Document Number: MC34VR500
Rev. 9.0, 1/2019
NXP Semiconductors
Advance Information
* This document contains certain information on a new product.
Specifications and information herein are subject to change without notice.
© NXP B.V. 2019.
Multi-output DC/DC regulator for
QorIQ LS1/T1 family of
communications processors
The 34VR500 is a high performance, highly integrated, multi-output,
SMARTMOS, DC/DC regulator solution, with integrated power MOSFETs
ideally suited for the LS1/T1 family of communication processors. Integrating
four switching and five linear regulators, the 34VR500 provides power to the
complete system, including the processor, DDR memory, and system
peripherals.
Features:
Four buck converters:
•SW1: 4.5 A
•SW2: 2.0 A
•SW3: 2.5 A
•SW4: 1.0 A, (VTT tracking regulator)
Five general purpose linear regulators
DDR termination reference voltage (DDR3L and DDR4)
Programmable low-power modes
•I
2C control of all the regulators
Power Control Logic with processor interface and event detection
Auto qualified AEC Q100 grade 2
Figure 1. 34VR500 simplified application diagram
Power Management
34VR500
Applications:
Internet of things (IoT) gateway
Mobile wireless router
MFP printer
Network attached storage
Automatic teller machine
ES SUFFIX (WF-TYPE)
98ASA00589D
56 QFN-EP WF8X8
SW1
SW2
LDO2
LDO4
LDO5
SW3
SW4
REFOUT
LDO1
LDO3
LS102X
VR500
3.3 VIN BUS
VDD
TA_BB_VDD
VDDC
OVDD1/2
L1VDD
OVDD
GVDD
DDR3
VTT
HDMI
Ethernet
POWER CONTROL LOGIC
2NXP Semiconductors
34VR500
Table of Contents
1 Orderable parts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Internal block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
3 Pin connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.1 Pinout diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
3.2 Pin definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
4 General product characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 General description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Functional block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.3 Functional description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
6 Functional block requirements and behaviors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.1 Start-up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6.2 16 MHz and 32 kHz clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
6.3 Bias and references block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.4 Power generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6.5 Control interface I2C block description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7 Typical applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.2 Bill of materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.3 34VR500 layout guidelines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.4 Thermal information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8 Packaging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.1 Packaging dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
9 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
NXP Semiconductors 3
34VR500
ORDERABLE PARTS
1 Orderable parts
This section describes the part numbers available to be purchased along with their differences. Valid orderable part numbers are provided
on the web. To determine the orderable part numbers for this device, go to http://www.nxp.com and perform a part number search for the
following device numbers.
Table 1. Orderable part variations
Part number Temperature
(TA)Package SW4 VTT mode Processor Reference design DDR memory Notes
MC34VR500V1ES
-40 °C to +105 °C 56 QFN 8x8 mm
Enabled
LS1020/21/22A
LS1021A IOT
Gateway
TWR-LS1021A
DDR3L (VTT = 0.675 V)
(1)(2)
MC34VR500V2ES Disabled N/A
MC34VR500V3ES Enabled
DDR4 (VTT = 0.6 V)
MC34VR500V4ES Enabled LS1043/23A
T1023/13
LS1043ARDB
T1023RDB
MC34VR500V5ES Enabled DDR3L (VTT = 0.675 V)
MC34VR500V6ES Enabled LS1024A
MC34VR500V7ES Enabled LS1020/21/22A DDR4 (VTT = 0.6 V)
MC34VR500V8ES Disabled LS1046A LS1046ARDB-PA
MC34VR500V9ES Disabled LS1028 LS1028A-RDB
MC34VR500VAES Enabled LS1043/23A
T1023/13
LS1043ARDB
T1023RDB DDR4 (VTT = 0.6 V)
MC34VR500VBES Disabled LX2160 N/A
Notes
1. For tape and reel, add an R2 suffix to the part number.
2. See Table 8 for the start-up configuration.
4NXP Semiconductors
34VR500
INTERNAL BLOCK DIAGRAM
2 Internal block diagram
Figure 2. 34VR500 simplified internal block diagram
VIN
INTB
EN
STBY
ICTEST1
SCL
SDA
VCCI2C
VDIG
VBG
ICTEST2
SGND4
PVIN1
FB1
LX1
PORB
VLDOIN1
LDO1
REFOUT
REFIN
VHALF
VCC
VR500
Clocks and
Resets
I2C Interface Main State Machine
LDO
Reference
Generation
Buck
Regulator
Reference
Generation
LDO2
VLDOIN23
LDO3
LDO4
VLDOIN45
LDO5
LDO3
350 mA
LDO2
100 mA
LDO5
200 mA
LDO4
100 mA
SW1 Buck
Regulator
4500 mA
PVIN2
FB2
LX2
SW2 Buck
Regulator
2000 mA
PVIN3
FB3
LX3
SW3 Buck
Regulator
2500 mA
PVIN4
FB4
LX4
SW4 Buck
Regulator
1000 mA
EPAD
Main and Standby
Bandgap
LDO1
250 mA
VDIG Regulator
(Internal Use
Only)
VCC Regulator
(Internal Use
Only)
VBIAS
NXP Semiconductors 5
34VR500
PIN CONNECTIONS
3 Pin connections
3.1 Pinout diagram
Figure 3. 34VR500 pinout diagram
3.2 Pin definitions
Table 2. 34VR500 Pin Definitions
Pin number Pin name Pin
function Max. rating Type Definition
1 INTB O 3.6 V Digital Open drain interrupt signal to processor
2, 6, 16, 33,
42, 44, 45, 46 DNC Reserved Leave floating
3 PORB O 3.6 V Digital Open drain reset output to processor.
4 STBY I 3.6 V Digital Standby input signal from processor
5 ICTEST1 I 7.5 V Digital/
Analog Reserved pin. Connect to GND in application.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
42
41
40
39
38
37
36
35
34
33
32
31
30
29
56 55 54 53 52 51 50 49 48 47 46 45 44 43
15 16 17 18 19 20 21 22 23 24 25 26 27 28
EP
INTB
DNC
PORB
STBY
ICTEST1
DNC
PVIN1
LX1
LX1
PVIN1
LX1
PVIN1
FB1
SGND1
SGND2
DNC
VLDOIN1
LDO1
FB4
PVIN4
LX4
LX2
PVIN2
PVIN2
FB2
LDO2
VLDOIN23
LDO3
DNC
LDO5
VLDOIN45
LDO4
FB3
PVIN3
LX3
LX3
PVIN3
DNC
SGND3
REFOUT
REFIN
VHALF
EN
VCCI2C
SCL
SDA
VBG
VDIG
VIN
VCC
SGND4
ICTEST2
DNC
DNC
DNC
VBIAS
6NXP Semiconductors
34VR500
PIN CONNECTIONS
7, 10, 12 PVIN1 (3) I 4.8 V Analog Input to SW1 regulator. Bypass with at least a 4.7 μF ceramic capacitor and
a 0.1 μF decoupling capacitor as close to the pin as possible.
8, 9, 11 LX1 (3) O 4.8 V Analog SW1 switching node connection
13 FB1 (3) I 3.6 V Analog Output voltage feedback for SW1. Route this trace separately from the high
current path and terminate at the output capacitance.
14 SGND1 GND - GND Signal ground for SW1 regulator. Connect to ground plane directly.
15 SGND2 GND - GND Signal ground for SW2 and SW4 regulators. Connect to ground plane
directly.
17 VLDOIN1 I 3.6 V Analog Input supply for LDO1. Bypass with a 1.0 μF decoupling capacitor as close
to the pin as possible.
18 LDO1 O 2.5 V Analog LDO1 regulator output, Bypass with a 4.7 μF ceramic output capacitor.
19 FB4 (3) I 3.6 V Analog Output voltage feedback for SW4. Route this trace separately from the high
current path and terminate at the output capacitance.
20 PVIN4 (3) I 4.8 V Analog Input to SW4 regulator. Bypass with at least a 4.7μF ceramic capacitor and
a 0.1 μF decoupling capacitor as close to the pin as possible.
21 LX4 (3) O 4.8 V Analog Regulator 4 switching node connection
22 LX2 (3) O 4.8 V Analog Regulator 2 switching node connection
23, 24 PVIN2 (3) I 4.8 V Analog
Input to SW2 regulator. Connect pins 23 and 24 together and bypass with at
least a 4.7 μF ceramic capacitor and a 0.1 μF decoupling capacitor as close
to these pins as possible.
25 FB2 (3) I 3.6 V Analog Output voltage feedback for SW2. Route this trace separately from the high
current path and terminate at the output capacitance.
26 LDO2 O 3.6 V Analog LDO2 regulator output. Bypass with a 2.2 μF ceramic output capacitor.
27 VLDOIN23 I 3.6 V Analog Input supply for LDO2 and LDO3. Bypass with a 1.0 μF decoupling capacitor
as close to the pin as possible.
28 LDO3 O 3.6 V Analog LDO3 regulator output, Bypass with a 4.7 μF ceramic output capacitor.
29 VHALF I 3.6 V Analog Half supply reference for DDR reference.
30 REFIN I 3.6 V Analog REFOUT regulator input. Bypass with at least 1.0 μF decoupling capacitor
as close to the pin as possible.
31 REFOUT O 3.6 V Analog REFOUT regulator output
32 SGND3 GND - GND Ground reference for the SW3 regulator. Connect directly to ground plane.
34, 37 PVIN3 (3) I 4.8 V Analog Input to SW3 regulator. Bypass with at least a 4.7 μF ceramic capacitor and
a 0.1 μF decoupling capacitor as close to the pin as possible.
35, 36 LX3 (3) O 4.8 V Analog Regulator SW3 switching node connection
38 FB3 (3) I 3.6 V Analog Output voltage feedback for SW3. Route this trace separately from the high
current path and terminate at the output capacitance.
39 LDO4 O 3.6 V Analog LDO4 regulator output. Bypass with a 2.2 μF ceramic output capacitor.
40 VLDOIN45 I 4.8 V Analog Input supply for LDO4 and LDO5. Bypass with a 1.0 μF decoupling capacitor
as close to the pin as possible.
43 VBIAS I 1.8 V Analog Bypass the pin with a 0.47 μF capacitor.
41 LDO5 O 3.6 V Analog LDO5 regulator output. By pass with a 2.2 μF ceramic output capacitor.
47 ICTEST2 I 7.5 V Digital/
Analog Reserved pin. Connect to GND in application.
48 SGND4 GND - GND Ground for the main band gap regulator. Connect directly to ground plane.
49 VCC O 3.6 V Analog Analog Core supply
Table 2. 34VR500 Pin Definitions (continued)
Pin number Pin name Pin
function Max. rating Type Definition
NXP Semiconductors 7
34VR500
PIN CONNECTIONS
50 VIN I 4.8 V Analog Main chip supply
51 VDIG O 1.5 V Analog Digital Core supply
52 VBG O 1.5 V Analog Main band gap reference. Bypass with 0.22uF capacitor.
53 SDA I/O 3.6 V Digital I2C data line (Open drain)
54 SCL I 3.6 V Digital I2C clock
55 VCCI2C I 3.6 V Analog Supply for I2C bus. Bypass with 0.1 μF ceramic capacitor
56 EN I 3.6 V Digital Enable input. Connect to the processor. Pull-up via an 8.0 kΩ to 100 kΩ to
VBIAS if required
- EP GND - GND
Expose pad. Functions as ground return for buck regulators. Tie this pad to
the inner and external ground planes through vias to allow effective thermal
dissipation.
Notes
3. Unused switching regulators should be connected as follow: Pins SWxLX and SWxFB should be unconnected and Pin SWxIN should be
connected to the VIN pin with a 0.1 μF bypass capacitor.
Table 2. 34VR500 Pin Definitions (continued)
Pin number Pin name Pin
function Max. rating Type Definition
8NXP Semiconductors
34VR500
GENERAL PRODUCT CHARACTERISTICS
4 General product characteristics
4.1 Absolute maximum ratings
4.2 Thermal characteristics
Table 3. Absolute maximum ratings
All voltages are with respect to ground, unless otherwise noted. Exceeding these ratings may cause malfunction or permanent damage
to the device. The detailed maximum voltage rating per pin can be found in the pin list section.
Symbol Description Value Unit Notes
Electrical ratings
VIN Main input supply voltage -0.3 to 4.8 V
VESD
ESD Ratings
Human Body Model
Charge Device Model
±2000
±500
V(4)
Notes
4. ESD testing is performed in accordance with the Human Body Model (HBM) (CZAP = 100 pF, RZAP = 1500 Ω), and the Charge Device Model
(CDM), Robotic (CZAP = 4.0 pF).
Table 4. Thermal ratings
Symbol Description (rating) Min. Max. Unit Notes
Thermal ratings
TAAmbient Operating Temperature Range -40 105 °C
TJOperating Junction Temperature Range -40 125 °C(5)
TST Storage Temperature Range -65 150 °C
TPPRT Peak Package Reflow Temperature Note 7 °C(6) (7)
QFN56 Thermal resistance and package dissipation ratings
RθJA
Junction to Ambient
Natural Convection
Four layer board (2s2p)
Eight layer board (2s6p)
28
15
°C/W (8) (9) (10)
RθJMA
Junction to Ambient (at 200 ft/min)
Four layer board (2s2p) 22 °C/W (8) (10)
RθJB Junction to Board 10 °C/W (11)
RΘJCBOTTOM Junction to Case Bottom 1.2 °C/W (12)
NXP Semiconductors 9
34VR500
GENERAL PRODUCT CHARACTERISTICS
4.2.1 Power dissipation
During operation, the temperature of the die should not exceed the operating junction temperature noted in Table 4. To optimize the
thermal management and to avoid overheating, the 34VR500 provides thermal protection. An internal comparator monitors the die
temperature. Interrupts THERM110I, THERM120I, THERM125I, and THERM130I will be generated when the respective thresholds
specified in Table 5 are crossed in either direction. The temperature range can be determined by reading the THERMxxxS bits in register
INTSENSE0.
In the event of excessive power dissipation, thermal protection circuitry will shut down the 34VR500. This thermal protection will act above
the thermal protection threshold listed in Table 5. To avoid any unwanted power downs resulting from internal noise, the protection is
debounced for 8.0 ms. This protection should be considered as a fail-safe mechanism and therefore the system should be configured
such that this protection is not tripped under normal conditions.
ΨJT Junction to Package Top
Natural Convection 2.0 °C/W (12)
Notes
5. Do not operate beyond 125 °C for extended periods of time. Operation above 150 °C may cause permanent damage to the IC. See Table 5 for
thermal protection features.
6. Pin soldering temperature limit is for 10 seconds maximum duration. Not designed for immersion soldering. Exceeding these limits may cause a
malfunction or permanent damage to the device.
7. NXP’s Package Reflow capability meets Pb-free requirements for JEDEC standard J-STD-020C. For Peak Package Reflow Temperature and
Moisture Sensitivity Levels (MSL), go to www.nxp.com, search by part number (remove prefixes/suffixes) and enter the core ID to view all orderable
parts, and review parametrics.
8. Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board) temperature, ambient
temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
9. The Board uses the JEDEC specifications for thermal testing (and simulation) JESD51-7 and JESD51-5.
10. Per JEDEC JESD51-6 with the board horizontal.
11. Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on the top surface of the
board near the package.
12. Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method 1012.1).
