Device Operating
Temperature Range Package


DUAL/QUAD
LOW NOISE
OPERATIONAL AMPLIFIERS
ORDERING INFORMATION
MC33078D
MC33078P TA = –40° to +85°C
SO–8
Plastic DIP
Order this document by MC33078/D
)
*
)
*
*
)
*
)
(Dual, Top View)
4
VEE
D SUFFIX
PLASTIC PACKAGE
CASE 751A
(SO–14)
P SUFFIX
PLASTIC PACKAGE
CASE 646
D SUFFIX
PLASTIC PACKAGE
CASE 751
(SO–8)
P SUFFIX
PLASTIC PACKAGE
CASE 626
11
88
14 1
14 1
DUAL
1
2
3
5
6
7
8VCC
Output 2
Inputs 2
Inputs 1
+1
+
2
Output 1
(Quad, Top View)
1
2
3
4
5
6
7
14
8
9
10
11
12
13
Output 1
VCC
Output 4
Inputs 4
Output 2
VEE
Inputs 3
Output 3
14
23
Inputs 1
Inputs 2
PIN CONNECTIONS
PIN CONNECTIONS
QUAD
MC33079D
MC33079P SO–14
Plastic DIP
1
MOTOROLA ANALOG IC DEVICE DATA
  
 
The MC33078/9 series is a family of high quality monolithic amplifiers
employing Bipolar technology with innovative high performance concepts for
quality audio and data signal processing applications. This family
incorporates the use of high frequency PNP input transistors to produce
amplifiers exhibiting low input voltage noise with high gain bandwidth
product and slew rate. The all NPN output stage exhibits no deadband
crossover distortion, large output voltage swing, excellent phase and gain
margins, low open loop high frequency output impedance and symmetrical
source and sink AC frequency performance.
The MC33078/9 family offers both dual and quad amplifier versions,
tested over the automotive temperature range and available in the plastic
DIP and SOIC packages (P and D suffixes).
Dual Supply Operation: ±5.0 V to ±18 V
Low Voltage Noise: 4.5 nV/ Hz
Ǹ
Low Input Offset Voltage: 0.15 mV
Low T.C. of Input Offset Voltage: 2.0 µV/°C
Low Total Harmonic Distortion: 0.002%
High Gain Bandwidth Product: 16 MHz
High Slew Rate: 7.0 V/µs
High Open Loop AC Gain: 800 @ 20 kHz
Excellent Frequency Stability
Large Output Voltage Swing: +14.1 V/ –14.6 V
ESD Diodes Provided on the Inputs
Representative Schematic Diagram
(Each Amplifier)
VCC
D1 Q4 Q9
Q3 Q5 Pos D3
C2 R7 Q11
Neg
R2
Q8 D4 C3 R9
Q10
Q2 D2
Q6
R4
Q7 Q5
R6 Q12
R3
C1
R1
Q1
Z1
J1 Amplifier
Biasing
VEE
Q3
Vout
Motorola, Inc. 1996 Rev 0
MC33078 MC33079
2MOTOROLA ANALOG IC DEVICE DATA
MAXIMUM RATINGS
Rating Symbol Value Unit
Supply Voltage (VCC to VEE) VS+36 V
Input Differential Voltage Range VIDR (Note 1) V
Input Voltage Range VIR (Note 1) V
Output Short Circuit Duration (Note 2) tSC Indefinite sec
Maximum Junction Temperature TJ+150 °C
Storage Temperature Tstg 60 to +150 °C
Maximum Power Dissipation PD(Note 2) mW
NOTES: 1.Either or both input voltages must not exceed the magnitude of VCC or VEE.
2. Power dissipation must be considered to ensure maximum junction temperature
(TJ) is not exceeded (see Figure 1).
