This is information on a product in full production.
July 2012 Doc ID 14395 Rev 9 1/110
1
STM8AF5xxx STM8AF6x69/7x/8x/9x/Ax
Automotive 8-bit MCU, with up to 128 Kbytes Flash, data EEPROM,
10-bit ADC, timers, LIN, CAN, USART, SPI, I2C, 3 to 5.5 V
Datasheet production data
Features
Core
–Max f
CPU: 24 MHz
Advanced STM8A core with Harvard
architecture and 3-stage pipeline
Average 1.6 cycles/instruction resulting in
10 MIPS at 16 MHz fCPU for industry
standard benchmark
Memories
Program memory: 32 to 128 Kbytes Flash
program; data retention 20 years at 55 °C
Data memory: up to 2 Kbytes true data
EEPROM; endurance 300 kcycles
RAM: 2 Kbytes to 6 Kbytes
Clock management
Low-power crystal resonator oscillator with
external clock input
Internal, user-trimmable 16 MHz RC and
low-power 128 kHz RC oscillators
Clock security system with clock monitor
Reset and supply management
Wait/auto-wakeup/Halt low-power modes
with user definable clock gating
Low consumption power-on and power-
down reset
Interrupt management
Nested interrupt controller with 32 vectors
Up to 37 external interrupts on 5 vectors
Timers
2 general purpose 16-bit timers with up to 3
CAPCOM channels each (IC, OC, PWM)
Advanced control timer: 16-bit, 4 CAPCOM
channels, 3 complementary outputs, dead-
time insertion and flexible synchronization
8-bit AR basic timer with 8-bit prescaler
Auto-wakeup timer
Window and independent watchdog timers
I/Os
Up to 68 user pins (11 high sink I/Os)
Highly robust I/O design, immune against
current injection
Communication interfaces
High speed 1 Mbit/s CAN 2.0B interface
USART with clock output for synchronous
operation - LIN master mode
LINUART LIN 2.1 compliant, master/slave
modes with automatic resynchronization
SPI interface up to 10 Mbit/s or fMASTER/2
–I
2C interface up to 400 Kbit/s
Analog to digital converter (ADC)
10-bit resolution, 2 LSB TUE, 1 LSB
linearity and up to 16 multiplexed channels
Operating temperature up to 150 °C
Qualification conforms to AEC-Q100 rev G
Table 1. Device summary(1)
1. In the order code, ‘F’ applies to devices with Flash program
memory and data EEPROM while ‘H’ refers to devices with
Flash program memory only. ‘F’ is replaced by ‘P’ for devices
with FASTROM (see Tables 2, 3, 4, and 5, and Figure 52).
Part numbers: STM8AF52xx (with CAN)
STM8AF52AA, STM8AF52A9, STM8AF52A8, STM8AF528A,
STM8AF5289, STM8AF5288, STM8AF5269, STM8AF5268
Part numbers: STM8AF6269/8x/Ax
STM8AF62AA, STM8AF62A9, STM8AF62A8, STM8AF628A,
STM8AF6289, STM8AF6288, STM8AF6286, STM8AF6269,
STM8AF62A6,
Part numbers: STM8AF51xx (with CAN)(2)
2. Not recommended for new design.
STM8AF51AA, STM8AF51A9, STM8AF51A8, STM8AF519A,
STM8AF5199, STM8AF5198, STM8AF518A, STM8AF5189,
STM8AF5188, STM8AF5179, STM8AF5178, STM8AF5169,
STM8AF5168
Part numbers: STM8AF6169/7x/8x/9x/Ax(2)
STM8AF61AA, STM8AF61A9, STM8AF61A8, STM8AF619A,
STM8AF6199, STM8AF6198, STM8AF618A, STM8AF6189,
STM8AF6188, STM8AF6186, STM8AF6179, STM8AF6178,
STM8AF6176, STM8AF6169
LQFP80 14x14 LQFP48 7x7
LQFP32 7x7 VFQFPN32 5x5
LQFP64 10x10
www.st.com
Contents STM8AF52/62xx, STM8AF51/61xx
2/110 Doc ID 14395 Rev 9
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3 Product line-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
5 Product overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1 STM8A central processing unit (CPU) . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.1 Architecture and registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.2 Addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1.3 Instruction set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Single wire interface module (SWIM) and debug module (DM) . . . . . . . . 16
5.2.1 SWIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.2.2 Debug module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Interrupt controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Flash program and data EEPROM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4.1 Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4.2 Write protection (WP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4.3 Protection of user boot code (UBC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.4.4 Read-out protection (ROP) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5 Clock controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
5.5.2 16 MHz high-speed internal RC oscillator (HSI) . . . . . . . . . . . . . . . . . . 18
5.5.3 128 kHz low-speed internal RC oscillator (LSI) . . . . . . . . . . . . . . . . . . . 19
5.5.4 24 MHz high-speed external crystal oscillator (HSE) . . . . . . . . . . . . . . 19
5.5.5 External clock input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.5.6 Clock security system (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.6 Low-power operating modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.7 Timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.7.1 Watchdog timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.7.2 Auto-wakeup counter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.7.3 Beeper . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
STM8AF52/62xx, STM8AF51/61xx Contents
Doc ID 14395 Rev 9 3/110
5.7.4 Advanced control and general purpose timers . . . . . . . . . . . . . . . . . . . 21
5.7.5 Basic timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.8 Analog to digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.9 Communication interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.9.1 Universal synchronous/asynchronous receiver transmitter (USART) . . 23
5.9.2 Universal asynchronous receiver/transmitter with LIN support
(LINUART) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.9.3 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.9.4 Inter integrated circuit (I2C) interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
5.9.5 Controller area network interface (beCAN) . . . . . . . . . . . . . . . . . . . . . . 27
5.10 Input/output specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
6 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.1 Package pinouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.2 Alternate function remapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7 Memory and register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.1 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.2 Register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
8 Interrupt table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
9 Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.1 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
10.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
10.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
10.3.1 VCAP external capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.3.2 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
10.3.3 External clock sources and timing characteristics . . . . . . . . . . . . . . . . . 65
10.3.4 Internal clock sources and timing characteristics . . . . . . . . . . . . . . . . . 67
Contents STM8AF52/62xx, STM8AF51/61xx
4/110 Doc ID 14395 Rev 9
10.3.5 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
10.3.6 I/O port pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
10.3.7 Reset pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
10.3.8 TIM 1, 2, 3, and 4 electrical specifications . . . . . . . . . . . . . . . . . . . . . . . 77
10.3.9 SPI interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
10.3.10 I2C interface characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
10.3.11 10-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
10.3.12 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
10.4 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.4.1 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
10.4.2 Selecting the product temperature range . . . . . . . . . . . . . . . . . . . . . . . . 88
11 Package characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
11.1 Package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
12 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
13 STM8 development tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
13.1 Emulation and in-circuit debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . 99
13.1.1 STice key features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
13.2 Software tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
13.2.1 STM8 toolset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
13.2.2 C and assembly toolchains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
13.3 Programming tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
14 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
STM8AF52/62xx, STM8AF51/61xx List of tables
Doc ID 14395 Rev 9 5/110
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. STM8AF52xx product line-up with CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 3. STM8AF62xx product line-up without CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 4. STM8AF/H/P51xx product line-up with CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 5. STM8AF/H/P61xx product line-up without CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 6. Peripheral clock gating bits (CLK_PCKENR1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 7. Peripheral clock gating bits (CLK_PCKENR2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 8. Advanced control and general purpose timers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 9. TIM4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 10. ADC naming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 11. Communication peripheral naming correspondence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 12. Legend/abbreviation for the pin description table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Table 13. STM8A microcontroller family pin description. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
Table 14. Memory model 128K. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 15. I/O port hardware register map. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 16. General hardware register map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 17. CPU/SWIM/debug module/interrupt controller registers . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 18. Temporary memory unprotection registers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 19. STM8A interrupt table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Table 20. Option bytes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 21. Option byte description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 22. Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 23. Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 24. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 25. Operating lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Table 26. General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 27. Operating conditions at power-up/power-down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 28. Total current consumption in Run, Wait and Slow mode. General conditions
for VDD apply, TA = -40 °C to 150 °C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 29. Total current consumption in Halt and Active-halt modes. General conditions for VDD
applied. TA = -40 °C to 55 °C unless otherwise stated . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 30. Oscillator current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 31. Programming current consumption. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 32. Typical peripheral current consumption VDD = 5.0 V . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Table 33. HSE external clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Table 34. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Table 35. HSI oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Table 36. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Table 37. Flash program memory/data EEPROM memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 38. Flash program memory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 39. Data memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Table 40. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 41. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 42. TIM 1, 2, 3, and 4 electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Table 43. SPI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
Table 44. I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Table 45. ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Table 46. ADC accuracy for VDDA = 5 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
List of tables STM8AF52/62xx, STM8AF51/61xx
6/110 Doc ID 14395 Rev 9
Table 47. EMS data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
Table 48. EMI data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 49. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
Table 50. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Table 51. Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
Table 52. LQFP 80-pin low profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . 90
Table 53. LQFP 64-pin low profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . 91
Table 54. LQFP 48-pin low profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . 93
Table 55. LQFP 32-pin low profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . 95
Table 56. VFQFPN 32-lead very thin fine pitch quad flat no-lead package
mechanical data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
Table 57. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
STM8AF52/62xx, STM8AF51/61xx List of figures
Doc ID 14395 Rev 9 7/110
List of figures
Figure 1. STM8A block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 2. Flash memory organization of STM8A products. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 3. LQFP 80-pin pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 4. LQFP 64-pin pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 5. LQFP 48-pin pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 6. LQFP/VFQFPN 32-pin pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 7. Register and memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 8. Pin loading conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Figure 9. Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Figure 10. fCPUmax versus VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Figure 11. External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Figure 12. Typ. IDD(RUN)HSE vs. VDD @fCPU = 16 MHz, peripherals = on . . . . . . . . . . . . . . . . . . . . . . 64
Figure 13. Typ. IDD(RUN)HSE vs. fCPU @ VDD = 5.0 V, peripherals = on . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 14. Typ. IDD(RUN)HSI vs. VDD @ fCPU = 16 MHz, peripherals = off . . . . . . . . . . . . . . . . . . . . . . 64
Figure 15. Typ. IDD(WFI)HSE vs. VDD @ fCPU = 16 MHz, peripherals = on . . . . . . . . . . . . . . . . . . . . . . 64
Figure 16. Typ. IDD(WFI)HSE vs. fCPU @ VDD = 5.0 V, peripherals = on . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 17. Typ. IDD(WFI)HSI vs. VDD @ fCPU = 16 MHz, peripherals = off . . . . . . . . . . . . . . . . . . . . . . 64
Figure 18. HSE external clock source . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 19. HSE oscillator circuit diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 20. Typical HSI frequency vs VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
Figure 21. Typical LSI frequency vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 22. Typical VIL and VIH vs VDD @ four temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 23. Typical pull-up resistance RPU vs VDD @ four temperatures . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 24. Typical pull-up current Ipu vs VDD @ four temperatures(1) . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 25. Typ. VOL @ VDD = 3.3 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 26. Typ. VOL @ VDD = 5.0 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 27. Typ. VOL @ VDD = 3.3 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 28. Typ. VOL @ VDD = 5.0 V (true open drain ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 29. Typ. VOL @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 30. Typ. VOL @ VDD = 5.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 31. Typ. VDD - VOH @ VDD = 3.3 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 32. Typ. VDD - VOH @ VDD = 5.0 V (standard ports). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 33. Typ. VDD - VOH @ VDD = 3.3 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 34. Typ. VDD - VOH @ VDD = 5.0 V (high sink ports) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Figure 35. Typical NRST VIL and VIH vs VDD @ four temperatures . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Figure 36. Typical NRST pull-up resistance RPU vs VDD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 37. Typical NRST pull-up current Ipu vs VDD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
Figure 38. Recommended reset pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 39. SPI timing diagram in slave mode and with CPHA = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 40. SPI timing diagram in slave mode and with CPHA = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
Figure 41. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
Figure 42. Typical application with ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
Figure 43. ADC accuracy characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Figure 44. LQFP 80-pin low profile quad flat package (14 x 14) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 45. LQFP 64-pin low profile quad flat package (10 x 10) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Figure 46. LQFP 64-pin recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 47. LQFP 48-pin low profile quad flat package (7 x 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 48. LQFP 48-pin recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
List of figures STM8AF52/62xx, STM8AF51/61xx
8/110 Doc ID 14395 Rev 9
Figure 49. LQFP 32-pin low profile quad flat package (7 x 7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Figure 50. LQFP 32-pin recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
Figure 51. VFQFPN 32-lead very thin fine pitch quad flat no-lead package (5 x 5). . . . . . . . . . . . . . . 97
Figure 52. Ordering information scheme(1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
STM8AF52/62xx, STM8AF51/61xx Introduction
Doc ID 14395 Rev 9 9/110
1 Introduction
This datasheet refers to the STM8AF52xx, STM8AF62xx, STM8AF51xx, and STM8AF61xx
products with 32 to 128 Kbytes of program memory.
In the order code, the letter ‘F’ refers to product versions with Flash and data EEPROM, ‘H’
to product versions with Flash only, and ‘P’ to product versions with FASTROM. The
identifiers ‘F’, ‘H’, and ‘P’ do not coexist in a given order code.
The datasheet contains the description of family features, pinout, electrical characteristics,
mechanical data and ordering information.
For complete information on the STM8A microcontroller memory, registers and
peripherals, please refer to STM8S and STM8A microcontroller families reference
manual (RM0016).
For information on programming, erasing and protection of the internal Flash memory
please refer to the STM8S and STM8A Flash programming manual (PM0051).
For information on the debug and SWIM (single wire interface module) refer to the
STM8 SWIM communication protocol and debug module user manual (UM0470).
For information on the STM8 core, please refer to the STM8 CPU programming manual
(PM0044).
Description STM8AF52/62xx, STM8AF51/61xx
10/110 Doc ID 14395 Rev 9
2 Description
The STM8AF52xx, STM8AF62xx, STM8AF51xx, and STM8AF61xx automotive 8-bit
microcontrollers described in this datasheet offer from 32 Kbytes to 128 Kbytes of non
volatile memory and integrated true data EEPROM. They are referred to as high density
STM8A devices in the STM8S and STM8A microcontroller families reference manual
(RM0016).
The STM8AF51xx and STM8AF52xx series feature a CAN interface.
All devices of the STM8A product line provide the following benefits: reduced system cost,
performance and robustness, short development cycles, and product longevity.
The system cost is reduced thanks to an integrated true data EEPROM for up to 300 k
write/erase cycles and a high system integration level with internal clock oscillators,
watchdog, and brown-out reset.
Device performance is ensured by 20 MIPS at 24 MHz CPU clock frequency and enhanced
characteristics which include robust I/O, independent watchdogs (with a separate clock
source), and a clock security system.
Short development cycles are guaranteed due to application scalability across a common
family product architecture with compatible pinout, memory map and and modular
peripherals. Full documentation is offered with a wide choice of development tools.
Product longevity is ensured in the STM8A family thanks to their advanced core which is
made in a state-of-the art technology for automotive applications with 3.3 V to 5.5 V
operating supply.
All STM8A and ST7 microcontrollers are supported by the same tools including
STVD/STVP development environment, the STice emulator and a low-cost, third party in-
circuit debugging tool.
STM8AF52/62xx, STM8AF51/61xx Product line-up
Doc ID 14395 Rev 9 11/110
3 Product line-up
..
Table 2. STM8AF52xx product line-up with CAN
Order code Package
High
density
Flash
program
memory
(bytes)
RAM
(bytes)
Data
EEPROM
(bytes)
10-bit
A/D
chan.
Timers
(IC/OC/PWM)
Serial
interfaces
I/0
wakeup
pins
STM8AF/P52AA LQFP80
(14x14)
128 K
6 K
2 K 16
1x8-bit: TIM4
3x16-bit: TIM1,
TIM2, TIM3
(9/9/9)
CAN,
LIN(UART)
, SPI,
USART,
I²C
68/37
STM8AF/P528A 64 K
STM8AF/P52A9
LQFP64
(10x10)
128 K
52/36STM8AF/P5289 64 K
STM8AF/P5269 32 K 1 K
STM8AF/P52A8
LQFP48
(7x7)
128 K 2 K 10 38/35STM8AF/P5288 64 K
STM8AF/P5268 32 K 1K
Table 3. STM8AF62xx product line-up without CAN
Order code Package
High
density
Flash
program
memory
(bytes)
RAM
(bytes)
Data
EEPROM
(bytes)
10-bit
A/D
chan.
Timers
(IC/OC/PWM)
Serial
interfaces
I/0
wakeup
pins
STM8AF/P62AA LQFP80
(14x14)
128 K
6 K
2 K
16 1x8-bit: TIM4
3x16-bit: TIM1,
TIM2, TIM3
(9/9/9)
LIN(UART),
SPI,
USART, I²C
68/37
STM8AF/P628A 64 K
STM8AF/P62A9
LQFP64
(10x10)
128 K
52/36STM8AF/P6289 64 K 2 K
STM8AF/P6269 32 K 1 K
STM8AF/P62A8 LQFP48
(7x7)
128 K
2 K
10 38/35
STM8AF/P6288
64 K
STM8AF/P6286 LQFP32
(7x7) 7
1x8-bit: TIM4
3x16-bit: TIM1,
TIM2, TIM3
(8/8/8)
LIN(UART),
SPI, I²C 25/23
STM8AF/P62A6 VFQFPN32
(5x5) 128 K
Product line-up STM8AF52/62xx, STM8AF51/61xx
12/110 Doc ID 14395 Rev 9
.
Table 4. STM8AF/H/P51xx product line-up with CAN
Order code Package
High
density
Flash
program
memory
(bytes)
RAM
(bytes)
Data
EEPROM
(bytes)
10-bit
A/D
chan.
Timers
(IC/OC/PWM)
Serial
interfaces
I/0
wakeup
pins
STM8AF/H/P51AA
LQFP80
(14x14)
128 K
6 K 2 K
16
1x8-bit: TIM4
3x16-bit: TIM1,
TIM2, TIM3
(9/9/9)
CAN,
LIN(UART)
, SPI,
USART,
I²C
68/37STM8AF/H/P519A 96 K
STM8AF/H/P518A 64 K
STM8AF/H/P51A9
LQFP64
(10x10)
128 K
52/36
STM8AF/H/P5199 96 K
STM8AF/H/P5189 64 K 4 K 1.5 K
STM8AF/H/P5179 48 K 3 K
STM8AF/H/P5169 32 K 2 K 1 K
STM8AF/H/P51A8
LQFP48
(7x7)
128 K 6 K 2 K
10 38/35
STM8AF/H/P5198 96 K
STM8AF/H/P5188 64 K 4 K 1.5 K
STM8AF/H/P5178 48 K 3 K
STM8AF/H/P5168 32 K 2 K 1K
STM8AF52/62xx, STM8AF51/61xx Product line-up
Doc ID 14395 Rev 9 13/110
²
Table 5. STM8AF/H/P61xx product line-up without CAN
Order code Package
High
density
Flash
program
memory
(bytes)
RAM
(bytes)
Data
EEPROM
(bytes)
10-bit
A/D
chan.
Timers
(IC/OC/PWM)
Serial
interfaces
I/0
wakeup
pins
STM8AF/H/P61AA
LQFP80
(14x14)
128 K
6 K 2 K
16
1x8-bit: TIM4
3x16-bit:
TIM1, TIM2,
TIM3
(9/9/9)
LIN(UART),
SPI,
USART, I²C
68/37STM8AF/H/P619A 96 K
STM8AF/H/P618A 64 K
STM8AF/H/P61A9
LQFP64
(10x10)
128 K
52/36
STM8AF/H/P6199 96 K
STM8AF/H/P6189 64 K 4 K 1.5 K
STM8AF/H/P6179 48 K 3 K
STM8AF/H/P6169 32 K 2 K 1 K
STM8AF/H/P61A8
LQFP48
(7x7)
128 K 6 K 2 K
10 38/35
STM8AF/H/P6198 96 K
STM8AF/H/P6188 64 K 4 K
1.5 K
STM8AF/H/P6178 48 K 3 K
STM8AF/H/P6186
LQFP32
(7x7)/
64 K 4 K
7
1x8-bit: TIM4
3x16-bit:
TIM1, TIM2,
TIM3 (8/8/8)
LIN(UART),
SPI, I²C 25/23
STM8AF/H/P6176 48 K 3 K
Block diagram STM8AF52/62xx, STM8AF51/61xx
14/110 Doc ID 14395 Rev 9
4 Block diagram
Figure 1. STM8A block diagram
1. Legend:
ADC: Analog-to-digital converter
beCAN: Controller area network
BOR: Brownout reset
I²C: Inter-integrated circuit multimaster interface
IWDG: Independent window watchdog
LINUART: Local interconnect network universal asynchronous receiver transmitter
POR: Power on reset
SPI: Serial peripheral interface
SWIM: Single wire interface module
USART: Universal synchronous asynchronous receiver transmitter
Window WDG: Window watchdog
XTAL 1-24 MHz
RC int. 16 MHz
RC int. 128 kHz
STM8A CORE
Debug/SWIM
I2C
SPI
USART
LINUART
16-bit general purpose
AWU timer
Reset block
Reset
Clock controller
Detector
Clock to peripherals and core
10 Mbit/s
LIN master
Up to
Window WDG
IWDG
Up to 128 Kbyte
Up to 2 Kbytes
Up to 6 Kbytes
Boot ROM
10-bit ADC
beCAN
9 CAPCOM
Reset
400 Kbit/s
1 Mbit/s
Master/slave
Single wire
automatic
debug interf.
SPI emul.
channels
high density program
Flash
16-bit advanced control
timer (TIM1)
(TIM2, TIM3)
8-bit AR timer
(TIM4)
data EEPROM
RAM
Up to
Address and data bus
16 channels
resynchronization
POR
BOR
STM8AF52/62xx, STM8AF51/61xx Product overview
Doc ID 14395 Rev 9 15/110
5 Product overview
This section is intended to describe the family features that are actually implemented in the
products covered by this datasheet.