13. Thermal characterization parameter indicating the temperature difference between package top and the junction temperature per JEDEC JESD51-
2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
Table 5. Thermal protection thresholds
Parameter Min. Typ. Max. Units Notes
Thermal 110 °C Threshold (THERM110) 100 110 120 °C
Thermal 120 °C Threshold (THERM120) 110 120 130 °C
Thermal 125 °C Threshold (THERM125) 115 125 135 °C
Thermal 130 °C Threshold (THERM130) 120 130 140 °C
Thermal Warning Hysteresis 2.0 4.0 °C
Thermal Protection Threshold 130 140 150 °C
Table 4. Thermal ratings (continued)
Symbol Description (rating) Min. Max. Unit Notes
10 NXP Semiconductors
34VR500
GENERAL PRODUCT CHARACTERISTICS
4.3 Electrical characteristics
4.3.1 I/O specifications
4.3.2 Current consumption
Table 6. General PMIC static characteristics.
TA = -40 to 105 °C, VVIN = 2.8 to 4.5 V, VVCCI2C = 1.7 to 3.6 V, VVBIAS = 1.0 V ±4.0%, typical external component values and full load
current range, unless otherwise noted.
Pin Name Parameter Load Condition Min. Max. Unit Notes
EN
VIL –0.00.2 *V
VBIAS V
VIH 0.8 *VVBIAS 3.6 V
PORB
VOL -2.0 mA 0.0 0.4 V
VOH Open Drain 0.7* VVIN VVIN V
SCL
VIL –0.00.2 * V
VCCI2C V
VIH 0.8 * VVCCI2C 3.6 V
SDA
VIL –0.00.2 * V
VCCI2C V
VIH 0.8 * VVCCI2C 3.6 V
VOL -2.0 mA 0.0 0.4 V
VOH Open Drain 0.7 * VVCCI2C VVCCI2C V
INTB
VOL -2.0 mA 0.0 0.4 V
VOH Open Drain 0.7* VVIN VVIN V
STBY
VIL –0.00.2 *V
VBIAS V
VIH 0.8 *VVBIAS 3.6 V
Table 7. Current consumption summary
TA = -40 to 105 °C, (See Table 3), VVIN = 3.6 V, VVCCI2C = 1.7 to 3.6 V, VVBIAS = 1.0 V ±4.0%, typical external component values, unless
otherwise noted. Typical values are characterized at VVIN = 3.6 V, VVCCI2C = 3.3 V, and 25 °C, unless otherwise noted.
Mode 34VR500 conditions System conditions Typ. Max. Unit Notes
Off
Wake-up from EN active
32 k RC on
All other blocks off
VIN UVDET
PMIC able to wake-up 17 25 μA(14) (15)
Sleep
Wake-up from EN active
Trimmed reference active
SW3 PFM
Trimmed 16 MHz RC off
32 k RC on
REFOUT disabled
DDR memories in self refresh 122 250 μA(15)
NXP Semiconductors 11
34VR500
GENERAL PRODUCT CHARACTERISTICS
Standby
SW1 in PFM
SW2 in PFM
SW3 in PFM
SW4 in PFM
Trimmed 16 MHz RC enabled
Trimmed reference active
LDO1 - 5 enabled
REFOUT enabled
Processor enabled in low power mode. All
rails powered on except boost
(load = 0 mA)
297 550 μA(15)
Notes
14. When VIN is below the UVDET threshold, in the range of 1.8 V VIN < 2.65 V, the quiescent current increases by 50 μA, typically.
15. For PFM operation (as defined in Table 23).
Table 7. Current consumption summary (continued)
TA = -40 to 105 °C, (See Table 3), VVIN = 3.6 V, VVCCI2C = 1.7 to 3.6 V, VVBIAS = 1.0 V ±4.0%, typical external component values, unless
otherwise noted. Typical values are characterized at VVIN = 3.6 V, VVCCI2C = 3.3 V, and 25 °C, unless otherwise noted.
Mode 34VR500 conditions System conditions Typ. Max. Unit Notes
12 NXP Semiconductors
34VR500
GENERAL DESCRIPTION
5 General description
The 34VR500 is a high performance, highly integrated, multi-output, DC/DC regulator solution, with integrated power MOSFETs ideally
suited for the LS1/T1 family of communication processors.
5.1 Features
This section summarizes the 34VR500 features.
Input voltage range: 2.8 V to 4.5 V
Buck regulators
Four independent outputs
•SW1, 4.5 A; 0.625 V to 1.875 V
•SW2, 2.0 A; 0.625 V to 3.3 V
•SW3, 2.5 A; 0.625 V to 3.3 V
•SW4, 1.0 A; operates in VTT mode for DDR termination at 50 % of SW3 for 34VR500V1, 34VR500V3, 34VR500V4,
34VR500V5, 34VR500V6, 34VR500V7, 34VR500VA and 0.625 V to 1.975 V for 34VR500V2, 34VR500V8, 34VR500V9
Dynamic voltage scaling
Modes: PWM, PFM, APS
Programmable output voltage
Programmable current limit
Programmable soft start
Programmable PWM switching frequency
Programmable OCP with fault interrupt
•LDOs
Five general purpose LDOs
LDO1, 0.80 V to 1.55 V, 250 mA
LDO2, 1.8 V to 3.3 V, 100 mA
LDO3, 1.8 V to 3.3 V, 350 mA
LDO4, 1.8 V to 3.3 V, 100 mA
LDO5, 1.8 V to 3.3 V, 200 mA
Soft start
DDR memory reference voltage
REFOUT, 10 mA
•16 MHz internal master clock
•I
2C interface
User programmable Standby, Sleep, and OFF modes
NXP Semiconductors 13
34VR500
GENERAL DESCRIPTION
5.2 Functional block diagram
Figure 4. 34VR500 functional block diagram
5.3 Functional description
5.3.1 Power generation
The 34VR500 PMIC features four buck regulators, five general purpose LDOs, and a DDR voltage reference to supply voltages for the
processor, memory, and peripheral devices.
Depending on the system power path configuration, the five general purpose LDO regulators can be directly supplied from the main input
supply or from the switching regulators to power peripherals, such as audio, camera, Bluetooth, Wireless LAN, etc. A specific REFOUT
voltage reference is included to provide accurate reference voltage for DDR memories operating with or without VTT termination
5.3.2 Control logic
The 34VR500 PMIC is fully programmable via the I2C interface. Additional communication is provided by direct logic interfacing including
interrupt and reset. Startup voltage and sequence are internally programed. After power up, the regulator voltages can be changed via
I2C. The 34VR500 PMIC has the interfaces for the power buttons and dedicated signaling interfacing with the processor.
Logic and Control
SW 1
(0.625 - 1.875 V)
4.5 A
SW 3
(0.625 3.3 V)
2.5 A
SW 4
(0.625 - 1.975 V)
1.0 A
VT T o ption
LDO1
(0.8 - 1.55 V)
250 mA
LDO2
(1.8 - 3.3 V)
100 mA
LDO5
(1.8 - 3.3 V)
200 mA
Parallel MCU I nterface
Regulator Control
MC34VR500 Functional Block Diagram
I
2
C Communication & Registers
Power Generation
Fault Detection & Protection
Current Limit
Short-circu it
Thermal
Se qu en ce a nd Timing
Voltage
Phasing and Frequency Selection
Vo4
Vo1 Vo 2
Vo3
Start-up Configuration
(Factory programmable)
SW 2
(0.625 3.3 V)
2.0 A
LDO3
(1.8 3.3 V)
350 mA
LDO4
(1.8 - 3.3 V)
100 mA
14 NXP Semiconductors
34VR500
GENERAL DESCRIPTION
5.3.2.1 Interface signals
EN
EN is an input signal to the IC that generates a turn-on event. Refer to section Turn on events for more details.
STBY
STBY is an input signal to the IC. When it is asserted the part enters standby mode and when de-asserted, the part exits standby mode.
STBY can be configured as active high or active low using the STBYINV bit. Refer to the section Standby mode for more details.
PORB
PORB is an open-drain, active low output. In its default mode, it is de-asserted 2.0 to 4.0 ms after the last regulator in the start-up
sequence is enabled; refer to Figure 8 as an example. In this mode, the signal can be used to bring the processor out of reset, or as an
indicator that all supplies have been enabled; it is only asserted for a turn-off event.
INTB
INTB is an open-drain, active low output. It is asserted when any fault occurs, provided that the fault interrupt is unmasked. INTB is de-
asserted after the fault interrupt is cleared by software, which requires writing a “1” to the fault interrupt bit.
NXP Semiconductors 15
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6 Functional block requirements and behaviors
6.1 Start-up
The 34VR500 starts up from the internal configuration, which is hard-coded into the device. However, the 34VR500 can be controlled
through the I2C port after the Start-up sequence. It is also possible to modify the contents of the Internal Registers via the bus I2C to modify
the start up parameters (see section Start sequence creation).
6.1.1 Device start-up configuration
Table 8 shows the internal configuration for the 34VR500V1, 34VR500V2, 34VR500V3, 34VR500V4, 34VR500V5, 34VR500V6,
34VR500V7, 34VR500V8, 34VR500V9, 34VR500VA, 34VR500VB.
Table 8. Start-up configuration
Registers 34VR500V1 34VR500V2 34VR500V3 34VR500V4 34VR500V5 34VR500V6 34VR500V7 34VR500V8 34VR500V9 34VR500VA 34VR500VB
Default I2C Address 0x08
LDO2_VOLT 1.8 V 1.8 V 1.8 V 2.5 V 2.5 V 1.8 V 1.8 V 2.5 V 2.5 V 2.5 V 3.3 V
LDO2_SEQ 111222145 2 2
LDO3_VOLT 2.5 V 2.5 V 2.5 V
LDO3_SEQ 113224342 3
LDO4_VOLT 2.5 V 2.5 V 2.5 V 1.8 V 1.8 V 3.0 V 2.5 V 1.8 V 2.5 V 1.8 V 1.8 V
LDO4_SEQ 111335158 3
LDO5_VOLT 1.8 V 1.8 V 1.8 V 3.3 V 3.3 V 3.3 V 1.8 V 3.3 V 3.3 V 3.3 V
LDO5_SEQ 111335173
SW1_VOLT 1.0 V 1.0 V 1.0 V 1.5 V 1.5 V 1.2 V 1.0 V 0.85 V 1.0 V 1.8 V 1.2 V
SW1_SEQ 215 1 3
SW2_VOLT 1.0 V 1.0 V 1.0 V 1.8 V 1.8 V 1.1 V 1.0 V 1.35 V 2.5 V 1.35 V 1.8 V
SW2_SEQ 222111212 1 1
SW3_VOLT 1.35 V 1.35 V 1.2 V 1.2 V 1.35 V 1.5 V 1.2 V 1.8 V 1.8 V 1.2 V 0.9 V
SW3_SEQ 333
12 123313121
SW4_VOLT VTT 1.8 V VTT VTT VTT VTT VTT 1.0 V 1.35 V VTT VTT
SW4_SEQ 333
12 12335412
REFOUT_SEQ 333
12 12 3 3 4 12 3
LDO1_VOLT 1.2 V 1.2 V 1.2 V 1.35 V 1.35 V 1.1 V 1.35 V 1.35 V 1.35 V
LDO1_SEQ 444112141
PU CONFIG,
SEQ_CLK_SPEED 1.0 ms
PU CONFIG,
SWDVS_CLK 6.25 mV/μs
SW1 CONFIG 2.0 MHz
SW2 CONFIG 2.0 MHz
SW3 CONFIG 2.0 MHz
SW4 CONFIG 2.0 MHz
16 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Figure 5. Starting sequence: example for V1 and V2
Table 9. 34VR500V1 and V2 start-up sequence timing
Parameter Description Typ. Unit
tD1 Turn-on delay 6.0 ms
tR1 Rise time of EN (16) ms
tD2 Turn-on delay of first regulator 2.5 ms
tR2 Rise time of regulators (17) 0.2 ms
tD3 Delay between regulators 1.0 ms
tD4 Turn-on delay of PORB 2.0 ms
tR3 Rise time of PORB 0.2 ms
Notes
16. Depends on the external signal driving EN.
17. Rise time is a function of slew rate of regulators and nominal voltage selected.
VIN
EN
LDO2,3,4,5
SW1,2
SW3,4
REFOUT
LDO1
UVDET
PORB
tD1 tR1
tD2 tR2
tD3 tR2
tD3 tR2
TD3 tR2
tD4 tR3
NXP Semiconductors 17
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.1.2 Start sequence creation
The 34VR500 powers up based on the contents of the internal registers. Depending on certain bit settings, the internal registers are loaded
from different sources, as shown in Figure 6.
Figure 6. Starting sequence
The contents of the internal registers are initialized to zero when a valid VIN is first applied. The values that are then loaded into the internal
registers depend on the value of the TBB_POR (the initial value of TBB_POR is always “0”):
If TBB_POR = 0 the values are loaded from the Default Sequence (this is the case always for first starting)
If TBB_POR = 1 the values are loaded from the internal RAM. VIN must be valid to maintain the contents of the internal RAM.
To power on with the contents of the internal RAM, the following conditions must exist:
•V
IN is valid
TBB_POR = 1 and there is a valid turn-on event via the EN pin
To keep a regulator off during a start-up sequence is to set its sequence to 0. This corresponds to the XX_SEQ setting of 0x00.
For example, 0x01 corresponds to a sequence of 1, and so on.
18 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Figure 7 explains how to start from a new configuration.
Figure 7. Modifying a starting sequence
Table 95 shows the portion of the register map concerning the programming of a new starting sequence.
6.2 16 MHz and 32 kHz clocks
There are two clocks: a trimmed 16 MHz, RC oscillator and an untrimmed 32 kHz, RC oscillator. The 16 MHz oscillator is specified within
-8.0/+8.0%. The 32 kHz untrimmed clock is only used in the following conditions:
•V
IN < UVDET
All regulators are in SLEEP mode
All regulators are in PFM switching mode
A 32 kHz clock, derived from the 16 MHz trimmed clock, is used when accurate timing is needed under the following conditions:
During start-up, VIN > UVDET
In addition, when the 16 MHz is active in the ON mode, the debounce times in Table 20 are referenced to the 32 kHz derived from the
16 MHz clock. The exceptions are the LOWVINI and ENI interrupts, which are referenced to the 32 kHz untrimmed clock.
Table 10. 16 MHz clock specifications
TA = -40 to 105 °C (See Table 3), VVIN = 2.8 to 4.5 V, VVBIAS = 1.0 V ±4.0%, and typical external component values. Typical values are
characterized at VVIN = 3.6 V, and 25 °C, unless otherwise noted.
Symbol Parameters Min. Typ. Max. Units Notes
VIN Operating Voltage from the VIN pin 2.8 4.5 V
First VIN Applied
Keep EN pin in
low state
I2C
programming
+
TBB_POR = 1
TBB_POR
TBB_POR = 0
Start from the
Default
Sequence
TBB_POR = 1
Start from the
Internal RAM
Turn On event
EN pin to high
state
34VR500
regulators will not
turn on
Program the new
start sequence and
set TBB_POR to 1
Create a Turn On
event via the EN pin
NXP Semiconductors 19
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.2.1 Clock adjustment
The 16 MHz clock and hence the switching frequency of the regulators, can be adjusted to improve the noise integrity of the system. By
changing the factory trim values of the 16 MHz clock, the user may add an offset as small as ±3.0% of the nominal frequency. Contact a
NXP representative for detailed information on this feature.