DC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristics Symbol Min Typ Max Unit
Input Offset Voltage (RS = 10 , VCM = 0 V, VO = 0 V)
(MC33078)TA = +25°C
TA = –40° to +85°C
(MC33079)TA = +25°C
TA = –40° to +85°C
|VIO|
0.15
0.15
2.0
3.0
2.5
3.5
mV
Average Temperature Coefficient of Input Offset Voltage
RS = 10 , VCM = 0 V, VO = 0 V, TA = Tlow to Thigh VIO/T 2.0 µV/°C
Input Bias Current (VCM = 0 V, VO = 0 V)
TA = +25°C
TA = –40° to +85°C
IIB
300
750
800
nA
Input Offset Current (VCM = 0 V, VO = 0 V)
TA = +25°C
TA = –40° to +85°C
IIO
25
150
175
nA
Common Mode Input Voltage Range (VIO = 5.0 mV, VO = 0 V) VICR ±13 ±14 V
Large Signal Voltage Gain (VO = ±10 V, RL = 2.0 k)
TA = +25°C
TA = –40° to +85°C
AVOL 90
85 110
dB
Output Voltage Swing (VID = ±1.0V)
RL = 600
RL = 600
RL = 2.0 k
RL = 2.0 k
RL = 10 k
RL = 10 k
VO+
VO
VO+
VO
VO+
VO
+13.2
+13.5
+10.7
–11.9
+13.8
–13.7
+14.1
–14.6
–13.2
–14
V
Common Mode Rejection (Vin = ±13V) CMR 80 100 dB
Power Supply Rejection (Note 3)
VCC/VEE = +15 V/ –15 V to +5.0 V/ –5.0 V PSR 80 105 dB
Output Short Circuit Current (VID = 1.0 V, Output to Ground)
Source
Sink
ISC +15
–20 +29
–37
mA
Power Supply Current (VO = 0 V, All Amplifiers)
(MC33078) TA = +25°C
(MC33078) TA = –40° to +85°C
(MC33079) TA = +25°C
(MC33079) TA = –40° to +85°C
ID
4.1
8.4
5.0
5.5
10
11
mA
NOTE: 3. Measured with VCC and VEE differentially varied simultaneously .
MC33078 MC33079
3
MOTOROLA ANALOG IC DEVICE DATA
AC ELECTRICAL CHARACTERISTICS (VCC = +15 V, VEE = –15 V, TA = 25°C, unless otherwise noted.)
Characteristics Symbol Min Typ Max Unit
Slew Rate (Vin = –10 V to +10 V, RL = 2.0 k, CL = 100 pF AV = +1.0) SR 5.0 7.0 V/µs
Gain Bandwidth Product (f = 100 kHz) GBW 10 16 MHz
Unity Gain Frequency (Open Loop) fU 9.0 MHz
Gain Margin (RL = 2.0 k)C
L
= 0 pF
CL = 100 pF Am
–11
6.0 dB
Phase Margin (RL = 2.0 k)C
L
= 0 pF
CL = 100 pF φm
55
40 Degree
s
Channel Separation (f = 20 Hz to 20 kHz) CS –120 dB
Power Bandwidth (VO = 27 Vpp, RL = 2.0 k, THD 1.0%) BWp 120 kHz
Distortion (RL = 2.0 k, f = 20 Hz to 20 kHz, VO = 3.0 Vrms, AV = +1.0) THD 0.002 %
Open Loop Output Impedance (VO = 0 V, f = 9.0 MHz) |ZO| 37
Differential Input Resistance (VCM = 0 V) RIN 175 k
Differential Input Capacitance (VCM = 0 V) CIN 12 pF
Equivalent Input Noise Voltage (RS = 100 , f = 1.0 kHz) en 4.5 nV/ Hz