For more detailed information on each feature please refer to the STM8S and STM8A
microcontroller families reference manual (RM0016).
5.1 STM8A central processing unit (CPU)
The 8-bit STM8A core is a modern CISC core and has been designed for code efficiency
and performance. It contains 21 internal registers (six directly addressable in each execution
context), 20 addressing modes including indexed indirect and relative addressing and 80
instructions.
5.1.1 Architecture and registers
Harvard architecture
3-stage pipeline
32-bit wide program memory bus with single cycle fetching for most instructions
X and Y 16-bit index registers, enabling indexed addressing modes with or without
offset and read-modify-write type data manipulations
8-bit accumulator
24-bit program counter with 16-Mbyte linear memory space
16-bit stack pointer with access to a 64 Kbyte stack
8-bit condition code register with seven condition flags for the result of the last
instruction.
5.1.2 Addressing
20 addressing modes
Indexed indirect addressing mode for look-up tables located anywhere in the address
space
Stack pointer relative addressing mode for efficient implementation of local variables
and parameter passing
5.1.3 Instruction set
80 instructions with 2-byte average instruction size
Standard data movement and logic/arithmetic functions
8-bit by 8-bit multiplication
16-bit by 8-bit and 16-bit by 16-bit division
Bit manipulation
Data transfer between stack and accumulator (push/pop) with direct stack access
Data transfer using the X and Y registers or direct memory-to-memory transfers
Product overview STM8AF52/62xx, STM8AF51/61xx
16/110 Doc ID 14395 Rev 9
5.2 Single wire interface module (SWIM) and debug module (DM)
5.2.1 SWIM
The single wire interface module, SWIM, together with an integrated debug module, permits
non-intrusive, real-time in-circuit debugging and fast memory programming. The interface
can be activated in all device operation modes and can be connected to a running device
(hot plugging).The maximum data transmission speed is 145 bytes/ms.
5.2.2 Debug module
The non-intrusive debugging module features a performance close to a full-flavored
emulator. Besides memory and peripheral operation, CPU operation can also be monitored
in real-time by means of shadow registers.
R/W of RAM and peripheral registers in real-time
R/W for all resources when the application is stopped
Breakpoints on all program-memory instructions (software breakpoints), except the
interrupt vector table
Two advanced breakpoints and 23 predefined breakpoint configurations
5.3 Interrupt controller
Nested interrupts with three software priority levels
24 interrupt vectors with hardware priority
Five vectors for external interrupts (up to 37 depending on the package)
Trap and reset interrupts
5.4 Flash program and data EEPROM
32 Kbytes to 128 Kbytes of high density single voltage Flash program memory
Up to 2 Kbytes true (not emulated) data EEPROM
Read while write: writing in the data memory is possible while executing code in the
Flash program memory.
The whole Flash program memory and data EEPROM are factory programmed with 0x00.
5.4.1 Architecture
The memory is organized in blocks of 128 bytes each
Read granularity: 1 word = 4 bytes
Write/erase granularity: 1 word (4 bytes) or 1 block (128 bytes) in parallel
Writing, erasing, word and block management is handled automatically by the memory
interface.
STM8AF52/62xx, STM8AF51/61xx Product overview
Doc ID 14395 Rev 9 17/110
5.4.2 Write protection (WP)
Write protection in application mode is intended to avoid unintentional overwriting of the
memory. The write protection can be removed temporarily by executing a specific sequence
in the user software.
5.4.3 Protection of user boot code (UBC)
If the user chooses to update the Flash program memory using a specific boot code to
perform in application programming (IAP), this boot code needs to be protected against
unwanted modification.
In the STM8A a memory area of up to 128 Kbytes can be protected from overwriting at user
option level. Other than the standard write protection, the UBC protection can exclusively be
modified via the debug interface, the user software cannot modify the UBC protection status.
The UBC memory area contains the reset and interrupt vectors and its size can be adjusted
in increments of 512 bytes by programming the UBC and NUBC option bytes
(see Section 9: Option bytes on page 51).
Figure 2. Flash memory organization of STM8A products
5.4.4 Read-out protection (ROP)
The STM8A provides a read-out protection of the code and data memory which can be
activated by an option byte setting (see the ROP option byte in section 10).
The read-out protection prevents reading and writing Flash program memory, data memory
and option bytes via the debug module and SWIM interface. This protection is active in all
device operation modes. Any attempt to remove the protection by overwriting the ROP
option byte triggers a global erase of the program and data memory.
The ROP circuit may provide a temporary access for debugging or failure analysis. The
temporary read access is protected by a user defined, 8-byte keyword stored in the option
byte area. This keyword must be entered via the SWIM interface to temporarily unlock the
device.
Programmable area from 1 Kbyte
Data
UBC area
Program memory area
Data memory area
(first two pages) up to program memory
EEPROM
Remains write protected during IAP
memory
Write access possible for IAP
Option bytes
end - maximum 128 Kbytes
Flash
program
memory
Product overview STM8AF52/62xx, STM8AF51/61xx
18/110 Doc ID 14395 Rev 9
If desired, the temporary unlock mechanism can be permanently disabled by the user
through OPT6/NOPT6 option bytes.
5.5 Clock controller
The clock controller distributes the system clock coming from different oscillators to the core
and the peripherals. It also manages clock gating for low-power modes and ensures clock
robustness.
5.5.1 Features
Clock sources
16 MHz high-speed internal RC oscillator (HSI)
128 kHz low-speed internal RC (LSI)
1-24 MHz high-speed external crystal (HSE)
Up to 24 MHz high-speed user-external clock (HSE user-ext)
Reset: After reset the microcontroller restarts by default with an internal 2-MHz clock
(16 MHz/8). The clock source and speed can be changed by the application program
as soon as the code execution starts.
Safe clock switching: Clock sources can be changed safely on the fly in Run mode
through a configuration register. The clock signal is not switched until the new clock
source is ready. The design guarantees glitch-free switching.
Clock management: To reduce power consumption, the clock controller can stop the
clock to the core, individual peripherals or memory.
Wakeup: In case the device wakes up from low-power modes, the internal RC
oscillator (16 MHz/8) is used for quick startup. After a stabilization time, the device
switches to the clock source that was selected before Halt mode was entered.
Clock security system (CSS): The CSS permits monitoring of external clock sources
and automatic switching to the internal RC (16 MHz/8) in case of a clock failure.
Configurable main clock output (CCO): This feature permits to outputs a clock signal
for use by the application.
5.5.2 16 MHz high-speed internal RC oscillator (HSI)
Default clock after reset 2 MHz (16 MHz/8)
Fast wakeup time
User trimming
The register CLK_HSITRIMR with two trimming bits plus one additional bit for the sign
permits frequency tuning by the application program. The adjustment range covers all
possible frequency variations versus supply voltage and temperature. This trimming does
not change the initial production setting.
STM8AF52/62xx, STM8AF51/61xx Product overview
Doc ID 14395 Rev 9 19/110
5.5.3 128 kHz low-speed internal RC oscillator (LSI)
The frequency of this clock is 128 kHz and it is independent from the main clock. It drives
the independent watchdog or the AWU wakeup timer.
In systems which do not need independent clock sources for the watchdog counters, the
128 kHz signal can be used as the system clock. This configuration has to be enabled by
setting an option byte (OPT3/OPT3N, bit LSI_EN).
5.5.4 24 MHz high-speed external crystal oscillator (HSE)
The external high-speed crystal oscillator can be selected to deliver the main clock in
normal Run mode. It operates with quartz crystals and ceramic resonators.
Frequency range: 1 MHz to 24 MHz
Crystal oscillation mode: preferred fundamental
I/Os: standard I/O pins multiplexed with OSCIN, OSCOUT
5.5.5 External clock input
An external clock signal can be applied to the OSCIN input pin of the crystal oscillator. The
frequency range is 0 to 24 MHz.
5.5.6 Clock security system (CSS)
The clock security system protects against a system stall in case of an external crystal clock
failure.
In case of a clock failure an interrupt is generated and the high-speed internal clock (HSI) is
automatically selected with a frequency of 2 MHz (16 MHz/8).
Table 6. Peripheral clock gating bits (CLK_PCKENR1)
Control bit Peripheral
PCKEN17 TIM1
PCKEN16 TIM3
PCKEN15 TIM2
PCKEN14 TIM4
PCKEN13 LINUART
PCKEN12 USART
PCKEN11 SPI
PCKEN10 I2C
Product overview STM8AF52/62xx, STM8AF51/61xx
20/110 Doc ID 14395 Rev 9
5.6 Low-power operating modes
For efficient power management, the application can be put in one of four different low-
power modes. You can configure each mode to obtain the best compromise between lowest
power consumption, fastest start-up time and available wakeup sources.
Wait mode
In this mode, the CPU is stopped but peripherals are kept running. The wakeup is
performed by an internal or external interrupt or reset.
Active-halt mode with regulator on
In this mode, the CPU and peripheral clocks are stopped. An internal wakeup is
generated at programmable intervals by the auto wake up unit (AWU). The main
voltage regulator is kept powered on, so current consumption is higher than in Active-
halt mode with regulator off, but the wakeup time is faster. Wakeup is triggered by the
internal AWU interrupt, external interrupt or reset.
Active-halt mode with regulator off
This mode is the same as Active-halt with regulator on, except that the main voltage
regulator is powered off, so the wake up time is slower.
Halt mode
CPU and peripheral clocks are stopped, the main voltage regulator is powered off.
Wakeup is triggered by external event or reset.
In all modes the CPU and peripherals remain permanently powered on, the system clock is
applied only to selected modules. The RAM content is preserved and the brown-out reset
circuit remains activated.
Table 7. Peripheral clock gating bits (CLK_PCKENR2)
Control bit Peripheral
PCKEN27 CAN
PCKEN26 Reserved
PCKEN25 Reserved
PCKEN24 Reserved
PCKEN23 ADC
PCKEN22 AWU
PCKEN21 Reserved
PCKEN20 Reserved
STM8AF52/62xx, STM8AF51/61xx Product overview
Doc ID 14395 Rev 9 21/110
5.7 Timers
5.7.1 Watchdog timers
The watchdog system is based on two independent timers providing maximum security to
the applications. The watchdog timer activity is controlled by the application program or
option bytes. Once the watchdog is activated, it cannot be disabled by the user program
without going through reset.
Window watchdog timer
The window watchdog is used to detect the occurrence of a software fault, usually
generated by external interferences or by unexpected logical conditions, which cause the
application program to abandon its normal sequence.
The window function can be used to trim the watchdog behavior to match the application
timing perfectly. The application software must refresh the counter before time-out and
during a limited time window. If the counter is refreshed outside this time window, a reset is
issued.
Independent watchdog timer
The independent watchdog peripheral can be used to resolve malfunctions due to hardware
or software failures.
It is clocked by the 128 kHz LSI internal RC clock source, and thus stays active even in case
of a CPU clock failure. If the hardware watchdog feature is enabled through the device
option bits, the watchdog is automatically enabled at power-on, and generates a reset
unless the key register is written by software before the counter reaches the end of count.
5.7.2 Auto-wakeup counter
This counter is used to cyclically wakeup the device in Active-halt mode. It can be clocked by
the internal 128 kHz internal low-frequency RC oscillator or external clock.
LSI clock can be internally connected to TIM3 input capture channel 1 for calibration.
5.7.3 Beeper
This function generates a rectangular signal in the range of 1, 2 or 4 kHz which can be
output on a pin. This is useful when audible sounds without interference need to be
generated for use in the application.
5.7.4 Advanced control and general purpose timers
STM8A devices described in this datasheet, contain up to three 16-bit advanced control and
general purpose timers providing nine CAPCOM channels in total. A CAPCOM channel can
be used either as input compare, output compare or PWM channel. These timers are
named TIM1, TIM2 and TIM3.
Product overview STM8AF52/62xx, STM8AF51/61xx
22/110 Doc ID 14395 Rev 9
TIM1 - advanced control timer
This is a high-end timer designed for a wide range of control applications. With its
complementary outputs, dead-time control and center-aligned PWM capability, the field of
applications is extended to motor control, lighting and bridge driver.
16-bit up, down and up/down AR (auto-reload) counter with 16-bit fractional prescaler.
Four independent CAPCOM channels configurable as input capture, output compare,
PWM generation (edge and center aligned mode) and single pulse mode output
Trigger module which allows the interaction of TIM1 with other on-chip peripherals. In
the present implementation it is possible to trigger the ADC upon a timer event.
External trigger to change the timer behavior depending on external signals
Break input to force the timer outputs into a defined state
Three complementary outputs with adjustable dead time
Interrupt sources: 4 x input capture/output compare, 1 x overflow/update, 1 x break
TIM2, TIM3 - 16-bit general purpose timers
16-bit auto-reload up-counter
15-bit prescaler adjustable to fixed power of two ratios 1…32768
Timers with three or two individually configurable CAPCOM channels
Interrupt sources: 2 or 3 x input capture/output compare, 1 x overflow/update
5.7.5 Basic timer
The typical usage of this timer (TIM4) is the generation of a clock tick.
8-bit auto-reload, adjustable prescaler ratio to any power of two from 1 to 128
Clock source: master clock
Interrupt source: 1 x overflow/update
Table 8. Advanced control and general purpose timers
Timer Counter
width
Counter
type
Prescaler
factor Channels Inverted
outputs
Repetition
counter
trigger
unit
External
trigger
Break
input
TIM1 16-bit Up/down 1 to 65536 4 3 Yes Yes Yes Yes
TIM2 16-bit Up 2n
n = 0 to 15 3 None No No No No
TIM3 16-bit Up 2n
n = 0 to 15 2 None No No No No
Table 9. TIM4
Timer Counter
width
Counter
type
Prescaler
factor Channels Inverted
outputs
Repetition
counter
trigger
unit
External
trigger
Break
input
TIM4 8-bit Up 2n
n = 0 to 7 0 None No No No No
STM8AF52/62xx, STM8AF51/61xx Product overview
Doc ID 14395 Rev 9 23/110
5.8 Analog to digital converter (ADC)
The STM8A products described in this datasheet contain a 10-bit successive approximation
ADC with up to 16 multiplexed input channels, depending on the package.
The ADC name differs between the datasheet and the STM8A/S reference manual (see
Ta bl e 10).
ADC features
10-bit resolution
Single and continuous conversion modes
Programmable prescaler: fMASTER divided by 2 to 18
Conversion trigger on timer events, and external events
Interrupt generation at end of conversion
Selectable alignment of 10-bit data in 2 x 8 bit result registers
Shadow registers for data consistency
ADC input range: VSSA VIN VDDA
Schmitt-trigger on analog inputs can be disabled to reduce power consumption
5.9 Communication interfaces
The following sections give a brief overview of the communication peripheral. Some
peripheral names differ between the datasheet and the STM8A/S reference manual (see
Ta bl e 11).
5.9.1 Universal synchronous/asynchronous receiver transmitter (USART)
The devices covered by this datasheet contain one USART interface. The USART can
operate in standard SCI mode (serial communication interface, asynchronous) or in SPI
emulation mode. It is equipped with a 16 bit fractional prescaler. It features LIN master
support.
Table 10. ADC naming
Peripheral name in datasheet Peripheral name in reference manual
(RM0016)
ADC ADC2
Table 11. Communication peripheral naming correspondence
Peripheral name in datasheet Peripheral name in reference manual
(RM0016)
USART UART1
LINUART UART3
Product overview STM8AF52/62xx, STM8AF51/61xx
24/110 Doc ID 14395 Rev 9
Detailed feature list:
Full duplex, asynchronous communications
NRZ standard format (mark/space)
High-precision baud rate generator system
Common programmable transmit and receive baud rates up to fMASTER/16
Programmable data word length (8 or 9 bits)
Configurable stop bits: Support for 1 or 2 stop bits
LIN master mode:
LIN break and delimiter generation
LIN break and delimiter detection with separate flag and interrupt source for
readback checking.
Transmitter clock output for synchronous communication
Separate enable bits for transmitter and receiver
Transfer detection flags:
Receive buffer full
Transmit buffer empty
End of transmission flags
Parity control:
Transmits parity bit
Checks parity of received data byte
Four error detection flags:
Overrun error
Noise error
–Frame error
Parity error
Six interrupt sources with flags:
Transmit data register empty
Transmission complete
Receive data register full
Idle line received
Parity error
LIN break and delimiter detection
Two interrupt vectors:
Transmitter interrupt
Receiver interrupt
Reduced power consumption mode
Wakeup from mute mode (by idle line detection or address mark detection)
Two receiver wakeup modes:
Address bit (MSB)
Idle line
STM8AF52/62xx, STM8AF51/61xx Product overview
Doc ID 14395 Rev 9 25/110
5.9.2 Universal asynchronous receiver/transmitter with LIN support
(LINUART)
The devices covered by this datasheet contain one LINUART interface. The interface is
available on all the supported packages. The LINUART is an asynchronous serial
communication interface which supports extensive LIN functions tailored for LIN slave
applications. In LIN mode it is compliant to the LIN standards rev 1.2 to rev 2.1.
Detailed feature list:
LIN mode
Master mode
LIN break and delimiter generation
LIN break and delimiter detection with separate flag and interrupt source for read back
checking.
Slave mode
Autonomous header handling – one single interrupt per valid header
Mute mode to filter responses
Identifier parity error checking
LIN automatic resynchronization, allowing operation with internal RC oscillator (HSI)
clock source
Break detection at any time, even during a byte reception
Header errors detection:
Delimiter too short
Synch field error
Deviation error (if automatic resynchronization is enabled)
Framing error in synch field or identifier field
Header time-out
UART mode
Full duplex, asynchronous communications - NRZ standard format (mark/space)
High-precision baud rate generator
A common programmable transmit and receive baud rates up to fMASTER/16
Programmable data word length (8 or 9 bits) – 1 or 2 stop bits – parity control
Separate enable bits for transmitter and receiver
Error detection flags
Reduced power consumption mode
Multi-processor communication - enter mute mode if address match does not occur
Wakeup from mute mode (by idle line detection or address mark detection)
Two receiver wakeup modes:
Address bit (MSB)
Idle line
Product overview STM8AF52/62xx, STM8AF51/61xx
26/110 Doc ID 14395 Rev 9
5.9.3 Serial peripheral interface (SPI)
The devices covered by this datasheet contain one SPI. The SPI is available on all the
supported packages.
Maximum speed: 8 Mbit/s or fMASTER/2 both for master and slave
Full duplex synchronous transfers
Simplex synchronous transfers on two lines with a possible bidirectional data line
Master or slave operation - selectable by hardware or software
CRC calculation
1 byte Tx and Rx buffer
Slave mode/master mode management by hardware or software for both master and
slave
Programmable clock polarity and phase
Programmable data order with MSB-first or LSB-first shifting
Dedicated transmission and reception flags with interrupt capability
SPI bus busy status flag
Hardware CRC feature for reliable communication:
CRC value can be transmitted as last byte in Tx mode
CRC error checking for last received byte
5.9.4 Inter integrated circuit (I2C) interface
The devices covered by this datasheet contain one I2C interface. The interface is available
on all the supported packages.
I2C master features:
Clock generation
Start and stop generation
I2C slave features:
Programmable I2C address detection
Stop bit detection
Generation and detection of 7-bit/10-bit addressing and general call
Supports different communication speeds:
Standard speed (up to 100 kHz),
Fast speed (up to 400 kHz)
Status flags:
Transmitter/receiver mode flag
End-of-byte transmission flag
–I
2C busy flag
Error flags:
Arbitration lost condition for master mode
Acknowledgement failure after address/data transmission
Detection of misplaced start or stop condition
Overrun/underrun if clock stretching is disabled
STM8AF52/62xx, STM8AF51/61xx Product overview
Doc ID 14395 Rev 9 27/110
Interrupt:
Successful address/data communication
Error condition
Wakeup from Halt
Wakeup from Halt on address detection in slave mode
5.9.5 Controller area network interface (beCAN)
The beCAN controller (basic enhanced CAN), interfaces the CAN network and supports the
CAN protocol version 2.0A and B. It is equipped with a receive FIFO and a very versatile
filter bank. Together with a filter match index, this allows a very efficient message handling in
today’s car network architectures. The CPU is significantly unloaded. The maximum
transmission speed is 1 Mbit/s.
Transmission
Three transmit mailboxes
Configurable transmit priority by identifier or order request
Reception
11- and 29-bit ID
1 receive FIFO (3 messages deep)
Software-efficient mailbox mapping at a unique address space
FMI (filter match index) stored with message for quick message association
Configurable FIFO overrun
Time stamp on SOF reception
6 filter banks, 2 x 32 bytes (scalable to 4 x 16-bit) each, enabling various masking
configurations, such as 12 filters for 29-bit ID or 48 filters for 11-bit ID.
Filtering modes (mixable):
Mask mode permitting ID range filtering
ID list mode
Interrupt management
Maskable interrupt
Software-efficient mailbox mapping at a unique address space
Product overview STM8AF52/62xx, STM8AF51/61xx
28/110 Doc ID 14395 Rev 9
5.10 Input/output specifications
The product features four I/O types:
Standard I/O 2 MHz
Fast I/O up to 10 MHz
High sink 8 mA, 2 MHz
True open drain (I2C interface)
To decrease EMI (electromagnetic interference), high sink I/Os have a limited maximum
slew rate. The rise and fall times are similar to those of standard I/Os.
The analog inputs are equipped with a low leakage analog switch. Additionally, the schmitt-
trigger input stage on the analog I/Os can be disabled in order to reduce the device standby
consumption.
STM8A I/Os are designed to withstand current injection. For a negative injection current of
4 mA, the resulting leakage current in the adjacent input does not exceed 1 µA. Thanks to
this feature, external protection diodes against current injection are no longer required.
STM8AF52/62xx, STM8AF51/61xx Pinouts and pin description
Doc ID 14395 Rev 9 29/110
6 Pinouts and pin description
6.1 Package pinouts
Figure 3. LQFP 80-pin pinout
1. The CAN interface is only available on the STM8AF/H/P51xx and STM8AF52xx product lines.
2. (HS) stands for high sink capability.