6.3 Bias and references block description
6.3.1 Internal core voltage references
All regulators use the main bandgap as the reference. The main bandgap is bypassed with a capacitor at VBG. The bandgap and the rest
of the core circuitry are supplied from VCC. Table 11 shows the main characteristics of the core circuitry.
6.3.1.1 External components
f16MHZ 16 MHz Clock Frequency 14.7 16 17.3 MHz
f2MHZ 2.0 MHz Clock Frequency 1.84 2.16 MHz (18)
Notes
18. 2.0 MHz clock is derived from the 16 MHz clock.
Table 11. Core voltages electrical specifications(20)
TA = -40 to 105 °C (See Table 3), VVIN = 2.8 to 4.5 V, VVBIAS = 1.0 V ±4.0%, and typical external component values. Typical values are
characterized at VVIN = 3.6 V, and 25 °C, unless otherwise noted.
Symbol Parameters Min. Typ. Max. Units Notes
VDIG (digital core supply)
VDIG
Output Voltage
ON mode
OFF mode
1.5
1.3
V(19)
VCC (Analog core supply)
VCC
Output Voltage
ON mode
OFF mode
2.775
0.0
V(19)
VBG (bandgap / regulator reference)
VBG Output Voltage 1.2 V (19)
VBGACC Absolute Accuracy 0.5 %
VBGTACC Temperature Drift 0.25 %
Notes
19. 3.0 V < VIN < 4.5 V, no external loading on VDIG, VCC, or VBG. Extended operation down to UVDET, but no system malfunction.
20. For information only.
Table 12. External components for core voltages
Regulator Capacitor value (μF)
VDIG 1.0
VCC 1.0
VBG 0.22
Table 10. 16 MHz clock specifications
TA = -40 to 105 °C (See Table 3), VVIN = 2.8 to 4.5 V, VVBIAS = 1.0 V ±4.0%, and typical external component values. Typical values are
characterized at VVIN = 3.6 V, and 25 °C, unless otherwise noted.
20 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.3.2 REFOUT voltage reference
REFOUT is an internal PMOS half supply voltage follower capable of supplying up to 10 mA. The output voltage is at one half the input
voltage. Its typically used as the reference voltage for DDR memories. A filtered resistor divider is utilized to create a low frequency pole.
This divider then utilizes a voltage follower to drive the load.
Figure 8. REFOUT block diagram
6.3.2.1 REFOUT control register
The REFOUT voltage reference is controlled by a single bit in REFOUTCTRL register in Table 13.
External components
Table 13. Register REFOUTCTRL - ADDR 0x6A
Name Bit # R/W Default Description
UNUSED 3:0 0x00 UNUSED
REFOUTEN 4 R/W 0x00
Enable or disables REFOUT output voltage
0 = REFOUT Disabled
1 = REFOUT Enabled
UNUSED 7:5 0x00 UNUSED
Table 14. REFOUT external components(21)
Capacitor Capacitance (μF)
REFIN(22) to VHALF 0.1
VHALF to GND 0.1
REFOUT 1.0
Notes
21. Use X5R or X7R capacitors.
22. REFIN to GND, 1.0 μF minimum capacitance is provided by buck regulator output.
NXP Semiconductors 21
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
REFOUT specifications
Table 15. REFOUT electrical characteristics
TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, IREFDDR = 0.0 mA, VREFIN = 1.5 V, VVBIAS = 1.0 V ±4.0%, and typical external component
values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V, IREFDDR = 0.0 mA, VREFIN = 1.5 V, and 25 °C, unless
otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
REFOUT
VREFIN Operating Input Voltage Range 1.2 1.8 V
IREFDDR Operating Load Current Range 0.0 10 mA
IREFDDRLIM Current Limit, IREFDDR when VREFOUT is forced to VREFIN/4 10.5 15 25 mA
IREFDDRQ Quiescent Current 8.0 μA(23)
Active mode – DC
VREFOUT
Output Voltage
1.2 V < VREFIN < 1.8 V, 0.0 mA < IREFDDR < 10 mA –V
REFIN/2 V
VREFOUTTOL
Output Voltage Tolerance
1.2 V < VREFIN < 1.8 V, 0.6 mA IREFDDR 10 mA –1.0 1.0 %
VREFOUTLOR
Load Regulation
1.0 mA < IREFDDR < 10 mA, 1.2 V < VREFIN < 1.8 V 0.40 mV/mA
Active mode – AC
tONREFDDR
Turn-on Time, Enable to 90% of end value
VREFIN = 1.2 V, 1.8 V, IREFDDR = 0.0 mA 100 μs
tOFFREFDDR
Turn-Off Time, Disable to 10% of initial value
VREFIN = 1.2 V, 1.8 V, IREFDDR = 0.0 mA ––10ms
VREFOUTOSH
Start-up Overshoot
VREFIN = 1.2 V, 1.8 V, IREFDDR = 0.0 mA –1.06.0%
VREFOUTTLR
Transient Load Response
VREFIN = 1.2 V, 1.8 V –5.0–mV
Notes
23. When REFOUT is off there is a quiescent current of 1.5 μA typical.
22 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4 Power generation
6.4.1 Modes of operation
The operation of the 34VR500 can be reduced to four states, or modes: ON, OFF, Sleep, and Standby. Figure 9 shows the state diagram
of the 34VR500, along with the conditions to enter and exit from each state.
Figure 9. State diagram
To complement the state diagram in Figure 9, a description of the states is provided in following sections. Note that VIN must exceed the
rising UVDET threshold to allow a power up. Refer to Table 22 for the UVDET thresholds. Additionally, the interrupt signal and INTB are
only active in Sleep, Standby, and ON states.
6.4.1.1 On mode
The 34VR500 enters the ON mode after a turn-on event. PORB is de-asserted, high, in this mode of operation.
6.4.1.2 Off mode
The 34VR500 enters the OFF mode after a turn-off event. A thermal shutdown event also forces the 34VR500 into the OFF mode. Only
VDIG is powered in this mode of operation. To exit the OFF mode, a valid turn-on event is required. PORB is asserted, LOW, in this mode.
EN = 1
& VIN > UVDET ON
EN = 0
Any SWxOMODE bits=1
EN = 1
& VIN > UVDET
EN = 0
All SWxOMODE bits= 0
OFF
Sleep
Thermal shudown
Standby
STANDBY asserted
Thermal shutdown
Thermal shutdown
STANDBY de-asserted
EN = 0
Any SWxOMODE bits=1
EN = 0
All SWxOMODE bits= 0
NXP Semiconductors 23
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.1.3 Standby mode
Depending on STBY pin configuration, Standby is entered when the STBY pin is asserted. This is typically used for low-power mode
of operation.
When STBY is de-asserted, Standby mode is exited.
A product may be designed to go into a Low-power mode after periods of inactivity. The STBY pin is provided for board level control of
going in and out of such deep sleep modes (DSM).
When a product is in DSM, it may be able to reduce the overall platform current by lowering the regulator output voltage, changing the
operating mode of the regulators or disabling some regulators. The configuration of the regulators in Standby are pre-programmed through
the I2C interface.
Note that the STBY pin is programmable for Active High or Active Low polarity, and that decoding of a Standby event will take into account
the programmed input polarity as shown in Table 16. When the 34VR500 is powered up first, regulator settings for the Standby mode are
mirrored from the regulator settings for the ON mode. To change the STBY pin polarity to Active Low, set the STBYINV bit via software
first, and then change the regulator settings for Standby mode as required. For simplicity, STBY will generally be referred to as active high
throughout this document.
Since STBY pin activity is driven asynchronously to the system, a finite time is required for the internal logic to qualify and respond to the
pin level changes. A programmable delay is provided to hold off the system response to a Standby event. This allows the processor and
peripherals some time after a standby instruction has been received to terminate processes to facilitate seamless entering into Standby
mode.
When enabled (STBYDLY = 01, 10, or 11) per Table 17, STBYDLY will delay the Standby initiated response for the entire IC, until the
STBYDLY counter expires.
An allowance should be made for three additional 32 k cycles required to synchronize the Standby event.
Table 16. STBY pin and polarity control
STBY (Pin)(25) STBYINV (I2C bit)(26) STBY Control (24)
00 0
01 1
10 1
11 0
Notes
24. STBY = 0: System is not in Standby, STBY = 1: System is in Standby
25. The state of the STBY pin only has influence in On mode.
26. Bit 6 in Power Control Register (ADDR - 0x1B)
Table 17. STBY delay - initiated response
STBYDLY[1:0](27) Function
00 No Delay
01 One 32 k period (default)
10 Two 32 k periods
11 Three 32 k periods
Notes
27. Bits [5:4] in Power Control Register (ADDR - 0x1B)
24 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.1.4 Sleep mode
Depending on EN pin configuration, Sleep mode is entered when EN is de-asserted and SWxOMODE bit is set.
To exit Sleep mode, assert the EN pin.
In the Sleep mode, the regulator will use the set point as programmed by SW1OFF[5:0] for SW1, SW2, SW3, and SW4. The activated
regulators will maintain settings for this mode and voltage until the next turn-on event. Table 18 shows the control bits in Sleep mode.
During Sleep mode, interrupts are active and the INTB pin will report any unmasked fault event.
6.4.2 State machine flow summary
Table 19 provides a summary matrix of the 34VR500 flow diagram to show the conditions needed to transition from one state to another.
6.4.2.1 Turn on events
From OFF and Sleep modes, the PMIC is powered on by a turn ON event. VIN must be greater than UVDET for the PMIC to turn-on. When
VIN is greater than UVDET, a logic high on the EN pin is a turn ON event, when EN is high before VIN is valid, a VIN transition, from 0.0 V
to a voltage greater than UVDET, also a Turn ON event. See the State diagram, Figure 9, and the Table 19 for more details. Any regulator
enabled in the Sleep mode will remain enabled when transitioning from Sleep to ON, i.e., the regulator will not be turned OFF and then
ON again to match the start-up sequence. The following is a more detailed description of the EN configuration:
The EN signal is high and VIN > UVDET, the PMIC will turn ON; the interrupt and sense bits, ENI and ENS respectively, will be set.
The sense bit will show the real time status of the EN pin. In this configuration, the EN input can be a mechanical switch debounced
through a programmable debouncer, ENDBNC[1:0], to avoid a response to a very short (i.e., unintentional) key press. The interrupt is
generated for both the falling and the rising edge of the EN pin. By default, a 30 ms interrupt debounce is applied to both falling and rising
edges. The falling edge debounce timing can be extended with ENDBNC[1:0] as defined in the table below. The interrupt is cleared by
software, or when cycling through the OFF mode.
Table 18. Regulator mode control
SWxOMODE Off operational mode (sleep) (28)
0Off
1PFM
Notes
28. For sleep mode, an activated switching regulator, should use the off mode set
point as programmed by SW1OFF[5:0] for SW1, SW2, SW3, and SW4.
Table 19. State machine flow summary
STATE
Next state
OFF Sleep Standby ON
Initial state
OFF XXXEN = 1 & V
IN > UVDET
Sleep Thermal Shutdown X X EN = 1 & VIN > UVDET
Standby Thermal Shutdown
EN = 0, Any SWxOMODE = 1 X Standby de-asserted
EN = 0, All SWxOMODE = 0
ON Thermal Shutdown
EN = 0, Any SWxOMODE = 1 Standby asserted X
EN = 0, All SWxOMODE = 0
NXP Semiconductors 25
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.2.2 Turn off events
EN pin
The EN pin is used to power off the 34VR500. The Off mode is entered when the EN pin is low and SWxOMODE = 0.
Thermal protection
If the die temperature surpasses a given threshold, the thermal protection circuit will power off the 34VR500 to avoid damage. A turn-on
event will not power on the PMIC while it is in thermal protection. The part will remain in Off mode until the die temperature decreases
below a given threshold. There are no specific interrupts related to this other than the warning interrupt. See Power dissipation section for
more detailed information.
Undervoltage detection
The state machine will transition to the OFF mode when the voltage at the VIN pin drops below the UVDET undervoltage falling threshold.
6.4.3 Power tree
The 34VR500 features four buck regulators, five general purpose LDOs, and a DDR voltage reference, to supply voltages for the
application and peripheral devices. The buck regulators are supplied directly from the main input supply (VIN). The inputs to all of the buck
regulators must be tied to VIN, whether they are powered ON or OFF. The five general use LDO regulators are directly supplied from the
main input supply or from the switching regulators depending on the application requirements. Since REFOUT is intended to provide DDR
memory reference voltage, it should be supplied by any rail supplying voltage to DDR memories; the typical application recommends the
use of SW3 as the input supply for REFOUT. Refer to Table 21 for a summary of all power supplies provided by the 34VR500.
Table 20. EN hardware debounce bit settings
Bits State Turn on
debounce (ms)
Falling edge INT
debounce (ms)
Rising edge INT
debounce (ms)
ENDBNC[1:0]
00 0.0 31.25 31.25
01 31.25 31.25 31.25
10 125 125 31.25
11 750 750 31.25
Notes
29. The sense bit, ENS, is not debounced and follows the state of the EN pin.
Table 21. Power tree summary
Supply Output voltage (V) Step size (mV) Maximum load current (mA)
SW1 0.625 - 1.875 25 4500
SW2 0.625 - 1.975 / 0.8 - 3.3 25 / 50 2000
SW3 0.625 - 1.975 / 0.8 - 3.3 25 / 50 2500
SW4 0.5*SW3_OUT (VTT for V1, V3,
V4, V5), 0.625 - 1.975 (for V2) 1000
LDO1 0.80 – 1.55 50 250
LDO2 1.8 – 3.3 100 100
LDO3 1.8 – 3.3 100 350
LDO4 1.8 – 3.3 100 100
LDO5 1.8 – 3.3 100 200
REFOUT 0.5*SW3_OUT NA 10
26 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
The minimum operating voltage for the main VIN supply is 2.8 V, for lower voltages proper operation is not guaranteed. However at initial
power up, the input voltage must surpass the rising UVDET threshold before proper operation is guaranteed. Refer to the representative
tables and text specifying each supply for information on performance metrics and operating ranges. Table 22 summarizes the UVDET
thresholds.
Figure 10. 34VR500 typical power map
Table 22. UVDET threshold
UVDET threshold VIN
Rising 3.1 V
Falling 2.65 V
SW2
VDDC
(0.625 to 3.3 V),
2.0 A
VDDCORE
VDDC
LS102x
SW3
DDR CORE
(0.625 to 3.3 V),
2.5 A
SW1
VDDCORE
(0.625 to 1.875 V), 4.5 A
Peripherals
LDO1
(0.80 to 1.55 V),
250 mA
LDO2
(1.8 to 3.3 V),
100 mA
LDO3
(1.8 to 3.3 V),
350 mA
LDO4
(1.8 to 3.3 V),
100 mA
LDO5
(1.8 to 3.3 V),
200 mA
DDR3
VTT
SW4
System/VTT
(0.625 to 1.975 V)
(0.5*VDDR)
1.0 A
REFOUT
0.5*VDDR, 10 mA
SW3
VIN
3.3 V
OVDD1/2
L1VDD
OVDD
VIN
3.3 V
VR500
NXP Semiconductors 27
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4 Buck regulators
Each buck regulator is capable of operating in PFM, APS, and PWM switching modes.
6.4.4.1 Current limit
Each buck regulator has a programmable current limit. In an overcurrent condition, the current is limited cycle-by-cycle. If the current limit
condition persists for more than 8.0 ms, a fault interrupt is generated.
