D
S
G
G D S
Gate Drain Source
Applications
UPS and Inverter applications
Half-bridge and full-bridge topologies
Resonant mode power supplies
DC/DC and AC/DC converters
OR-ing and redundant power switches
Brushed and BLDC Motor drive applications
Battery powered circuits
Benefits
Improved Gate, Avalanche and Dynamic dv/dt Ruggedness
Fully Characterized Capacitance and Avalanche SOA
Enhanced body diode dv/dt and di/dt Capability
Pb-Free ; RoHS Compliant ; Halogen-Free
Base part number Package Type Standard Pack
Form Quantity
IRF250P224 TO-247AC Tube 25 IRF250P224
Orderable Part Number
VDSS 250V
RDS(on) typ. 9.0m
max 12m
ID 128A
TO-247AC
IRF250P224
G
D
S
D
Final Datasheet Please read the important Notice and Warnings at the end of this document V1.0
www.infineon.com 2017-03-16
IRF250P224
IR MOSFET - StrongIRFET

Figure 1 Typical On-Resistance vs. Gate Voltage Figure 2 Maximum Drain Current vs. Case Temperature
246810 12 14 16 18 20
VGS, Gate -to -Source Voltage (V)
0
6
12
18
24
30
36
42
RDS(on), Drain-to -Source On Resistance (m)
ID = 58A
TJ = 25°C
TJ = 125°C
25 50 75 100 125 150 175
TC , Case Temperature (°C)
0
20
40
60
80
100
120
140
ID, Drain Current (A)
Final Datasheet
2017-03-16
IR MOSFET-StrongIRFET™
IRF250P224
2V1.0
Table of Contents
Table of Contents
Applications …..………………………………………………………………………...……………..……………1
Benefits …..………………………………………………………………………...……………..…………….1
Ordering Table ….……………………………………………………………………………………………………1
Table of Contents ….………………………………………………………………………………………………...2
1 Parameters ………………………………………………………………………………………………3
2 Maximum ratings, Thermal, and Avalanche characteristics ………………………………………4
3 Electrical characteristics ………………………………………………………………………………5
4 Electrical characteristic diagrams ……………………………………………………………………6
Package Information ………………………………………………………………………………………………14
Qualification Information ……………………………………………………………………………………………15
Revision History …………………………………………………………………………………………..…………16
Final Datasheet
2017-03-16
IR MOSFET-StrongIRFET™
IRF250P224
3V1.0
1 Parameters
Table1 Key performance parameters
Parameter Values Units
VDS 250 V
RDS(on) max 12 m
ID 128 A
Parameters
Final Datasheet
2017-03-16
IR MOSFET-StrongIRFET™
IRF250P224
4V1.0
Table 2 Maximum ratings (at TJ=25°C, unless otherwise specified)
Parameter Symbol Values Unit
Continuous Drain Current ID 128
A
Continuous Drain Current ID 90
Pulsed Drain Current IDM 512
Maximum Power Dissipation PD 556 W
Linear Derating Factor 3.7 W/°C
Gate-to-Source Voltage VGS ± 20 V
Operating Junction and
Storage Temperature Range
TJ
TSTG -55 to + 175
°C
Soldering Temperature, for 10 seconds
(1.6mm from case) - 300
Mounting Torque, 6-32 or M3 Screw - 10 lbf·in (1.1 N·m) -
Conditions
TC = 25°C, VGS @ 10V
TC = 100°C, VGS @ 10V
TC = 25°C
TC = 25°C
TC = 25°C
-
-
-
-
Notes:

Repetitive rating; pulse width limited by max. junction temperature.
Limited by TJmax, starting TJ = 25°C, L = 0.505mH, RG = 50
, IAS = 58A, VGS =10V.

ISD
58A, di/dt
916A/µs, VDD

V(BR)DSS, TJ
175°C.