Equivalent Input Noise Current (f = 1.0 kHz) in 0.5 pA/ Hz
VCM = 0 V
TA = 25
°
C
Figure 1. Maximum Power Dissipation
versus Temperature Figure 2. Input Bias Current versus
Supply Voltage
Figure 3. Input Bias Current versus Temperature Figure 4. Input Offset Voltage versus Temperature
P , MAXIMUM POWER DISSIPATION (mW)
D
–20 0 20 40 60 80 100 120 140 160
TA, AMBIENT TEMPERATURE (
°
C)
–55 –40
MC33078P & MC33079P
MC33079D
MC33078D
5.0 10 15 20
VCC, | VEE |, SUPPLY VOLTAGE (V)
I , INPUT BIAS CURRENT (nA)
IB
TA, AMBIENT TEMPERATURE (
°
C)
0 25 50 75 100 125–55 –25
VCC = +15 V
VEE = –15 V
VCM = 0 V
V , INPUT OFFSET VOLT AGE (mV)
IO
TA, AMBIENT TEMPERATURE (
°
C)
–55 –25 0 25 50 75 100 125
Unit 1
Unit 2
Unit 3
VCC = +15 V
VEE = –15 V
RS = 10
VCM = 0 V
AV = +1
I , INPUT BIAS CURRENT (nA)
IB
2400
2000
1600
1200
800
400
0
800
600
400
200
0
1000
800
600
400
200
0
2.0
1.0
0
–1.0
–2.0
MC33078 MC33079
4MOTOROLA ANALOG IC DEVICE DATA
Sink
Source
VCC = +15 V
VEE = –15 V
RL < 100
VID = 1.0 V
–55
°
C
25
°
CVCC = +15 V
VEE = –15 V
125
°
C
–55
°
C
125
°
C
25
°
C
Figure 5. Input Bias Current versus
Common Mode Voltage Figure 6. Input Common Mode Voltage
Range versus Temperature
Figure 7. Output Saturation Voltage versus
Load Resistance to Ground Figure 8. Output Short Circuit Current
versus Temperature
Figure 9. Supply Current versus Temperature Figure 10. Common Mode Rejection
versus Frequency
I , INPUT BIAS CURRENT (nA)
IB
–15 –10 5.0 0 5.0 10 15
VCM, COMMON MODE VOLTAGE (V)
VCC = +15 V
VEE = –15 V
TA = 25
°
C
VICR
Voltage
Range
–VCM
55 25 0 25 50 75 100 125
TA, AMBIENT TEMPERATURE (
°
C)
+VCM VCC = +3.0 V to +15 V
VEE = –3.0 V to –15 V
VIO = 5.0 mV
VO = 0 V
| I |, OUTPUT SHORT CIRCUIT CURRENT (mA)
SC
TA, AMBIENT TEMPERATURE (
°
C)
55 25 0 25 50 75 100 125
I , SUPPLY CURRENT (mA)
CC
TA, AMBIENT TEMPERATURE (
°
C)
55 25 0 25 50 75 100 125
±
10 V
±
15 V
±
15 V
±
10 V
±
5.0 V
±
5.0 V
VCM = 0 V
RL =
VO = 0 V
MC33078
MC33079
Supply Voltages
CMR, COMMON MODE REJECTION (dB)
100 1.0 k 10 k 100 k 1.0 M 10 M
f, FREQUENCY (Hz)
VCC = +15 V
VEE = –15 V
VCM = 0 V
VCM =
±
1.5 V
TA = 25
°
C
, OUTPUT SATURATION VOLTAGE (V)
sat
RL, LOAD RESISTANCE TO GROUND (k
)
0 1.0 2.0 3.0 4.0
, INPUT COMMON MODE VOLT AGE RANGE (V)
V
600
500
400
300
200
100
0
VCC –0
VCC –0.5
VCC –1.0
VCC –1.5
VEE +1.5
VEE +1.0
VEE +0.5
VEE +0
50
30
20
10
40
10
8.0
6.0
4.0