6.4.4.2 General control
To improve system efficiency the buck regulators can operate in different switching modes. Changing between switching modes can occur
by any of the following means: I2C programming, exiting/entering the Standby mode, exiting/entering Sleep mode, and load current
variation. Available switching modes for buck regulators are presented in Table 23.
During soft-start of the buck regulators, the controller transitions through the PFM, APS, and PWM switching modes. 3.0 ms (typical) after
the output voltage reaches regulation, the controller transitions to the selected switching mode. Depending on the particular switching
mode selected, additional ripple may be observed on the output voltage rail as the controller transitions between switching modes.
Table 24 summarizes the Buck regulator programmability for Normal and Standby modes.
Transitioning between Normal and Standby modes can affect a change in switching modes as well as output voltage. The rate of the
output voltage change is controlled by the Dynamic Voltage Scaling (DVS), explained in Dynamic voltage scaling. For each regulator, the
output voltage options are the same for Normal and Standby modes.
When in Standby mode, the regulator outputs the voltage programmed in its standby voltage register and will operate in the mode selected
by the SWxMODE[3:0] bits. Upon exiting Standby mode, the regulator will return to its normal switching mode and its output voltage
programmed in its voltage register.
Table 23. Switching mode description
Mode Description
OFF The regulator is switched off and the output voltage is discharged.
PFM In this mode, the regulator is always in PFM mode, which is useful at light loads for
optimized efficiency.
PWM In this mode, the regulator is always in PWM mode operation regardless of load conditions.
APS In this mode, the regulator moves automatically between pulse skipping mode and PWM
mode depending on load conditions.
Table 24. Regulator mode control
SWxMODE[3:0] Normal Mode Standby Mode SWxMODE[3:0] Normal Mode Standby Mode
0000 Off Off 1000 APS APS
0001 PWM Off 1001 Reserved Reserved
0010 Reserved Reserved 1010 Reserved Reserved
0011 PFM Off 1011 Reserved Reserved
0100 APS Off 1100 APS PFM
0101 PWM PWM 1101 PWM PFM
0110 PWM APS 1110 Reserved Reserved
0111 Reserved Reserved 1111 Reserved Reserved
28 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Any regulators whose SWxOMODE bit is set to “1” will enter Sleep mode if a EN turn-off event occurs, and any regulator whose
SWxOMODE bit is set to “0” will be turned off. In Sleep mode, the regulator outputs the voltage programmed in its off (Sleep) voltage
register and operates in the PFM mode. The regulator will exit the Sleep mode when a turn-on event occurs. Any regulator whose
SWxOMODE bit is set to “1” will remain on and change to its normal configuration settings when exiting the Sleep state to the ON state.
Any regulator whose SWxOMODE bit is set to “0” will be powered up with the same delay in the start-up sequence as when powering On
from Off. At this point, the regulator returns to its default ON state output voltage and switch mode settings.
Table 18 shows the control bits in Sleep mode. When Sleep mode is activated by the SWxOMODE bit, the regulator will use the set point
as programmed by SWxOFF[5:0] for SW1, SW2, SW3, and SW4.
6.4.4.3 Dynamic voltage scaling
To reduce overall power consumption, processor core voltages can be varied depending on the mode or activity level of the processor.
1. Normal operation: The output voltage is selected by I2C bits SWx[5:0] for SW1, SW2, SW3, and SW4. A voltage transition initiated
by I2C is governed by the DVS stepping rates shown in Table 26.
2. Standby Mode: The output voltage can be higher, or lower than in normal operation, but is typically selected to be the lowest state
retention voltage of a given processor; it is selected by I2C bits SWxSTBY[5:0] for SW1, SW2, SW3, and SW4. Voltage transitions
initiated by a Standby event are governed by the SWxDVSSPEED[1:0] and I2C bits shown in Table 26.
3. Sleep Mode: The output voltage can be higher or lower than in normal operation, but is typically selected to be the lowest state
retention voltage of a given processor; it is selected by I2C bits SWxOFF[5:0] for SW1, SW2, SW3, and SW4. Voltage transitions
initiated by a turn-off event are governed by the SWxDVSSPEED[1:0] I2C bits shown in Table 26.
Table 25, Table 26, summarize the set point control and DVS time stepping applied to all regulators.
The regulators have a strong sourcing capability and sinking capability in PWM mode, therefore the fastest rising and falling slopes are
determined by the regulator in PWM mode. However, if the regulators are programmed in PFM or APS mode during a DVS transition, the
falling slope can be influenced by the load. Additionally, as the current capability in PFM mode is reduced, controlled DVS transitions in
PFM mode could be affected. Critically timed DVS transitions are best assured with PWM mode operation.
The following diagram shows the general behavior for the regulators when initiated with I2C programming, or standby control.
During the DVS period the overcurrent condition on the regulator should be masked.
Table 25. DVS control logic for SW1, SW2, SW3, and SW4
STBY Set Point Selected by
0 SWx[5:0]
1 SWxSTBY[5:0]
Table 26. DVS speed selection for SW1, SW2, SW3, and SW4
SWxDVSSPEED[1:0] Function
00 25 mV step each 2.0 μs
01 (default) 25 mV step each 4.0 μs
10 25 mV step each 8.0 μs
11 25 mV step each 16 μs
NXP Semiconductors 29
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Figure 11. Voltage stepping with DVS
6.4.4.4 Regulator phase clock
The SWxPHASE[1:0] bits select the phase of the regulator clock as shown in Table 27. By default, each regulator is initialized at 90 ° out
of phase with respect to each other. For example, SW1 is set to 0 °, SW2 is set to 90 °, SW3 is set to 180 °, and SW4 is set to 270 ° by
default at power up.
The SWxFREQ[1:0] register is used to set the desired switching frequency for each one of the buck regulators. Table 29 shows the
selectable options for SWxFREQ[1:0]. For each frequency, all phases will be available, this allows regulators operating at different
frequencies to have different relative switching phases. However, not all combinations are practical. For example, 2.0 MHz, 90 ° and
4.0 MHz, 180 ° are the same in terms of phasing. Table 28 shows the optimum phasing when using more than one switching frequency.
Table 27. Regulator phase clock selection
SWxPHASE[1:0] Phase of Clock Sent to Regulator (degrees)
00 0
01 90
10 180
11 270
Table 28. Optimum phasing
Frequencies Optimum phasing
1.0 MHz
2.0 MHz
0 °
180 °
1.0 MHz
4.0 MHz
0 °
180 °
2.0 MHz
4.0 MHz
0 °
180 °
1.0 MHz
2.0 MHz
4.0 MHz
0 °
90 °
90 °
Actual
Output Voltage
Example
Actual Output
Voltage
Possible
Output Voltage
Window
Internally
Controlled Steps
Output Voltage
with light Load
Initial
Set Point
Voltage
Change
Request
Internally
Controlled Steps
Output
Voltage
Requested
Set Point
Initiated by I2C Programming, Standby Control
Request for
Higher Voltage
Request for
Lower Voltage
30 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.5 SW1 regulator
The SW1 is a 4.5 A regulator capable of providing an output from 0.625 to 1.875 V. Figure 12 shows a high level block diagram of the
SW1 regulator.
Figure 12. SW1 regulator block diagram
6.4.4.6 SW1 setup and control registers
SW1 output voltage is programmable from 0.625 to 1.875 V in steps of 25 mV. After power up in the default voltage, the output voltage
can be changed in the Normal, Standby and Sleep mode by writing to the SW1[5:0], SW1STBY[5:0], and SW1OFF[5:0] respectively.
Figure 30 shows the output voltage coding for these registers.
Table 29. Regulator frequency configuration
SWxFREQ[1:0] Frequency
00 1.0 MHz
01 2.0 MHz
10 4.0 MHz
11 Reserved
Table 30. SW1 output voltage configuration
Set point
SW1[5:0]
SW1STBY[5:0]
SW1OFF[5:0]
SW1 output (V) Set point
SW1[5:0]
SW1STBY[5:0]
SW1OFF[5:0]
SW1 output (V)
13 001101 0.6250 39 100111 1.2750
14 001110 0.6500 40 101000 1.3000
15 001111 0.6750 41 101001 1.3250
16 010000 0.7000 42 101010 1.3500
17 010001 0.7250 43 101011 1.3750
18 010010 0.7500 44 101100 1.4000
19 010011 0.7750 45 101101 1.4250
20 010100 0.8000 46 101110 1.4500
21 010101 0.8250 47 101111 1.4750
Driver
Controller
EA
Z1
Z2
Internal
Compensation
PVIN1
LX1
FB1
ISENSE
COSW1
CINSW1
LSW1
I2C
Interface
EP
SW1
SW1MODE
SW1FAULT
VREF
DAC
I2C
PVIN1
NXP Semiconductors 31
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 31 provides a list of registers used to configure and operate SW1 and a detailed description on each one of these register is provided
in Table 31 through Table 36.
22 010110 0.8500 48 110000 1.5000
23 010111 0.8750 49 110001 1.5250
24 011000 0.9000 50 110010 1.5500
25 011001 0.9250 51 110011 1.5750
26 011010 0.9500 52 110100 1.6000
27 011011 0.9750 53 110101 1.6250
28 011100 1.0000 54 110110 1.6500
29 011101 1.0250 55 110111 1.6750
30 011110 1.0500 56 111000 1.7000
31 011111 1.0750 57 111001 1.7250
32 100000 1.1000 58 111010 1.7500
33 100001 1.1250 59 111011 1.7750
34 100010 1.1500 60 111100 1.8000
35 100011 1.1750 61 111101 1.8250
36 100100 1.2000 62 111110 1.8500
37 100101 1.2250 63 111111 1.8750
38 100110 1.2500
Table 31. SW1 register summary
Register Address Output
SW1VOLT 0x2E SW1 Output voltage set point in normal operation
SW1STBY 0x2F SW1 Output voltage set point in Standby
SW1OFF 0x30 SW1 Output voltage set point in Sleep
SW1MODE 0x31 SW1 Switching Mode selector register
SW1CONF 0x32 SW1 DVS, Phase, Frequency and ILIM configuration
Table 32. Register SW1VOLT - ADDR 0x2E
Name Bit # R/W Default Description
SW1 5:0 R/W 0x00 Sets the SW1 output voltage during normal operation mode. See Table 30
for all possible configurations.
UNUSED 7:6 0x00 UNUSED
Table 33. Register SW1STBY - ADDR 0x2F
Name Bit # R/W Default Description
SW1STBY 5:0 R/W 0x00 Sets the SW1 output voltage during Standby mode. See Table 30 for all
possible configurations.
UNUSED 7:6 0x00 UNUSED
Table 30. SW1 output voltage configuration (continued)
Set point
SW1[5:0]
SW1STBY[5:0]
SW1OFF[5:0]
SW1 output (V) Set point
SW1[5:0]
SW1STBY[5:0]
SW1OFF[5:0]
SW1 output (V)
32 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.7 SW1 external components
Table 34. Register SW1OFF - ADDR 0x30
Name Bit # R/W Default Description
SW1OFF 5:0 R/W 0x00 Sets the SW1 output voltage during Sleep mode. See Table 30 for all
possible configurations.
UNUSED 7:6 0x00 UNUSED
Table 35. Register SW1MODE - ADDR 0x31
Name Bit # R/W Default Description
SW1MODE 3:0 R/W 0x08 Sets the SW1 switching operation mode. See Table 23 for all possible
configurations.
UNUSED 4 0x00 UNUSED
SW1OMODE 5 R/W 0x00
Set status of SW1 when in Sleep mode
0 = OFF
1 = PFM
UNUSED 7:6 0x00 UNUSED
Table 36. Register SW1CONF - ADDR 0x32
Name Bit # R/W Default Description
SW1ILIM 0 R/W 0x00
SW1 current limit level selection
0 = High level current limit
1 = Low level current limit
UNUSED 1 R/W 0x00 Unused
SW1FREQ 3:2 R/W 0x00 SW1 switching frequency selector. See Table 29.
SW1PHASE 5:4 R/W 0x00 SW1 Phase clock selection. See Table 27.
SW1DVSSPEED 7:6 R/W 0x00 SW1 DVS speed selection. See Table 26.
Table 37. SW1 external component recommendations
Components Description Component
CINSW1 (30) SW1input capacitor 3 x 4.7 μF
CIN1HF (30) SW1decoupling input capacitor 3 x 0.1 μF
COSW1(30) SW1 output capacitor 7 x 22 μF
LSW1 SW1 inductor 0.68 μH, DCR = 10 mΩ, ISAT = 9.0 A
Notes
30. Use X5R or X7R capacitors.
NXP Semiconductors 33
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.8 SW1 specifications
Table 38. SW1 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN1 = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, fSW1 = 2.0 MHz, unless otherwise noted. Typical values are characterized at
VIN = VPVIN1 = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
Switch mode supply SW1
VPVIN1 Operating Input Voltage 2.8 4.5 V
VSW1 Nominal Output Voltage Table 30 –V
VSW1ACC
Output Voltage Accuracy
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW1 < 4.5 A
0.625 V VSW1 1.450 V
1.475 V VSW1 1.875 V
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW1 < 150 mA
0.625 V < VSW1 < 0.675 V
0.7 V < VSW1 < 0.85 V
0.875 V < VSW1 < 1.875 V
-25
-3.0
-65
-45
-3.0
25
3.0
65
45
3.0
mV
%
mV
mV
%
ISW1
Rated Output Load Current,
2.8 V < VIN < 4.5 V, 0.625 V < VSW1 < 1.875 V 4500 mA
ISW1LIM
Current Limiter Peak Current Detection
Current through Inductor
SW1ILIM = 0
SW1ILIM = 1
7.1
5.3
10.5
7.9
13.7
10.3
A
VSW1
Start-up Overshoot
ISW1 = 0 mA
DVS clk = 25 mV/4 μs, VIN = VPVIN1 = 4.5 V, VSW1 = 1.875 V
––66mV
tONSW1
Turn-on Time, Enable to 90% of end value
ISW1 = 0 mA, DVS clk = 25 mV/4.0 μs, VIN = VPVIN1 = 4.5 V,
VSW1 = 1.875 V
500 µs
fSW1
Switching Frequency
SW1FREQ[1:0] = 00
SW1FREQ[1:0] = 01
SW1FREQ[1:0] = 10
1.0
2.0
4.0
MHz
ηSW1
Efficiency
•V
IN = 3.6 V, fSW1 = 2.0 MHz, LSW1 = 1.0 μH
PFM, 0.9 V, 1.0 mA
PFM, 1.2 V, 50 mA
APS, PWM, 1.2 V, 850 mA
APS, PWM, 1.2 V, 1275 mA
APS, PWM, 1.2 V, 2125 mA
APS, PWM, 1.2 V, 4500 mA
77
82
86
84
80
68
%
ΔVSW1 Output Ripple 5.0 mV
VSW1LIR Line Regulation (APS, PWM) 20 mV
VSW1LOR DC Load Regulation (APS, PWM) 20 mV
VSW1LOTR
Transient Load Regulation
Transient load = 0 to 2.25 A, di/dt = 100 mA/μs
Overshoot
Undershoot
50
50
mV
34 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Figure 13. SW1 efficiency waveforms
Switch mode supply SW1 (continued)
ISW1Q
Quiescent Current
PFM Mode
APS Mode
18
145
µA
RSW1DIS Discharge Resistance 600 Ω
RONSW1P
SW1 P-MOSFET RDS(on)
VPVIN1 = 3.3 V –6077mΩ
RONSW1N
SW1 N-MOSFET RDS(on)
VPVIN1 = 3.3 V 80 101 mΩ
Table 38. SW1 electrical characteristics (continued)
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN1 = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, fSW1 = 2.0 MHz, unless otherwise noted. Typical values are characterized at
VIN = VPVIN1 = 3.6 V, VSW1 = 1.2 V, ISW1 = 100 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
0
10
20
30
40
50
60
70
80
90
100
100 1000
10000
Efficiency (%)
Load Current (mA)
2MHz, 1.8V, PWM
1MHz, 1.8V, PWM
SW1 Efficiency Waveform: VIN = 3.3 V; VOUT = 1.8 V
SW1 Efficiency Waveform: VIN = 3.6 V; VOUT = 1.2 V SW1 Efficiency Waveform: VIN = 3.6 V; VOUT = 1.2 V
NXP Semiconductors 35
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Figure 14. Load transient response – SW1 (APS)
6.4.4.9 SW2
SW2 is a 2.0 A rated buck regulator. Table 23 describes the modes, and Table 24 show the options for the SWxMODE[3:0] bits.
