IRF250P224 IR MOSFET - StrongIRFETTM D Applications VDSS 250V RDS(on) typ. 9.0m G 12m max UPS and Inverter applications Half-bridge and full-bridge topologies Resonant mode power supplies DC/DC and AC/DC converters OR-ing and redundant power switches Brushed and BLDC Motor drive applications Battery powered circuits ID S 128A D S G D TO-247AC IRF250P224 Benefits Improved Gate, Avalanche and Dynamic dv/dt Ruggedness Fully Characterized Capacitance and Avalanche SOA Enhanced body diode dv/dt and di/dt Capability Pb-Free ; RoHS Compliant ; Halogen-Free Package Type IRF250P224 TO-247AC RDS(on), Drain-to -Source On Resistance (m ) Base part number G Gate Standard Pack Form Tube Quantity 25 42 D Drain S Source Orderable Part Number IRF250P224 140 I D = 58A 120 36 30 24 ID, Drain Current (A) TJ = 125C 18 12 TJ = 25C 100 80 60 40 20 6 0 25 0 2 4 6 8 10 12 14 16 18 50 75 100 125 150 175 TC , Case Temperature (C) 20 VGS, Gate -to -Source Voltage (V) Figure 1 Typical On-Resistance vs. Gate Voltage Final Datasheet www.infineon.com Figure 2 Maximum Drain Current vs. Case Temperature Please read the important Notice and Warnings at the end of this document V1.0 2017-03-16 IR MOSFET-StrongIRFETTM IRF250P224 Table of Contents Table of Contents Applications Benefits .........................................................................................................................1 ..........................................................................................................................1 Ordering Table ......................................................................................................................1 Table of Contents ...................................................................................................................2 1 Parameters ............................................................................................................3 2 Maximum ratings, Thermal, and Avalanche characteristics .............................................4 3 Electrical characteristics ..........................................................................................5 4 Electrical characteristic diagrams ..............................................................................6 Package Information ............................................................................................................14 Qualification Information .........................................................................................................15 Revision History ....................................................................................................................16 Final Datasheet 2 V1.0 2017-03-16 IR MOSFET-StrongIRFETTM IRF250P224 Parameters 1 Parameters Table1 Key performance parameters Parameter Values Units VDS 250 V RDS(on) max 12 m ID 128 A Final Datasheet 3 V1.0 2017-03-16 IR MOSFET-StrongIRFETTM IRF250P224 Maximum ratings and thermal characteristics 2 Maximum ratings and thermal characteristics Table 2 Maximum ratings (at TJ=25C, unless otherwise specified) Parameter Symbol Conditions Continuous Drain Current Continuous Drain Current Pulsed Drain Current Maximum Power Dissipation Linear Derating Factor Gate-to-Source Voltage Operating Junction and Storage Temperature Range Soldering Temperature, for 10 seconds (1.6mm from case) Mounting Torque, 6-32 or M3 Screw ID ID IDM PD Table 4 Unit TC = 25C, VGS @ 10V TC = 100C, VGS @ 10V TC = 25C TC = 25C TC = 25C - 128 90 512 556 3.7 20 - -55 to + 175 - - 300 - - 10 lbf*in (1.1 N*m) VGS TJ TSTG Table 3 Thermal characteristics Parameter Symbol Junction-to-Case RJC Case-to-Sink, Flat Greased Surface RCS Junction-to-Ambient RJA Values Conditions TJ approximately 90C - Min. - Typ. 0.24 - A W W/C V Max. 0.27 40 C - Unit C/W Avalanche characteristics Parameter Symbol Values Single Pulse Avalanche Energy EAS (Thermally limited) 837 Single Pulse Avalanche Energy EAS (Thermally limited) 979 Avalanche Current IAR Repetitive Avalanche Energy EAR See Fig 16, 17, 23a, 23b Unit mJ A mJ Notes: Repetitive rating; pulse width limited by max. junction temperature. Limited by TJmax, starting TJ = 25C, L = 0.505mH, RG = 50, IAS = 58A, VGS =10V. ISD 58A, di/dt 916A/s, VDD V(BR)DSS, TJ 175C. Pulse width 400s; duty cycle 2%. Coss eff. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS. Coss eff. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS. R is measured at TJ approximately 90C. Limited by TJmax, starting TJ = 25C, L = 1mH, RG = 50, IAS = 44A, VGS =10V. Final Datasheet 4 V1.0 2017-03-16 IR MOSFET-StrongIRFETTM IRF250P224 Electrical characteristics 3 Electrical characteristics Table 5 Static characteristics Parameter Symbol Conditions Drain-to-Source Breakdown Voltage V(BR)DSS VGS = 0V, ID = 1mA Breakdown Voltage Temp. Coefficient V(BR)DSS/TJ Reference to 25C, ID = 2.5mA Static Drain-to-Source On-Resistance RDS(on) VGS = 10V, ID = 58A Values Unit Typ. Max. V 0.14 V/C 9.0 12 m 2.0 4.0 V 1.0 A 100 Min. 250 - Gate Threshold Voltage VGS(th) Drain-to-Source Leakage Current IDSS Gate-to-Source Forward Leakage Gate Resistance IGSS RG VGS = 20V Symbol Conditions gfs Qg Qgs Qgd Qsync td(on) tr td(off) tf Ciss Coss Crss VDS = 50V, ID =58A VDD = 125V ID = 58A RG = 2.7 VGS = 10V VGS = 0V VDS = 50V = 1.0MHz, See Fig.7 Min. 112 - Coss eff.(ER) VGS = 0V, VDS = 0V to 200V - 725 - Coss eff.(TR) VGS = 0V, VDS = 0V to 200V - 1171 - Table 6 Forward Trans conductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain Charge Total Gate Charge Sync. (Qg- Qgd) Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance Reverse Transfer Capacitance Effective Output Capacitance (Energy Related) Output Capacitance (Time Related) - 1.3 100 - nA ID = 58A VDS = 125V VGS = 10V Values Typ. Max. 135 203 48 25 110 25 70 77 58 9915 1026 8.3 - Unit S nC ns pF Reverse Diode Parameter Continuous Source Current (Body Diode) Pulsed Source Current (Body Diode) Diode Forward Voltage Peak Diode Recovery dv/dt Symbol IS ISM VSD dv/dt Reverse Recovery Time trr Reverse Recovery Charge Qrr Reverse Recovery Current IRRM Final Datasheet VDS =200V,VGS = 0V,TJ =125C Dynamic characteristics Parameter Table 7 VDS = VGS, ID = 270A VDS =200V, VGS =0V Conditions MOSFET symbol showing the integral reverse p-n junction diode. Min. D - - 128 - - 512 - 24 135 200 419 1236 4.6 1.2 - G S TJ = 25C, IS = 58A,VGS = 0V TJ = 175C, IS = 58A,VDS = 250V TJ = 25C VDD = 213V TJ = 125C IF = 58A, TJ = 25C di/dt = 100A/s TJ = 125C TJ = 25C 5 Values Typ. Max. Unit A V V/ns ns nC A V1.0 2017-03-16 IR MOSFET-StrongIRFETTM IRF250P224 Electrical characteristic diagrams Electrical characteristic diagrams 1000 TOP I D, Drain-to-Source Current (A) 1000 VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V 100 BOTTOM VGS 15V 10V 8.0V 7.0V 6.0V 5.5V 5.0V 4.5V TOP I D, Drain-to-Source Current (A) 4 4.5V 10 100 BOTTOM 4.5V 10 60s PULSE WIDTH 60s PULSE WIDTH Tj = 25C Tj = 175C 1 1 0.1 1 10 100 0.1 VDS, Drain-to-Source Voltage (V) Figure 3 Figure 4 Typical Output Characteristics 100 Typical Output Characteristics 3.0 100 TJ = 175C TJ = 25C 10 1.0 VDS = 50V 60s PULSE WIDTH 0.10 2 3 4 5 6 7 I D = 58A 2.0 1.5 1.0 0.5 0.0 8 -60 Final Datasheet -20 20 60 100 140 180 TJ , Junction Temperature (C) VGS, Gate-to-Source Voltage (V) Typical Transfer Characteristics VGS = 10V 2.5 (Normalized) RDS(on) , Drain-to-Source On Resistance I D, Drain-to-Source Current (A) 10 VDS, Drain-to-Source Voltage (V) 1000 Figure 5 1 Figure 6 6 Normalized On-Resistance vs. Temperature V1.0 2017-03-16 IR MOSFET-StrongIRFETTM IRF250P224 Electrical characteristic