PD4 (HS)/TIM2_CH1/BEEP
2
1
3
4
5
6
7
8
10
9
12
14
16
18
20
11
15
13
17
19
25
26
28
27
30
32
34
36
38
29
33
31
35
37
39
57
58
56
55
54
53
52
51
49
50
47
45
43
41
48
44
46
42
60
59
61
62
63
64
66
68
65
67
69
70
71
72
74
73
75
76
77
78
79
80
PI4
PI3
PI2
PI1
PC4 (HS)/TIM1_CH4
PC3 (HS)/TIM1_CH3
PC2 (HS)/TIM1_CH2
PC1 (HS)/TIM1_CH1
PG6
PG5
PI5
PI0
PG4
PG3
PG2
PC7/SPI_MISO
VSSIO_2
VDDIO_1
TIM2_CH3/PA3
USART_RX/PA4
USART_TX/PA5
AIN12/PF4
VSSIO_1
VSS
VCAP
VDD
USART_CK/PA6
(HS) PH0
(HS) PH1
PH2
PH3
AIN15/PF7
AIN14/PF6
AIN13/PF5
NRST
OSCIN/PA1
OSCOUT/PA2
AIN5/PB5
AIN4/PB4
AIN1/PB1
AIN0/PB0
AIN8/PE7
VREF-
AIN10/PF0
AIN7/PB7
AIN6/PB6
TIM1_ETR/PH4
TIM1_CH3N/PH5
TIM1_CH2N/PH6
40
AIN9/PE6
21
22
24
23
AIN11/PF3
VREF+
VDDA
VSSA
PD0 (HS)/TIM3_CH2
PE2/I 2C_SDA
PE3/TIM1_BKIN
PE4
PG7
PD7/TLI
PD6/LINUART_RX
PD5/LINUART_TX
PI7
PI6
PD2 (HS)/TIM3_CH1
PD1 (HS)/SWIM
PC5/SPI_SCK
PC6/SPI_MOSI
PG0/CAN_TX(1)
PG1/CAN_RX(1)
PE0/CLK_CCO
PD3 (HS)/TIM2_CH2
AIN3/PB3
AIN2/PB2
PC0/ADC_ETR
PE5/SPI_NSS
TIM1_CH1N/PH7
VDDIO_2
PE1/I2C_SCL
Pinouts and pin description STM8AF52/62xx, STM8AF51/61xx
30/110 Doc ID 14395 Rev 9
Figure 4. LQFP 64-pin pinout
1. The CAN interface is only available on the STM8AF/H/P51xx and STM8AF52xx product lines.
2. HS stands for high sink capability.
VREF-
AIN10/PF0
AIN7/PB7
AIN6/PB6
AIN5/PB5
AIN4/PB4
TIM1_ETR/AIN3/PB3
TIM1_CH3N/AIN2/PB2
TIM1_CH2N/AIN1/PB1
TIM1_CH1N/AIN0/PB0
AIN8/PE7
AIN9/PE6
AIN11/PF3
VREF+
VDDA
VSSA
64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
17 18 19 20 21 22 23 24 29 30 31 3225 26 27 28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
VSS
VCAP
VDD
VDDIO_1
TIM2_CH3/PA3
USART_RX/PA4
USART_TX/PA5
USART_CK/PA6
AIN15/PF7
AIN14/PF6
AIN13/PF5
AIN12/PF4
NRST
OSCIN/PA1
OSCOUT/PA2
VSSIO_1
PG1/CAN_RX(1)
PG0/CAN_TX(1)
PC7/SPI_MISO
PC6/SPI_MOSI
VDDIO_2
VSSIO_2
PC5/SPI_SCK
PC4 (HS)/TIM1_CH4
PC3 (HS)/TIM1_CH3
PC2 (HS)/TIM1_CH2
PC1 (HS)/TIM1_CH1
PE5/SPI_NSS
PI0
PG4
PG3
PG2
PD3 (HS)/TIM2_CH2/ADC_ETR
PD2 (HS)/TIM3_CH1
PD1 (HS)/SWIM
PD0 (HS)/TIM3_CH2
PE0/CLK_CCO
PE1/I2C_SCL
PE2/I2C_SDA
PE3/TIM1_BKIN
PE4
PG7
PG6
PG5
PD7/TLI
PD6/LINUART_RX
PD5/LINUART_TX
PD4 (HS)/TIM2_CH1/ BEEP
STM8AF52/62xx, STM8AF51/61xx Pinouts and pin description
Doc ID 14395 Rev 9 31/110
Figure 5. LQFP 48-pin pinout
1. The CAN interface is only available on the STM8AF/H/P51xx and STM8AF52xx product lines.
2. HS stands for high sink capability.
44 43 42 41 40 39 38 37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
12
13 14 15 16 17 18 19 20 21 22
1
2
3
4
5
6
7
8
9
10
11
48 47 46 45
USART_CK/PA6
AIN8/PE7
PC1 (HS)/TIM1_CH1
PE5/SPI_NSS
PG1/CAN_Rx
AIN9/PE6
PD3 (HS)/TIM2_CH2/ADC_ETR
PD2 (HS)/TIM3_CH1
PE0/CLK_CCO
PE1/I2C_SCL
PE2/I2C_SDA
PE3/TIM1_BKIN
PD7/TLI
PD6/LINUART_RX
PD5/LINUART_TX
PD4 (HS)/TIM2_CH1/BEEP
PD1 (HS)/SWIM
PD0 (HS)/TIM3_CH2
VSSIO_2
PC5/SPI_SCK
PC4 (HS)/TIM1_CH4
PC3 (HS)/TIM1_CH3
PC2 (HS)/TIM1_CH2
PG0/CAN_Tx
PC7/SPI_MISO
PC6/SPI_MOSI
VDDIO_2
AIN7/PB7
AIN6/PB6
AIN5/PB5
AIN4/PB4
TIM1_ETR/AIN3/PB3
TIM1_CH3N/AIN2/PB2
TIM1_CH2N/AIN1/PB1
TIM1_CH1N/AIN0/PB0
VDDA
VSSA
VSS
VCAP
VDD
VDDIO_1
TIM2_CH3/PA3
USART_RX/PA4
USART_TX/PA5
NRST
OSCIN/PA1
OSCOUT/PA2
VSSIO_1
Pinouts and pin description STM8AF52/62xx, STM8AF51/61xx
32/110 Doc ID 14395 Rev 9
Figure 6. LQFP/VFQFPN 32-pin pinout
1. HS stands for high sink capability.
Table 12. Legend/abbreviation for the pin description table
Type I= input, O = output, S = power supply
Level Input CM = CMOS (standard for all I/Os)
Output HS = high sink (8 mA)
Output speed
O1 = Standard (up to 2 MHz)
O2 = Fast (up to 10 MHz)
O3 = Fast/slow programmability with slow as default state after reset
O4 = Fast/slow programmability with fast as default state after reset
Port and control
configuration
Input float = floating, wpu = weak pull-up
Output T = true open drain, OD = open drain, PP = push pull
Reset state
Bold X (pin state after reset release).
Unless otherwise specified, the pin state is the same during the reset phase (i.e.
“under reset”) and after internal reset release (i.e. at reset state).
I2C_SCL/AIN4/PB4
TIM1_ETR/AIN3/PB3
TIM1_CH3N/AIN2/PB2
TIM1_CH2N/AIN1/PB1
TIM1_CH1N/AIN0/PB0
VDDA
VSSA
I2C_SDA/AIN5/PB5
32 31 30 29 28 27 26 25
24
23
22
21
20
19
18
17
9 10111213141516
1
2
3
4
5
6
7
8
VCAP
VDD
VDDIO
AIN12/PF4
NRST
OSCIN/PA1
OSCOUT/PA2
VSS
PC3 (HS)/TIM1_CH3
PC2 (HS)/TIM1_CH2
PC1 (HS)/TIM1_CH1
PE5/SPI_NSS
PC7/SPI_MISO
PC6/SPI_MOSI
PC5/SPI_SCK
PC4 (HS)/TIM1_CH4
PD3 (HS)/TIM2_CH2/ADC_ETR
PD2 (HS)/TIM3_CH1/TIM2_CH3
PD1 (HS)/SWIM
PD0 (HS)/TIM3_CH2/CLK_CCO/TIM1_BRK
PD7/TLI
PD6/LINUART_RX
PD5/LINUART_TX
PD4 (HS)/TIM2_CH1/BEEP
STM8AF52/62xx, STM8AF51/61xx Pinouts and pin description
Doc ID 14395 Rev 9 33/110
Table 13. STM8A microcontroller family pin description
Pin number
Pin name
Type
Input Output
Main
function
(after
reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
LQFP80
LQFP64
LQFP48
LQFP32/VFQFPN32
floating
wpu
Ext. interrupt
High sink
Speed
OD
PP
1 1 1 1 NRST I/O - X Reset
2222 PA1/OSCIN
(1) I/O XX—O1X XPort A1 Resonator/
crystal in
3 3 3 3 PA2/OSCOUT I/O XXXO1XXPort A2 Resonator/
crystal out
444- V
SSIO_1 S I/O ground
5554 V
SS S Digital ground
6 6 6 5 VCAP S 1.8 V regulator capacitor
7776 V
DD S Digital power supply
8887 V
DDIO_1 S I/O power supply
9 9 9 - PA3/TIM2_CH3 I/O XXXO1XXPort A3 Timer 2 -
channel 3
TIM3_CH1
[AFR1]
10 10 10 - PA4/USART_RX I/O XXXO3XXPort A4 USART
receive
11 11 11 - PA5/USART_TX I/O XXXO3XXPort A5 USART
transmit
12 12 12 - PA6/USART_CK I/O XXXO3XXPort A6
USART
synchronous
clock
13--- PH0 I/OXXHSO3XXPort H0 ——
14--- PH1 I/OXX—HSO3X XPort H1 ——
15--- PH2 I/OXX—O1X XPort H2 ——
16--- PH3 I/OXX—O1X XPort H3 ——
17 13 - - PF7/AIN15 I/O XX—O1X XPort F7 Analog
input 15
18 14 - - PF6/AIN14 I/O XX—O1X XPort F6 Analog
input 14
19 15 - - PF5/AIN13 I/O XX—O1X XPort F5 Analog
input 13
20 16 - 8 PF4/AIN12 I/O XX—O1X XPort F4 Analog
input 12
21 17 - - PF3/AIN11 I/O XX—O1X XPort F3 Analog
input 11
Pinouts and pin description STM8AF52/62xx, STM8AF51/61xx
34/110 Doc ID 14395 Rev 9
22 18 - - VREF+ S—
ADC positive reference
voltage
23 19 13 9 VDDA S Analog power supply
24 20 14 10 VSSA S Analog ground
25 21 - - VREF- S———
ADC negative reference
voltage
26 22 - - PF0/AIN10 I/O XX—O1X XPort F0 Analog
input 10
27 23 15 - PB7/AIN7 I/O XXXO1XXPort B7 Analog input
7
28 24 16 - PB6/AIN6 I/O XXXO1XXPort B6 Analog input
6
29 25 17 11 PB5/AIN5 I/O XXXO1XXPort B5 Analog input
5
I2C_SDA
[AFR6]
30 26 18 12 PB4/AIN4 I/O XXXO1XXPort B4 Analog input
4
I2C_SCL
[AFR6]
31 27 19 13 PB3/AIN3 I/O XXXO1XXPort B3 Analog input
3
TIM1_ETR
[AFR5]
32 28 20 14 PB2/AIN2 I/O XXXO1XXPort B2 Analog input TIM1_CH3N
[AFR5]
33 29 21 15 PB1/AIN1 I/O XXXO1XXPort B1 Analog input
1
TIM1_CH2N
[AFR5]
34 30 22 16 PB0/AIN0 I/O XXXO1XXPort B0 Analog input
0
TIM1_CH1N
[AFR5]
35 - - - PH4/TIM1_ETR I/O XX—O1X XPort H4 Timer 1 -
trigger input
36--- PH5/
TIM1_CH3N I/O XX—O1X XPort H5
Timer 1 -
inverted
channel 3
37--- PH6/
TIM1_CH2N I/O XX—O1X XPort H6
Timer 1 -
inverted
channel 2
38--- PH7/
TIM1_CH1N I/O XX—O1X XPort H7
Timer 1 -
inverted
channel 2
Table 13. STM8A microcontroller family pin description (continued)
Pin number
Pin name
Type
Input Output
Main
function
(after
reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
LQFP80
LQFP64
LQFP48
LQFP32/VFQFPN32
floating
wpu
Ext. interrupt
High sink
Speed
OD
PP
STM8AF52/62xx, STM8AF51/61xx Pinouts and pin description
Doc ID 14395 Rev 9 35/110
39 31 23 - PE7/AIN8 I/O XX—O1X XPort E7 Analog input
8
40 32 24 PE6/AIN9 I/O XXXO1XXPort E7 Analog input
9
41 33 25 17 PE5/SPI_NSS I/O XXXO1XXPort E5 SPI master/
slave select
42 - - - PC0/ADC_ETR I/O XXXO1XXPort C0 ADC trigger
input
43 34 26 18 PC1/TIM1_CH1 I/O XXXHSO3XXPort C1 Timer 1 -
channel 1
44 35 27 19 PC2/TIM1_CH2 I/O XXXHSO3XXPort C2 Timer 1-
channel 2
45 36 28 20 PC3/TIM1_CH3 I/O XXXHSO3XXPort C3 Timer 1 -
channel 3
46 37 29 21 PC4/TIM1_CH4 I/O XXXHSO3XXPort C4 Timer 1 -
channel 4
47 38 30 22 PC5/SPI_SCK I/O XXXO3XXPort C5 SPI clock
48 39 31 - VSSIO_2 S I/O ground
49 40 32 - VDDIO_2 S I/O power supply
50 41 33 23 PC6/SPI_MOSI I/O XXXO3XXPort C6
SPI master
out/
slave in
51 42 34 24 PC7/SPI_MISO I/O XXXO3XXPort C7 SPI master
in/ slave out
52 43 35 - PG0/CAN_Tx I/O XX—O1X XPort G0 CAN transmit
53 44 36 - PG1/CAN_Rx I/O XX—O1X XPort G1 CAN receive
54 45 - - PG2 I/O XX—O1X XPort G2 ——
55 46 - - PG3 I/O XX—O1X XPort G3 ——
56 47 - - PG4 I/O XX—O1X XPort G4 ——
57 48 - - PI0 I/O XX—O1X XPort I0 ——
58--- PI1 I/OXX—O1X XPort I1 ——
59--- PI2 I/OXX—O1X XPort I2 ——
60--- PI3 I/OXX—O1X XPort I3 ——
Table 13. STM8A microcontroller family pin description (continued)
Pin number
Pin name
Type
Input Output
Main
function
(after
reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
LQFP80
LQFP64
LQFP48
LQFP32/VFQFPN32
floating
wpu
Ext. interrupt
High sink
Speed
OD
PP
Pinouts and pin description STM8AF52/62xx, STM8AF51/61xx
36/110 Doc ID 14395 Rev 9
61--- PI4 I/OXX—O1X XPort I4 ——
62--- PI5 I/OXX—O1X XPort I5 ——
63 49 - - PG5 I/O XX—O1X XPort G5 ——
64 50 - - PG6 I/O XX—O1X XPort G6 ——
65 51 - - PG7 I/O XX—O1X XPort G7 ——
66 52 - - PE4 I/O XXXO1XXPort E4 ——
67 53 37 - PE3/TIM1_BKIN I/O XXXO1XXPort E3 Timer 1 -
break input
68 54 38 - PE2/I2C_SDA I/O X—XO1T
(2) -Port E2 I2C data
69 55 39 - PE1/I2C_SCL I/O X—XO1T
(2) -Port E1 I2C clock
70 56 40 - PE0/CLK_CCO I/O XXXO3XXPort E0 Configurable
clock output
71--- PI6 I/OXX—O1X XPort I6 ——
72--- PI7 I/OXX—O1X XPort I7 ——
73 57 41 25 PD0/TIM3_CH2 I/O XXXHSO3XXPort D0 Timer 3 -
channel 2
TIM1_BKIN
[AFR3]/
CLK_CCO
[AFR2]
74 58 42 26 PD1/SWIM(3) I/O X XXHSO4 X XPort D1 SWIM data
interface
75 59 43 27 PD2/TIM3_CH1 I/O XXXHSO3XXPort D2 Timer 3 -
channel 1
TIM2_CH3
[AFR1]
76 60 44 28 PD3/TIM2_CH2 I/O XXXHSO3XXPort D3 Timer 2 -
channel 2
ADC_ETR
[AFR0]
77 61 45 29 PD4/TIM2_CH1/
BEEP I/O XXXHSO3XXPort D4 Timer 2 -
channel 1
BEEP output
[AFR7]
78 62 46 30 PD5/
LINUART_TX I/O XXXO1XXPort D5 LINUART
data transmit
79 63 47 31 PD6/
LINUART_RX I/O XXXO1XX
Port D6 LINUART
data receive
X
80 64 48 32 PD7/TLI(4) I/O XXXO1XXPort D7 Top level
interrupt
Table 13. STM8A microcontroller family pin description (continued)
Pin number
Pin name
Type
Input Output
Main
function
(after
reset)
Default
alternate
function
Alternate
function
after remap
[option bit]
LQFP80
LQFP64
LQFP48
LQFP32/VFQFPN32
floating
wpu
Ext. interrupt
High sink
Speed
OD
PP
STM8AF52/62xx, STM8AF51/61xx Pinouts and pin description
Doc ID 14395 Rev 9 37/110
6.2 Alternate function remapping
As shown in the rightmost column of Ta b l e 13, some alternate functions can be remapped at
different I/O ports by programming one of eight AFR (alternate function remap) option bits.
Refer to Section 9: Option bytes on page 51. When the remapping option is active, the
default alternate function is no longer available.
To use an alternate function, the corresponding peripheral must be enabled in the peripheral
registers.
Alternate function remapping does not effect GPIO capabilities of the I/O ports (see the
GPIO section of the STM8S and STM8A microcontroller families reference manual,
RM0016).
1. In Halt/Active-halt mode, this pin behaves as follows:
- The input/output path is disabled.
- If the HSE clock is used for wakeup, the internal weak pull-up is disabled.
- If the HSE clock is off, the internal weak pull-up setting is used. It is configured through Px_CR1[7:0] bits of the
corresponding port control register. Px_CR1[7:0] bits must be set correctly to ensure that the pin is not left floating in
Halt/Active-halt mode.
2. In the open-drain output column, ‘T’ defines a true open-drain I/O (P-buffer, week pull-up and protection diode to VDD are
not implemented)
3. The PD1 pin is in input pull-up during the reset phase and after reset release.
4. If this pin is configured as interrupt pin, it will trigger the TLI.
Memory and register map STM8AF52/62xx, STM8AF51/61xx
38/110 Doc ID 14395 Rev 9
7 Memory and register map
7.1 Memory map
Figure 7. Register and memory map
Table 14. Memory model 128K
Flash program
memory size
Flash program
memory end
address
RAM size RAM end
address
Stack roll-over
address
128K 0x00 27FFF
6K
0x00 17FF 0x00 1400
96K 0x00 1FFFF 0x00 17FF 0x00 1400
64K 0x00 17FFF 0x00 17FF 0x00 1400
48K 0x00 13FFF 3K 0x00 0BFF n/a(1)
1. If the device contains the super set silicon (salestype contains SSS), the roll-over address is the same as
on the 128K device. For more information on stack handling refer to the “Memory and register map” section
in the reference manual RM0016. For more information on salestype composition, refer to section 13 in the
present document.
32K 0x00 0FFFF 6K 0x00 17FF 0x00 1400
Up to 2 Kbytes data EEPROM
Option bytes
HW registers
2 Kbytes boot ROM
CPU/SWIM/Debug/ITC registers
IT vectors
Up to 128 Kbytes
00 0000
RAM end address
00 4000
00 4800
00 5000
00 5800
00 6000
00 6800
00 7F00
00 8000
Memory end address
00 8080
Reserved
Reserved
Stack
Up to 6 Kbytes RAM
00 4900 Reserved
Flash program memory
STM8AF52/62xx, STM8AF51/61xx Memory and register map
Doc ID 14395 Rev 9 39/110
7.2 Register map
In this section the memory and register map of the devices covered by this datasheet is
described. For a detailed description of the functionality of the registers, refer to the
reference manual RM0016.