Figure 15 shows the block diagram and the external component connections for SW2 regulator.
Figure 15. SW2 block diagram
Driver
Controller
EA
Z1
Z2
Internal
Compensation
PVIN2
LX2
FB2
ISENSE
COSW2
CINSW2
LSW2
I2C
Interface
EP
SW2
SW2MODE
SW2FAULT
VREF
DAC
I2C
PVIN2
36 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.10 SW2 setup and control registers
SW2 output voltage is programmable from 0.625 V to 3.300 V; however, bit SW2[6] in register SW2VOLT is read-only during normal
operation. Its value is determined by the default configuration. Therefore, once SW2[6] is set to "0", the output is limited to the lower output
voltages from 0.625 V to 1.975 V with 25 mV increments, as determined by bits SW2[5:0]. Likewise, once bit SW2[6] is set to "1", the
output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V with 50 mV increments, as determined by bits
SW2[5:0].
In order to optimize the performance of the regulator, it is recommended only voltages from 2.000 V to 3.300 V be used in the high range,
and the lower range be used for voltages from 0.625 V to 1.975 V.
The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW2[5:0], SW2STBY[5:0]
and SW2OFF[5:0] bits, respectively. However, the initial state of bit SW2[6] are copied into bits SW2STBY[6], and SW2OFF[6] bits.
Therefore, the output voltage range remains the same in all three operating modes. Table 39 shows the output voltage coding valid for
SW2.
Table 39. SW2 output voltage configuration
Low output voltage range(31) High output voltage range
Set Point SW2[6:0] SW2 Output Set Point SW2[6:0] SW2 Output
00000000 Reserved 64 1000000 0.8000
1 0000001 Reserved 65 1000001 0.8500
2 0000010 Reserved 66 1000010 0.9000
3 0000011 Reserved 67 1000011 0.9500
4 0000100 Reserved 68 1000100 1.0000
5 0000101 Reserved 69 1000101 1.0500
6 0000110 Reserved 70 1000110 1.1000
7 0000111 Reserved 71 1000111 1.1500
8 0001000 Reserved 72 1001000 1.2000
9 0001001 0.6250 73 1001001 1.2500
10 0001010 0.6500 74 1001010 1.3000
11 0001011 0.6750 75 1001011 1.3500
12 0001100 0.7000 76 1001100 1.4000
13 0001101 0.7250 77 1001101 1.4500
14 0001110 0.7500 78 1001110 1.5000
15 0001111 0.7750 79 1001111 1.5500
16 0010000 0.8000 80 1010000 1.6000
17 0010001 0.8250 81 1010001 1.6500
18 0010010 0.8500 82 1010010 1.7000
19 0010011 0.8750 83 1010011 1.7500
20 0010100 0.9000 84 1010100 1.8000
21 0010101 0.9250 85 1010101 1.8500
22 0010110 0.9500 86 1010110 1.9000
23 0010111 0.9750 87 1010111 1.9500
24 0011000 1.0000 88 1011000 2.0000
25 0011001 1.0250 89 1011001 2.0500
26 0011010 1.0500 90 1011010 2.1000
27 0011011 1.0750 91 1011011 2.1500
28 0011100 1.1000 92 1011100 2.2000
29 0011101 1.1250 93 1011101 2.2500
NXP Semiconductors 37
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Setup and control of SW2 is done through I2C registers listed i n Table 40, and a detailed description of each one of the registers is
provided in Tables 41 to Table 45.
30 0011110 1.1500 94 1011110 2.3000
31 0011111 1.1750 95 1011111 2.3500
32 0100000 1.2000 96 1100000 2.4000
33 0100001 1.2250 97 1100001 2.4500
34 0100010 1.2500 98 1100010 2.5000
35 0100011 1.2750 99 1100011 2.5500
36 0100100 1.3000 100 1100100 2.6000
37 0100101 1.3250 101 1100101 2.6500
38 0100110 1.3500 102 1100110 2.7000
39 0100111 1.3750 103 1100111 2.7500
40 0101000 1.4000 104 1101000 2.8000
41 0101001 1.4250 105 1101001 2.8500
42 0101010 1.4500 106 1101010 2.9000
43 0101011 1.4750 107 1101011 2.9500
44 0101100 1.5000 108 1101100 3.0000
45 0101101 1.5250 109 1101101 3.0500
46 0101110 1.5500 110 1101110 3.1000
47 0101111 1.5750 111 1101111 3.1500
48 0110000 1.6000 112 1110000 3.2000
49 0110001 1.6250 113 1110001 3.2500
50 0110010 1.6500 114 1110010 3.3000
51 0110011 1.6750 115 1110011 Reserved
52 0110100 1.7000 116 1110100 Reserved
53 0110101 1.7250 117 1110101 Reserved
54 0110110 1.7500 118 1110110 Reserved
55 0110111 1.7750 119 1110111 Reserved
56 0111000 1.8000 120 1111000 Reserved
57 0111001 1.8250 121 1111001 Reserved
58 0111010 1.8500 122 1111010 Reserved
59 0111011 1.8750 123 1111011 Reserved
60 0111100 1.9000 124 1111100 Reserved
61 0111101 1.9250 125 1111101 Reserved
62 0111110 1.9500 126 1111110 Reserved
63 0111111 1.9750 127 1111111 Reserved
Notes
31. For voltages less than 2.0 V, only use set points 9 to 63.
Table 39. SW2 output voltage configuration(continued)
38 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 40. SW2 register summary
Register Address Description
SW2VOLT 0x35 Output voltage set point on normal operation
SW2STBY 0x36 Output voltage set point on Standby
SW2OFF 0x37 Output voltage set point on Sleep
SW2MODE 0x38 Switching Mode selector register
SW2CONF 0x39 DVS, Phase, Frequency, and ILIM configuration
Table 41. Register SW2VOLT - ADDR 0x35
Name Bit # R/W Default Description
SW2 5:0 R/W 0x00 Sets the SW2 output voltage during normal operation
mode. See Table 39 for all possible configurations.
SW2 6 R 0x00 Sets the operating output voltage range for SW2. Set
by OTP. See Table 39 for all possible configurations.
UNUSED 7 0X00 UNUSED
Table 42. Register SW2STBY - ADDR 0x36
Name Bit # R/W Default Description
SW2STBY 5:0 R/W 0x00 Sets the SW2 output voltage during Standby mode.
See Table 39 for all possible configurations.
SW2STBY 6 R 0x00
Sets the operating output voltage range for SW2 on
Standby mode. This bit inherits the value configured
on bit SW2[6] by OTP. See Table 39 for all possible
configurations.
UNUSED 7 0X00 UNUSED
Table 43. Register SW2OFF - ADDR 0x37
Name Bit # R/W Default Description
SW2OFF 5:0 R/W 0x00 Sets the SW2 output voltage during Sleep mode. See
Table 39 for all possible configurations.
SW2OFF 6 R 0x00
Sets the operating output voltage range for SW2 on
Sleep mode. This bit inherits the value configured on
bit SW2[6] by OTP. See Table 39 for all possible
configurations.
UNUSED 7 0X00 UNUSED
Table 44. Register SW2MODE - ADDR 0x38
Name Bit # R/W Default Description
SW2MODE 3:0 R/W 0x08 Sets the SW2 switching operation mode.
See Table 23 for all possible configurations.
UNUSED 4 0x00 UNUSED
SW2OMODE 5 R/W 0x00
Set status of SW2 when in Sleep mode
0 = OFF
1 = PFM
UNUSED 7:6 0x00 UNUSED
NXP Semiconductors 39
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.11 SW2 external components
6.4.4.12 SW2 specifications
Table 45. Register SW2CONF - ADDR 0x39
Name Bit # R/W Default Description
SW2ILIM 0 R/W 0x00
SW2 current limit level selection
0 = High level current limit
1 = Low level current limit
UNUSED 1 R/W 0x00 Unused
SW2FREQ 3:2 R/W 0x00 SW2 switching frequency selector.
See Table 29.
SW2PHASE 5:4 R/W 0x00 SW2 Phase clock selection.
See Table 27.
SW2DVSSPEED 7:6 R/W 0x00 SW2 DVS speed selection.
See Table 28.
Table 46. SW2 external component recommendations
Components Description Values
CINSW2(32) SW2 Input capacitor 4.7 μF
CIN2HF(32) SW2 Decoupling input capacitor 0.1 μF
COSW2(32) SW2 Output capacitor 3 x 22 μF
LSW2 SW2 Inductor
1.5 μH
DCR = 50 mΩ
ISAT = 2.6 A
Notes
32. Use X5R or X7R capacitors.
Table 47. SW2 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN2 = 3.6 V, ISW2 = 100 mA, VVBIAS = 1.0 V ±4.0%, typical
external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VPVIN2 = 3.6 V,
ISW2 = 100 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
Switch mode supply SW2
VPVIN2 Operating Input Voltage 2.8 4.5 V
VSW2 Nominal Output Voltage Table 39 –V
VSW2ACC
Output Voltage Accuracy
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW2 < 2.0 A
0.625 V < VSW2 < 0.85 V
0.875 V < VSW2 < 1.975 V
2.0 V < VSW2 < 3.3 V
PFM, 2.8 V < VIN < 4.5 V, 0 < ISW2 50 mA
0.625 V < VSW2 < 0.675 V
0.7 V < VSW2 < 0.85 V
0.875 V < VSW2 < 1.975 V
2.0 V < VSW2 < 3.3 V
-25
-3.0
-6.0
-65
-45
-3.0
-3.0
25
3.0
6.0
65
45
3.0
3.0
mV
%
%
mV
mV
%
%
40 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
ISW2
Rated Output Load Current
2.8 V < VIN < 4.5 V, 0.625 V < VSW2 < 3.3 V 2000 mA (33)
ISW2LIM
Current Limiter Peak Current Detection
Current through Inductor
SW2ILIM = 0
SW2ILIM = 1
2.8
2.1
4.0
3.0
5.2
3.9
A
VSW2OSH
Start-up Overshoot
ISW2 = 0.0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN2 = 4.5 V ––66mV
tONSW2
Turn-ON Time, Enable to 90% of end value
ISW2 = 0.0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN2 = 4.5 V 500 µs
fSW2
Switching Frequency
SW2FREQ[1:0] = 00
SW2FREQ[1:0] = 01
SW2FREQ[1:0] = 10
1.0
2.0
4.0
MHz
Notes
33. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:
(VINSW2 - VSW2) = ISW2* (DCR of Inductor +RONSW2P + PCB trace resistance).
Table 47. SW2 electrical characteristics (continued)
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN2 = 3.6 V, ISW2 = 100 mA, VVBIAS = 1.0 V ±4.0%, typical
external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VPVIN2 = 3.6 V,
ISW2 = 100 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
NXP Semiconductors 41
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Switch mode supply SW2 (continued)
ηSW2
Efficiency
•V
IN = 2.8 V, fSW2 = 2.0 MHz, LSW2 = 1.0 μH
APS, PWM, 1.0 V, 1000 mA
•V
IN = 4.5V, fSW2 = 2.0 MHz, LSW2 = 1.0 μH
PFM, 1.0 V, 50 mA
APS, 1.0 V, 1.0 mA
APS, 1.0 V, 1000 mA
•V
IN = 3.6V, fSW2 = 2.0 MHz, LSW2 = 1.0 μH
PFM, 3.15 V, 1.0 mA
PFM, 3.15 V, 50 mA
APS, PWM, 3.15 V, 400 mA
APS, PWM, 3.15 V, 600 mA
APS, PWM, 3.15 V, 1000 mA
APS, PWM, 3.15 V, 2000 mA
77
68
68
76
94
95
96
94
92
86
%
ΔVSW2 Output Ripple 5.0 mV
VSW2LIR Line Regulation (APS, PWM) 20 mV
VSW2LOR DC Load Regulation (APS, PWM) 20 mV
VSW2LOTR
Transient Load Regulation
Transient load = 0.0 mA to 0.5 A, di/dt = 100 mA/μs
Overshoot
Undershoot
50
50
mV
ISW2Q
Quiescent Current
PFM Mode
APS Mode (Low output voltage settings)
APS Mode (High output voltage settings)
23
145
305
µA
RONSW2P
SW2 P-MOSFET RDS(on)
at VIN = VPVIN2 = 3.3 V 190 209 mΩ
RONSW2N
SW2 N-MOSFET RDS(on)
at VIN = VPVIN2 = 3.3 V 212 255 mΩ
RSW2DIS Discharge Resistance 600 Ω
Table 47. SW2 electrical characteristics (continued)
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN2 = 3.6 V, ISW2 = 100 mA, VVBIAS = 1.0 V ±4.0%, typical
external component values, fSW2 = 2.0 MHz, unless otherwise noted. Typical values are characterized at VIN = VPVIN2 = 3.6 V,
ISW2 = 100 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
42 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Figure 16. SW2 efficiency waveforms
Figure 17. Load transient response – SW2 (PWM)
6.4.4.13 SW3
SW3 is a 2.5 A regulator capable of providing an output from 0.625 V to 3.3 V. Figure 18 shows a high level block diagram of the SW3
regulator.
SW2 Efficiency Waveform: VIN = 3.6V; VOUT = 1.8V
NXP Semiconductors 43
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Figure 18. SW3 regulator block diagram
6.4.4.14 SW3 setup and control registers
SW3 output voltage is programmable from 0.625 V to 3.300 V; however, bit SW3 [6] in register SW3VOLT is read-only during normal
operation. Its value is determined by the default configuration. Therefore, once SW3 [6] is set to “0”, the output is limited to the lower output
voltages from 0.625 V to 1.975 V with 25 mV increments, as determined by bits SW3[5:0]. Likewise, once bit SW3[6] is set to "1", the
output voltage is limited to the higher output voltage range from 0.800 V to 3.300 V with 50 mV increments, as determined by bits
SW3[5:0].
In order to optimize the performance of the regulator, it is recommended only voltages from 2.00 V to 3.300 V be used in the high range
and the lower range be used for voltages from 0.625 V to 1.975 V.
The output voltage set point is independently programmed for normal, standby, and sleep mode by setting the SW3[5:0], SW3STBY[5:0],
and SW3OFF[5:0] bits respectively; however, the initial state of the SW3[6] bit is copied into the SW3STBY[6] and SW3OFF[6] bits.