Pulse width
400µs; duty cycle
2%.
Coss e. (TR) is a fixed capacitance that gives the same charging time as Coss while VDS is rising from 0 to 80% VDSS.
Coss e. (ER) is a fixed capacitance that gives the same energy as Coss while VDS is rising from 0 to 80% VDSS.
R
is measured at TJ approximately 90°C.
Limited by TJmax, starting TJ = 25°C, L = 1mH, RG = 50
, IAS = 44A, VGS =10V.
Table 4 Avalanche characteristics
Parameter Symbol Values Unit
Single Pulse Avalanche Energy EAS (Thermally limited) 837
mJ
Single Pulse Avalanche Energy EAS (Thermally limited) 979
Avalanche Current IAR
See Fig 16, 17, 23a, 23b
A
Repetitive Avalanche Energy EAR mJ
Table 3 Thermal characteristics
Parameter Symbol Conditions Typ. Max. Unit
Junction-to-Case RJC TJ approximately 90°C - 0.27
°C/W Case-to-Sink, Flat Greased Surface RCS - 0.24 -
Junction-to-Ambient RJA - - 40
Min.
-
-
-
2 Maximum ratings and thermal characteristics
Maximum ratings and thermal characteristics
Final Datasheet
2017-03-16
IR MOSFET-StrongIRFET™
IRF250P224
5V1.0
D
S
G
Table 6 Dynamic characteristics
Parameter Symbol Conditions Values Unit
Min. Typ. Max.
Forward Trans conductance gfs VDS = 50V, ID =58A 112 - - S
Total Gate Charge Qg - 135 203
nC
Gate-to-Source Charge Qgs - 48 -
Gate-to-Drain Charge Qgd - 25 -
Total Gate Charge Sync. (Qg– Qgd) Qsync - 110 -
Turn-On Delay Time td(on) VDD = 125V - 25 -
ns
Rise Time tr ID = 58A - 70 -
Turn-O Delay Time td(o) RG = 2.7 - 77 -
Fall Time tf VGS = 10V - 58 -
Input Capacitance Ciss VGS = 0V - 9915 -
pF
Output Capacitance Coss VDS = 50V - 1026 -
Reverse Transfer Capacitance Crss ƒ = 1.0MHz, See Fig.7 - 8.3 -
Eective Output Capacitance
(Energy Related) Coss e.(ER) VGS = 0V, VDS = 0V to 200V - 725 -
Output Capacitance (Time Related) Coss e.(TR) VGS = 0V, VDS = 0V to 200V - 1171 -
ID = 58A
VDS = 125V
VGS = 10V
Table 7 Reverse Diode
Parameter Symbol Conditions Values Unit
Min. Typ. Max.
Continuous Source Current IS MOSFET symbol - - 128
A
(Body Diode) showing the
Pulsed Source Current integral reverse - - 512
(Body Diode) p-n junction diode.
Diode Forward Voltage VSD TJ = 25°C, IS = 58A,VGS = 0V - - 1.2 V
Peak Diode Recovery dv/dt dv/dt TJ = 175°C, IS = 58A,VDS = 250V - 24 - V/ns
Reverse Recovery Time trr
TJ = 25°C - 135 - ns
TJ = 125°C - 200 -
Reverse Recovery Charge Qrr
TJ = 25°C - 419 - nC
TJ = 125°C - 1236 -
Reverse Recovery Current IRRM TJ = 25°C - 4.6 - A
ISM
VDD = 213V
IF = 58A,
di/dt = 100A/µs
Table 5 Static characteristics
Parameter Symbol Conditions Values Unit
Min. Typ. Max.
Drain-to-Source Breakdown Voltage V(BR)DSS VGS = 0V, ID = 1mA 250 - - V
Breakdown Voltage Temp. Coeicient V(BR)DSS/TJ Reference to 25°C, ID = 2.5mA - 0.14 - V/°C
Static Drain-to-Source On-Resistance RDS(on) VGS = 10V, ID = 58A - 9.0 12 m
Gate Threshold Voltage VGS(th) VDS = VGS, ID = 270µA 2.0 - 4.0 V
Drain-to-Source Leakage Current IDSS VDS =200V, VGS =0V - - 1.0 µA
VDS =200V,VGS = 0V,TJ =125°C - - 100
Gate-to-Source Forward Leakage IGSS VGS = 20V - - 100 nA
Gate Resistance RG
- 1.3 - 
3 Electrical characteristics
Electrical characteristics
Final Datasheet
2017-03-16
IR MOSFET-StrongIRFET™
IRF250P224
6V1.0
Electrical characteristic diagrams
4 Electrical characteristic diagrams
Figure 3 Typical Output Characteristics Figure 4 Typical Output Characteristics
Figure 5 Typical Transfer Characteristics Figure 6 Normalized On-Resistance vs. Temperature