Table 15. I/O port hardware register map
Address Block Register label Register name Reset
status
0x00 5000
Port A
PA_ODR Port A data output latch register 0x00
0x00 5001 PA_IDR Port A input pin value register 0xXX(1)
0x00 5002 PA_DDR Port A data direction register 0x00
0x00 5003 PA_CR1 Port A control register 1 0x00
0x00 5004 PA_CR2 Port A control register 2 0x00
0x00 5005
Port B
PB_ODR Port B data output latch register 0x00
0x00 5006 PB_IDR Port B input pin value register 0xXX(1)
0x00 5007 PB_DDR Port B data direction register 0x00
0x00 5008 PB_CR1 Port B control register 1 0x00
0x00 5009 PB_CR2 Port B control register 2 0x00
0x00 500A
Port C
PC_ODR Port C data output latch register 0x00
0x00 500B PB_IDR Port C input pin value register 0xXX(1)
0x00 500C PC_DDR Port C data direction register 0x00
0x00 500D PC_CR1 Port C control register 1 0x00
0x00 500E PC_CR2 Port C control register 2 0x00
0x00 500F
Port D
PD_ODR Port D data output latch register 0x00
0x00 5010 PD_IDR Port D input pin value register 0xXX(1)
0x00 5011 PD_DDR Port D data direction register 0x00
0x00 5012 PD_CR1 Port D control register 1 0x02
0x00 5013 PD_CR2 Port D control register 2 0x00
0x00 5014
Port E
PE_ODR Port E data output latch register 0x00
0x00 5015 PE_IDR Port E input pin value register 0xXX(1)
0x00 5016 PE_DDR Port E data direction register 0x00
0x00 5017 PE_CR1 Port E control register 1 0x00
0x00 5018 PE_CR2 Port E control register 2 0x00
0x00 5019
Port F
PF_ODR Port F data output latch register 0x00
0x00 501A PF_IDR Port F input pin value register 0xXX(1)
0x00 501B PF_DDR Port F data direction register 0x00
0x00 501C PF_CR1 Port F control register 1 0x00
0x00 501D PF_CR2 Port F control register 2 0x00
Memory and register map STM8AF52/62xx, STM8AF51/61xx
40/110 Doc ID 14395 Rev 9
0x00 501E
Port G
PG_ODR Port G data output latch register 0x00
0x00 501F PG_IDR Port G input pin value register 0xXX(1)
0x00 5020 PG_DDR Port G data direction register 0x00
0x00 5021 PG_CR1 Port G control register 1 0x00
0x00 5022 PG_CR2 Port G control register 2 0x00
0x00 5023
Port H
PH_ODR Port H data output latch register 0x00
0x00 5024 PH_IDR Port H input pin value register 0xXX(1)
0x00 5025 PH_DDR Port H data direction register 0x00
0x00 5026 PH_CR1 Port H control register 1 0x00
0x00 5027 PH_CR2 Port H control register 2 0x00
0x00 5028
Port I
PI_ODR Port I data output latch register 0x00
0x00 5029 PI_IDR Port I input pin value register 0xXX(1)
0x00 502A PI_DDR Port I data direction register 0x00
0x00 502B PI_CR1 Port I control register 1 0x00
0x00 502C PI_CR2 Port I control register 2 0x00
1. Depends on the external circuitry.
Table 16. General hardware register map
Address Block Register label Register name Reset
status
0x00 505A
Flash
FLASH_CR1 Flash control register 1 0x00
0x00 505B FLASH_CR2 Flash control register 2 0x00
0x00 505C FLASH_NCR2 Flash complementary control register 2 0xFF
0x00 505D FLASH_FPR Flash protection register 0x00
0x00 505E FLASH_NFPR Flash complementary protection
register 0xFF
0x00 505F FLASH_IAPSR Flash in-application programming
status register 0x40
0x00 5060 to
0x005061 Reserved area (2 bytes)
0x00 5062 Flash FLASH_PUKR Flash Program memory unprotection
register 0x00
0x00 5063 Reserved area (1 byte)
0x00 5064 Flash FLASH_DUKR Data EEPROM unprotection register 0x00
0x00 5065 to
0x00 509F Reserved area (59 bytes)
Table 15. I/O port hardware register map (continued)
Address Block Register label Register name Reset
status
STM8AF52/62xx, STM8AF51/61xx Memory and register map
Doc ID 14395 Rev 9 41/110
0x00 50A0 ITC EXTI_CR1 External interrupt control register 1 0x00
0x00 50A1 EXTI_CR2 External interrupt control register 2 0x00
0x00 50A2 to
0x00 50B2 Reserved area (17 bytes)
0x00 50B3 RST RST_SR Reset status register 0xXX(1)
0x00 50B4 to
0x00 50BF Reserved area (12 bytes)
0x00 50C0 CLK CLK_ICKR Internal clock control register 0x01
0x00 50C1 CLK_ECKR External clock control register 0x00
0x00 50C2 Reserved area (1 byte)
0x00 50C3
CLK
CLK_CMSR Clock master status register 0xE1
0x00 50C4 CLK_SWR Clock master switch register 0xE1
0x00 50C5 CLK_SWCR Clock switch control register 0xXX
0x00 50C6 CLK_CKDIVR Clock divider register 0x18
0x00 50C7 CLK_PCKENR1 Peripheral clock gating register 1 0xFF
0x00 50C8 CLK_CSSR Clock security system register 0x00
0x00 50C9 CLK_CCOR Configurable clock control register 0x00
0x00 50CA CLK_PCKENR2 Peripheral clock gating register 2 0xFF
0x00 50CB Reserved area (1 byte)
0x00 50CC CLK_HSITRIMR HSI clock calibration trimming register 0x00
0x00 50CD CLK_SWIMCCR SWIM clock control register 0bXXXX
XXX0
0x00 50CE
to 0x00 50D0 Reserved area (3 bytes)
0x00 50D1 WWDG WWDG_CR WWDG control register 0x7F
0x00 50D2 WWDG_WR WWDR window register 0x7F
0x00 50D3 to
0x00 50DF Reserved area (13 bytes)
0x00 50E0
IWDG
IWDG_KR IWDG key register 0xXX(2)
0x00 50E1 IWDG_PR IWDG prescaler register 0x00
0x00 50E2 IWDG_RLR IWDG reload register 0xFF
0x00 50E3 to
0x00 50EF Reserved area (13 bytes)
0x00 50F0
AWU
AWU_CSR1 AWU control/status register 1 0x00
0x00 50F1 AWU_APR AWU asynchronous prescaler buffer
register 0x3F
0x00 50F2 AWU_TBR AWU timebase selection register 0x00
Table 16. General hardware register map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8AF52/62xx, STM8AF51/61xx
42/110 Doc ID 14395 Rev 9
0x00 50F3 BEEP BEEP_CSR BEEP control/status register 0x1F
0x00 50F4 to
0x00 50FF
Reserved area (12 bytes)
0x00 5200
SPI
SPI_CR1 SPI control register 1 0x00
0x00 5201 SPI_CR2 SPI control register 2 0x00
0x00 5202 SPI_ICR SPI interrupt control register 0x00
0x00 5203 SPI_SR SPI status register 0x02
0x00 5204 SPI_DR SPI data register 0x00
0x00 5205 SPI_CRCPR SPI CRC polynomial register 0x07
0x00 5206 SPI_RXCRCR SPI Rx CRC register 0xFF
0x00 5207 SPI_TXCRCR SPI Tx CRC register 0xFF
0x00 5208 to
0x00 520F
Reserved area (8 bytes)
0x00 5210
I2C
I2C_CR1 I2C control register 1 0x00
0x00 5211 I2C_CR2 I2C control register 2 0x00
0x00 5212 I2C_FREQR I2C frequency register 0x00
0x00 5213 I2C_OARL I2C own address register low 0x00
0x00 5214 I2C_OARH I2C own address register high 0x00
0x00 5215
0x00 5216 I2C_DR I2C data register 0x00
0x00 5217 I2C_SR1 I2C status register 1 0x00
0x00 5218 I2C_SR2 I2C status register 2 0x00
0x00 5219 I2C_SR3 I2C status register 3 0x00
0x00 521A I2C_ITR I2C interrupt control register 0x00
0x00 521B I2C_CCRL I2C clock control register low 0x00
0x00 521C I2C_CCRH I2C clock control register high 0x00
0x00 521D I2C_TRISER I2C TRISE register 0x02
0x00 521E to
0x00 522F Reserved area (18 bytes)
Table 16. General hardware register map (continued)
Address Block Register label Register name Reset
status
STM8AF52/62xx, STM8AF51/61xx Memory and register map
Doc ID 14395 Rev 9 43/110
0x00 5230
USART
UART1_SR USART status register 0xC0
0x00 5231 UART1_DR USART data register 0xXX
0x00 5232 UART1_BRR1 USART baud rate register 1 0x00
0x00 5233 UART1_BRR2 USART baud rate register 2 0x00
0x00 5234 UART1_CR1 USART control register 1 0x00
0x00 5235 UART1_CR2 USART control register 2 0x00
0x00 5236 UART1_CR3 USART control register 3 0x00
0x00 5237 UART1_CR4 USART control register 4 0x00
0x00 5238 UART1_CR5 USART control register 5 0x00
0x00 5239 UART1_GTR USART guard time register 0x00
0x00 523A UART1_PSCR USART prescaler register 0x00
0x00 523B to
0x00 523F Reserved area (5 bytes)
0x00 5240
LINUART
UART3_SR LINUART status register 0xC0
0x00 5241 UART3_DR LINUART data register 0xXX
0x00 5242 UART3_BRR1 LINUART baud rate register 1 0x00
0x00 5243 UART3_BRR2 LINUART baud rate register 2 0x00
0x00 5244 UART3_CR1 LINUART control register 1 0x00
0x00 5245 UART3_CR2 LINUART control register 2 0x00
0x00 5246 UART3_CR3 LINUART control register 3 0x00
0x00 5247 UART3_CR4 LINUART control register 4 0x00
0x00 5248 Reserved
0x00 5249 UART3_CR6 LINUART control register 6 0x00
0x00 524A to
0x00 524F Reserved area (6 bytes)
Table 16. General hardware register map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8AF52/62xx, STM8AF51/61xx
44/110 Doc ID 14395 Rev 9
0x00 5250
TIM1
TIM1_CR1 TIM1 control register 1 0x00
0x00 5251 TIM1_CR2 TIM1 control register 2 0x00
0x00 5252 TIM1_SMCR TIM1 slave mode control register 0x00
0x00 5253 TIM1_ETR TIM1 external trigger register 0x00
0x00 5254 TIM1_IER TIM1 Interrupt enable register 0x00
0x00 5255 TIM1_SR1 TIM1 status register 1 0x00
0x00 5256 TIM1_SR2 TIM1 status register 2 0x00
0x00 5257 TIM1_EGR TIM1 event generation register 0x00
0x00 5258 TIM1_CCMR1 TIM1 capture/compare mode register 1 0x00
0x00 5259 TIM1_CCMR2 TIM1 capture/compare mode register 2 0x00
0x00 525A TIM1_CCMR3 TIM1 capture/compare mode register 3 0x00
0x00 525B TIM1_CCMR4 TIM1 capture/compare mode register 4 0x00
0x00 525C TIM1_CCER1 TIM1 capture/compare enable register
1 0x00
0x00 525D TIM1_CCER2 TIM1 capture/compare enable register
2 0x00
0x00 525E TIM1_CNTRH TIM1 counter high 0x00
0x00 525F TIM1_CNTRL TIM1 counter low 0x00
0x00 5260 TIM1_PSCRH TIM1 prescaler register high 0x00
0x00 5261 TIM1_PSCRL TIM1 prescaler register low 0x00
0x00 5262 TIM1_ARRH TIM1 auto-reload register high 0xFF
0x00 5263 TIM1_ARRL TIM1 auto-reload register low 0xFF
0x00 5264 TIM1_RCR TIM1 repetition counter register 0x00
0x00 5265 TIM1_CCR1H TIM1 capture/compare register 1 high 0x00
0x00 5266 TIM1_CCR1L TIM1 capture/compare register 1 low 0x00
0x00 5267 TIM1_CCR2H TIM1 capture/compare register 2 high 0x00
0x00 5268 TIM1_CCR2L TIM1 capture/compare register 2 low 0x00
0x00 5269 TIM1_CCR3H TIM1 capture/compare register 3 high 0x00
0x00 526A TIM1_CCR3L TIM1 capture/compare register 3 low 0x00
0x00 526B TIM1_CCR4H TIM1 capture/compare register 4 high 0x00
0x00 526C TIM1_CCR4L TIM1 capture/compare register 4 low 0x00
0x00 526D TIM1_BKR TIM1 break register 0x00
0x00 526E TIM1_DTR TIM1 dead-time register 0x00
0x00 526F TIM1_OISR TIM1 output idle state register 0x00
Table 16. General hardware register map (continued)
Address Block Register label Register name Reset
status
STM8AF52/62xx, STM8AF51/61xx Memory and register map
Doc ID 14395 Rev 9 45/110
0x00 5270 to
0x00 52FF Reserved area (147 bytes)
0x00 5300
TIM2
TIM2_CR1 TIM2 control register 1 0x00
0x00 5301 TIM2_IER TIM2 interrupt enable register 0x00
0x00 5302 TIM2_SR1 TIM2 status register 1 0x00
0x00 5303 TIM2_SR2 TIM2 status register 2 0x00
0x00 5304 TIM2_EGR TIM2 event generation register 0x00
0x00 5305 TIM2_CCMR1 TIM2 capture/compare mode register 1 0x00
0x00 5306 TIM2_CCMR2 TIM2 capture/compare mode register 2 0x00
0x00 5307 TIM2_CCMR3 TIM2 capture/compare mode register 3 0x00
0x00 5308 TIM2_CCER1 TIM2 capture/compare enable register
1 0x00
0x00 5309 TIM2_CCER2 TIM2 capture/compare enable register
2 0x00
0x00 530A TIM2_CNTRH TIM2 counter high 0x00
0x00 530B TIM2_CNTRL TIM2 counter low 0x00
00 530C0x TIM2_PSCR TIM2 prescaler register 0x00
0x00 530D TIM2_ARRH TIM2 auto-reload register high 0xFF
0x00 530E TIM2_ARRL TIM2 auto-reload register low 0xFF
0x00 530F TIM2_CCR1H TIM2 capture/compare register 1 high 0x00
0x00 5310 TIM2_CCR1L TIM2 capture/compare register 1 low 0x00
0x00 5311 TIM2_CCR2H TIM2 capture/compare reg. 2 high 0x00
0x00 5312 TIM2_CCR2L TIM2 capture/compare register 2 low 0x00
0x00 5313 TIM2_CCR3H TIM2 capture/compare register 3 high 0x00
0x00 5314 TIM2_CCR3L TIM2 capture/compare register 3 low 0x00
0x00 5315 to
0x00 531F
Reserved area (11 bytes)
Table 16. General hardware register map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8AF52/62xx, STM8AF51/61xx
46/110 Doc ID 14395 Rev 9
0x00 5320
TIM3
TIM3_CR1 TIM3 control register 1 0x00
0x00 5321 TIM3_IER TIM3 interrupt enable register 0x00
0x00 5322 TIM3_SR1 TIM3 status register 1 0x00
0x00 5323 TIM3_SR2 TIM3 status register 2 0x00
0x00 5324 TIM3_EGR TIM3 event generation register 0x00
0x00 5325 TIM3_CCMR1 TIM3 capture/compare mode register 1 0x00
0x00 5326 TIM3_CCMR2 TIM3 capture/compare mode register 2 0x00
0x00 5327 TIM3_CCER1 TIM3 capture/compare enable register
1 0x00
0x00 5328 TIM3_CNTRH TIM3 counter high 0x00
0x00 5329 TIM3_CNTRL TIM3 counter low 0x00
0x00 532A TIM3_PSCR TIM3 prescaler register 0x00
0x00 532B TIM3_ARRH TIM3 auto-reload register high 0xFF
0x00 532C TIM3_ARRL TIM3 auto-reload register low 0xFF
0x00 532D TIM3_CCR1H TIM3 capture/compare register 1 high 0x00
0x00 532E TIM3_CCR1L TIM3 capture/compare register 1 low 0x00
0x00 532F TIM3_CCR2H TIM3 capture/compare register 2 high 0x00
0x00 5330 TIM3_CCR2L TIM3 capture/compare register 2 low 0x00
0x00 5331 to
0x00 533F
Reserved area (15 bytes)
0x00 5340
TIM4
TIM4_CR1 TIM4 control register 1 0x00
0x00 5341 TIM4_IER TIM4 interrupt enable register 0x00
0x00 5342 TIM4_SR TIM4 status register 0x00
0x00 5343 TIM4_EGR TIM4 event generation register 0x00
0x00 5344 TIM4_CNTR TIM4 counter 0x00
0x00 5345 TIM4_PSCR TIM4 prescaler register 0x00
0x00 5346 TIM4_ARR TIM4 auto-reload register 0xFF
0x00 5347 to
0x00 53FF Reserved area (185 bytes)
Table 16. General hardware register map (continued)
Address Block Register label Register name Reset
status
STM8AF52/62xx, STM8AF51/61xx Memory and register map
Doc ID 14395 Rev 9 47/110
0x00 5400
ADC
ADC _CSR ADC control/status register 0x00
0x00 5401 ADC_CR1 ADC configuration register 1 0x00
0x00 5402 ADC_CR2 ADC configuration register 2 0x00
0x00 5403 ADC_CR3 ADC configuration register 3 0x00
0x00 5404 ADC_DRH ADC data register high 0xXX
0x00 5405 ADC_DRL ADC data register low 0xXX
0x00 5406 ADC_TDRH ADC Schmitt trigger disable register
high 0x00
0x00 5407 ADC_TDRL ADC Schmitt trigger disable register
low 0x00
0x00 5408 to
0x00 541F Reserved area (24 bytes)
0x00 5420
beCAN
CAN_MCR CAN master control register 0x02
0x00 5421 CAN_MSR CAN master status register 0x02
0x00 5422 CAN_TSR CAN transmit status register 0x00
0x00 5423 CAN_TPR CAN transmit priority register 0x0C
0x00 5424 CAN_RFR CAN receive FIFO register 0x00
0x00 5425 CAN_IER CAN interrupt enable register 0x00
0x00 5426 CAN_DGR CAN diagnosis register 0x0C
0x00 5427 CAN_FPSR CAN page selection register 0x00
0x00 5428 CAN_P0 CAN paged register 0 0xXX(3)
0x00 5429 CAN_P1 CAN paged register 1 0xXX(3)
0x00 542A CAN_P2 CAN paged register 2 0xXX(3)
0x00 542B CAN_P3 CAN paged register 3 0xXX(3)
0x00 542C CAN_P4 CAN paged register 4 0xXX(3)
0x00 542D CAN_P5 CAN paged register 5 0xXX(3)
0x00 542E CAN_P6 CAN paged register 6 0xXX(3)
0x00 542F CAN_P7 CAN paged register 7 0xXX(3)
0x00 5430 CAN_P8 CAN paged register 8 0xXX(3)
0x00 5431 CAN_P9 CAN paged register 9 0xXX(3)
0x00 5432 CAN_PA CAN paged register A 0xXX(3)
0x00 5433 CAN_PB CAN paged register B 0xXX(3)
0x00 5434 CAN_PC CAN paged register C 0xXX(3)
0x00 5435 CAN_PD CAN paged register D 0xXX(3)
0x00 5436 CAN_PE CAN paged register E 0xXX(3)
Table 16. General hardware register map (continued)
Address Block Register label Register name Reset
status
Memory and register map STM8AF52/62xx, STM8AF51/61xx
48/110 Doc ID 14395 Rev 9
0x00 5437 beCAN CAN_PF CAN paged register F 0xXX(3)
0x00 5438 to
0x00 57FF Reserved area (968 bytes)
1. Depends on the previous reset source.
2. Write only register.
3. If the bootloader is enabled, it is initialized to 0x00.
Table 16. General hardware register map (continued)
Address Block Register label Register name Reset
status
Table 17. CPU/SWIM/debug module/interrupt controller registers
Address Block Register label Register name Reset
status
0x00 7F00
CPU(1)
A Accumulator 0x00
0x00 7F01 PCE Program counter extended 0x00
0x00 7F02 PCH Program counter high 0x80
0x00 7F03 PCL Program counter low 0x00
0x00 7F04 XH X index register high 0x00
0x00 7F05 XL X index register low 0x00
0x00 7F06 YH Y index register high 0x00
0x00 7F07 YL Y index register low 0x00
0x00 7F08 SPH Stack pointer high 0x17(2)
0x00 7F09 SPL Stack pointer low 0xFF
0x00 7F0A CC Condition code register 0x28
0x00 7F0B
to 0x00
7F5F
Reserved area (85 bytes)
0x00 7F60 CPU CFG_GCR Global configuration register 0x00
0x00 7F70
ITC
ITC_SPR1 Interrupt software priority register 1 0xFF
0x00 7F71 ITC_SPR2 Interrupt software priority register 2 0xFF
0x00 7F72 ITC_SPR3 Interrupt software priority register 3 0xFF
0x00 7F73 ITC_SPR4 Interrupt software priority register 4 0xFF
0x00 7F74 ITC_SPR5 Interrupt software priority register 5 0xFF
0x00 7F75 ITC_SPR6 Interrupt software priority register 6 0xFF
0x00 7F76 ITC_SPR7 Interrupt software priority register 7 0xFF
0x00 7F77 ITC_SPR8 Interrupt software priority register 8 0xFF
0x00 7F78
to
0x00 7F79
Reserved area (2 bytes)
0x00 7F80 SWIM SWIM_CSR SWIM control status register 0x00
STM8AF52/62xx, STM8AF51/61xx Memory and register map
Doc ID 14395 Rev 9 49/110
0x00 7F81
to
0x00 7F8F
Reserved area (15 bytes)
0x00 7F90
DM
DM_BK1RE DM breakpoint 1 register extended byte 0xFF
0x00 7F91 DM_BK1RH DM breakpoint 1 register high byte 0xFF
0x00 7F92 DM_BK1RL DM breakpoint 1 register low byte 0xFF
0x00 7F93 DM_BK2RE DM breakpoint 2 register extended byte 0xFF
0x00 7F94 DM_BK2RH DM breakpoint 2 register high byte 0xFF
0x00 7F95 DM_BK2RL DM breakpoint 2 register low byte 0xFF
0x00 7F96 DM_CR1 DM debug module control register 1 0x00
0x00 7F97 DM_CR2 DM debug module control register 2 0x00
0x00 7F98 DM_CSR1 DM debug module control/status register 1 0x10
0x00 7F99 DM_CSR2 DM debug module control/status register 2 0x00
0x00 7F9A DM_ENFCTR DM enable function register 0xFF
0x00 7F9B
to 0x00
7F9F
Reserved area (5 bytes)
1. Accessible by debug module only
2. Product dependent value, see Figure 7: Register and memory map.
Table 17. CPU/SWIM/debug module/interrupt controller registers (continued)
Address Block Register label Register name Reset
status
Table 18. Temporary memory unprotection registers
Address Block Register label Register name Reset
status
0x00 5800
TMU
TMU_K1 Temporary memory unprotection key register 1 0x00
0x00 5801 TMU_K2 Temporary memory unprotection key register 2 0x00
0x00 5802 TMU_K3 Temporary memory unprotection key register 3 0x00
0x00 5803 TMU_K4 Temporary memory unprotection key register 4 0x00
0x00 5804 TMU_K5 Temporary memory unprotection key register 5 0x00
0x00 5805 TMU_K6 Temporary memory unprotection key register 6 0x00
0x00 5806 TMU_K7 Temporary memory unprotection key register 7 0x00
0x00 5807 TMU_K8 Temporary memory unprotection key register 8 0x00
0x00 5808 TMU_CSR Temporary memory unprotection control and status
register 0x00
Interrupt table STM8AF52/62xx, STM8AF51/61xx
50/110 Doc ID 14395 Rev 9
8 Interrupt table
Table 19. STM8A interrupt table(1)
Priority Source block Description Interrupt vector
address
Wakeup
from Halt Comments
Reset Reset 0x00 6000 Yes Reset vector in ROM
TRAP SW interrupt 0x00 8004
0 TLI External top level interrupt 0x00 8008
1 AWU Auto-wakeup from Halt 0x00 800C Yes
2Clock
controller Main clock controller 0x00 8010
3 MISC External interrupt E0 0x00 8014 Yes Port A interrupts
4 MISC External interrupt E1 0x00 8018 Yes Port B interrupts
5 MISC External interrupt E2 0x00 801C Yes Port C interrupts
6 MISC External interrupt E3 0x00 8020 Yes Port D interrupts
7 MISC External interrupt E4 0x00 8024 Yes Port E interrupts
8 CAN CAN interrupt Rx 0x00 8028 Yes
9 CAN CAN interrupt TX/ER/SC 0x00 802C
10 SPI End of transfer 0x00 8030 Yes
11 Timer 1 Update/overflow/
trigger/break 0x00 8034
12 Timer 1 Capture/compare 0x00 8038
13 Timer 2 Update/overflow 0x00 803C
14 Timer 2 Capture/compare 0x00 8040
15 Timer 3 Update/overflow 0x00 8044
16 Timer 3 Capture/compare 0x00 8048
17 USART Tx complete 0x00 804C
18 USART Receive data full reg. 0x00 8050
19 I2C I
2C interrupts 0x00 8054 Yes
20 LINUART Tx complete/error 0x00 8058
21 LINUART Receive data full reg. 0x00 805C
22 ADC End of conversion 0x00 8060
23 Timer 4 Update/overflow 0x00 8064
24 EEPROM End of programming/
write in not allowed area 0x00 8068
1. All unused interrupts must be initialized with ‘IRET’ for robust programming.
STM8AF52/62xx, STM8AF51/61xx Option bytes
Doc ID 14395 Rev 9 51/110
9 Option bytes
Option bytes contain configurations for device hardware features as well as the memory
protection of the device. They are stored in a dedicated block of the memory. Each option
byte has to be stored twice, for redundancy, in a regular form (OPTx) and a complemented
one (NOPTx), except for the ROP (read-out protection) option byte and option bytes 8 to 16.