Therefore, the output voltage range remains the same on all three operating modes. Table 48 shows the output voltage coding valid for
SW3. Table 48 shows the output voltage coding valid for SW3.
Table 48. SW3 output voltage configuration
Low output voltage range(34) High output voltage range
Set point SW3[6:0] SW3 output Set point SW3[6:0] SW3 output
00000000 Reserved 64 1000000 0.8000
10000001 Reserved 65 1000001 0.8500
20000010 Reserved 66 1000010 0.9000
30000011 Reserved 67 1000011 0.9500
40000100 Reserved 68 1000100 1.0000
50000101 Reserved 69 1000101 1.0500
60000110 Reserved 70 1000110 1.1000
70000111 Reserved 71 1000111 1.1500
80001000 Reserved 72 1001000 1.2000
90001001 0.6250 73 1001001 1.2500
10 0001010 0.6500 74 1001010 1.3000
11 0001011 0.6750 75 1001011 1.3500
12 0001100 0.7000 76 1001100 1.4000
13 0001101 0.7250 77 1001101 1.4500
Driver
Controller
EA
Z1
Z2
Internal
Compensation
PVIN3
LX3
FB3
ISENSE
COSW3
CINSW3
LSW3
I2C
Interface
EP
SW3
SW3MODE
SW3FAULT
VREF
DAC
I2C
PVIN3
44 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
14 0001110 0.7500 78 1001110 1.5000
15 0001111 0.7750 79 1001111 1.5500
16 0010000 0.8000 80 1010000 1.6000
17 0010001 0.8250 81 1010001 1.6500
18 0010010 0.8500 82 1010010 1.7000
19 0010011 0.8750 83 1010011 1.7500
20 0010100 0.9000 84 1010100 1.8000
21 0010101 0.9250 85 1010101 1.8500
22 0010110 0.9500 86 1010110 1.9000
23 0010111 0.9750 87 1010111 1.9500
24 0011000 1.0000 88 1011000 2.0000
25 0011001 1.0250 89 1011001 2.0500
26 0011010 1.0500 90 1011010 2.1000
27 0011011 1.0750 91 1011011 2.1500
28 0011100 1.1000 92 1011100 2.2000
29 0011101 1.1250 93 1011101 2.2500
30 0011110 1.1500 94 1011110 2.3000
31 0011111 1.1750 95 1011111 2.3500
32 0100000 1.2000 96 1100000 2.4000
33 0100001 1.2250 97 1100001 2.4500
34 0100010 1.2500 98 1100010 2.5000
35 0100011 1.2750 99 1100011 2.5500
36 0100100 1.3000 100 1100100 2.6000
37 0100101 1.3250 101 1100101 2.6500
38 0100110 1.3500 102 1100110 2.7000
39 0100111 1.3750 103 1100111 2.7500
40 0101000 1.4000 104 1101000 2.8000
41 0101001 1.4250 105 1101001 2.8500
42 0101010 1.4500 106 1101010 2.9000
43 0101011 1.4750 107 1101011 2.9500
44 0101100 1.5000 108 1101100 3.0000
45 0101101 1.5250 109 1101101 3.0500
46 0101110 1.5500 110 1101110 3.1000
47 0101111 1.5750 111 1101111 3.1500
48 0110000 1.6000 112 1110000 3.2000
49 0110001 1.6250 113 1110001 3.2500
50 0110010 1.6500 114 1110010 3.3000
51 0110011 1.6750 115 1110011 Reserved
Table 48. SW3 output voltage configuration (continued)
Low output voltage range(34) High output voltage range
Set point SW3[6:0] SW3 output Set point SW3[6:0] SW3 output
NXP Semiconductors 45
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 49 provides a list of registers used to configure and operate SW3. A detailed description on each of these register is provided on
Tables 49 through Table 54.
52 0110100 1.7000 116 1110100 Reserved
53 0110101 1.7250 117 1110101 Reserved
54 0110110 1.7500 118 1110110 Reserved
55 0110111 1.7750 119 1110111 Reserved
56 0111000 1.8000 120 1111000 Reserved
57 0111001 1.8250 121 1111001 Reserved
58 0111010 1.8500 122 1111010 Reserved
59 0111011 1.8750 123 1111011 Reserved
60 0111100 1.9000 124 1111100 Reserved
61 0111101 1.9250 125 1111101 Reserved
62 0111110 1.9500 126 1111110 Reserved
63 0111111 1.9750 127 1111111 Reserved
Notes
34. For voltages less than 2.0 V, only use set points 9 to 63.
Table 49. SW3 register summary
Register Address Output
SW3VOLT 0x3C SW3 Output voltage set point on normal operation
SW3STBY 0x3D SW3 Output voltage set point on Standby
SW3OFF 0x3E SW3 Output voltage set point on Sleep
SW3MODE 0x3F SW3 Switching mode selector register
SW3CONF 0x40 SW3 DVS, phase, frequency and ILIM configuration
Table 50. Register SW3VOLT - ADDR 0x3C
Name Bit # R/W Default Description
SW3 5:0 R/W 0x00 Sets the SW3 output voltage, during normal operation mode. See
Table 48 for all possible configurations.
SW3 6 R 0x00 Sets the operating output voltage range for SW3. Set by OTP. See
Table 48 for all possible configurations.
UNUSED 7 0x00 UNUSED
Table 51. Register SW3STBY - ADDR 0x3D
Name Bit # R/W Default Description
SW3STBY 5:0 R/W 0x00 Sets the SW3 output voltage, during Standby mode. See Table 48 for all
possible configurations.
SW3 6 R 0x00
Sets the operating output voltage range for SW3 on Standby mode. This
bit inherits the value configured on bit SW3[6] by OTP. See Table 48 for
all possible configurations.
UNUSED 7 0x00 UNUSED
Table 48. SW3 output voltage configuration (continued)
Low output voltage range(34) High output voltage range
Set point SW3[6:0] SW3 output Set point SW3[6:0] SW3 output
46 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.15 SW3 external components
Table 52. Register SW3OFF - ADDR 0x3E
Name Bit # R/W Default Description
SW3OFF 5:0 R/W 0x00 Sets the SW3 output voltage during Sleep mode. See Table 48 for all
possible configurations.
SW3 6 R 0x00
Sets the operating output voltage range for SW3 on Sleep mode. This bit
inherits the value configured on bit SW3[6] by OTP. See Table 48 for all
possible configurations.
UNUSED 7 0x00 UNUSED
Table 53. Register SW3MODE - ADDR 0x3F
Name Bit # R/W Default Description
SW3MODE 3:0 R/W 0x08 Sets the SW3 switching operation mode.
See Table 23 for all possible configurations.
UNUSED 4 0x00 UNUSED
SW3OMODE 5 R/W 0x00
Set status of SW3 when in Sleep mode.
0 = OFF
1 = PFM
UNUSED 7:6 0x00 UNUSED
Table 54. Register SW3CONF - ADDR 0x40
Name Bit # R/W Default Description
SW3ILIM 0 R/W 0x00
SW3 current limit level selection
0 = High level current limit
1 = Low level current limit
UNUSED 1 R/W 0x00 Unused
SW3FREQ 3:2 R/W 0x00 SW3 switching frequency selector. See Table 29.
SW3PHASE 5:4 R/W 0x00 SW3 Phase clock selection. See Table 27.
SW3DVSSPEED 7:6 R/W 0x00 SW3 DVS speed selection. See Table 28.
Table 55. SW3 external component requirements
Components Description SW3
CINSW3 (35) SW3 input capacitor 2 x 4.7 μF
COSW3 (35) SW3 output capacitor 3 x 22 μF
CIN3HF (35) SW3 decoupling input capacitor 2 x 0.1 μF
LSW3 SW3 inductor
1.5 μH
DCR = 25 mΩ
ISAT = 5.0 A
Notes
35. Use X5R or X7R capacitors.
NXP Semiconductors 47
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.16 SW3 specifications
Table 56. SW3 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN3 = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, fSW3 = 2.0 MHz. Typical values are characterized at VIN = VPVIN3 = 3.6 V,
VSW3 = 1.5 V, ISW3 = 100 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
Switch mode supply SW3
VPVIN3 Operating Input Voltage 2.8 4.5 V
VSW3 Nominal Output Voltage - Table 48 -V
VSW3ACC
Output Voltage Accuracy
PWM, APS 2.8 V < VIN < 4.5 V, 0 < ISW3 < 2.5 A
0.625 V < VSW3 < 0.85 V
0.875 V < VSW3 < 1.975 V
2.0 V < VSW3 < 3.3 V
PFM, steady state (2.8 V < VIN < 4.5 V, 0 < ISW3 < 50 mA)
0.625 V < VSW3 < 0.675 V
0.7 V < VSW3 < 0.85 V
0.875 V < VSW3 < 1.975 V
2.0 V < VSW3 < 3.3 V
-25
-3.0
-6.0
-65
-45
-45
-3.0
25
3.0
6.0
65
45
45
3.0
mV
%
%
mV
mV
mV
%
ISW3
Rated Output Load Current
2.8 V < VIN < 4.5 V, 0.625 V < VSW3 < 3.3 V
PWM, APS mode 2500
mA (36)
ISW3LIM
Current Limiter Peak Current Detection
Current through inductor
SW3ILIM = 0
SW3ILIM = 1
3.5
2.7
5.0
3.8
6.5
4.9
A
VSW3OSH
Start-up Overshoot
ISW3 = 0.0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN3 = 4.5 V ––66mV
tONSW3
Turn-on Time
Enable to 90% of end value
ISW3 = 0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN3 = 4.5 V
500 µs
fSW3
Switching Frequency
SW3FREQ[1:0] = 00
SW3FREQ[1:0] = 01
SW3FREQ[1:0] = 10
1.0
2.0
4.0
MHz
Notes
36. The higher output voltages available depend on the voltage drop in the conduction path as given by the following equation:
(VINSW3 - VSW3) = ISW3* (DCR of inductor +RONSW3xP + PCB trace resistance).
48 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Figure 19. SW3 efficiency waveforms
Switch mode supply SW3 (continued)
ηSW3
Efficiency
•f
SW3 = 2.0 MHz, LSW3 1.0 μH
PFM, 1.5 V, 1.0 mA
PFM, 1.5 V, 50 mA
APS, PWM 1.5 V, 500 mA
APS, PWM 1.5 V, 750 mA
APS, PWM 1.5 V, 1250 mA
APS, PWM 1.5 V, 2500 mA
84
85
85
84
80
74
%
ΔVSW3 Output Ripple 5.0 mV
VSW3LIR Line Regulation (APS, PWM) 20 mV
VSW3LOR DC Load Regulation (APS, PWM) 20 mV
VSW3LOTR
Transient Load Regulation
Transient Load = 0.0 mA to 1.25 A, di/dt = 100 mA/μs
Overshoot
Undershoot
50
50
mV
ISW3Q
Quiescent Current
PFM Mode
APS Mode
22
300
µA
RONSW3P
SW3 P-MOSFET RDSON
at VIN = VPVIN3 = 3.3 V 108 123 mΩ
RONSW3N
SW3 N-MOSFET RDSON
at VIN = VPVIN3 = 3.3 V 129 163 mΩ
RSW3DIS Discharge Resistance 600 Ω
Table 56. SW3 electrical characteristics (continued)
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN3 = 3.6 V, VSW3 = 1.5 V, ISW3 = 100 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, fSW3 = 2.0 MHz. Typical values are characterized at VIN = VPVIN3 = 3.6 V,
VSW3 = 1.5 V, ISW3 = 100 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
E
f
f
i
c
i
e
n
c
y
(
%
)
Load Current (mA)
PFM - Vout = 1.5V
APS - Vout = 1.5V
PWM - Vout = 1.5V
Efficiency (%)
NXP Semiconductors 49
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Figure 20. Load transient response – SW3 (PWM)
6.4.4.17 SW4
SW4 operates by default in VTT mode (for the 34VR500V1, V3, V4, V5, V6, V7) and it's not possible to change this configuration and
modify the output voltage after the Start-up sequence. SW4 operates in non VTT mode for the 34VR500V2 and it is possible to change
the output voltage by the I2C bus.
SW4 is a 1.0 A rated buck regulator capable of operating in two modes. In Regulator mode, it operates as a normal buck regulator with a
programmable output between 0.625 and 1.975 V. It is capable of operating in the three available switching modes: PFM, APS, and PWM,
described on Table 23 and configured by the SW4MODE[3:0] bits, as shown in Table 24.
If the system requires DDR memory termination, SW4 can be used in its VTT mode. In the VTT mode, its reference voltage will track the
output voltage of SW3, scaled by 0.5. Furthermore, when in VTT mode, only the PWM switching mode is allowed. The minimum output
voltage for SW4 in VTT mode is 0.6 V
Figure 21 shows the block diagram and the external component connections for the SW4 regulator.
Figure 21. SW4 block diagram
Driver
Controller
EA
Z1
Z2
Internal
Compensation
PVIN4
LX4
FB4
ISENSE
COSW4
CINSW4
LSW4
I2C
Interface
EP
SW4
SW4MODE
SW4FAULT
VREF
DAC
I2C
PVIN4
50 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.18 SW4 setup and control registers
In Regulator mode, the SW4 output voltage is programmable from 0.625 to 1.975 V.
The output voltage set point is independently programmed for Normal, Standby, and Sleep mode by setting the SW4[5:0], SW4STBY[5:0],
and SW4OFF[5:0] bits, respectively. Table 57 shows the output voltage coding valid for SW4.
Full setup and control of SW4 is done through the I2C registers listed on Table 58, and a detailed description of each one of the registers
is provided in Tables 59 to Table 63.
Table 57. SW4 output voltage configuration
Set Point SW4[5:0] SW4 Output Set Point SW4[5:0] SW4 Output
9 001001 0.6250 37 100101 1.3250
10 001010 0.6500 38 100110 1.3500
11 001011 0.6750 39 100111 1.3750
12 001100 0.7000 40 101000 1.4000
13 001101 0.7250 41 101001 1.4250
14 001110 0.7500 42 101010 1.4500
15 001111 0.7750 43 101011 1.4750
16 010000 0.8000 44 101100 1.5000
17 010001 0.8250 45 101101 1.5250
18 010010 0.8500 46 101110 1.5500
19 010011 0.8750 47 101111 1.5750
20 010100 0.9000 48 110000 1.6000
21 010101 0.9250 49 110001 1.6250
22 010110 0.9500 50 110010 1.6500
23 010111 0.9750 51 110011 1.6750
24 011000 1.0000 52 110100 1.7000
25 011001 1.0250 53 110101 1.7250
26 011010 1.0500 54 110110 1.7500
27 011011 1.0750 55 110111 1.7750
28 011100 1.1000 56 111000 1.8000
29 011101 1.1250 57 111001 1.8250
30 011110 1.1500 58 111010 1.8500
31 011111 1.1750 59 111011 1.8750
32 100000 1.2000 60 111100 1.9000
33 100001 1.2250 61 111101 1.9250
34 100010 1.2500 62 111110 1.9500
35 100011 1.2750 63 111111 1.9750
36 100100 1.3000
NXP Semiconductors 51
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 58. SW4 register summary
Register Address Description
SW4VOLT 0x4A Output voltage set point on normal operation
SW4STBY 0x4B Output voltage set point on Standby
SW4OFF 0x4C Output voltage set point on Sleep
SW4MODE 0x4D Switching mode selector register
SW4CONF 0x4E DVS, phase, frequency and ILIM configuration
Table 59. Register SW4VOLT - ADDR 0x4A
Name Bit # R/W Default Description
SW4 5:0 R/W 0x00 Sets the SW4 output voltage during normal operation mode. See Table 57
for all possible configurations.
