60 55 50 45 40 0 1 2 3 4 5 6 7 PCB Cu heatsink area (cm^2) Doc ID 17461 Rev 1 20/27 Package and PCB thermal data VND830E-E Figure 30. SO-16 L thermal impedance junction ambient single pulse Equation 1: pulse calculation formula Z TH = R TH + Z THtp ( 1 - ) where = tp T Figure 31. Thermal fitting model of a quad channel HSD in SO-16L Tj_1 C1 C2 C3 C4 C5 C6 R1 R2 R3 R4 R5 R6 Pd1 Tj_2 C1 C2 R1 R2 Pd2 T_amb 21/27 Doc ID 17461 Rev 1 VND830E-E Package and PCB thermal data Table 16. Thermal parameters Area/ island (cm2) Footprint R1 (C/W) 0.15 R2 (C/W) 0.7 R3 (C/W) 2 R4 (C/W) 10 R5 (C/W) 15 R6 (C/W) 37 C1 (W.s/C) 0.0005 C2 (W.s/C) 0.003 C3 (W.s/C) 0.015 C4 (W.s/C) 0.15 C5 (W.s/C) 1.5 C6 (W.s/C) 3 Doc ID 17461 Rev 1 6 22 5 22/27 Package and packing information VND830E-E 5 Package and packing information 5.1 ECOPACK(R) packages In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK(R) packages, depending on their level of environmental compliance. ECOPACK(R) specifications, grade definitions and product status are available at: www.st.com. ECOPACK(R) is an ST trademark. Figure 32. SO-16L package dimensions 23/27 Doc ID 17461 Rev 1 VND830E-E Package and packing information Table 17. SO-16L mechanical data mm. DIM. Min. Typ. A a1 Max. 2.65 0.1 0.2 a2 2.45 b 0.35 0.49 b1 0.23 0.32 C 0.5 c1 45 (typ.) D 10.1 10.5 E 10.0 10.65 e 1.27 e3 8.89 F 7.4 7.6 L 0.5 1.27 M 0.75 S 8 (max.) Doc ID 17461 Rev 1 24/27 Revision history 6 VND830E-E Revision history Table 18. 25/27 Document revision history Date Revision 03-May-2010 1 Changes Initial release. Doc ID 17461 Rev 1 VND830E-E Please Read Carefully: Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any time, without notice. All ST products are sold pursuant to ST's terms and conditions of sale. Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no liability whatsoever relating to the choice, selection or use of the ST products and services described herein. No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such third party products or services or any intellectual property contained therein. UNLESS OTHERWISE SET FORTH IN ST'S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY, DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER'S OWN RISK. Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any liability of ST. ST and the ST logo are trademarks or registered trademarks of ST in various countries. Information in this document supersedes and replaces all information previously supplied. The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners. (c) 2010 STMicroelectronics - All rights reserved STMicroelectronics group of companies Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com Doc ID 17461 Rev 1 26/26