Option bytes can be modified in ICP mode (via SWIM) by accessing the EEPROM address
shown in Tabl e 20: Option bytes below.
Option bytes can also be modified ‘on the fly’ by the application in IAP mode, except the
ROP and UBC options that can only be changed in ICP mode (via SWIM).
Refer to the STM8 Flash programming manual (PM0047) and STM8 SWIM communication
protocol and debug module user manual (UM0470) for information on SWIM programming
procedures.
Table 20. Option bytes
Addr. Option
name
Option
byte
no.
Option bits Factory
default
setting
76543 2 1 0
0x00
4800
Read-out
protection
(ROP)
OPT0 ROP[7:0] 0x00
0x00
4801 User boot
code
(UBC)
OPT1 UBC[7:0] 0x00
0x00
4802 NOPT1 NUBC[7:0] 0xFF
0x00
4803 Alternate
function
remapping
(AFR)
OPT2 AFR7 AFR6 AFR5 AFR4 AFR3 AFR2 AFR1 AFR0 0x00
0x00
4804 NOPT2 NAFR7 NAFR6 NAFR5 NAFR4 NAFR3 NAFR2 NAFR1 NAFR0 0xFF
0x00
4805 Watchdog
option
OPT3 Reserved LSI_
EN
IWDG
_HW
WWD
G _HW
WWDG
_HALT 0x00
0x00
4806 NOPT3 Reserved NLSI_
EN
NIWD
G_HW
NWWD
G_HW
NWWG
_HALT 0xFF
0x00
4807 Clock
option
OPT4 Reserved EXT
CLK
CKAW
USEL PRSC1 PRSC0 0x00
0x00
4808 NOPT4 Reserved NEXT
CLK
NCKAW
USEL NPRSC1 NPRSC
00xFF
0x00
4809 HSE clock
startup
OPT5 HSECNT[7:0] 0x00
0x00
480A NOPT5 NHSECNT[7:0] 0xFF
Option bytes STM8AF52/62xx, STM8AF51/61xx
52/110 Doc ID 14395 Rev 9
0x00
480B TMU
OPT6 TMU[3:0] 0x00
0x00
480C NOPT6 NTMU[3:0] 0xFF
0x00
480D Flash wait
states
OPT7 Reserved WAIT
STATE 0x00
0x00
480E NOPT7 Reserved NWAIT
STATE 0xFF
0x00
480F Reserved
0x00
4810
TMU
OPT8 TMU_KEY 1 [7:0] 0x00
0x00
4811 OPT9 TMU_KEY 2 [7:0] 0x00
0x00
4812 OPT10 TMU_KEY 3 [7:0] 0x00
0x00
4813 OPT11 TMU_KEY 4 [7:0] 0x00
0x00
4814 OPT12 TMU_KEY 5 [7:0] 0x00
0x00
4815 OPT13 TMU_KEY 6 [7:0] 0x00
0x00
4816 OPT14 TMU_KEY 7 [7:0] 0x00
0x00
4817 OPT15 TMU_KEY 8 [7:0] 0x00
0x00
4818 OPT16 TMU_MAXATT [7:0] 0xC7
0x00
4819
to
487D
Reserved
0x00
487E Boot-
loader(1)
OPT17 BL [7:0] 0x00
0x00
487F
NOPT
17 NBL [7:0] 0xFF
1. This option consists of two bytes that must have a complementary value in order to be valid. If the option is invalid, it has no
effect on EMC reset.
Table 20. Option bytes (continued)
Addr. Option
name
Option
byte
no.
Option bits Factory
default
setting
76543 2 1 0
STM8AF52/62xx, STM8AF51/61xx Option bytes
Doc ID 14395 Rev 9 53/110
Table 21. Option byte description
Option byte no. Description
OPT0
ROP[7:0]: Memory readout protection (ROP)
0xAA: Enable readout protection (write access via SWIM protocol)
Note: Refer to the STM8A microcontroller family reference manual
(RM0016) section on Flash/EEPROM memory readout protection for
details.
OPT1
UBC[7:0]: User boot code area
0x00: No UBC, no write-protection
0x01: Page 0 to 1 defined as UBC, memory write-protected
0x02: Page 0 to 3 defined as UBC, memory write-protected
0x03 to 0xFF: Pages 4 to 255 defined as UBC, memory write-protected
Note: Refer to the STM8A microcontroller family reference manual
(RM0016) section on Flash/EEPROM write protection for more details.
OPT2
AFR7: Alternate function remapping option 7
0: Port D4 alternate function = TIM2_CH1
1: Port D4 alternate function = BEEP
AFR6: Alternate function remapping option 6
0: Port B5 alternate function = AIN5, port B4 alternate function = AIN4
1: Port B5 alternate function = I2C_SDA, port B4 alternate function =
I2C_SCL.
AFR5: Alternate function remapping option 5
0: Port B3 alternate function = AIN3, port B2 alternate function = AIN2,
port B1 alternate function = AIN1, port B0 alternate function = AIN0.
1: Port B3 alternate function = TIM1_ETR, port B2 alternate function =
TIM1_CH3N, port B1 alternate function = TIM1_CH2N, port B0 alternate
function = TIM1_CH1N.
AFR4: Alternate function remapping option 4
0: Port D7 alternate function = TLI
1: Reserved
AFR3: Alternate function remapping option 3
0: Port D0 alternate function = TIM3_CH2
1: Port D0 alternate function = TIM1_BKIN
AFR2: Alternate function remapping option 2
0: Port D0 alternate function = TIM3_CH2
1: Port D0 alternate function = CLK_CCO
Note: AFR2 option has priority over AFR3 if both are activated
AFR1: Alternate function remapping option 1
0: Port A3 alternate function = TIM2_CH3, port D2 alternate function
TIM3_CH1.
1: Port A3 alternate function = TIM3_CH1, port D2 alternate function
TIM2_CH3.
AFR0: Alternate function remapping option 0
0: Port D3 alternate function = TIM2_CH2
1: Port D3 alternate function = ADC_ETR
Option bytes STM8AF52/62xx, STM8AF51/61xx
54/110 Doc ID 14395 Rev 9
OPT3
LSI_EN: Low speed internal clock enable
0: LSI clock is not available as CPU clock source
1: LSI clock is available as CPU clock source
IWDG_HW: Independent watchdog
0: IWDG Independent watchdog activated by software
1: IWDG Independent watchdog activated by hardware
WWDG_HW: Window watchdog activation
0: WWDG window watchdog activated by software
1: WWDG window watchdog activated by hardware
WWDG_HALT: Window watchdog reset on Halt
0: No reset generated on Halt if WWDG active
1: Reset generated on Halt if WWDG active
OPT4
EXTCLK: External clock selection
0: External crystal connected to OSCIN/OSCOUT
1: External clock signal on OSCIN
CKAWUSEL: Auto-wakeup unit/clock
0: LSI clock source selected for AWU
1: HSE clock with prescaler selected as clock source for AWU
PRSC[1:0]: AWU clock prescaler
00: 24 MHz to 128 kHz prescaler
01: 16 MHz to 128 kHz prescaler
10: 8 MHz to 128 kHz prescaler
11: 4 MHz to 128 kHz prescaler
OPT5
HSECNT[7:0]: HSE crystal oscillator stabilization time
This configures the stabilization time to 0.5, 8, 128, and 2048 HSE
cycles with corresponding option byte values of 0xE1, 0xD2, 0xB4, and
0x00.
OPT6
TMU[3:0]: Enable temporary memory unprotection
0101: TMU disabled (permanent ROP).
Any other value: TMU enabled.
OPT7
WAIT STATE: Wait state configuration
This option configures the number of wait states inserted when reading
from the Flash/data EEPROM memory.
0: No wait state
1: One wait state
OPT8 TMU_KEY 1 [7:0]: Temporary unprotection key 0
Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT9 TMU_KEY 2 [7:0]: Temporary unprotection key 1
Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT10 TMU_KEY 3 [7:0]: Temporary unprotection key 2
Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT11 TMU_KEY 4 [7:0]: Temporary unprotection key 3
Temporary unprotection key: Must be different from 0x00 or 0xFF
Table 21. Option byte description (continued)
Option byte no. Description
STM8AF52/62xx, STM8AF51/61xx Option bytes
Doc ID 14395 Rev 9 55/110
OPT12 TMU_KEY 5 [7:0]: Temporary unprotection key 4
Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT13 TMU_KEY 6 [7:0]: Temporary unprotection key 5
Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT14 TMU_KEY 7 [7:0]: Temporary unprotection key 6
Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT15 TMU_KEY 8 [7:0]: Temporary unprotection key 7
Temporary unprotection key: Must be different from 0x00 or 0xFF
OPT16
TMU_MAXATT [7:0]: TMU access failure counter
TMU_MAXATT can be initialized with the desired value only if TMU is
disabled (TMU[3:0]=0101 in OPT6 option byte).
When TMU is enabled, any attempt to temporary remove the readout
protection by using wrong key values increments the counter.
When the option byte value reaches 0x08, the Flash memory and data
EEPROM are erased.
OPT17
BL[7:0]: Bootloader enable
If this option byte is set to 0x55 (complementary value 0xAA) the
bootloader program is activated also in case of a programmed code
memory (for more details, see the bootloader user manual, UM0560).
Table 21. Option byte description (continued)
Option byte no. Description
Electrical characteristics STM8AF52/62xx, STM8AF51/61xx
56/110 Doc ID 14395 Rev 9
10 Electrical characteristics
10.1 Parameter conditions
Unless otherwise specified, all voltages are referred to VSS.
10.1.1 Minimum and maximum values
Unless otherwise specified the minimum and maximum values are guaranteed in the worst
conditions of ambient temperature, supply voltage and frequencies by tests in production on
100% of the devices with an ambient temperature at TA = -40 °C, TA = 25 °C, and
TA = TAmax (given by the selected temperature range).
Data based on characterization results, design simulation and/or technology characteristics
are indicated in the table footnotes and are not tested in production.
10.1.2 Typical values
Unless otherwise specified, typical data are based on TA = 25 °C, VDD = 5.0 V. They are
given only as design guidelines and are not tested.
Typical ADC accuracy values are determined by characterization of a batch of samples from
a standard diffusion lot over the full temperature range.
10.1.3 Typical curves
Unless otherwise specified, all typical curves are given only as design guidelines and are
not tested.
10.1.4 Loading capacitor
The loading conditions used for pin parameter measurement are shown in Figure 8.
Figure 8. Pin loading conditions
50 pF
STM8A pin
STM8AF52/62xx, STM8AF51/61xx Electrical characteristics
Doc ID 14395 Rev 9 57/110
10.1.5 Pin input voltage
The input voltage measurement on a pin of the device is described in Figure 9.
Figure 9. Pin input voltage
10.2 Absolute maximum ratings
Stresses above those listed as ‘absolute maximum ratings’ may cause permanent damage
to the device. This is a stress rating only and functional operation of the device under these
conditions is not implied. Exposure to maximum rating conditions for extended periods may
affect device reliability.
VIN
STM8A pin
Table 22. Voltage characteristics
Symbol Ratings Min Max Unit
VDDx - VSS Supply voltage (including VDDA and VDDIO)(1)
1. All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be connected to the
external power supply
-0.3 6.5 V
VIN
Input voltage on true open drain pins (PE1, PE2)(2)
2. IINJ(PIN) must never be exceeded. This is implicitly insured if VIN maximum is respected. If VIN maximum
cannot be respected, the injection current must be limited externally to the IINJ(PIN) value. A positive
injection is induced by VIN > VDD while a negative injection is induced by VIN < VSS. For true open-drain
pads, there is no positive injection current, and the corresponding VIN maximum must always be respected
VSS - 0.3 6.5 V
Input voltage on any other pin(2) VSS - 0.3 VDD + 0.3
|VDDx - VDD| Variations between different power pins 50 mV
|VSSx - VSS| Variations between all the different ground pins 50
VESD Electrostatic discharge voltage
see Absolute maximum ratings
(electrical sensitivity) on
page 85
Electrical characteristics STM8AF52/62xx, STM8AF51/61xx
58/110 Doc ID 14395 Rev 9
Table 23. Current characteristics
Symbol Ratings Max. Unit
IVDDIO Total current into VDDIO power lines (source)(1)(2)(3)
1. All power (VDD, VDDIO, VDDA) and ground (VSS, VSSIO, VSSA) pins must always be connected to the
external supply.
2. The total limit applies to the sum of operation and injected currents.
3. VDDIO includes the sum of the positive injection currents. VSSIO includes the sum of the negative injection
currents.
100
mA
IVSSIO Total current out of VSS IO ground lines (sink)(1)(2)(3) 100
IIO
Output current sunk by any I/O and control pin 20
Output current source by any I/Os and control pin -20
IINJ(PIN)(4)
4. This condition is implicitly insured if VIN maximum is respected. If VIN maximum cannot be respected, the
injection current must be limited externally to the IINJ(PIN) value. A positive injection is induced by VIN >
VDD while a negative injection is induced by VIN < VSS. For true open-drain pads, there is no positive
injection current allowed and the corresponding VIN maximum must always be respected.
Injected current on any pin ±10
IINJ(TOT) Sum of injected currents 50
Table 24. Thermal characteristics
Symbol Ratings Value Unit
TSTG Storage temperature range -65 to 150 °C
TJMaximum junction temperature 160
Table 25. Operating lifetime(1)
1. For detailed mission profile analysis, please contact your local ST Sales Office.
Symbol Ratings Value Unit
OLF Conforming to AEC-Q100 rev G
40 to 125 °C Grade 1
40 to 150 °C Grade 0
STM8AF52/62xx, STM8AF51/61xx Electrical characteristics
Doc ID 14395 Rev 9 59/110
10.3 Operating conditions
Figure 10. fCPUmax versus VDD
Table 26. General operating conditions
Symbol Parameter Conditions Min Max Unit
fCPU Internal CPU clock frequency
1 wait state
TA = -40 °C to 150 °C 16 24
MHz
0 wait state
TA = -40 °C to 150 °C 016
VDD/VDDIO Standard operating voltage - 3.0 5.5 V
VCAP(1)
1. Care should be taken when selecting the capacitor, due to its tolerance, as well as the parameter
dependency on temperature, DC bias and frequency in addition to other factors. The parameter maximum
value must be respected for the full application range.
CEXT: capacitance of external
capacitor 470 3300 nF
ESR of external capacitor at 1 MHz(2)
2. This frequency of 1 MHz as a condition for VCAP parameters is given by design of internal regulator.
-0.3
Ω
ESL of external capacitor - 15 nH
TAAmbient temperature
Suffix A
- 40
85
°C
Suffix B 105
Suffix C 125
Suffix D 150
TJJunction temperature range
Suffix A 90
Suffix B 110
Suffix C 130
Suffix D 155
fCPU [MHz]
Supply voltage [V]
24
12
8
4
0
3.0 4.0 5.0
Functionality
not guaranteed
in this area 16
5.5
Functionality guaranteed
@ TA -40 to 150 °C at 1 waitstate
Functionality guaranteed
@ TA -40 to 150 °C at 0 waitstate
Electrical characteristics STM8AF52/62xx, STM8AF51/61xx
60/110 Doc ID 14395 Rev 9
10.3.1 VCAP external capacitor
Stabilization for the main regulator is achieved connecting an external capacitor CEXT to the
VCAP pin. CEXT is specified in Ta bl e 26. Care should be taken to limit the series inductance
to less than 15 nH.
Figure 11. External capacitor CEXT
1. Legend: ESR is the equivalent series resistance and ESL is the equivalent inductance.
10.3.2 Supply current characteristics
The current consumption is measured as described in Figure 8 on page 56 and Figure 9 on
page 57.
If not explicitly stated, general conditions of temperature and voltage apply.
Table 27. Operating conditions at power-up/power-down
Symbol Parameter Conditions Min Typ Max Unit
tVDD
VDD rise time rate 2(1)
1. Guaranteed by design, not tested in production.
8
µs/V
VDD fall time rate 2(1)
8
tTEMP
Reset release delay VDD rising 3 ms
Reset generation delay VDD falling 3 µs
VIT+
Power-on reset
threshold(2)
2. If VDD is below 3 V, the code execution is guaranteed above the VIT- and VIT+ thresholds. RAM content is
kept. The EEPROM programming sequence must not be initiated.
2.65 2.8 2.95
V
VIT-
Brown-out reset
threshold 2.58 2.73 2.88
VHYS(BOR)
Brown-out reset
hysteresis ——70
(1) mV
C
Rleak
ESR ESL
STM8AF52/62xx, STM8AF51/61xx Electrical characteristics
Doc ID 14395 Rev 9 61/110
Table 28. Total current consumption in Run, Wait and Slow mode. General conditions
for VDD apply, TA = 40 °C to 150 °C
Symbol Parameter Conditions Typ Max Unit
IDD(RUN)(1) Supply current in
Run mode
All peripherals
clocked, code
executed from Flash
program memory,
HSE external clock
(without resonator)
fCPU = 24 MHz 1 ws 8.7 16.8(2)
mA
fCPU = 16 MHz 7.4 14
fCPU = 8 MHz 4.0 7.4(2)
fCPU = 4 MHz 2.4 4.1(2)
fCPU = 2 MHz 1.5 2.5
IDD(RUN)(1) Supply current in
Run mode
All peripherals
clocked, code
executed from RAM,
HSE external clock
(without resonator)
fCPU = 24 MHz 4.4 6.0(2)
fCPU = 16 MHz 3.7 5.0
fCPU = 8 MHz 2.2 3.0(2)
fCPU = 4 MHz 1.4 2.0(2)
fCPU = 2 MHz 1.0 1.5
IDD(WFI)(1) Supply current in
Wait mode
CPU stopped, all
peripherals off, HSE
external clock
fCPU = 24 MHz 2.4 3.1(2)
fCPU = 16 MHz 1.65 2.5
fCPU = 8 MHz 1.15 1.9(2)
fCPU = 4 MHz 0.90 1.6(2)
fCPU = 2 MHz 0.80 1.5
IDD(SLOW)(1) Supply current in
Slow mode
fCPU scaled down,
all peripherals off,
code executed from
RAM
External clock 16 MHz
fCPU = 125 kHz 1.50 1.95
LSI internal RC
fCPU = 128 kHz 1.50 1.80(2)
1. The current due to I/O utilization is not taken into account in these values.
2. Values not tested in production. Design guidelines only.
Electrical characteristics STM8AF52/62xx, STM8AF51/61xx
62/110 Doc ID 14395 Rev 9
Current consumption for on-chip peripherals
Table 29. Total current consumption in Halt and Active-halt modes. General conditions for VDD
applied. TA = 40 °C to 55 °C unless otherwise stated
Symbol Parameter
Conditions
Typ Max Unit
Main
voltage
regulator
(MVR)(1)
Flash
mode(2)
Clock source and
temperature condition
IDD(H)
Supply current in
Halt mode Off Power-
down
Clocks stopped 5 35(3)
µA
Clocks stopped,
TA = 25 °C 525
IDD(AH)
Supply current in
Active-halt mode
with regulator on
On Power-
down
External clock 16 MHz
fMASTER = 125 kHz 770 900(3)
LSI clock 128 kHz 150 230(3)
Supply current in
Active-halt mode
with regulator off
Off Power-
down
LSI clock 128 kHz 25 42(3)
LSI clock 128 kHz,
TA = 25 °C 25 30
tWU(AH)
Wakeup time from
Active-halt mode
with regulator on
On
Operating
mode TA =40 to 150 °C
10 30(3)
µs
Wakeup time from
Active-halt mode
with regulator off
Off 50 80(3)
1. Configured by the REGAH bit in the CLK_ICKR register.
2. Configured by the AHALT bit in the FLASH_CR1 register.
3. Data based on characterization results. Not tested in production.
Table 30. Oscillator current consumption
Symbol Parameter Conditions Typ Max(1) Unit
IDD(OSC)
HSE oscillator current
consumption(2)
Quartz or
ceramic
resonator,
CL = 33 pF
VDD = 5 V
fOSC = 24 MHz 1 2.0(3)
mA
fOSC = 16 MHz 0.6
fOSC = 8 MHz 0.57
IDD(OSC)
HSE oscillator current
consumption(2)
Quartz or
ceramic
resonator,
CL = 33 pF
VDD = 3.3 V
fOSC = 24 MHz 0.5 1.0(3)
fOSC = 16 MHz 0.25
fOSC = 8 MHz 0.18
1. During startup, the oscillator current consumption may reach 6 mA.
2. The supply current of the oscillator can be further optimized by selecting a high quality resonator with small Rm value. Refer
to crystal manufacturer for more details
3. Informative data.
STM8AF52/62xx, STM8AF51/61xx Electrical characteristics
Doc ID 14395 Rev 9 63/110
Table 31. Programming current consumption
Symbol Parameter Conditions Typ Max Unit
IDD(PROG) Programming current
VDD = 5 V, -40 °C to 150 °C, erasing
and programming data or Flash
program memory
1.0 1.7 mA
Table 32. Typical peripheral current consumption VDD = 5.0 V(1)
Symbol Parameter Typ.
fmaster = 2 MHz
Typ.
fmaster = 16 MHz
Typ.
fmaster =24 MHz Unit
IDD(TIM1) TIM1 supply current(2) 0.03 0.23 0.34
mA
IDD(TIM2) TIM2 supply current (2) 0.02 0.12 0.19
IDD(TIM3) TIM3 supply current(2) 0.01 0.1 0.16
IDD(TIM4) TIM4 supply current(2) 0.004 0.03 0.05
IDD(USART) USART supply current(2) 0.03 0.09 0.15
IDD(LINUART) LINUART supply current(2) 0.03 0.11 0.18
IDD(SPI) SPI supply current(2) 0.01 0.04 0.07
IDD(I2C) I2C supply current(2) 0.02 0.06 0.91
IDD(CAN) CAN supply current(3) 0.06 0.30 0.40
IDD(AWU) AWU supply current(2) 0.003 0.02 0.05
IDD(TOT_DIG) All digital peripherals on 0.22 1 2.4
IDD(ADC)
ADC supply current when
converting(4) 0.93 0.95 0.96
1. Typical values not tested in production. Since the peripherals are powered by an internally regulated, constant digital
supply voltage, the values are similar in the full supply voltage range.