UNUSED 7 0x00 UNUSED
Table 60. Register SW4STBY - ADDR 0x4B
Name Bit # R/W Default Description
SW4STBY 5:0 R/W 0x00 Sets the SW4 output voltage during Standby mode. See Table 57 for all
possible configurations.
UNUSED 7 0x00 UNUSED
Table 61. Register SW4OFF - ADDR 0x4C
Name Bit # R/W Default Description
SW4OFF 5:0 R/W 0x00 Sets the SW4 output voltage during Sleep mode. See Table 57 for all
possible configurations.
UNUSED 7 0x00 UNUSED
Table 62. Register SW4MODE - ADDR 0x4D
Name Bit # R/W Default Description
SW4MODE 3:0 R/W 0x08 Sets the SW4 switching operation mode. See Table 23 for all possible
configurations.
UNUSED 4 0x00 UNUSED
SW4OMODE 5 R/W 0x00
Set status of SW4 when in Sleep mode
0 = OFF
1 = PFM
UNUSED 7:6 0x00 UNUSED
52 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.4.19 SW4 external components
6.4.4.20 SW4 specifications
Table 63. Register SW4CONF - ADDR 0x4E
Name Bit # R/W Default Description
SW4ILIM 0 R/W 0x00
SW4 current limit level selection
0 = High level Current limit
1 = Low level Current limit
UNUSED 1 R/W 0x00 Unused
SW4FREQ 3:2 R/W 0x00 SW4 switching frequency selector. See Table 29.
SW4PHASE 5:4 R/W 0x00 SW4 Phase clock selection. See Table 27.
SW4DVSSPEED 7:6 R/W 0x00 SW4 DVS speed selection. See Table 28.
Table 64. SW4 external component recommendations
Components Description Values
CINSW4(37) SW4 Input capacitor 4.7 μF
CIN4HF(37) SW4 Decoupling input capacitor 0.1 μF
COSW4(37) SW4 Output capacitor 3 x 22 μF
LSW4 SW4 Inductor
1.5 μH
DCR = 50 mΩ
ISAT = 2.6 A
Notes
37. Use X5R or X7R capacitors.
Table 65. SW4 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, fSW4 = 2.0 MHz, unless otherwise noted. Typical values are characterized at
VIN = VPVIN4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
Switch mode supply SW4
VPVIN4 Operating Input Voltage 2.8 4.5 V
VSW4
Nominal Output Voltage
Normal operation
VTT Mode
Table 57
VSW3/2
V
VSW4ACC
Output Voltage Accuracy
PWM, APS, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A
0.625 V < VSW4 < 0.85 V
0.875 V < VSW4 < 1.975 V
PFM, steady state, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 50 mA
0.625 V < VSW4 < 0.675 V
0.7 V < VSW4 < 0.85 V
0.875 V < VSW4 < 1.975 V
VTT Mode, 2.8 V < VIN < 4.5 V, 0 < ISW4 < 1.0 A
-25
-3.0
-65
-45
-45
-40
25
3.0
65
45
45
40
mV
%
mV
mV
mV
mV
ISW4
Rated Output Load Current
2.8 V < VIN < 4.5 V, 0.625 V < VSW4 < 1.975 V 1000 mA
NXP Semiconductors 53
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Switch mode supply SW4 (continued)
ISW4LIM
Current Limiter Peak Current Detection
Current through inductor
SW4ILIM = 0
SW4ILIM = 1
1.4
1.0
2.0
1.5
3.0
2.4
A
VSW4OSH
Start-up Overshoot
ISW4 = 0.0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN4 = 4.5 V ––66mV
tONSW4
Turn-on Time
Enable to 90% of end value
ISW4 = 0.0 mA, DVS clk = 25 mV/4 μs, VIN = VPVIN4 = 4.5 V
500 µs
fSW4
Switching Frequency
SW4FREQ[1:0] = 00
SW4FREQ[1:0] = 01
SW4FREQ[1:0] = 10
1.0
2.0
4.0
MHz
ηSW4
Efficiency
•f
SW4 = 2.0 MHz, LSW4 = 1.0 μH
PFM, 1.8 V, 1.0 mA
PFM, 1.8 V, 50 mA
APS, PWM 1.8 V, 200 mA
APS, PWM 1.8 V, 500 mA
APS, PWM 1.8 V, 1000 mA
PWM 0.75 V, 200 mA
PWM 0.75 V, 500 mA
PWM 0.75 V, 1000 mA
81
78
87
88
83
78
76
66
%
ΔVSW4 Output Ripple 5.0 mV
VSW4LIR Line Regulation (APS, PWM) 20 mV
VSW4LOR DC Load Regulation (APS, PWM) 20 mV
VSW4LOTR
Transient Load Regulation
Transient Load = 0.0 mA to 500 mA, di/dt = 100 mA/μs
Overshoot
Undershoot
50
50
mV
ISW4Q
Quiescent Current
PFM Mode
APS Mode
22
145
µA
RONSW4P
SW4 P-MOSFET RDSON
at VIN = VPVIN4 = 3.3 V 236 274 mΩ
RONSW4N
SW4 N-MOSFET RDSON
at VIN = VPVIN4 = 3.3 V 293 378 mΩ
RSW4DIS Discharge Resistance 600 Ω
Table 65. SW4 electrical characteristics (continued)
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = VPVIN4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, fSW4 = 2.0 MHz, unless otherwise noted. Typical values are characterized at
VIN = VPVIN4 = 3.6 V, VSW4 = 1.8 V, ISW4 = 100 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
54 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Figure 22. SW4 efficiency waveforms
Figure 23. Load transient response – SW4 (PWM)
6.4.5 LDO regulators description
This section describes the LDO regulators provided by the 34VR500. All regulators use the main bandgap as reference. Refer to Bias and
references block description section for further information on the internal reference voltages.
A Low Power mode is automatically activated by reducing bias currents when the load current is less than I_Lmax/5. However, the lowest
bias currents may be attained by forcing the part into its Low Power mode by setting the LDOxLPWR bit. The use of this bit is only
recommended when the load is expected to be less than I_Lmax/50, otherwise performance may be degraded.
When a regulator is disabled, the output will be discharged by an internal pull-down. The pull-down is also activated when PORB is low.
0
10
20
30
40
50
60
70
80
90
100
0.1 1 10 100 1000
E
f
f
i
c
i
e
n
c
y
(
%
)
Load Current (mA)
PFM - Vout = 1.8V
APS - Vout = 1.8V
PWM - Vout = 1.8V
PWM - Vout = 0.75V
Efficiency (%)
NXP Semiconductors 55
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Figure 24. General LDO block diagram
6.4.5.1 Transient response waveforms
Idealized stimulus and response waveforms for transient line and transient load tests are depicted in Figure 25. Note that the transient
line and load response refers to the overshoot, or undershoot only, excluding the DC shift.
LDOx
VLDOINx
VLDOINx
CLDOx
LDOx
LDOxLPWR
VREF
LDOx
I2C
Interface
Discharge
+
_
LDOx
56 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Figure 25. Transient waveforms
10 us 10 us
VINx
Transient Line Stimulus
VINx_INITIAL
VINx_FINAL
1.0 us 1.0 us
IMAX/10
IMAX
ILOAD
Transient Load Stimulus
Undershoot
IL = IMAX/10
VOUT
VOUT Transient Load Response
IL = IMAX
Overshoot
Undershoot
VOUT
VOUT Transient Line Response
Overshoot
VINx_INITIAL
VINx_FINAL
NXP Semiconductors 57
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.5.2 Short-circuit protection
All general purpose LDOs have short-circuit protection capability. The Short-circuit Protection (SCP) system includes debounced fault
condition detection, regulator shutdown, and processor interrupt generation, to contain failures and minimize the chance of product
damage. If a short-circuit condition is detected, the LDO will be disabled by resetting its LDOxEN bit, while at the same time, an interrupt
LDOxFAULTI will be generated to flag the fault to the system processor. The LDOxFAULTI interrupt is maskable through the
LDOxFAULTM mask bit.
The SCP feature is enabled by setting the REGSCPEN bit. If this bit is not set, the regulators will not automatically be disabled upon a
short-circuit detection. However, the current limiter will continue to limit the output current of the regulator. By default, the REGSCPEN is
not set; therefore, at start-up none of the regulators will be disabled if an overloaded condition occurs. A fault interrupt, LDOxFAULTI, will
be generated in an overload condition regardless of the state of the REGSCPEN bit. See Table 66 for SCP behavior configuration.
6.4.5.3 LDO regulator control
Each LDO is fully controlled through its respective LDOxCTL register. This register enables the user to set the LDO output voltage
according to Table 67 for LDO1 and uses the voltage set point on Table 68 for LDO2 through LDO5.
Table 66. Short-circuit behavior
REGSCPEN[0] Short-circuit Behavior
0 Current limit
1 Shutdown
Table 67. LDO1 output voltage configuration
Set point LDO1[3:0] LDO1 output (V)
0 0000 0.800
1 0001 0.850
2 0010 0.900
3 0011 0.950
4 0100 1.000
5 0101 1.050
6 0110 1.100
7 0111 1.150
8 1000 1.200
9 1001 1.250
10 1010 1.300
11 1011 1.350
12 1100 1.400
13 1101 1.450
14 1110 1.500
15 1111 1.550
58 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Besides the output voltage configuration, the LDOs can be enabled or disabled at anytime during normal mode operation, as well as
programmed to stay “ON” or be disabled when the PMIC enters Standby mode. Each regulator has associated I2C bits for this. Table 69
presents a summary of all valid combinations of the control bits on LDOxCTL register and the expected behavior of the LDO output.
For more detail information, Table 70 through Table 74 provide a description of all registers necessary to operate all five general purpose
LDO regulators.
Table 68. LDO2/3/4/5 output voltage configuration
Set point LDOx[3:0] LDOx output (V)
00000 1.80
10001 1.90
20010 2.00
30011 2.10
40100 2.20
50101 2.30
60110 2.40
70111 2.50
81000 2.60
91001 2.70
10 1010 2.80
11 1011 2.90
12 1100 3.00
13 1101 3.10
14 1110 3.20
15 1111 3.30
Table 69. LDO control
LDOxEN LDOxLPWR LDOxSTBY STANDBY(38) LDOxOUT
0XXXOff
10 0XOn
1 1 0 X Low Power
1X 10On
10 11Off
1 1 1 1 Low Power
Notes
38. STANDBY refers to a Standby event as described earlier.
NXP Semiconductors 59
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 70. Register LDO1CTL - ADDR 0x6D
Name Bit # R/W Default Description
LDO1 3:0 R/W 0x80 Sets LDO1 output voltage. See Table 67 for all possible configurations.
LDO1EN 4 0x00
Enables or Disables LDO1 output
0 = OFF
1 = ON
LDO1STBY 5 R/W 0x00 Set LDO1 output state when in Standby. Refer to Table 69.
LDO1LPWR 6 R/W 0x00 Enable Low Power Mode for LDO1. Refer to Table 69.
UNUSED 7 0x00 UNUSED
Table 71. Register LDO2CTL - ADDR 0x6E
Name Bit # R/W Default Description
LDO2 3:0 R/W 0x80 Sets LDO2 output voltage. See Table 68 for all possible configurations.
LDO2EN 4 0x00
Enables or Disables LDO2 output
0 = OFF
1 = ON
LDO2STBY 5 R/W 0x00 Set LDO2 output state when in Standby. Refer to Table 69.
LDO2LPWR 6 R/W 0x00 Enable Low Power Mode for LDO2. Refer to Table 69.
UNUSED 7 0x00 UNUSED
Table 72. Register LDO3CTL - ADDR 0x6F
Name Bit # R/W Default Description
LDO3 3:0 R/W 0x80 Sets LDO3 output voltage. See Table 68 for all possible configurations.
LDO3EN 4 0x00
Enables or Disables LDO3 output
0 = OFF
1 = ON
LDO3STBY 5 R/W 0x00 Set LDO3 output state when in Standby. Refer to Table 69.
LDO3LPWR 6 R/W 0x00 Enable Low Power Mode for LDO3. Refer to Table 69.
UNUSED 7 0x00 UNUSED
Table 73. Register LDO4CTL - ADDR 0x70
Name Bit # R/W Default Description
LDO4 3:0 R/W 0x80 Sets LDO4 output voltage. See Table 68 for all possible configurations.
LDO4EN 4 0x00
Enables or Disables LDO4 output
0 = OFF
1 = ON
LDO4STBY 5 R/W 0x00 Set LDO4 output state when in Standby. Refer to Table 69.
LDO4LPWR 6 R/W 0x00 Enable Low Power Mode for LDO4. Refer to Table 69.
UNUSED 7 0x00 UNUSED
60 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.5.4 External components
Table 75 lists the typical component values for the general purpose LDO regulators.
6.4.5.5 LDO specifications
6.4.5.5.1 LDO1
Table 74. Register LDO5CTL - ADDR 0x71
Name Bit # R/W Default Description
LDO5 3:0 R/W 0x80 Sets LDO5 output voltage. See Table 68 for all possible configurations.
LDO5EN 4 0x00
Enables or Disables LDO5 output
0 = OFF
1 = ON
LDO5STBY 5 R/W 0x00 Set LDO5 output state when in Standby. Refer to Table 69.
LDO5LPWR 6 R/W 0x00 Enable Low Power Mode for LDO5. Refer to Table 69.