2.0
0
160
140
120
100
80
60
40
20
VCC –1.0
VCC –3.0
VCC –5.0
VEE +5.0
VEE +3.0
VEE +1.0
CMR = 20Log
+
VCM ADM
VCM
VO
×
ADM
VO
MC33078 MC33079
5
MOTOROLA ANALOG IC DEVICE DATA
VO, OUTPUT VOLTAGE (V )
pp
RL = 2.0 k
f
10 Hz
VO = 2/3 (VCC –VEE)
TA = 25
°
C
RL = 10 k
CL = 0 pF
f = 100 kHz
TA = 25
°
C
Figure 11. Power Supply Rejection
versus Frequency Figure 12. Gain Bandwidth Product
versus Supply Voltage
Figure 13. Gain Bandwidth Product
versus Temperature Figure 14. Maximum Output Voltage
versus Supply Voltage
Figure 15. Output Voltage versus Frequency Figure 16. Open Loop Voltage Gain
versus Supply Voltage
f, FREQUENCY (Hz)
PSR, POWER SUPPLY REJECTION (dB)
100 1.0 k 10 k 100 k 1.0 M 10 M
+PSR
–PSR
VCC = +15 V
VEE = –15 V
TA = 25
°
C
VCC |VEE| , SUPPLY VOLTAGE (V)
GWB, GAIN BANDWIDTH PRODUCT (MHz)
5.0 10 15 20
TA, AMBIENT TEMPERATURE (
°
C)
GWB, GAIN BANDWIDTH PRODUCT (MHz)
–55 –25 0 50 75 10025 125
VCC = +15 V
VEE = –15 V
f = 100 kHz
RL = 10 k
CL = 0 pF
VCC |VEE| , SUPPLY VOLTAGE (V)
V , OUTPUT VOLTAGE (Vp)
O
5.0 10 15 20
VO
VO +
TA = 25
°
C
RL = 10 k
RL = 10 k
RL = 2.0 k
RL = 2.0 k
f, FREQUENCY (Hz)
10 100 1.0 k 10 k 100 k 1.0 M 10 M
VCC = +15 V
VCC = –15 V
RL = 2.0 k
AV = +1.0
THD
1.0%
TA = 25
°
C
VCC |VEE| , SUPPLY VOLTAGE (V)
VOL
A , OPEN LOOP VOLTAGE GAIN (dB)
5.0 10 15 20
140
120
100
80
60
40
20
0
30
20
10
0
20
15
10
5.0
0
20
15
10
5.0
0
–5.0
–10
–15
–20
35
30
25
20
15
10
5.0
0
110
100
90
80
+PSR = 20Log
VO/ADM
VCC
ADM
+
VO
VEE
–PSR = 20Log
VO/ADM
VCC
VCC
MC33078 MC33079
6MOTOROLA ANALOG IC DEVICE DATA
VOL
A , OPEN LOOP VOLTAGE GAIN (dB)
Figure 17. Open Loop Voltage Gain
versus Temperature Figure 18. Output Impedance
versus Frequency
Figure 19. Channel Separation
versus Frequency Figure 20. Total Harmonic Distortion
versus Frequency
Figure 21. Total Harmonic Distortion
versus Output Voltage Figure 22. Slew Rate versus Supply Voltage
TA, AMBIENT TEMPERATURE (
°
C)
–55 –25 0 25 50 75 100 125
VCC = +15 V
VEE = –15 V
RL = 2.0 k
f
10 Hz
VO = –10 V to +10 V
f, FREQUENCY (Hz)
| Z |, OUTPUT IMPEDANCE ( )
1.0 k 10 k 100 k 1.0 M 10 M
O
VCC = +15 V
VEE = –15 V
VO = 0 V
TA = 25
°
C
AV = 1000 AV = 100 AV = 10 AV = 1.0
f, FREQUENCY (Hz)
CS, CHANNEL SEP ARATION (dB)
CS = 20 Log
VOA
VOM
10 100 1.0 k 100 k10 k
Drive Channel
VCC = +15 V
VEE = –15 V
RL = 2.0 K
VOD = 20 Vpp
TA = 25
°
C
MC33078
MC33079