diagrams VGS Ciss Crss Coss C, Capacitance (pF) 100000 14 = 0V, f = 1 MHZ = C gs + C gd, C ds SHORTED = C gd = C ds + C gd Ciss 10000 1000 Coss 100 I D= 58A 12 VGS, Gate-to-Source Voltage (V) 1000000 Crss 10 VDS= 200V VDS= 125V VDS= 50V 10 8 6 4 2 1 0 1 10 100 1000 0 20 40 VDS, Drain-to-Source Voltage (V) Figure 7 60 80 100 120 140 160 180 QG, Total Gate Charge (nC) Figure 8 Typical Capacitance vs. Drain-to-Source Voltage Typical Gate Charge vs. Gate-to-Source Voltage I SD, Reverse Drain Current (A) 1000 TJ = 175C 100 TJ = 25C 10 1 VGS = 0V 0.1 0.0 0.4 0.8 1.2 1.6 2.0 2.4 VSD, Source-to-Drain Voltage (V) Figure 9 Final Datasheet Typical Source-Drain Diode Forward Voltage 7 V1.0 2017-03-16 IR MOSFET-StrongIRFETTM IRF250P224 Electrical characteristic diagrams 1000 100sec I D, Drain-to-Source Current (A) 100 10 10msec OPERATION IN THIS AREA LIMITED BY R DS(on) 1 1msec DC 0.1 Tc = 25C Tj = 175C Single Pulse 0.01 0.1 1 10 100 VDS, Drain-to-Source Voltage (V) Maximum Safe Operating Area 21 300 Id = 2.5mA 18 290 15 280 Energy (J) V(BR)DSS, Drain-to-Source Breakdown Voltage (V) Figure 10 270 260 12 9 6 250 3 240 0 0 -60 -40 -20 0 20 40 60 80 100 120 140 160 180 TJ , Temperature ( C ) Figure 11 Final Datasheet Drain-to-Source Breakdown Voltage 50 100 150 200 250 300 VDS, Drain-to-Source Voltage (V) Figure 12 8 Typical Coss Stored Energy V1.0 2017-03-16 IR MOSFET-StrongIRFETTM IRF250P224 4.5 60 VGS = 5.5V VGS = 6.0V VGS = 7.0V VGS = 8.0V VGS = 10V 45 VGS(th), Gate threshold Voltage (V) RDS(on), Drain-to -Source On Resistance (m ) Electrical characteristic diagrams 30 15 4.0 3.5 3.0 2.5 I D = 270A ID = 2.7mA I D = 1.0A 2.0 1.5 1.0 0 0 25 50 75 100 125 150 175 -75 -50 -25 200 25 50 75 100 125 150 175 TJ , Temperature ( C ) I D, Drain Current (A) Figure 13 0 Typical On-Resistance vs. Drain Current Figure 14 Threshold Voltage vs. Temperature Thermal Response ( Z thJC ) C/W 1 0.1 D = 0.50 0.20 0.01 0.001 0.0001 1E-006 0.10 0.05 0.02 0.01 SINGLE PULSE ( THERMAL RESPONSE ) 1E-005 Notes: 1. Duty Factor D = t1/t2 2. Peak Tj = P dm x Zthjc + Tc 0.0001 0.001 0.01 0.1 t 1 , Rectangular Pulse Duration (sec) Figure 15 Final Datasheet Maximum Effective Transient Thermal Impedance, Junction-to-Case 9 V1.0 2017-03-16 IR MOSFET-StrongIRFETTM IRF250P224 Electrical characteristic diagrams Avalanche Current (A) 100 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 150C and Tstart =25C (Single Pulse) 10 1 Allowed avalanche Current vs avalanche pulsewidth, tav, assuming Tj = 25C and Tstart = 150C. 0.1 1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01 tav (sec) Figure 16 Avalanche Current vs. Pulse Width 900 TOP Single Pulse BOTTOM 1.0% Duty Cycle I D = 58A EAR , Avalanche Energy (mJ) 800 700 600 500 400 300 200 100 0 25 50 75 100 125 150 175 Notes on Repetitive Avalanche Curves , Figures 16, 17: (For further info, see AN-1005 at www.infineon.com) 1.Avalanche failures assumption: Purely a thermal phenomenon and failure occurs at a temperature far in excess of Tjmax. This is validated for every part type. 2. Safe operation in Avalanche is allowed as long asTjmax is not exceeded. 3. Equation below based on circuit and waveforms shown in Figures 23a, 23b. 4. PD (ave) = Average power dissipation per single avalanche pulse. 5. BV = Rated breakdown voltage (1.3 factor accounts for voltage increase during avalanche). 6. Iav = Allowable avalanche current. 