0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
60µs PULSE WIDTH
Tj = 25°C
4.5V
0.1 110 100
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
ID, Drain-to-Source Current (A)
VGS
TOP 15V
10V
8.0V
7.0V
6.0V
5.5V
5.0V
BOTTOM 4.5V
60µs PULSE WIDTH
Tj = 175°C
4.5V
2345678
VGS, Gate-to-Source Voltage (V)
0.10
1.0
10
100
1000
ID, Drain-to-Source Current (A)
TJ = 25°C
TJ = 175°C
VDS = 50V
60µs PULSE WIDTH
-60 -20 20 60 100 140 180
TJ , Junction Temperature (°C)
0.0
0.5
1.0
1.5
2.0
2.5
3.0
RDS(on) , Drain-to-Source On Resistance
(Normalized)
ID = 58A
VGS = 10V
Final Datasheet
2017-03-16
IR MOSFET-StrongIRFET™
IRF250P224
7V1.0
Electrical characteristic diagrams
Figure 7 Typical Capacitance vs. Drain-to-Source
Voltage
Figure 8 Typical Gate Charge vs. Gate-to-Source
Voltage
Figure 9 Typical Source-Drain Diode Forward
Voltage

110 100 1000
VDS, Drain-to-Source Voltage (V)
1
10
100
1000
10000
100000
1000000
C, Capacitance (pF)
VGS = 0V, f = 1 MHZ
Ciss = C gs + Cgd, Cds SHORTED
Crss = Cgd
Coss = Cds + Cgd
Coss
Crss
Ciss
0 20 40 60 80 100 120 140 160 180
QG, Total Gate Charge (nC)
0
2
4
6
8
10
12
14
VGS, Gate-to-Source Voltage (V)
ID= 58A
VDS= 200V
VDS= 125V
VDS= 50V
0.0 0.4 0.8 1.2 1.6 2.0 2.4
VSD, Source-to-Drain Voltage (V)
0.1
1
10
100
1000
ISD, Reverse Drain Current (A)
TJ = 25°C
TJ = 175°C
VGS = 0V
Final Datasheet
2017-03-16
IR MOSFET-StrongIRFET™
IRF250P224
8V1.0
Electrical characteristic diagrams
Figure 11 Drain-to-Source Breakdown Voltage Figure 12 Typical Coss Stored Energy

-60 -40 -20 020 40 60 80 100 120 140 160 180
TJ , Temperature ( °C )
240
250
260
270
280
290
300
V(BR)DSS, Drain-to-Source Breakdown Voltage (V)
Id = 2.5mA
0 50 100 150 200 250 300
VDS, Drain-to-Source Voltage (V)
0
3
6
9
12
15
18
21
Energy (µJ)
Figure 10 Maximum Safe Operating Area

0.1 1 10 100
VDS, Drain-to-Source Voltage (V)
0.01
0.1
1
10
100
1000
ID, Drain-to-Source Current (A)
Tc = 25°C
Tj = 175°C
Single Pulse
1msec
10msec
OPERATION IN THIS AREA
LIMITED BY RDS(on)
100µsec
DC
Final Datasheet
2017-03-16
IR MOSFET-StrongIRFET™
IRF250P224
9V1.0
Electrical characteristic diagrams
Figure 15 Maximum Eective Transient Thermal Impedance, Junction-to-Case
Figure 13 Typical On-Resistance vs. Drain
Current