f, FREQUENCY (Hz)
THD, TOTAL HARMONIC DIST OR TION (%)
10 100 1.0 k 10 k 100 k
VCC = +15 V
VEE = –15 V
VO = 1.0 Vrms
TA = 25
°
C
VO, OUTPUT VOLTAGE (Vrms)
THD, TOTAL HARMONIC DIST OR TION (%)
0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0
VCC = +15 V
VEE = –15 V
f = 2.0 kHz
TA = 25
°
C
AV = 1000
AV = 100
AV = 10
AV = 1.0
VCC |VEE| , SUPPLY VOLTAGE (V)
Falling
5.0 10 15 20
SR, SLEW RATE (V/ s)
µ
Vin = 2/3 (VCC –VEE)
TA = 25
°
C
Rising
110
105
100
95
90
50
40
30
20
10
0
160
150
140
130
120
110
100
1.0
0.1
0.01
0.001
1.0
0.5
0.1
0.05
0.01
0.005
0.001
10
8.0
6.0
4.0
2.0
0
10 k
VOM
Measurement Channel
+
100
100
VO
2.0 k
+
Vin VO
2.0 k
+
RA
Vin 2.0 k
VO
+
10 k
MC33078 MC33079
7
MOTOROLA ANALOG IC DEVICE DATA
25
°
C
–55
°
C
125
°
C
VCC = +15 V
VEE = –15 V
Vin = 100 mV
Vin VO
CL
+
VCC = +15 V
VEE = –15 V
VO = 0 V
Phase
Gain
125
°
C
–55
°
C25
°
C
25
°
C–55
°
C
125
°
C
Vin VO
CL
2.0 k
+
Gain Phase
VCC = +15 V
VEE = –15 V
RL = 2.0 k
TA = 25
°
C
Figure 23. Slew Rate versus Temperature Figure 24. Voltage Gain and Phase
versus Frequency
Figure 25. Open Loop Gain Margin and
Phase Margin versus Load Capacitance Figure 26. Overshoot versus Output
Load Capacitance
Figure 27. Input Referred Noise Voltage and
Current versus Frequency Figure 28. Total Input Referred Noise Voltage
versus Source Resistance
SR, SLEW RATE (V/ s)
µ
VCC = +15 V
VEE = –15 V
Vin = 20 V
TA, AMBIENT TEMPERATURE (
°
C)
Falling
Rising
–55 –25 0 25 50 75 100 125
f, FREQUENCY (Hz)
VOL
A , OPEN LOOP VOLTAGE GAIN (dB)
1.0 10 100 1.0 k 10 k 100 k 1.0 M 10 M
0
45
90
135
180
, EXCESS PHASE (DEGREES)
φ
A , OPEN LOOP GAIN MARGIN (dB)
m
1 10 100 1000
0
10
20
30
40
50
60
φ
, PHASE MARGIN (DEGREES)
m
70
CL, OUTPUT LOAD CAPACITANCE (pF) CL, OUTPUT LOAD CAPACITANCE (pF)
10 100 1.0 k 10 k
os, OVERSHOOT (%)
10 100 1.0 k 10 k 100 k
10
0.1
f, FREQUENCY (Hz)
e , INPUT REFERRED NOISE VOLT AGE ( )
n
nV/ Hz
VCC = +15 V
VEE = –15 V
TA = 25
°
C
Voltage
Current
pA/ Hz
nV/ Hz
RS, SOURCE RESISTANCE (
)
i
, REFERRED NOISE VOLTAGE (
n
VCC = +15 V
VEE = –15 V
f = 1.0 kHz
TA = 25
°
C
Vn(total) =
10 100 1.0 k 10 k 100 k 1.0 M
, INPUT REFERRED NOISE CURRENT ( )
n
V)
10
8.0
6.0
4.0
2.0
120
100
80
60
40
20
0
14
12
10
8.0
6.0
4.0
2.0
0
100
80
60
40
20
0
100
80
50
30
20
10
8.0
5.0
3.0
2.0
1.0
1000
100
10
1.0
Vin VO
2.0 k
+
(inRs)2
)
en2
)
4KTRS
Ǹ
MC33078 MC33079