2. Data based on a differential IDD measurement between no peripheral clocked and a single active peripheral. This
measurement does not include the pad toggling consumption.
3. Data based on a differential IDD measurement between reset configuration (CAN disabled) and a permanent CAN data
transmit sequence in loopback mode at 1 MHz. This measurement does not include the pad toggling consumption.
4. Data based on a differential IDD measurement between reset configuration and continuous A/D conversions.
Electrical characteristics STM8AF52/62xx, STM8AF51/61xx
64/110 Doc ID 14395 Rev 9
Current consumption curves
Figure 12 to Figure 17 show typical current consumption measured with code executing in
RAM.
Figure 12. Typ. IDD(RUN)HSE vs. VDD
@fCPU = 16 MHz, peripherals = on
Figure 13. Typ. IDD(RUN)HSE vs. fCPU
@ VDD = 5.0 V, peripherals = on
0
1
2
3
4
5
6
7
8
9
10
2.533.544.555.56
VDD [V]
IDD(RUN)HSE [mA]
25°C
85°C
12 5 °C
0
1
2
3
4
5
6
7
8
9
10
0 5 10 15 20 25 30
fcpu [MHz]
IDD(RUN)HSE [mA]
25°C
85°C
12 5 °C
Figure 14. Typ. IDD(RUN)HSI vs. VDD
@ fCPU = 16 MHz, peripherals = off
Figure 15. Typ. IDD(WFI)HSE vs. VDD
@ fCPU = 16 MHz, peripherals = on
0
1
2
3
4
2.5 3.5 4.5 5.5 6.5
VDD [V]
IDD(RUN)HSI [mA]
25°C
85°C
125°C
0
1
2
3
4
5
6
2.5 3.5 4.5 5.5 6.5
VDD [V]
IDD(WFI)HSE [mA]
25°C
85°C
125°C
Figure 16. Typ. IDD(WFI)HSE vs. fCPU
@ VDD = 5.0 V, peripherals = on
Figure 17. Typ. IDD(WFI)HSI vs. VDD
@ fCPU = 16 MHz, peripherals = off
0
1
2
3
4
5
6
0 5 10 15 20 25 30
fcpu [MHz]
IDD(WFI)HSE [mA]
25°C
85°C
12 5 °C
0
0.5
1
1.5
2
2.5
2.5 3 3. 5 4 4.5 5 5. 5 6
VDD [V]
IDD(WFI)HSI [mA]
25°C
85°C
12 5 °C
STM8AF52/62xx, STM8AF51/61xx Electrical characteristics
Doc ID 14395 Rev 9 65/110
10.3.3 External clock sources and timing characteristics
HSE external clock
An HSE clock can be generated by feeding an external clock signal of up to 24 MHz to the
OSCIN pin.
Clock characteristics are subject to general operating conditions for VDD and TA.
Figure 18. HSE external clock source
HSE crystal/ceramic resonator oscillator
The HSE clock can be supplied using a crystal/ceramic resonator oscillator of up to 24 MHz.
All the information given in this paragraph is based on characterization results with specified
typical external components. In the application, the resonator and the load capacitors have
to be placed as close as possible to the oscillator pins in order to minimize output distortion
and startup stabilization time. Refer to the crystal resonator manufacturer for more details
(frequency, package, accuracy...).
Table 33. HSE external clock characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSE_ext
User external clock source
frequency TA = -40 °C to 150 °C 0(1) —24MHz
VHSEdHL Comparator hysteresis 0.1 x VDD ——
V
VHSEH
OSCIN high-level input pin
voltage 0.7 x VDD —V
DD
VHSEL
OSCIN low-level input pin
voltage —V
SS 0.3 x VDD
ILEAK_HSE OSCIN input leakage current VSS < VIN < VDD -1 +1 µA
1. If CSS is used, the external clock must have a frequency above 500 kHz.
OSCIN
fHSE
External clock
STM8A
source
VHSEL
VHSEH
Electrical characteristics STM8AF52/62xx, STM8AF51/61xx
66/110 Doc ID 14395 Rev 9
Figure 19. HSE oscillator circuit diagram
HSE oscillator critical gm formula
The crystal characteristics have to be checked with the following formula:
Equation 1
where gmcrit can be calculated with the crystal parameters as follows:
Equation 2
Rm: Notional resistance (see crystal specification)
Lm: Notional inductance (see crystal specification)
Cm: Notional capacitance (see crystal specification)
Co: Shunt capacitance (see crystal specification)
CL1 = CL2 = C: Grounded external capacitance
Table 34. HSE oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
RFFeedback resistor 220 kΩ
CL1/CL2(1) Recommended load capacitance 20 pF
gmOscillator trans conductance 5 mA/V
tSU(HSE)(2) Startup time VDD is
stabilized —2.8 ms
1. The oscillator needs two load capacitors, CL1 and CL2, to act as load for the crystal. The total load capacitance (CLoad) is
(CL1 * CL2)/(CL1 + CL2). If CL1 = CL2, Cload = CL1/2. Some oscillators have built-in load capacitors, CL1 and CL2.
2. This value is the startup time, measured from the moment it is enabled (by software) until a stabilized 24 MHz oscillation is
reached. It can vary with the crystal type that is used.
OSCOUT
OSCIN
fHSE to core
CL1
CL2
RF
STM8A
Resonator
Current control
gm
Rm
Cm
Lm
CO
Resonator
gmgmcrit
»
gmcrit 2Π× HSE
f
×()
2Rm
×2Co C+()
2
=
STM8AF52/62xx, STM8AF51/61xx Electrical characteristics
Doc ID 14395 Rev 9 67/110
10.3.4 Internal clock sources and timing characteristics
Subject to general operating conditions for VDD and TA.
High-speed internal RC oscillator (HSI)
Figure 20. Typical HSI frequency vs VDD
Table 35. HSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fHSI Frequency — 16 MHz
ACCHS
HSI oscillator user
trimming accuracy
Trimmed by the application
for any VDD and TA
conditions
-1 1
%
HSI oscillator accuracy
(factory calibrated)
VDD = 3.0 V VDD 5.5 V,
-40 °C TA 150 °C -5 5
tsu(HSI) HSI oscillator wakeup time 2(1)
1. Guaranteed by characterization, not tested in production
µs
125°C
Electrical characteristics STM8AF52/62xx, STM8AF51/61xx
68/110 Doc ID 14395 Rev 9
Low-speed internal RC oscillator (LSI)
Subject to general operating conditions for VDD and TA.
Figure 21. Typical LSI frequency vs VDD
Table 36. LSI oscillator characteristics
Symbol Parameter Conditions Min Typ Max Unit
fLSI Frequency — 112 128 144 kHz
tsu(LSI) LSI oscillator wakeup time 7(1)
1. Data based on characterization results, not tested in production.
µs
-3%
-2%
-1%
0%
1%
2%
3%
2.5 3 3.5 4 4.5 5 5.5 6
VDD [V]
LSI frequency variation [%]
25°C
STM8AF52/62xx, STM8AF51/61xx Electrical characteristics
Doc ID 14395 Rev 9 69/110
10.3.5 Memory characteristics
Flash program memory/data EEPROM memory
General conditions: TA = -40 °C to 150 °C.
Table 37. Flash program memory/data EEPROM memory
Symbol Parameter Conditions Min(1)
1. Guaranteed by characterization, not tested in production.
Typ Max Unit
VDD
Operating voltage
(all modes, execution/write/erase)
fCPU is 16 to 24 MHz
with 1 ws
fCPU is 0 to 16 MHz
with 0 ws
3.0 5.5
V
VDD Operating voltage (code execution)
fCPU is 16 to 24 MHz
with 1 ws
fCPU is 0 to 16 MHz
with 0 ws
2.6 5.5
tprog
Standard programming time
(including erase) for byte/word/block
(1 byte/4 bytes/128 bytes)
——66.6
ms
Fast programming time for 1 block
(128 bytes) ——33.3
terase Erase time for 1 block (128 bytes) 3 3.3 ms
Table 38. Flash program memory
Symbol Parameter Condition Min Max Unit
TWE Temperature for writing and erasing -40 150 °C
NWE
Flash program memory endurance
(erase/write cycles)(1)
1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a
write/erase operation addresses a single byte.
TA = 25 °C 1000 cycles
tRET Data retention time TA = 25 °C 40 years
TA = 55 °C 20
Electrical characteristics STM8AF52/62xx, STM8AF51/61xx
70/110 Doc ID 14395 Rev 9
Table 39. Data memory
Symbol Parameter Condition Min Max Unit
TWE Temperature for writing and erasing -40 150 °C
NWE
Data memory endurance(1)
(erase/write cycles)
1. The physical granularity of the memory is four bytes, so cycling is performed on four bytes even when a
write/erase operation addresses a single byte.
TA = 25 °C 300 k cycles
TA = -40°C to 125 °C 100 k(2)
2. More information on the relationship between data retention time and number of write/erase cycles is
available in a separate technical document.
tRET Data retention time TA = 25 °C 40(2)(3)
3. Retention time for 256B of data memory after up to 1000 cycles at 125 °C.
years
TA = 55 °C 20(2)(3)
STM8AF52/62xx, STM8AF51/61xx Electrical characteristics
Doc ID 14395 Rev 9 71/110
10.3.6 I/O port pin characteristics
General characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified. All
unused pins must be kept at a fixed voltage, using the output mode of the I/O for example or
an external pull-up or pull-down resistor.
Table 40. I/O static characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL Low-level input voltage
-0.3 V 0.3 x VDD
VIH High-level input voltage 0.7 x VDD VDD + 0.3 V
Vhys Hysteresis(1) 0.1 x
VDD
VOH High-level output voltage
Standard I/0, VDD = 5 V,
I = 3 mA VDD - 0.5 V
Standard I/0, VDD = 3 V,
I = 1.5 mA VDD - 0.4 V
VOL Low-level output voltage
High sink and true open
drain I/0, VDD = 5 V
I = 8 mA
——0.5
VStandard I/0, VDD = 5 V
I = 3 mA ——0.6
Standard I/0, VDD = 3 V
I = 1.5 mA ——0.4
Rpu Pull-up resistor VDD = 5 V, VIN = VSS 35 50 65 kΩ
tR, tF
Rise and fall time
(10% - 90%)
Fast I/Os
Load = 50 pF ——35
(2)
ns
Standard and high sink I/Os
Load = 50 pF 125(2)
Fast I/Os
Load = 20 pF 20(2)
Standard and high sink I/Os
Load = 20 pF 50(2)
Ilkg
Digital input pad leakage
current VSS VIN VDD ——±1µA
Ilkg ana
Analog input pad leakage
current
VSS VIN VDD
-40 °C < TA < 125 °C ±250
nA
VSS VIN VDD
-40 °C < TA < 150 °C ±500
Ilkg(inj)
Leakage current in
adjacent I/O(3) Injection current ±4 mA ±1(3) µA
IDDIO
Total current on either
VDDIO or VSSIO
Including injection currents 60 mA
1. Hysteresis voltage between Schmitt trigger switching levels. Based on characterization results, not tested in production.
Electrical characteristics STM8AF52/62xx, STM8AF51/61xx
72/110 Doc ID 14395 Rev 9
Figure 22. Typical VIL and VIH vs VDD @ four temperatures
Figure 23. Typical pull-up resistance RPU vs VDD @ four temperatures
2. Guaranteed by design.
3. Data based on characterization results, not tested in production.
0
1
2
3
4
5
6
2.5 3 3.5 4 4.5 5 5.5 6
VDD [V]
VIL / VIH [V]
-40°C
25°C
85°C
125°C
30
35
40
45
50
55
60
2.53 3.544.55 5.56
VDD [V]
Pull-Up resistance [k ohm]
-40°C
25°C
85°C
125°C
STM8AF52/62xx, STM8AF51/61xx Electrical characteristics
Doc ID 14395 Rev 9 73/110
Figure 24. Typical pull-up current Ipu vs VDD @ four temperatures(1)
1. The pull-up is a pure resistor (slope goes through 0).
Typical output level curves
Figure 25 to Figure 34 show typical output level curves measured with output on a single pin.
0
20
40
60
80
100
120
140
0123456
VDD [V]
Pull-Up current [µA]
-40°C
25°C
85°C
125°C
Figure 25. Typ. VOL @ VDD = 3.3 V (standard
ports)
Figure 26. Typ. VOL @ VDD = 5.0 V (standard
ports)
0
0.25
0.5
0.75
1
1.25
1.5
01234567
IOL [mA]
VOL [V]
-40°C
25°C
85°C
125°C
0
0.25
0.5
0.75
1
1.25
1.5
024681012
IOL [mA]
VOL [V]
-40°C
25°C
85°C
125°C
Figure 27. Typ. VOL @ VDD = 3.3 V (true open
drain ports)
Figure 28. Typ. VOL @ VDD = 5.0 V (true open
drain ports)
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
0246 8101214
IOL [mA]
VOL [V]
-40°C
25°C
85°C
125°C
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
0 5 10 15 20 25
IOL [mA]
VOL [V]
-40°C
25°C
85°C
125°C
Electrical characteristics STM8AF52/62xx, STM8AF51/61xx
74/110 Doc ID 14395 Rev 9
Figure 29. Typ. VOL @ VDD = 3.3 V (high sink
ports)
Figure 30. Typ. VOL @ VDD = 5.0 V (high sink
ports)
0
0.25
0.5
0.75
1
1.25
1.5
0246 8101214
IOL [mA]
VOL [V]
-40°C
25°C
85°C
125°C
0
0.25
0.5
0.75
1
1.25
1.5
0 5 10 15 20 25
IOL [mA]
VOL [V]
-40°C
25°C
85°C
125°C
Figure 31. Typ. VDD - VOH @ VDD = 3.3 V
(standard ports)
Figure 32. Typ. VDD - VOH @ VDD = 5.0 V
(standard ports)
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
01234567
IOH [mA]
VDD - VOH [V]
-40°C
25°C
85°C
125°C
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
024681012
IOH [mA]
VDD - VOH [V]
-40°C
25°C
85°C
125°C
Figure 33. Typ. VDD - VOH @ VDD = 3.3 V (high
sink ports)
Figure 34. Typ. VDD - VOH @ VDD = 5.0 V (high
sink ports)
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
0246 8101214
IOH [mA]
VDD - VOH [V]
-40°C
25°C
85°C
125°C
0
0.25
0.5
0.75
1
1.25
1.5
1.75
2
0 5 10 15 20 25
IOH [mA]
VDD - VOH [V]
-40°C
25°C
85°C
125°C
STM8AF52/62xx, STM8AF51/61xx Electrical characteristics
Doc ID 14395 Rev 9 75/110
10.3.7 Reset pin characteristics
Subject to general operating conditions for VDD and TA unless otherwise specified.
Figure 35. Typical NRST VIL and VIH vs VDD @ four temperatures
Table 41. NRST pin characteristics
Symbol Parameter Conditions Min Typ Max Unit
VIL(NRST) NRST low-level input voltage(1)
1. Data based on characterization results, not tested in production.
—V
SS 0.3 x VDD
VIH(NRST) NRST high-level input voltage(1) 0.7 x VDD —V
DD
VOL(NRST) NRST low-level output voltage(1) IOL = 3 mA 0.6 V
RPU(NRST) NRST pull-up resistor 30 40 60 kΩ
tIFP NRST input filtered pulse(1) —85315ns
tIFP(NRST)
NRST Input not filtered pulse
duration(2)
2. Data guaranteed by design, not tested in production.
500 ns
Electrical characteristics STM8AF52/62xx, STM8AF51/61xx
76/110 Doc ID 14395 Rev 9
Figure 36. Typical NRST pull-up resistance RPU vs VDD
Figure 37. Typical NRST pull-up current Ipu vs VDD
The reset network shown in Figure 38 protects the device against parasitic resets. The user
must ensure that the level on the NRST pin can go below VIL(NRST) max (see Ta bl e 41:
NRST pin characteristics), otherwise the reset is not taken into account internally.
For power consumption sensitive applications, the external reset capacitor value can be
reduced to limit the charge/discharge current. If NRST signal is used to reset external
circuitry, attention must be taken to the charge/discharge time of the external capacitor to
fulfill the external devices reset timing conditions. Minimum recommended capacity is 10 nF.
STM8AF52/62xx, STM8AF51/61xx Electrical characteristics
Doc ID 14395 Rev 9 77/110
Figure 38. Recommended reset pin protection
10.3.8 TIM 1, 2, 3, and 4 electrical specifications
Subject to general operating conditions for VDD, fMASTER and TA.
External
STM8A
Filter
RPU
VDD
Internal reset
NRST
0.1µF
reset
circuit
(optional)
Table 42. TIM 1, 2, 3, and 4 electrical specifications
Symbol Parameter Conditions Min Typ Max Unit
fEXT Timer external clock frequency(1)
1. Not tested in production.
——24MHz
Electrical characteristics STM8AF52/62xx, STM8AF51/61xx
78/110 Doc ID 14395 Rev 9
10.3.9 SPI interface
Unless otherwise specified, the parameters given in Ta bl e 43 are derived from tests
performed under ambient temperature, fMASTER frequency, and VDD supply voltage
conditions. tMASTER = 1/fMASTER.
Refer to I/O port characteristics for more details on the input/output alternate function
characteristics (NSS, SCK, MOSI, MISO).
Table 43. SPI characteristics
Symbol Parameter Conditions Min Max Unit
fSCK
1/tc(SCK)
SPI clock frequency
Master mode 0 10
MHz
Slave mode VDD < 4.5 V 0 6(1)
VDD = 4.5 V to 5.5 V 0 8(1)
tr(SCK)
tf(SCK)
SPI clock rise and fall time Capacitive load: C = 30 pF 25(2)
ns
tsu(NSS)(3) NSS setup time Slave mode 4 * tMASTER
th(NSS)(3) NSS hold time Slave mode 70
tw(SCKH)(3)
tw(SCKL)(3) SCK high and low time Master mode tSCK/2 - 15 tSCK/2 + 15 tw(SCKH)(3)
tw(SCKL)(3)
tsu(MI)(3)
tsu(SI)(3) Data input setup time Master mode 5
Slave mode 5
th(MI)(3)
th(SI)(3) Data input hold time Master mode 7
Slave mode 10
ta(SO)(3)(4) Data output access time Slave mode 3* tMASTER
tdis(SO)(3)(5) Data output disable time Slave mode 25
tv(SO)(3) Data output valid time Slave mode
(after enable edge)
VDD < 4.5 V 75
VDD = 4.5 V to 5.5 V 53
tv(MO)(3) Data output valid time Master mode (after enable edge) 30
th(SO)(3)
Data output hold time Slave mode (after enable edge) 31
th(MO)(3) Master mode (after enable edge) 12
1. fSCK < fMASTER/2.
2. The pad has to be configured accordingly (fast mode).
3. Values based on design simulation and/or characterization results, and not tested in production.
4. Min time is for the minimum time to drive the output and the max time is for the maximum time to validate the data.
5. Min time is for the minimum time to invalidate the output and the max time is for the maximum time to put the data in Hi-Z.
STM8AF52/62xx, STM8AF51/61xx Electrical characteristics
Doc ID 14395 Rev 9 79/110
Figure 39. SPI timing diagram in slave mode and with CPHA = 0
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
Figure 40. SPI timing diagram in slave mode and with CPHA = 1
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
ai14134
SCK Input
CPHA= 0
MOSI
INPUT
MISO
OUT P UT
CPHA= 0
MS B O UT
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
NSS input
tSU(NSS) tc(SCK) th(NSS)
ta(SO)
tw(SCKH)
tw(SCKL)
tv(SO) th(SO) tr(SCK)
tf(SCK)
tdis(SO)
tsu(SI)
th(SI)
ai14135
SCK Input
CPHA=1
MOSI
INPUT
MISO
OUT P UT
CPHA=1
MS B O UT
MSB IN
BI T6 OU T
LSB IN
LSB OUT
CPOL=0
CPOL=1
BIT1 IN
tSU(NSS) tc(SCK) th(NSS)
ta(SO)
tw(SCKH)
tw(SCKL)
tv(SO) th(SO) tr(SCK)
tf(SCK)
tdis(SO)
tsu(SI) th(SI)
NSS input
Electrical characteristics STM8AF52/62xx, STM8AF51/61xx
80/110 Doc ID 14395 Rev 9
Figure 41. SPI timing diagram - master mode
1. Measurement points are at CMOS levels: 0.3 VDD and 0.7 VDD.
AI
3#+OUTPUT
#0(!