7. DT = Allowable rise in junction temperature, not to exceed Tjmax (assumed as 25C in Figure 15, 16). tav = Average time in avalanche. D = Duty cycle in avalanche = tav *f ZthJC(D, tav) = Transient thermal resistance, see Figures 14) PD (ave) = 1/2 ( 1.3*BV*Iav) = T/ ZthJC Iav = 2T/ [1.3*BV*Zth] EAS (AR) = PD (ave)*tav Starting T J , Junction Temperature (C) Figure 17 Final Datasheet Maximum Avalanche Energy vs. Temperature 10 V1.0 2017-03-16 IR MOSFET-StrongIRFETTM IRF250P224 Electrical characteristic diagrams 80 70 I F = 38A 60 VR = 213V TJ = 25C TJ = 125C 50 60 50 40 IRRM (A) IRRM (A) 70 30 VR = 213V TJ = 25C TJ = 125C 40 30 20 20 10 10 0 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 diF /dt (A/s) diF /dt (A/s) Figure 18 Typical Recovery Current vs. dif/dt Figure 19 5000 Typical Recovery Current vs. dif/dt 6000 I F = 38A I F = 58A VR = 213V 4000 TJ = 25C TJ = 125C 3000 QRR (nC) QRR (nC) I F = 58A 2000 5000 VR = 213V 4000 TJ = 25C TJ = 125C 3000 2000 1000 1000 0 0 100 200 300 400 500 600 700 800 900 1000 100 200 300 400 500 600 700 800 900 1000 diF /dt (A/s) diF /dt (A/s) Figure 20 Final Datasheet Typical Stored Charge vs. dif/dt Figure 21 11 Typical Stored Charge vs. dif/dt V1.0 2017-03-16 IR MOSFET-StrongIRFETTM IRF250P224 Electrical characteristic diagrams Figure 22 Figure 23a Final Datasheet Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFETTM Power MOSFETs Unclamped Inductive Test Circuit Figure 23b 12 Unclamped Inductive Waveforms V1.0 2017-03-16 IR MOSFET-StrongIRFETTM IRF250P224 Electrical characteristic diagrams Figure 24a Figure 25a Final Datasheet Switching Time Test Circuit Gate Charge Test Circuit Figure 24b Figure 25b 13 Switching Time Waveforms Gate Charge Waveform V1.0 2017-03-16 IR MOSFET-StrongIRFETTM IRF250P224 Package Information 5 Package Information TO-247AC Package Outline (Dimensions are shown in millimeters (inches)) TO-247AC Part Marking Information EXAMPLE: THIS IS AN IRFPE30 WITH ASSEMBLY LOT CODE 5657 ASSEMBLED ON WW 35, 2001 IN THE ASSEMBLY LINE "H" Note: "P" in assembly line position indicates "Lead-Free" INTERNATIONAL RECTIFIER LOGO PART NUMBER IRFPE30 56 ASSEMBLY LOT CODE 135H 57 DATE CODE YEAR 1 = 2001 WEEK 35 LINE H TO-247AC package is not recommended for Surface Mount Application. Final Datasheet 14 V1.0 2017-03-16 IR MOSFET-StrongIRFETTM IRF250P224 Qualification Information 6 Qualification Information Qualification Information Industrial (per JEDEC JESD47F) Qualification Level Moisture Sensitivity Level TO-247AC RoHS Compliant N/A Yes Applicable version of JEDEC standard at the time of product release. Final Datasheet 15 V1.0 2017-03-16 IR MOSFET-StrongIRFETTM IRF250P224 Revision History Revision History Major changes since the last revision Page or Reference Revision All pages Final Datasheet 1.0 Date Description of changes 2017-03-16 First release data sheet. 16 V1.0 2017-03-16 Trademarks of Infineon Technologies AG HVICTM, IPMTM, PFCTM, AU-ConvertIRTM, AURIXTM, C166TM, CanPAKTM, CIPOSTM, CIPURSETM, CoolDPTM, CoolGaNTM, COOLiRTM, CoolMOSTM, CoolSETTM, CoolSiCTM, DAVETM, DI-POLTM, DirectFETTM, DrBladeTM, EasyPIMTM, EconoBRIDGETM, EconoDUALTM, EconoPACKTM, EconoPIMTM, EiceDRIVERTM, eupecTM, FCOSTM, GaNpowIRTM, HEXFETTM, HITFETTM, HybridPACKTM, iMOTIONTM, IRAMTM, ISOFACETM, IsoPACKTM, LEDrivIRTM, LITIXTM, MIPAQTM, ModSTACKTM, my-dTM, NovalithICTM, OPTIGATM, OptiMOSTM, ORIGATM, PowIRaudioTM, PowIRStageTM, PrimePACKTM, PrimeSTACKTM, PROFETTM, PRO-SILTM, RASICTM, REAL3TM, SmartLEWISTM, SOLID FLASHTM, SPOCTM, StrongIRFETTM, SupIRBuckTM, TEMPFETTM, TRENCHSTOPTM, TriCoreTM, UHVICTM, XHPTM, XMCTM Trademarks updated November 2015 Other Trademarks All referenced product or service names and trademarks are the property of their respective owners. IMPORTANT NOTICE Edition 2015-05-06 Published by Infineon Technologies AG 81726 Munich, Germany (c) 2016 Infineon Technologies AG. All Rights Reserved. Do you have a question about this document? Email: erratum@infineon.com Document reference The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie") . For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. WARNINGS Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with