8MOTOROLA ANALOG IC DEVICE DATA
+
Phase
Gain
R1
R2
VO
VCC = +15 V
VEE = –15 V
RT = R1 +R2
AV = +100
VO = 0 V
TA = 25
°
C
Figure 29. Phase Margin and Gain Margin versus
Differential Source Resistance
Figure 30. Inverting Amplifier Slew Rate Figure 31. Noninverting Amplifier Slew Rate
Figure 32. Noninverting Amplifier Overshoot Figure 33. Low Frequency Noise Voltage
versus Time
, PHASE MARGIN (DEGREES)
A , GAIN MARGIN (dB)
RT, DIFFERENTIAL SOURCE RESIST ANCE (
)
φ
m
10 100 1.0 k 10 k 100 k
VCC = +15 V
VEE = –15 V
AV = –1.0
RL = 2.0 k
CL = 100 pF
TA = 25
°
C
V , OUTPUT VOLTAGE (5.0 V/DIV)
O
t, TIME (2.0
µ
s/DIV)
VCC = +15 V
VEE = –15 V
AV = +1.0
RL = 2.0 k
CL = 100 pF
TA = 25
°
C
V , OUTPUT VOLTAGE (5.0 V/DIV)
O
t, TIME (2.0
µ
s/DIV)
VCC = +15 V
VEE = –15 V
RL = 2.0 k
CL = 100 pF
AV = +1.0
TA = 25
°
C
V , OUTPUT VOLTAGE (5.0 V/DIV)
O
t, TIME (200
µ
s/DIV)
e , INPUT NOISE VOLTAGE (100 nV/DIV)
n
t, TIME (1.0 sec/DIV)
m
14
12
10
8.0
6.0
4.0
2.0
0
70
60
50
40
30
20
10
0
VCC = +15 V
VEE = –15 V
BW = 0.1 Hz to 10 Hz
TA = 25
°
C
MC33078 MC33079
9
MOTOROLA ANALOG IC DEVICE DATA
Figure 34. Voltage Noise Test Circuit
(0.1 Hz to 10 Hzp–p)
+
0.1
µ
F
10
100 k
2.0 k
4.7
µ
F
Voltage Gain = 50,000
Scope
×
1
Rin = 1.0 M
1/2
MC33078
+
D.U.T.
100 k
0.1
µ
F
2.2
µ
F
22
µ
F
24.3 k
4.3 k
110 k
Note: All capacitors are non–polarized.
MC33078 MC33079
10 MOTOROLA ANALOG IC DEVICE DATA
P SUFFIX
PLASTIC PACKAGE
CASE 626–05
ISSUE K
D SUFFIX
PLASTIC PACKAGE
CASE 751–05
(SO–8)
ISSUE R
OUTLINE DIMENSIONS
NOTES:
1. DIMENSION L TO CENTER OF LEAD WHEN
FORMED PARALLEL.
2. PACKAGE CONTOUR OPTIONAL (ROUND OR
SQUARE CORNERS).
3. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
14
58
F
NOTE 2 –A–
–B–
–T–
SEATING
PLANE
H
J
GDK
N
C
L
M
M
A
M
0.13 (0.005) B M
T
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A9.40 10.16 0.370 0.400
B6.10 6.60 0.240 0.260
C3.94 4.45 0.155 0.175
D0.38 0.51 0.015 0.020
F1.02 1.78 0.040 0.070
G2.54 BSC 0.100 BSC
H0.76 1.27 0.030 0.050
J0.20 0.30 0.008 0.012
K2.92 3.43 0.115 0.135
L7.62 BSC 0.300 BSC
M––– 10 ––– 10
N0.76 1.01 0.030 0.040
__
SEATING
PLANE
14
58
A0.25 MCBSS
0.25 MBM
h
q
C
X 45
_
L
DIM MIN MAX
MILLIMETERS
A1.35 1.75
A1 0.10 0.25
B0.35 0.49
C0.18 0.25
D4.80 5.00
E1.27 BSCe3.80 4.00
H5.80 6.20
h
0 7
L0.40 1.25
q
0.25 0.50
__
NOTES:
1. DIMENSIONING AND TOLERANCING PER ASME
Y14.5M, 1994.