-/3)
/5454
-)3/
).0 54
#0(!
-3 ").
- 3"/54
") 4).
,3"/54
,3").
#0/,
#0/,
" ) 4/54
.33INPUT
TC3#+
TW3#+(
TW3#+,
TR3#+
TF3#+
TH-)
(IGH
3#+OUTPUT
#0(!
#0(!
#0/,
#0/,
TSU-)
TV-/ TH-/
STM8AF52/62xx, STM8AF51/61xx Electrical characteristics
Doc ID 14395 Rev 9 81/110
10.3.10 I2C interface characteristics
Table 44. I2C characteristics
Symbol Parameter
Standard mode I2C Fast mode I2C(1)
1. fMASTER, must be at least 8 MHz to achieve max fast I2C speed (400 kHz)
Unit
Min(2)
2. Data based on standard I2C protocol requirement, not tested in production
Max(2) Min(2) Max(2)
tw(SCLL) SCL clock low time 4.7 1.3 µs
tw(SCLH) SCL clock high time 4.0 0.6
tsu(SDA) SDA setup time 250 100
ns
th(SDA) SDA data hold time 0(3)
3. The maximum hold time of the start condition has only to be met if the interface does not stretch the low
time
—0
(4)
4. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the
undefined region of the falling edge of SCL
900(3)
tr(SDA)
tr(SCL)
SDA and SCL rise time
(VDD 3 V to 5.5 V) 1000 300
tf(SDA)
tf(SCL)
SDA and SCL fall time
(VDD 3 V to 5.5 V) 300 300
th(STA) START condition hold time 4.0 0.6 µs
tsu(STA) Repeated START condition setup time 4.7 0.6
tsu(STO) STOP condition setup time 4.0 0.6 µs
tw(STO:STA)
STOP to START condition time
(bus free) 4.7 1.3 µs
CbCapacitive load for each bus line 400 400 pF
Electrical characteristics STM8AF52/62xx, STM8AF51/61xx
82/110 Doc ID 14395 Rev 9
10.3.11 10-bit ADC characteristics
Subject to general operating conditions for VDDA, fMASTER and TA unless otherwise
specified.
Figure 42. Typical application with ADC
1. Legend: RAIN = external resistance, CAIN = capacitors, Csamp = internal sample and hold capacitor.
Table 45. ADC characteristics
Symbol Parameter Conditions Min Typ Max Unit
fADC ADC clock frequency 111 kHz 4 MHz kHz/MHz
VDDA Analog supply 3 5.5
V
VREF+ Positive reference voltage 2.75 VDDA
VREF- Negative reference voltage VSSA —0.5
VAIN Conversion voltage range(1)
1. During the sample time, the sampling capacitance, Csamp (3 pF typ), can be charged/discharged by the
external source. The internal resistance of the analog source must allow the capacitance to reach its final
voltage level within tS. After the end of the sample time tS, changes of the analog input voltage have no
effect on the conversion result.
—V
SSA —V
DDA
Devices with
external VREF+/
VREF- pins
VREF- —V
REF+
Csamp Internal sample and hold capacitor 3 pF
tS(1) Sampling time
(3 x 1/fADC)
fADC = 2 MHz 1.5
µs
fADC = 4 MHz 0.75
tSTAB Wakeup time from standby fADC = 2 MHz 7
fADC = 4 MHz 3.5
tCONV
Total conversion time including
sampling time
(14 x 1/fADC)
fADC = 2 MHz 7
fADC = 4 MHz 3.5
Rswitch Equivalent switch resistance 30 kΩ
AINx
STM8A
VDD
IL
VT
0.6V
VT
0.6V
VAIN
RAIN 10-bit A/D
conversion
CAIN
Ts
Csamp
Rswitch
STM8AF52/62xx, STM8AF51/61xx Electrical characteristics
Doc ID 14395 Rev 9 83/110
Figure 43. ADC accuracy characteristics
1. Example of an actual transfer curve
2. The ideal transfer curve
3. End point correlation line
ET = Total unadjusted error: Maximum deviation between the actual and the ideal transfer curves.
EO = Offset error: Deviation between the first actual transition and the first ideal one.
EG = Gain error: Deviation between the last ideal transition and the last actual one.
ED = Differential linearity error: Maximum deviation between actual steps and the ideal one.
EL = Integral linearity error: Maximum deviation between any actual transition and the end point correlation
line.
Table 46. ADC accuracy for VDDA = 5 V
Symbol Parameter Conditions Typ Max(1)
1. Max value is based on characterization, not tested in production.
Unit
|ET| Total unadjusted error(2)
2. ADC accuracy vs. injection current: Any positive or negative injection current within the limits specified for
IINJ(PIN) and ΣIINJ(PIN) in Section 10.3.6 does not affect the ADC accuracy.
fADC = 2 MHz
1.4 3(3)
3. TUE 2LSB can be reached on specific salestypes on the whole temperature range.
LSB
|EO| Offset error(2) 0.8 3
|EG| Gain error(2) 0.1 2
|ED| Differential linearity error(2) 0.9 1
|EL| Integral linearity error(2) 0.7 1.5
|ET| Total unadjusted error(2)
fADC = 4 MHz
1.9(4)
4. Target values.
4(4)
|EO| Offset error(2) 1.3(4) 4(4)
|EG| Gain error(2) 0.6(4) 3(4)
|ED| Differential linearity error(2) 1.5(4) 2(4)
|EL| Integral linearity error(2) 1.2(4) 1.5(4)
EO
EG
1LSB
IDEAL
1LSBIDEAL
VDDA VSSA
1024
-----------------------------------------=
1023
1022
1021
5
4
3
2
1
0
7
6
1234567 1021102210231024
(1)
(2)
ET
ED
EL
(3)
V
DDA
VSSA
Electrical characteristics STM8AF52/62xx, STM8AF51/61xx
84/110 Doc ID 14395 Rev 9
10.3.12 EMC characteristics
Susceptibility tests are performed on a sample basis during product characterization.
Functional EMS (electromagnetic susceptibility)
While executing a simple application (toggling 2 LEDs through I/O ports), the product is
stressed by two electromagnetic events until a failure occurs (indicated by the LEDs).
ESD: Electrostatic discharge (positive and negative) is applied on all pins of the device
until a functional disturbance occurs. This test conforms with the IEC 1000-4-2
standard.
FTB: A burst of fast transient voltage (positive and negative) is applied to VDD and VSS
through a 100 pF capacitor, until a functional disturbance occurs. This test conforms
with the IEC 1000-4-4 standard.
A device reset allows normal operations to be resumed. The test results are given in the
table below based on the EMS levels and classes defined in application note AN1709.
Designing hardened software to avoid noise problems
EMC characterization and optimization are performed at component level with a typical
application environment and simplified MCU software. It should be noted that good EMC
performance is highly dependent on the user application and the software in particular.
Therefore it is recommended that the user applies EMC software optimization and
prequalification tests in relation with the EMC level requested for his application.
Software recommendations
The software flowchart must include the management of runaway conditions such as:
Corrupted program counter
Unexpected reset
Critical data corruption (control registers...)
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
recovered by applying a low state on the NRST pin or the oscillator pins for 1 second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Table 47. EMS data
Symbol Parameter Conditions Level/class
VFESD
Voltage limits to be applied on any I/O pin
to induce a functional disturbance
VDD = 3.3 V, TA= 25 °C,
fMASTER = 16 MHz (HSI clock),
Conforms to IEC 1000-4-2
3B
VEFTB
Fast transient voltage burst limits to be
applied through 100 pF on VDD and VSS
pins to induce a functional disturbance
VDD= 3.3 V, TA= 25 °C,
fMASTER = 16 MHz (HSI clock),
Conforms to IEC 1000-4-4
4A
STM8AF52/62xx, STM8AF51/61xx Electrical characteristics
Doc ID 14395 Rev 9 85/110
Electromagnetic interference (EMI)
Emission tests conform to the SAE J 1752/3 standard for test software, board layout and pin
loading.
Absolute maximum ratings (electrical sensitivity)
Based on two different tests (ESD and LU) using specific measurement methods, the
product is stressed to determine its performance in terms of electrical sensitivity. For more
details, refer to the application note AN1181.
Electrostatic discharge (ESD)
Electrostatic discharges (3 positive then 3 negative pulses separated by 1 second) are
applied to the pins of each sample according to each pin combination. The sample size
depends on the number of supply pins in the device (3 parts*(n+1) supply pin). This test
conforms to the JESD22-A114A/A115A standard. For more details, refer to the application
note AN1181.
Table 48. EMI data
Symbol Parameter
Conditions
Unit
General
conditions
Monitored
frequency band
Max fCPU(1)
1. Data based on characterization results, not tested in production.
8
MHz
16
MHz
24
MHz
SEMI
Peak level
VDD = 5 V,
TA = 25 °C,
LQFP80 package
conforming to SAE
J 1752/3
0.1 MHz to 30 MHz 15 17 22
dBµV
30 MHz to 130 MHz 18 22 16
130 MHz to 1 GHz -1 3 5
SAE EMI level 2 2.5 2.5
Table 49. ESD absolute maximum ratings
Symbol Ratings Conditions Class Maximum
value(1)
1. Data based on characterization results, not tested in production
Uni
t
VESD(HBM)
Electrostatic discharge voltage
(human body model)
TA = 25 °C, conforming to
JESD22-A114 3A 4000
VVESD(CDM)
Electrostatic discharge voltage
(charge device model)
TA = 25 °C, conforming to
JESD22-C101 3 500
VESD(MM)
Electrostatic discharge voltage
(charge device model)
TA = 25 °C, conforming to
JESD22-A115 B 200
Electrical characteristics STM8AF52/62xx, STM8AF51/61xx
86/110 Doc ID 14395 Rev 9
Static latch-up
Two complementary static tests are required on 10 parts to assess the latch-up
performance.
A supply overvoltage (applied to each power supply pin) and
A current injection (applied to each input, output and configurable I/O pin) are
performed on each sample.
This test conforms to the EIA/JESD 78 IC latch-up standard. For more details, refer to the
application note AN1181.
Table 50. Electrical sensitivities
Symbol Parameter Conditions Class(1)
1. Class description: A Class is an STMicroelectronics internal specification. All its limits are higher than the
JEDEC specifications, that means when a device belongs to class A it exceeds the JEDEC standard. B
class strictly covers all the JEDEC criteria (international standard).
LU Static latch-up class
TA = 25 °C
A
TA = 85 °C
TA = 125 °C
TA = 150 °C
STM8AF52/62xx, STM8AF51/61xx Electrical characteristics
Doc ID 14395 Rev 9 87/110
10.4 Thermal characteristics
In case the maximum chip junction temperature (TJmax) specified in Ta b l e 26: General
operating conditions is exceeded, the functionality of the device cannot be guaranteed.
TJmax, in degrees Celsius, may be calculated using the following equation:
Equation 3
TJmax = TAmax + (PDmax x Θ
JA)
where:
TAmax is the maximum ambient temperature in °C
Θ
JA is the package junction-to-ambient thermal resistance in ° C/W
PDmax is the sum of PINTmax and PI/Omax (PDmax = PINTmax + PI/Omax)
PINTmax is the product of IDD and VDD, expressed in Watts. This is the maximum chip
internal power.
PI/Omax represents the maximum power dissipation on output pins
where:
Equation 4
PI/Omax = Σ (VOL * IOL) + Σ((VDD - VOH) * IOH)
taking into account the actual VOL / IOL and VOH / IOH of the I/Os at low- and high-level in the
application.
10.4.1 Reference document
JESD51-2 integrated circuits thermal test method environment conditions - natural
convection (still air). Available from www.jedec.org.
Table 51. Thermal characteristics(1)
1. Thermal resistances are based on JEDEC JESD51-2 with 4-layer PCB in a natural convection
environment.
Symbol Parameter Value Unit
Θ
JA
Thermal resistance junction-ambient
LQFP 80 - 14 x 14 mm 38 °C/W
Θ
JA
Thermal resistance junction-ambient
LQFP 64 - 10 x 10 mm 46 °C/W
Θ
JA
Thermal resistance junction-ambient
LQFP 48 - 7 x 7 mm 57 °C/W
Θ
JA
Thermal resistance junction-ambient
LQFP 32 - 7 x 7 mm 59 °C/W
Θ
JA
Thermal resistance junction-ambient
VFQFPN 32 - 5 x 5 mm 25 °C/W
Electrical characteristics STM8AF52/62xx, STM8AF51/61xx
88/110 Doc ID 14395 Rev 9
10.4.2 Selecting the product temperature range
When ordering the microcontroller, the temperature range is specified in the order code (see
Figure 52: Ordering information scheme(1) on page 98).
The following example shows how to calculate the temperature range needed for a given
application.
Assuming the following application conditions:
Maximum ambient temperature TAmax = 82 °C (measured according to JESD51-2)
–I
DDmax = 8 mA
–V
DD = 5 V
maximum 20 I/Os used at the same time in output at low-level with IOL = 8 mA
–V
OL = 0.4 V
Equation 5
PINTmax = 8 mA x 5 V = 400 mW
Equation 6
PIOmax = 20 x 8 mA x 0.4 V = 64 mW
This gives:
PINTmax = 400 mW and PIOmax 64 mW:
Equation 7
PDmax = 400 mW + 64 mW
Thus:
PDmax = 464 mW.
Using the values obtained in Ta bl e 51: Thermal characteristics on page 87 TJmax is
calculated as follows:
For LQFP64 46 °C/W
Equation 8
Tjmax = 82 °C + (46 °C/W x 464 mW) = 82 °C + 21 °C = 103 ° C
This is within the range of the suffix B version parts (-40 °C < Tj < 105 ° C).
Parts must be ordered at least with the temperature range suffix B.
STM8AF52/62xx, STM8AF51/61xx Package characteristics
Doc ID 14395 Rev 9 89/110
11 Package characteristics
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Package characteristics STM8AF52/62xx, STM8AF51/61xx
90/110 Doc ID 14395 Rev 9
11.1 Package mechanical data
Figure 44. LQFP 80-pin low profile quad flat package (14 x 14)
Table 52. LQFP 80-pin low profile quad flat package mechanical data
Dim.
mm inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.220 0.320 0.380 0.0087 0.0126 0.0150
c 0.090 0.200 0.0035 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 12.350 0.4862
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
E1 13.800 14.000 14.200 0.5433 0.5512 0.5591
E3 12.350 0.4862
e 0.650 0.0256
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
ccc 0.100 0.0039
k 0°3.5°7° 0°3.5°7°
1S_ME
L
A1 K
L1
c
A
A2
ccc C
D
D1
D3
E3 E1 E
40
41
60
61
b
80
1
Pin 1
identification
STM8AF52/62xx, STM8AF51/61xx Package characteristics
Doc ID 14395 Rev 9 91/110
Figure 45. LQFP 64-pin low profile quad flat package (10 x 10)
5W_ME
L
A1 K
L1
c
A
A2
ccc C
D
D1
D3
E3 E1 E
32
33
48
49
b
64
1
Pin 1
identification 16
17
Table 53. LQFP 64-pin low profile quad flat package mechanical data
Dim.
mm inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 11.800 12.000 12.200 0.4646 0.4724 0.4803
D1 9.800 10.000 10.200 0.3858 0.3937 0.4016
D3 7.500 0.2953
E 11.800 12.000 12.200 0.4646 0.4724 0.4803
E1 9.800 10.000 10.200 0.3858 0.3937 0.4016
E3 7.500 0.2953
e 0.500 0.0197
θ 3.5° 3.5°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
ccc 0.080 0.0031
Package characteristics STM8AF52/62xx, STM8AF51/61xx
92/110 Doc ID 14395 Rev 9
Figure 46. LQFP 64-pin recommended footprint
1. Drawing is not to scale. Dimensions are in millimeters.


 










7?&0
STM8AF52/62xx, STM8AF51/61xx Package characteristics
Doc ID 14395 Rev 9 93/110
Figure 47. LQFP 48-pin low profile quad flat package (7 x 7)
5B_ME
L
A1 K
L1
c
A
A2
ccc C
D
D1
D3
E3 E1 E
24
25
36
37
b
48
1
Pin 1
identification 12
13
Table 54. LQFP 48-pin low profile quad flat package mechanical data
Dim.
mm inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 0.200 0.0035 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 5.500 0.2165
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 5.500 0.2165
e 0.500 0.0197
θ 3.5° 3.5°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
ccc 0.080 0.0031
Package characteristics STM8AF52/62xx, STM8AF51/61xx
94/110 Doc ID 14395 Rev 9
Figure 48. LQFP 48-pin recommended footprint
1. Drawing is not to scale. Dimensions are in millimeters.
  













"?&0

STM8AF52/62xx, STM8AF51/61xx Package characteristics
Doc ID 14395 Rev 9 95/110
Figure 49. LQFP 32-pin low profile quad flat package (7 x 7)
Table 55. LQFP 32-pin low profile quad flat package mechanical data
Dim.
mm inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits
Min Typ Max Min Typ Max
A 1.600 0.0630
A1 0.050 0.150 0.0020 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.300 0.370 0.450 0.0118 0.0146 0.0177
c 0.090 0.200 0.0035 0.0079
D 8.800 9.000 9.200 0.3465 0.3543 0.3622
D1 6.800 7.000 7.200 0.2677 0.2756 0.2835
D3 5.600 0.2205
E 8.800 9.000 9.200 0.3465 0.3543 0.3622
E1 6.800 7.000 7.200 0.2677 0.2756 0.2835
E3 5.600 0.2205
e 0.800 0.0315
θ 3.5° 3.5°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 1.000 0.0394
ccc 0.100 0.0039
5V_ME
L
A1 K
L1
c
A
A2
ccc C
D
D1
D3
E3 E1 E
16
17
24
25
b
32
1
Pin 1
identification 8
9
Package characteristics STM8AF52/62xx, STM8AF51/61xx
96/110 Doc ID 14395 Rev 9
Figure 50. LQFP 32-pin recommended footprint
1. Drawing is not to scale. Dimensions are in millimeters.





6?&0
STM8AF52/62xx, STM8AF51/61xx Package characteristics
Doc ID 14395 Rev 9 97/110
Figure 51. VFQFPN 32-lead very thin fine pitch quad flat no-lead package (5 x 5)
Table 56. VFQFPN 32-lead very thin fine pitch quad flat no-lead package
mechanical data
Dim.
mm inches(1)
1. Values in inches are converted from mm and rounded to 4 decimal digits
Min Typ Max Min Typ Max
A 0.800 0.900 1.000 0.0315 0.0354 0.0394
A1 0.000 0.020 0.050 0.000 0.0008 0.0020
A3 0.200 0.0079
b 0.180 0.250 0.300 0.0071 0.0098 0.0118
D 4.850 5.000 5.150 0.1909 0.1969 0.2028
D2 3.400 3.450 3.500 0.1339 0.1358 0.1378
E 4.850 5.000 5.150 0.1909 0.1969 0.2028
E2 3.400 3.450 3.500 0.1339 0.1358 0.1378
e 0.500 0.0197
L 0.300 0.400 0.500 0.0118 0.0157 0.0197
ddd 0.080 0.0031
Seating plane
ddd C
C
A3
A1
A
D
e
916
17
24
32
Pin # 1 ID
R = 0.30
8
E
L
L
D2
1
b
E2
42_ME
Bottom view
Ordering information STM8AF52/62xx, STM8AF51/61xx
98/110 Doc ID 14395 Rev 9
12 Ordering information
Figure 52. Ordering information scheme(1)
1. For a list of available options (e.g. memory size, package) and orderable part numbers or for further
information on any aspect of this device, please go to www.st.com or contact the ST Sales Office nearest
to you.
2. Customer specific FASTROM code or custom device configuration. This field shows ‘SSS’ if the device
contains a super set silicon, usually equipped with bigger memory and more I/Os. This silicon is supposed
to be replaced later by the target silicon.
3. Not recommended for new design.
4. Available on STM8AFx2xx devices.
STM8A F 62 A A T D XXX(2) Y
Product class
8-bit automotive microcontroller
Program memory size
6 = 32 Kbytes
7 = 48 Kbytes(3)
8 = 64 Kbytes
9 = 96 Kbytes(3)
A= 128 Kbytes
Package type
T = LQFP
U = VFQFPN
Example:
Device family
51 = Silicon rev X, CAN/LIN(3)
61 = Silicon rev X, LIN only(3
52 = Silicon rev U and rev T, CAN/LIN
62 = Silicon rev U and rev T, LIN only
Program memory type
F = Flash + EEPROM
P = FASTROM
H = Flash no EEPROM(3)
Temperature range
A = -40 to 85 °C
B = -40 to 105 °C(3)
C = -40 to 125 °C
D = -40 to 150 °C(4)
Pin count
6 = 32 pins
8 = 48 pins
9= 64 pins
A = 80 pins
Packing
Y = Tray
U = Tube
X = Tape and reel compliant with EIA 481-C
STM8AF52/62xx, STM8AF51/61xx STM8 development tools
Doc ID 14395 Rev 9 99/110
13 STM8 development tools
Development tools for the STM8A microcontrollers include the
STice emulation system offering tracing and code profiling
STVD high-level language debugger including assembler and visual development
environment - seamless integration of third party C compilers
STVP Flash programming software
In addition, the STM8A comes with starter kits, evaluation boards and low-cost in-circuit
debugging/programming tools.
13.1 Emulation and in-circuit debugging tools
The STM8 tool line includes the STice emulation system offering a complete range of
emulation and in-circuit debugging features on a platform that is designed for versatility and
cost-effectiveness. In addition, STM8A application development is supported by a low-cost
in-circuit debugger/programmer.
The STice is the fourth generation of full-featured emulators from STMicroelectronics. It
offers new advanced debugging capabilities including tracing, profiling and code coverage
analysis to help detect execution bottlenecks and dead code.
In addition, STice offers in-circuit debugging and programming of STM8A microcontrollers
via the STM8 single wire interface module (SWIM), which allows non-intrusive debugging of
an application while it runs on the target microcontroller.