Figure 14 Threshold Voltage vs. Temperature
025 50 75 100 125 150 175 200
ID, Drain Current (A)
0
15
30
45
60
RDS(on), Drain-to -Source On Resistance (m)
VGS = 5.5V
VGS = 6.0V
VGS = 7.0V
VGS = 8.0V
VGS = 10V
-75 -50 -25 025 50 75 100 125 150 175
TJ , Temperature ( °C )
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
VGS(th), Gate threshold Voltage (V)
ID = 270µA
ID = 2.7mA
ID = 1.0A
1E-006 1E-005 0.0001 0.001 0.01 0.1
t1 , Rectangular Pulse Duration (sec)
0.0001
0.001
0.01
0.1
1
Thermal Response ( Z thJC ) °C/W
0.20
0.10
D = 0.50
0.02
0.01
0.05
SINGLE PULSE
( THERMAL RESPONSE )
Notes:
1. Duty Factor D = t1/t2
2. Peak Tj = P dm x Zthjc + Tc
Final Datasheet
2017-03-16
IR MOSFET-StrongIRFET™
IRF250P224
10V1.0
Electrical characteristic diagrams
Figure 17 Maximum Avalanche Energy vs.
Temperature
Notes on Repetitive Avalanche Curves , Figures 16, 17:
(For further info, see AN-1005 at www.infineon.com)
1.Avalanche failures assumption:
Purely a thermal phenomenon and failure occurs at a
temperature far in excess of Tjmax. This is validated for every
part type.
2. Safe operation in Avalanche is allowed as long asTjmax is not
exceeded.
3. Equation below based on circuit and waveforms shown in
Figures 23a, 23b.
4. PD (ave) = Average power dissipation per single avalanche pulse.
5. BV = Rated breakdown voltage (1.3 factor accounts for voltage
increase during avalanche).
6. Iav = Allowable avalanche current.
7. DT = Allowable rise in junction temperature, not to exceed Tjmax
(assumed as 25°C in Figure 15, 16).
t
av = Average time in avalanche.
D = Duty cycle in avalanche = tav ·f
Z
thJC(D, tav) = Transient thermal resistance, see Figures 14)
PD (ave) = 1/2 ( 1.3·BV·Iav) = T/ ZthJC
I
av = 2T/ [1.3·BV·Zth]
E
AS (AR) = PD (ave)·tav
Figure 16 Avalanche Current vs. Pulse Width
1.0E-06 1.0E-05 1.0E-04 1.0E-03 1.0E-02 1.0E-01
tav (sec)
0.1
1
10
100
Avalanche Current (A)
Allowed avalanche Current vs
avalanche pulsewidth, tav, assuming
Tj = 25°C and Tstart = 150°C.
Allowed avalanche Current vs avalanche
pulsewidth, tav, assuming Tj = 150°C and
Tstart =25°C (Single Pulse)
25 50 75 100 125 150 175
Starting TJ , Junction Temperature (°C)
0
100
200
300
400
500
600
700
800
900
EAR , Avalanche Energy (mJ)
TOP Single Pulse
BOTTOM 1.0% Duty Cycle
ID = 58A
Final Datasheet
2017-03-16
IR MOSFET-StrongIRFET™
IRF250P224
11V1.0
Electrical characteristic diagrams
Figure 18 Typical Recovery Current vs. dif/dt Figure 19 Typical Recovery Current vs. dif/dt
Figure 20 Typical Stored Charge vs. dif/dt