2. DIMENSIONS ARE IN MILLIMETERS.
3. DIMENSION D AND E DO NOT INCLUDE MOLD
PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 PER SIDE.
5. DIMENSION B DOES NOT INCLUDE MOLD
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 TOTAL IN EXCESS
OF THE B DIMENSION AT MAXIMUM MATERIAL
CONDITION.
D
EH
A
Be
B
A1
CA
0.10
MC33078 MC33079
11
MOTOROLA ANALOG IC DEVICE DATA
P SUFFIX
PLASTIC PACKAGE
CASE 646–06
ISSUE L
D SUFFIX
PLASTIC PACKAGE
CASE 751A–03
(SO–14)
ISSUE F
OUTLINE DIMENSIONS
NOTES:
1. LEADS WITHIN 0.13 (0.005) RADIUS OF TRUE
POSITION AT SEATING PLANE AT MAXIMUM
MATERIAL CONDITION.
2. DIMENSION L TO CENTER OF LEADS WHEN
FORMED PARALLEL.
3. DIMENSION B DOES NOT INCLUDE MOLD
FLASH.
4. ROUNDED CORNERS OPTIONAL.
17
14 8
B
A
F
HG D K
C
N
L
J
M
SEATING
PLANE
DIM MIN MAX MIN MAX
MILLIMETERSINCHES
A0.715 0.770 18.16 19.56
B0.240 0.260 6.10 6.60
C0.145 0.185 3.69 4.69
D0.015 0.021 0.38 0.53
F0.040 0.070 1.02 1.78
G0.100 BSC 2.54 BSC
H0.052 0.095 1.32 2.41
J0.008 0.015 0.20 0.38
K0.115 0.135 2.92 3.43
L0.300 BSC 7.62 BSC
M0 10 0 10
N0.015 0.039 0.39 1.01
____
NOTES:
1. DIMENSIONING AND TOLERANCING PER ANSI
Y14.5M, 1982.
2. CONTROLLING DIMENSION: MILLIMETER.
3. DIMENSIONS A AND B DO NOT INCLUDE
MOLD PROTRUSION.
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)
PER SIDE.
5. DIMENSION D DOES NOT INCLUDE DAMBAR
PROTRUSION. ALLOWABLE DAMBAR
PROTRUSION SHALL BE 0.127 (0.005) TOTAL
IN EXCESS OF THE D DIMENSION AT
MAXIMUM MATERIAL CONDITION.
–A–
–B–
G
P7 PL
14 8
71 M
0.25 (0.010) B M
S
B
M
0.25 (0.010) A S
T
–T–
F
RX 45
SEATING
PLANE
D14 PL K
C
J
M
_
DIM MIN MAX MIN MAX
INCHESMILLIMETERS
A8.55 8.75 0.337 0.344
B3.80 4.00 0.150 0.157
C1.35 1.75 0.054 0.068
D0.35 0.49 0.014 0.019
F0.40 1.25 0.016 0.049
G1.27 BSC 0.050 BSC
J0.19 0.25 0.008 0.009
K0.10 0.25 0.004 0.009
M0 7 0 7
P5.80 6.20 0.228 0.244
R0.25 0.50 0.010 0.019
____
MC33078 MC33079
12 MOTOROLA ANALOG IC DEVICE DATA
Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation consequential or incidental damages. “Typical” parameters which may be provided in Motorola
data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals”
must be validated for each customer application by customer’s technical experts. Motorola does not convey any license under its patent rights nor the rights of
others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other
applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury
or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola
and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees
arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that
Motorola was negligent regarding the design or manufacture of the part. Motorola and are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal
Opportunity/Af firmative Action Employer .
How to reach us:
USA/EUROPE/Locations Not Listed: Motorola Literature Distribution; JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, 6F Seibu–Butsuryu–Center ,
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 or 602–303–5454 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–81–3521–8315
MFAX: RMF AX0@email.sps.mot.com – TOUCHT ONE 602–244–6609 ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,
INTERNET: http://Design–NET.com 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298
MC33078/D
*MC33078/D*