For improved cost effectiveness, STice is based on a modular design that allows you to
order exactly what you need to meet your development requirements and to adapt your
emulation system to support existing and future ST microcontrollers.
13.1.1 STice key features
Program and data trace recording up to 128 K records
Advanced breakpoints with up to 4 levels of conditions
Data breakpoints
Real-time read/write of all device resources during emulation
Occurrence and time profiling and code coverage analysis (new features)
In-circuit debugging/programming via SWIM protocol
8-bit probe analyzer
1 input and 2 output triggers
USB 2.0 high-speed interface to host PC
Power supply follower managing application voltages between 1.62 to 5.5 V
Modularity that allows you to specify the components you need to meet your
development requirements and adapt to future requirements
Supported by free software tools that include integrated development environment
(IDE), programming software interface and assembler for STM8.
STM8 development tools STM8AF52/62xx, STM8AF51/61xx
100/110 Doc ID 14395 Rev 9
13.2 Software tools
STM8 development tools are supported by a complete, free software package from STMi-
croelectronics that includes ST visual develop (STVD) IDE and the ST visual programmer
(STVP) software interface. STVD provides seamless integration of the Cosmic and Raiso-
nance C compilers for STM8.
13.2.1 STM8 toolset
The STM8 toolset with STVD integrated development environment and STVP programming
software is available for free download at www.st.com. This package includes:
ST visual develop
Full-featured integrated development environment from STMicroelectronics, featuring:
Seamless integration of C and ASM toolsets
Full-featured debugger
Project management
Syntax highlighting editor
Integrated programming interface
Support of advanced emulation features for STice such as code profiling and coverage
ST visual programmer (STVP)
Easy-to-use, unlimited graphical interface allowing read, write and verification of the STM8A
microcontroller’s Flash memory. STVP also offers project mode for saving programming
configurations and automating programming sequences.
13.2.2 C and assembly toolchains
Control of C and assembly toolchains is seamlessly integrated into the STVD integrated
development environment, making it possible to configure and control the building of your
application directly from an easy-to-use graphical interface. Available toolchains include:
C compiler for STM8
All compilers are available in free version with a limited code size depending on the
compiler. For more information, refer to www.cosmic-software.com, www.raisonance.com,
and www.iar.com.
STM8 assembler linker
Free assembly toolchain included in the STM8 toolset, which allows you to assemble and
link your application source code.
STM8AF52/62xx, STM8AF51/61xx STM8 development tools
Doc ID 14395 Rev 9 101/110
13.3 Programming tools
During the development cycle, STice provides in-circuit programming of the STM8A Flash
microcontroller on your application board via the SWIM protocol. Additional tools are to
include a low-cost in-circuit programmer as well as ST socket boards, which provide
dedicated programming platforms with sockets for programming your STM8A.
For production environments, programmers will include a complete range of gang and
automated programming solutions from third-party tool developers already supplying
programmers for the STM8 family.
Revision history STM8AF52/62xx, STM8AF51/61xx
102/110 Doc ID 14395 Rev 9
14 Revision history
Table 57. Document revision history
Date Revision Changes
31-Jan-2008 Rev 1 Initial release
22-Aug-2008 Rev 2
Added ‘H’ products to the datasheet (Flash no EEPROM).
Features on page 1: Updated Memories, Reset and supply
management, Communication interfaces and I/Os; reduced wakeup
pins by 1.
Tabl e 1: Removed STM8AF6168, STM8AF6148, STM8AF6166,
STM8AF6146, STM8AF5168, STM8AF5186, STM8AF5176, and
STM8AF5166.
Section 1, Section 5, Section 6.2, Tab le 2 1 , and Section 9: Updated
reference documentation: RM0009, PM0047, and UM0470.
Section 2: Added information about peak performance.
Section 3: Removed STM8A common features table.
Tabl e 4: Removed STM8AF5186T, STM8AF5176T, STM8AF5168T,
and STM8AF5166T.
Tabl e 5: Removed STM8AF6168T, STM8AF6166T, STM8AF6148T,
and STM8AF6146T.
Section 5: Made minor content changes and improved readability
and layout.
Section 5.5.3: Major modification, TMU included.
Section 5.5.2: User trimming updated.
Section 5.5.3: LSI as CPU clock added.
Section 5.5.4 , Section 5.5.5: Maximum frequency conditional 32
Kbyte/128 Kbyte.
Section 5.8: Scan for 128 Kbyte removed.
Section 5.9, Section 5.9.3: SPI 10 Mb/s.
Figure 3, Figure 4, and Figure 5: Amended footnote 1.
Tabl e 12: HS output changed from 20 mA to 8 mA.
Section 7: Corrected Figure 7: Register and memory map; removed
address list; added Table 14.
Section 10.3.2 Note on typical/WC values added.
Tabl e 18: Replaced the source blocks ‘simple USART’, ‘very low-end
timer (timer 4)’, and ‘EEPROM’ with ‘LINUART’, ‘timer4’ and
‘reserved’ respectively, added TMU registers.
Tabl e 20: Updated OPT6 and NOPT6, added OPT7 to 17 (TMU, BL)
Tabl e 21: Updated OPT1 UBC[7:0], OPT4 CKAWUSEL, OPT4
PRSC [1:0], and OPT6, added OPT7 to 16 (TMU).
Tabl e 23: Amended footnotes.
Tabl e 26: Added parameter ‘voltage and current operating
conditions’.
Tabl e 27: Amended footnotes.
Tabl e 28: Replaced.
Tabl e 29: Amended maximum data and footnotes.
Table 21: Replaced.
Tabl e 22: Added and amended IDD(RUN) data; amended IDD(WFI)
data; amended footnotes.
Tabl e 32: Filled in, amended maximum data and footnotes.
Figure 12 to Figure 17: info on peripheral activity added.
Tabl e 33: Modified fHSE_ext data and added VHSEdhl data.
STM8AF52/62xx, STM8AF51/61xx Revision history
Doc ID 14395 Rev 9 103/110
22-Aug-2008 Rev 2
cont’d
Tabl e 35: Removed ACCHSI parameters and replaced with ACCHS
parameters; amended data and footnotes.
Amended data of ‘RAM and hardware registers’ table.
Tabl e 37: Updated names and data of NRW and tRET parameters.
Tabl e 40: Added VOH and VOL parameters; Updated Ilkg ana
parameter.
Removed: Output driving current (standard ports), Output driving
current (true open drain ports), and Output driving current (high sink
ports).
Tabl e 45: Updated fADC, tS, and tCONV data.
ADC accuracy for VDDA = 3.3 V table: Removed the 4-MHz condition
from all parameters.
Tabl e 46: Removed the 4-MHz condition from all parameters;
updated footnote 1 and removed footnote 2.
Tabl e 50: Added data for TA = 145 °C.
Figure 52: Updated memory size, pin count and package type
information.
16-Sep-2008 Rev 3
Replaced the salestype ‘STM8H61xx’ with ‘STM8AH61xx on the first
page.
Added ‘part numbers’ to heading rows of Table 1: Device summary.
Updated the 80-pin package silhouette on page 1 in line with POA
0062342-revD.
Tabl e 18: Renamed ‘TMU key registers 0-7 [7:0]’ as ‘TMU key
registers 1-8 [7:0]’
Section 9: Updated introductory text concerning option bytes which
do not need to be saved in a complementary form.
Tabl e 18: Renamed the option bits ‘TMU[0:3]’, ‘NTMU[0:3]’, and
‘TMU_KEY 0-7 [7:0]’ as ‘TMU[3:0]’, ‘NTMU[3:0]’, and ‘TMU_KEY 1-8
[7:0]’ respectively.
Tabl e 21: Updated values of option byte 5 (HSECNT[7:0]); inverted
the description of option byte 6 (TMU[3:0]); renamed option bytes 8
to 15 ‘TMU_KEY 0-7 [7:0]’, as ‘TMU_KEY 1-8 [7:0]’.
Updated 80-pin package information in line with POA 0062342-revD
in Figure 44 and Table 5 2 .
Table 57. Document revision history (continued)
Date Revision Changes
Revision history STM8AF52/62xx, STM8AF51/61xx
104/110 Doc ID 14395 Rev 9
01-Jul-2009 Rev 4
Added ‘STM8AH61xx’ and ‘STM8AH51xx to document header.
Updated Features on page 1 (memories, timers, operating
temperature, ADC and I/Os).
Updated Table 1: Device summary.
Updated Kbytes value of program memory in Chapter 1: Introduction
Chapter 2: Description
Changed the first two lines from the top.
Updated Figure 1: STM8A block diagram
Updated Chapter 5: Product overview
In Figure 5: LQFP 48-pin pinout, added USART function to pins 10,
11, and 12; added CAN Tx and CAN Rx functions to pins 35 and 36
respectively.
Section 6.2: Pin description
Deleted text below the Table 12: Legend/abbreviation for the pin
description table
Table 13: STM8A microcontroller family pin description
68th, 69th pin (LQFP80): replaced X with a dash for PP output
Added a table footnote
Updated Figure 7: Register and memory map
Table 14: Memory model 128K
Updated footnote
Deleted the table “Stack and RAM partitioning“
Table 19: STM8A interrupt table.
Updated priorities 13, 15, 17, 20 and 24
Changed table footnote
Updated Chapter 7.2: Register map
Updated Table 39: Data memory, Table 40: I/O static characteristics,
and Table 41: NRST pin characteristics.
Section 10.1.1: Minimum and maximum values.
Added ambient temperature TA = -40 °C
Updated Table 22: Voltage characteristics
Updated Table 23: Current characteristics
Updated Table 24: Thermal characteristics
UpdatedTable 26: General operating conditions
UpdatedTable 27: Operating conditions at power-up/power-down.
Figure 10: fCPUmax versus VDD.
Updated temperature ranges in functional area
Added a figure footnote
Removed ‘total current consumption’ and ‘note on the run-current
typical values’.
Replaced Table 28: Total current consumption in Run, Wait and Slow
mode. General conditions for VDD apply, TA = -40 °C to 150 °C
Replaced Table 29: Total current consumption in Halt and Active-halt
modes. General conditions for VDD applied. TA = -40 °C to 55 °C
unless otherwise stated.
Removed Table 21: Total current consumption in run, wait and slow
mode. General conditions for VDD apply. TA = -40 °C to 145 °C
Table 57. Document revision history (continued)
Date Revision Changes
STM8AF52/62xx, STM8AF51/61xx Revision history
Doc ID 14395 Rev 9 105/110
01-Jul-2009 Rev 4
Removed Table 22: Total current consumption and timing in halt, fast
active halt and slow active halt modes at VDD = 3.3 V.
Added Table 30: Oscillator current consumption
Added Table 31: Programming current consumption.
Updated Table 32: Typical peripheral current consumption VDD = 5.0
V
Changed Section : HSE external clock title from “HSE user external
clock“
Updated Table 33: HSE external clock characteristics
Updated Table 34: HSE oscillator characteristics.
Figure 19: HSE oscillator circuit diagram.
Changed ‘consumption control’ to ‘current control’
HSE oscillator critical gm formula.
Clarified formula
Updated Table 35: HSI oscillator characteristics.
Removed ‘RAM and hardware registers
Removed Table 29: RAM and hardware registers.
Updated Table 37: Flash program memory/data EEPROM memory.
Added Table 38: Flash program memory
Added Table 39: Data memory.
Updated Table 40: I/O static characteristics
Updated Table 41: NRST pin characteristics
Updated Table 42: TIM 1, 2, 3, and 4 electrical specifications
Section 10.3.9: SPI interface
Changed title from “SPI serial peripheral interface“
Updated Table 43: SPI characteristics.
Figure 39: SPI timing diagram in slave mode and with CPHA = 0
Changed title
Added footnote 1.
Figure 40: SPI timing diagram in slave mode and with CPHA = 1
Changed title
Updated Table 45: ADC characteristics.
Updated Figure 42: Typical application with ADC and added legend.
Removed Table 36: ADC accuracy for VDDA = 3.3 V
Updated Table 46: ADC accuracy for VDDA = 5 V
Updated Table 48: EMI data
Updated Table 50: Electrical sensitivities
Added Section : In order to meet environmental requirements, ST
offers these devices in different grades of ECOPACK® packages,
depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at:
www.st.com. ECOPACK® is an ST trademark..
Figure 45: LQFP 64-pin low profile quad flat package (10 x 10)
Deleted footnote
Updated Figure 52: Ordering information scheme(1).
Added Chapter 13: STM8 development tools.
Table 57. Document revision history (continued)
Date Revision Changes
Revision history STM8AF52/62xx, STM8AF51/61xx
106/110 Doc ID 14395 Rev 9
22-Oct-2009 Rev 5 Updated Table 1: Device summary:
Added STM8AF5178, STM8AF519A and STM8AF619A.
13-Apr-2010 Rev 6
Updated title on cover page.
Modified cover page header to clarify the part numbers covered by
the datasheets. Updated Note 1 below Table 1: Device summary to
add ‘P’ order codes.
Changed definition of ‘P’ order codes.
‘Q’ order codes (FASTROM and EEPROM) removed.
Content of Section 5: Product overview reorganized. Table 13:
STM8A microcontroller family pin description: updated PD7/TLI
alternate function, removed caution note for PD6/ LINUART_RX, and
added Note 1 to PA1/OSCIN.
Renamed Section 7 Memory and register map, and content merged
with section 9. Register map. Updated Figure 7: Register and
memory map.
Renamed BL_EN and NBL_EN, BL and NBL, respectively, in
Table 20: Option bytes.
Updated AFR4 definition in Table 21: Option byte description.Added
CEXT in Table 26: General operating conditions, and Section 10.3.1:
VCAP external capacitor.
Update tVDD in Table 27: Operating conditions at power-up/power-
down.
Moved Table 32: Typical peripheral current consumption VDD = 5.0 V
to Section : Current consumption for on-chip peripherals.
Removed VESD(MM) from Table 49: ESD absolute maximum ratings.
Updated Section 12: Ordering information to the devices supported
by the datasheet.
Updated Section 13: STM8 development tools.
08-Jul-2010 Rev 7
Added STM8AF5168 and STM8AF518A part number in Figure 4,
and STM8AF618A in Figure 5. Added STM8AF52xx, STM8AF6269,
STM8AF628x, and STM8AF62Ax.
Updated D temperature range to -40 to 150°C.
Updated number of I/Os on cover page.
Added Table 25: Operating lifetime.
Restored VESD(MM) from Table 49: ESD absolute maximum ratings.
Table 26: General operating conditions: updated VCAP information.
ESL parameter, and range D maximum junction temperature (TJ).
Added STM8AF52xx and STM8AF62xx, and Note 3 in Section 12:
Ordering information.
Updated Section 13: STM8 development tools: added Table 54:
Product evolution summary, and split the beCAN time triggered
communication mode limitation into Section 13.7.3 and
Section 13.7.4.
Table 57. Document revision history (continued)
Date Revision Changes
STM8AF52/62xx, STM8AF51/61xx Revision history
Doc ID 14395 Rev 9 107/110
3&-Jan-2011 Rev 8
Modified references to reference manual, and Flash programming
manual in the whole document.
Added reference to AEC Q100 standard on cover page.
Renamed timer types as follows:
Auto-reload timer to general purpose timer
Multipurpose timer to advanced control timer
System timer to basic timer
Introduced concept of high density Flash program memory.
Updated number of I/Os for devices in 80-, 64-, and 48-pin packages
in Table 2: STM8AF52xx product line-up with CAN, Table 3:
STM8AF62xx product line-up without CAN, Ta bl e 4 :
STM8AF/H/P51xx product line-up with CAN, and Ta b l e 5 :
STM8AF/H/P61xx product line-up without CAN.
Added TMU brief description in Section 5.4: Flash program and data
EEPROM, updated TMU_MAXATT description in Table 21: Option
byte description, and TMU_MAWATT reset value in Table 20: Option
bytes.
Updated clock sources in clock controller features (Section 5.5.1).
Added Table 7: Peripheral clock gating bits (CLK_PCKENR2) in
Section 5.5.6.
Added calibration using TIM3 in Section 5.7.2: Auto-wakeup counter.
Added Table 10: ADC naming and Table 11: Communication
peripheral naming correspondence.
Updated SPI data rate to fMASTER/2 in Section 5.9.3: Serial
peripheral interface (SPI).
Added reset state in Table 12: Legend/abbreviation for the pin
description table.
Table 13: STM8A microcontroller family pin description: modified
Note 2, added Note 3 related to PD1/SWIM, corrected wpu input for
PE1 and PE2, and renamed TIMn_CCx and TIMn_NCCx to
TIMn_CHx and TIMn_CHxN, respectively.
Section 7.2: Register map: Removed CAN register CLK_CANCCR.
Removed I2C_PECR register.
Added Note 1 for Px_IDR registers in Table 15: I/O port hardware
register map. Updated register reset values for Px_IDR and PD_CR1
registers.
Replaced tables describing register maps and reset values for non-
volatile memory, global configuration, reset status, TMU, clock
controller, interrupt controller, timers, communication interfaces, and
ADC, by Table 16: General hardware register map. Added debug
module register map.
Table 57. Document revision history (continued)
Date Revision Changes
Revision history STM8AF52/62xx, STM8AF51/61xx
108/110 Doc ID 14395 Rev 9
3&-Jan-2011 Rev 8
(continued)
Renamed Fast Active Halt mode to Active-halt mode with regulator
on, and Slow Active Halt mode to Active-halt mode with regulator off,
updated Section 5.6: Low-power operating modes, and Table 29:
Total current consumption in Halt and Active-halt modes. General
conditions for VDD applied. TA = -40 °C to 55 °C unless otherwise
stated. IDD(FAH) and IDD(SAH) renamed IDD(AH); tWU(FAH) and tWU(SAH)
renamed tWU(AH).
Removed note 1 in Table 26: General operating conditions, and note
1 below Figure 10: fCPUmax versus VDD.
Removed note 3 in Table 28: Total current consumption in Run, Wait
and Slow mode. General conditions for VDD apply, TA = -40 °C to
150 °C.
Removed note 2 in Table 33: HSE external clock characteristics and
Table 37: Flash program memory/data EEPROM memory.
Removed note 1 in Table 39: Data memory. Modified TWE maximum
value in Table 38: Flash program memory and Ta bl e 3 9: Da t a
memory.
Added tIFP(NRST) and renamed VF(NRST) tIFP in Table 41: NRST pin
characteristics.
Added recommendation concerning NRST pin level, and power
consumption sensitive applications, above Figure 38:
Recommended reset pin protection, and updated external capacitor
value.
Update Note 1 in Table 42: TIM 1, 2, 3, and 4 electrical
specifications.
Updated Note 1 in Table 43: SPI characteristics.
Moved know limitations to separate errata sheet.
Added “not recommended for new design” note to device family 51,
memory size 7 and 9, and temperature range B, in Figure 52:
Ordering information scheme(1).
Added Raisonance compiler in Section 13.2: Software tools.
18-Jul-2012 Rev 9
Updated wildcards of document part numbers.
Added VFQFPN package.
Added STM8AF62A6 part number.
Table 1: Device summary: updated footnote 1 and added footnote 2.
Table 2: STM8AF52xx product line-up with CAN and Ta b l e 3 :
STM8AF62xx product line-up without CAN: added “P” version for all
order codes; updated size of data EEPROM for 64K devices to 2K
instead of 1.5K; updated RAM.
Figure 1: STM8A block diagram: updated POR, BOR and WDG;
removed PDR; added legend.
Section 5.4: Flash program and data EEPROM: removed
nonrelevant bullet points and added a sentence about the factory
programme.
Added Table 6: Peripheral clock gating bits (CLK_PCKENR1) and
updated Table 7: Peripheral clock gating bits (CLK_PCKENR2).
ADC features: updated ADC input range.
Table 14: Memory model 128K: updated RAM size, RAM end
addresses, and stack roll-over addresses; updated footnote 1.
Table 57. Document revision history (continued)
Date Revision Changes
STM8AF52/62xx, STM8AF51/61xx Revision history
Doc ID 14395 Rev 9 109/110
18-Jul-2012 Rev 9
(continued)
Table 20: Option bytes: updated factory default setting for NOPT17;
updated footnote 1.
Table 22: Voltage characteristics: updated VDDX - VDD to VDDX - VSS.
Table 26: General operating conditions: updated VCAP
.
Table 28: Total current consumption in Run, Wait and Slow mode.
General conditions for VDD apply, TA = -40 °C to 150 °C: updated
conditions for IDD(RUN).
Table 40: I/O static characteristics: added new condition and new
max values for rise and fall time; updated footnote 2.
Section 10.3.7: Reset pin characteristics: updated text below
Figure 37: Typical NRST pull-up current Ipu vs VDD.
Figure 38: Recommended reset pin protection: updated unit of
capacitor.
Table 43: SPI characteristics: updated SCK high and low time
conditions and values.
Figure 41: SPI timing diagram - master mode: replaced ‘SCK input’
signals with ‘SCK output’ signals.
Updated Table 52: LQFP 80-pin low profile quad flat package
mechanical data, Table 53: LQFP 64-pin low profile quad flat
package mechanical data, Table 54: LQFP 48-pin low profile quad
flat package mechanical data, Table 55: LQFP 32-pin low profile
quad flat package mechanical data, and Table 56: VFQFPN 32-lead
very thin fine pitch quad flat no-lead package mechanical data.
Replaced Figure 45: LQFP 64-pin low profile quad flat package (10 x
10), Figure 47: LQFP 48-pin low profile quad flat package (7 x 7),
and Figure 49: LQFP 32-pin low profile quad flat package (7 x 7).
Added Figure 46: LQFP 64-pin recommended footprint, Figure 48:
LQFP 48-pin recommended footprint, and Figure 50: LQFP 32-pin
recommended footprint.
Updated Figure 51: VFQFPN 32-lead very thin fine pitch quad flat
no-lead package (5 x 5).
Updated Figure 52: Ordering information scheme(1).
Section 13.2.2: C and assembly toolchains: added www.iar.com.
Table 57. Document revision history (continued)
Date Revision Changes
STM8AF52/62xx, STM8AF51/61xx
110/110 Doc ID 14395 Rev 9
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY TWO AUTHORIZED ST REPRESENTATIVES, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2012 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com