Figure 21 Typical Stored Charge vs. dif/dt

100 200 300 400 500 600 700 800 900 1000
diF /dt (A/µs)
0
10
20
30
40
50
60
70
IRRM (A)
IF = 38A
VR = 213V
TJ = 25°C
TJ = 125°C
100 200 300 400 500 600 700 800 900 1000
diF /dt (A/µs)
0
10
20
30
40
50
60
70
80
IRRM (A)
IF = 58A
VR = 213V
TJ = 25°C
TJ = 125°C
100 200 300 400 500 600 700 800 900 1000
diF /dt (A/µs)
0
1000
2000
3000
4000
5000
QRR (nC)
IF = 38A
VR = 213V
TJ = 25°C
TJ = 125°C
100 200 300 400 500 600 700 800 900 1000
diF /dt (A/µs)
0
1000
2000
3000
4000
5000
6000
QRR (nC)
IF = 58A
VR = 213V
TJ = 25°C
TJ = 125°C
Final Datasheet
2017-03-16
IR MOSFET-StrongIRFET™
IRF250P224
12V1.0
Electrical characteristic diagrams
Figure 22 Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET™ Power MOSFETs
Figure 23a Unclamped Inductive Test Circuit
Figure 23b Unclamped Inductive Waveforms
Final Datasheet
2017-03-16
IR MOSFET-StrongIRFET™
IRF250P224
13V1.0
Electrical characteristic diagrams
Figure 24a Switching Time Test Circuit Figure 24b Switching Time Waveforms
Figure 25a Gate Charge Test Circuit Figure 25b Gate Charge Waveform
Final Datasheet
2017-03-16
IR MOSFET-StrongIRFET™
IRF250P224
14V1.0
TO-247AC Package Outline (Dimensions are shown in millimeters (inches))
TO-247AC package is not recommended for Surface Mount Application.
TO-247AC Part Marking Information
YEAR 1 = 2001
DATE CODE
PART NUMBER
INTERNATIONAL
LOGO
RECTIFIER
ASSEMBLY
56 57
IRFPE30
135H
LINE H
indicates "Lead-Free" WEEK 35
LOT CODE
IN THE ASSEMBLY LINE "H"
ASSEMBLED ON WW 35, 2001
Note: "P" in assembly line position
EXAMPLE:
WITH ASSEMBLY
THIS IS AN IRFPE30
LOT CODE 5657
Package Information
5 Package Information
Final Datasheet
2017-03-16
IR MOSFET-StrongIRFET™
IRF250P224
15V1.0
Applicable version of JEDEC standard at the time of product release.
Qualification Information
Qualification Level Industrial
(per JEDEC JESD47F)
Moisture Sensitivity Level TO-247AC N/A
RoHS Compliant Yes
Qualification Information
6 Qualification Information
Final Datasheet
2017-03-16
IR MOSFET-StrongIRFET™
IRF250P224
16V1.0
Revision History
Revision History
Major changes since the last revision
Page or Reference Revision Date Description of changes
All pages 1.0 2017-03-16  First release data sheet.
Trademarks of Infineon Technologies AG
µHVIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolDP™, CoolGaN™, COOLiR™, CoolMOS™, CoolSET™, CoolSiC™,
DAVE™, DI-POL™, DirectFET™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™,
HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIC™, OPTIGA™,
OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™,
SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™
Trademarks updated November 2015
Other Trademarks
All referenced product or service names and trademarks are the property of their respective owners.
IMPORTANT NOTICE
The information given in this document shall in no
event be regarded as a guarantee of conditions or
characteristics (“Beschaenheitsgarantie”) .
With respect to any examples, hints or any typical
values stated herein and/or any information
regarding the application of the product, Infineon
Technologies hereby disclaims any and all
warranties and liabilities of any kind, including
without limitation warranties of non-infringement of
intellectual property rights of any third party.
In addition, any information given in this document
is subject to customer’s compliance with its
obligations stated in this document and any
applicable legal requirements, norms and standards
concerning customer’s products and any use of the
product of Infineon Technologies in customer’s
applications.
The data contained in this document is exclusively
intended for technically trained sta. It is the
responsibility of customer’s technical departments
to evaluate the suitability of the product for the
intended application and the completeness of the
product information given in this document with
For further information on the product, technology,
delivery terms and conditions and prices please
contact your nearest Infineon Technologies oice
(www.infineon.com).
WARNINGS
Due to technical requirements products may contain
dangerous substances. For information on the types
in question please contact your nearest Infineon
Technologies oice.
Except as otherwise explicitly approved by Infineon
Technologies in a written document signed by
authorized representatives of Infineon Technologies,
Infineon Technologies’ products may not be used in
any applications where a failure of the product or
any consequences of the use thereof can reasonably
be expected to result in personal injury.
Edition 2015-05-06
Published by
Infineon Technologies AG
81726 Munich, Germany

© 2016 Infineon Technologies AG.
All Rights Reserved.

Do you have a question about this
document?
Email: erratum@infineon.com
Document reference