UNUSED 7 0x00 UNUSED
Table 75. LDO external components
Regulator Output capacitor (μF)(39)
LDO1 4.7
LDO2 2.2
LDO3 4.7
LDO4 2.2
LDO5 2.2
Notes
39. Use X5R/X7R ceramic capacitors.
Table 76. LDO1 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN1 = 3.0 V, VLDO1[3:0] = 1111, ILDO1 = 10 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN1 = 3.0 V, LDO1[3:0] = 1111, ILDO1 = 10 mA and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
LDO1
VLDOIN1 Operating Input Voltage 1.75 3.40 V
LDO1NOM Nominal Output Voltage Table 67 –V
ILDO1 Operating Load Current 0.0 250 mA
LDO1 active mode - DC
VLDO1TOL
Output Voltage Tolerance
1.75 V <VLDOIN1 < 3.4 V, 0.0 mA < ILDO1 < 250 mA
LDO1[3:0] = 0000 to 1111
-3.0 3.0 %
VLDO1LOR
Load Regulation
(VLDO1 at ILDO1 = 250 mA) - (VLDO1 at ILDO2 = 0.0 mA)
For any 1.75 V <VLDOIN1 < 3.4 V
0.05 mV/mA
VLDO1LIR
Line Regulation
(VLDO1 at VLDOIN1 = 3.4 V) - (VLDO1 at VLDOIN1 = 1.75 V)
For any 0.0 mA < ILDO1 < 250 mA
–0.50–mV/V
NXP Semiconductors 61
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
LDO1 active mode - DC (continued)
ILDO1LIM
Current Limit
ILDO1 when LDO1 is forced to LDO1NOM/2 305 417 510 mA
ILDO1OCP
Overcurrent Protection Threshold
ILDO1 required to cause the SCP function to disable LDO when
REGSCPEN = 1 290 500 mA
ILDO1Q
Quiescent Current
No load, Change in IVIN and IVLDOIN1
When LDO1 enabled
–16–μA
LDO1 AC and transient
PSRRLDO1
PSRR
•I
LDO1 = 187.5 mA, 20 Hz to 20 kHz
LDO1[3:0] = 0000 - 1101
LDO1[3:0] = 1110, 1111
50
37
60
45
dB (40)
NOISELDO1
Output Noise Density
•V
LDOIN1 = 1.75 V, ILDO1 = 187.5 mA
100 Hz – <1.0 kHz
1.0 kHz – <10 kHz
10 kHz – 1.0 MHz
-108
-118
-124
-100
-108
-112
dBV/Hz
SLWRLDO1
Turn-On Slew Rate
10% to 90% of end value
•1.75 V VLDOIN1 3.4 V, ILDO1 = 0.0 mA
LDO1[3:0] = 0000 to 0111
LDO1[3:0] = 1000 to 1111
12.5
16.5
mVs
tONLDO1
Turn-On Time
Enable to 90% of end value, VLDOIN1 = 1.75 V, 3.4 V
ILDO1 = 0.0 mA
60 500 μs
tOFFLDO1
Turn-Off Time
Disable to 10% of initial value, VLDOIN1 = 1.75 V
ILDO1 = 0.0 mA
––10ms
LDO1OSHT
Start-up Overshoot
VLDOIN1 = 1.75 V, 3.4 V, ILDO1 = 0.0 mA –1.02.0%
VLDO1LOTR
Transient Load Response
VLDOIN1 = 1.75 V, 3.4 V
ILDO1 = 25 to 250 mA in 1.0 μs
Peak of overshoot or undershoot of LDO1 with respect to final value
Refer to Figure 25
––3.0%
VLDO1LITR
Transient Line Response
ILDO1 = 187.5 mA
VLDOIN1INITIAL = 1.75 V to VLDOIN1 = 2.25 V for
LDO1[3:0] = 0000 to 1101
VLDOIN1INITIAL = VLDO1+0.3 V to VLDOIN1FINAL = VLDO1+0.8 V for
LDO1[3:0] = 1110, 1111
Refer to Figure 25
–5.08.0mV
Notes
40. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout
region of the regulator under test.
Table 76. LDO1 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN1 = 3.0 V, VLDO1[3:0] = 1111, ILDO1 = 10 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN1 = 3.0 V, LDO1[3:0] = 1111, ILDO1 = 10 mA and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
62 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.5.5.2 LDO2
Table 77. LDO2 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN23 = 3.6 V, VLDO2[3:0] = 1111, ILDO2 = 10 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN23 = 3.6 V, LDO2[3:0] = 1111, ILDO2 = 10 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
LDO2
VLDOIN23
Operating Input Voltage
1.8 V LDO2NOM 2.5 V
2.6 V LDO2NOM 3.3 V
2.8
LDO2NOM+
0.250
3.6
3.6
V(41)
LDO2NOM Nominal Output Voltage Table 68 –V
ILDO2 Operating Load Current 0.0 100 mA
LDO2 DC
VLDO2TOL
Output Voltage Tolerance
VLDOIN23MIN < VLDOIN23 < 3.6 V
0.0 mA < ILDO2 < 100 mA
LDO2[3:0] = 0000 to 1111
-3.0 3.0 %
VLDO2LOR
Load Regulation
(VLDO2 at ILDO2 = 100 mA) - (VLDO2 at ILDO2 = 0.0 mA)
For any VLDOIN23MIN < VLDOIN23 < 3.6 V
0.07 mV/mA
VLDO2LIR
Line Regulation
(VLDO2 at VLDOIN23 = 3.6 V) - (VLDO2 at VLDOIN23MIN)
For any 0.0 mA < ILDO2 < 100 mA
–0.8–mV/V
ILDO2LIM
Current Limit
ILDO2 when LDO2 is forced to LDO2NOM/2 127 167 200 mA
ILDO2OCP
Overcurrent Protection Threshold
ILDO2 required to cause the SCP function to disable LDO when
REGSCPEN = 1
120 200 mA
ILDO2Q
Quiescent Current
No load, Change in IVIN and IVLDOIN23
When LDO2 enabled
–13–μA
LDO2 AC and transient
PSRRLDO2
PSRR
•I
LDO2 = 75 mA, 20 Hz to 20 kHz
LDO2[3:0] = 0000 - 1110, VLDOIN23 = VLDOIN23MIN + 100 mV
LDO2[3:0] = 0000 - 1000, VLDOIN23 = LDO2NOM + 1.0 V
35
55
40
60
dB (42)
NOISELDO2
Output Noise Density
•V
LDOIN23 = VLDOIN23MIN, ILDO2 = 75 mA
100 Hz – <1.0 kHz
1.0 kHz – <10 kHz
10 kHz – 1.0 MHz
-114
-129
-135
-102
-123
-130
dBV/Hz
SLWRLDO2
Turn-On Slew Rate
10% to 90% of end value
•V
LDOIN23MINVLDOIN23 3.6 V, ILDO2 = 0.0 mA
LDO2[3:0] = 0000 to 0011
LDO2[3:0] = 0100 to 0111
LDO2[3:0] = 1000 to 1011
LDO2[3:0] = 1100 to 1111
22.0
26.5
30.5
34.5
mVs
NXP Semiconductors 63
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
LDO2 AC and transient (continued)
tONLDO2
Turn-On Time
Enable to 90% of end value, VLDOIN23 = VLDOIN23MIN, 3.6 V
ILDO2 = 0.0 mA
60 500 μs
tOFFLDO2
Turn-Off Time
Disable to 10% of initial value, VLDOIN23 = VLDOIN23MIN
ILDO2 = 0.0 mA
––10ms
LDO2OSHT
Start-up Overshoot
VLDOIN23 = VLDOIN23MIN, 3.6 V, ILDO2 = 0.0 mA –1.02.0%
VLDO2LOTR
Transient Load Response
VLDOIN23 = VLDOIN23MIN, 3.6 V
ILDO2 = 10 to 100 mA in 1.0μs
Peak of overshoot or undershoot of LDO2 with respect to final
value. Refer to Figure 25
––3.0%
VLDO2LITR
Transient Line Response
ILDO2 = 75 mA
VLDOIN23INITIAL = 2.8 V to VLDOIN23FINAL = 3.3 V for
LDO2[3:0] = 0000 to 0111
VLDOIN23INITIAL = VLDO2+0.3 V to VLDOIN23FINAL = VLDO2+0.8 V for
LDO2[3:0] = 1000 to 1010
VLDOIN23INITIAL = VLDO2+0.25 V to VLDOIN23FINAL = 3.6 V for
LDO2[3:0] = 1011 to 1111
Refer to Figure 25
–5.08.0mV
Notes
41. When the LDO Output voltage is set above 2.6 V, the minimum allowed input voltage needs to be at least the output voltage plus 0.25 V, for proper
regulation due to the dropout voltage generated through the internal LDO transistor.
42. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout
region of the regulator under test. VLDOIN23MIN refers to the minimum allowed input voltage for a particular output voltage.
Table 77. LDO2 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN23 = 3.6 V, VLDO2[3:0] = 1111, ILDO2 = 10 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN23 = 3.6 V, LDO2[3:0] = 1111, ILDO2 = 10 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
64 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.5.5.3 LDO3
Table 78. LDO3 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN23 = 3.6 V, LDO3[3:0] = 1111, ILDO3 = 10 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN23 = 3.6 V, LDO3[3:0] = 1111, ILDO3 = 10 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
LDO3
VLDOIN23
Operating Input Voltage
1.8 V LDO3NOM 2.5 V
2.6 V LDO3NOM 3.3 V
2.8
LDO3NOM+
0.250
3.6
3.6
V(43)
LDO3NOM Nominal Output Voltage Table 68 –V
ILDO3 Operating Load Current 0.0 350 mA
LDO3 DC
VLDO3TOL
Output Voltage Tolerance
VLDOIN23MIN < VLDOIN23 < 3.6 V
0.0 mA < ILDO3 < 350 mA
LDO3[3:0] = 0000 to 1111
-3.0 3.0 %
VLDO3LOR
Load Regulation
(VLDO3 at ILDO3 = 350 mA) - (VLDO3 at ILDO3 = 0.0 mA)
For any VLDOIN23MIN < VLDOIN23 < 3.6 V
0.07 mV/mA
VLDO3LIR
Line Regulation
(VLDO3 at 3.6 V) - (VLDO3 at VLDOIN23MIN)
For any 0.0 mA < ILDO3 < 350 mA
0.80 mV/V
ILDO3LIM
Current Limit
ILDO3 when LDO3 is forced to LDO3NOM/2 435 584.5 700 mA
ILDO3OCP
Overcurrent Protection Threshold
ILDO3 required to cause the SCP function to disable LDO when
REGSCPEN = 1
420 700 mA
ILDO3Q
Quiescent Current
No load, Change in IVIN and IVLDOIN23
When LDO3 enabled
–13–μA
LDO3 AC and transient
PSRRLDO3
PSRR
•I
LDO3 = 262.5 mA, 20 Hz to 20 kHz
LDO3[3:0] = 0000 - 1110, VLDOIN23 = VLDOIN23MIN + 100 mV
LDO3[3:0] = 0000 - 1000, VLDOIN23 = LDO3NOM + 1.0 V
35
55
40
60
dB (44)
NOISELDO3
Output Noise Density
•V
LDOIN23 = VLDOIN23MIN, ILDO3 = 262.5 mA
100 Hz – <1.0 kHz
1.0 kHz – <10 kHz
10 kHz – 1.0 MHz
-114
-129
-135
-102
-123
-130
dBV/Hz
SLWRLDO3
Turn-On Slew Rate
10% to 90% of end value
•V
LDOIN23MIN VLDOIN23 3.6 V, ILDO3 = 0.0 mA
LDO3[3:0] = 0000 to 0011
LDO3[3:0] = 0100 to 0111
LDO3[3:0] = 1000 to 1011
LDO3[3:0] = 1100 to 1111
22.0
26.5
30.5
34.5
mVs
NXP Semiconductors 65
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
LDO3 AC and transient (continued)
tONLDO3
Turn-On Time
Enable to 90% of end value, VLDOIN23 = VLDOIN23MIN, 3.6 V
ILDO3 = 0.0 mA
60 500 μs
tOFFLDO3
Turn-Off Time
Disable to 10% of initial value, VLDOIN23 = VLDOIN23MIN
ILDO3 = 0.0 mA
––10ms
LDO3OSHT
Start-up Overshoot
VLDOIN23 = VLDOIN23MIN, 3.6 V, ILDO3 = 0.0 mA –1.02.0%
VLDO3LOTR
Transient Load Response
VLDOIN23 = VLDOIN23MIN, 3.6 V
ILDO3 = 35 to 350 mA in 1.0 μs
Peak of overshoot or undershoot of LDO3 with respect to final
value. Refer to Figure 25
––3.0%
VLDO3LITR
Transient Line Response
ILDO3 = 262.5 mA
VLDOIN23INITIAL = 2.8 V to VLDOIN23FINAL = 3.3 V for
LDO3[3:0] = 0000 to 0111
VLDOIN23INITIAL = VLDO3+0.3 V to VLDOIN23FINAL = VLDO3+0.8 V
for LDO3[3:0] = 1000 to 1010
VLDOIN23INITIAL = VLDO3+0.25 V to VLDOIN23FINAL = 3.6 V for
LDO3[3:0] = 1011 to 1111
Refer to Figure 25
–5.08.0mV
Notes
43. When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper
regulation due to the dropout voltage generated through the internal LDO transistor.
44. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout
region of the regulator under test. VLDOIN23MIN refers to the minimum allowed input voltage for a particular output voltage.
Table 78. LDO3 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN23 = 3.6 V, LDO3[3:0] = 1111, ILDO3 = 10 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN23 = 3.6 V, LDO3[3:0] = 1111, ILDO3 = 10 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
66 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.5.5.4 LDO4
Table 79. LDO4 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN45 = 3.6 V, LDO4[3:0] = 1111, ILDO4 = 10 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN45 = 3.6 V, LDO4[3:0] = 1111, ILDO4 = 10 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
LDO4
VLDOIN45
Operating Input Voltage
1.8 V LDO4NOM 2.5 V
2.6 V LDO4NOM 3.3 V
2.8
LDO4NOM+
0.250
4.5
4.5 V(45)
LDO4NOM Nominal Output Voltage Table 68 –V
ILDO4 Operating Load Current 0.0 100 mA
LDO4 active mode – DC
VLDO4TOL
Output Voltage Tolerance
VLDOIN45MIN < VLDOIN45 < 4.5 V
0.0 mA < ILDO4 < 100 mA, LDO4[3:0] = 0000 to 1111
-3.0 3.0 %
VLDO4LOR
Load Regulation
(VLDO4 at ILDO4 = 100 mA) - (VLDO4 at ILDO4 = 0.0 mA)
For any VLDOIN45MIN < VLDOIN45 < 4.5 mV
0.10 mV/mA
VLDO4LIR
Line Regulation
(VLDO4 at VLDOIN45 = 4.5 V) - (VLDO4 at VLDOIN45MIN)
For any 0.0 mA < ILDO4 < 100 mA
–0.50–mV/V
ILDO4LIM
Current Limit
ILDO4 when LDO4 is forced to LDO4NOM/2 122 167 200 mA
ILDO4OCP
Overcurrent Protection threshold
ILDO4 required to cause the SCP function to disable LDO when
REGSCPEN = 1
120 200 mA
ILDO4Q
Quiescent Current
No load, Change in IVIN and IVLDOIN45
When LDO4 enabled
–13–μA
LDO4 AC and transient
PSRRLDO4
PSRR
•I
LDO4 = 75 mA, 20 Hz to 20 kHz
LDO4[3:0] = 0000 - 1111, VLDOIN45 = VLDOIN45MIN + 100 mV
LDO4[3:0] = 0000 - 1111, VLDOIN45 = LDO4NOM + 1.0 V
35
52
40
60
dB (46)
NOISELDO4
Output Noise Density
•V
LDOIN45 = VLDOIN45MIN, ILDO4 = 75 mA
100 Hz – <1.0 kHz
1.0 kHz – <10 kHz
10 kHz – 1.0 MHz
-114
-129
-135
-102
-123
-130
dBV/Hz
SLWRLDO4
Turn-On Slew Rate
10% to 90% of end value
•V
LDOIN45MIN VLDOIN45 4.5 mV, ILDO4 = 0.0 mA
LDO4[3:0] = 0000 to 0011
LDO4[3:0] = 0100 to 0111
LDO4[3:0] = 1000 to 1011
LDO4[3:0] = 1100 to 1111
22.0
26.5
30.5
34.5
mVs
NXP Semiconductors 67
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
LDO4 active mode – DC (continued)
tONLDO4
Turn-On Time
Enable to 90% of end value, VLDOIN45 = VLDOIN45MIN, 4.5 V
ILDO4 = 0.0 mA
60 500 μs
tOFFLDO4
Turn-Off Time
Disable to 10% of initial value, VLDOIN45 = VLDOIN45MIN
ILDO4 = 0.0 mA
––10ms
LDO4OSHT
Start-Up Overshoot
VLDOIN45 = VLDOIN45MIN, 4.5 V, ILDO4 = 0.0 mA –1.02.0%
VLDO4LOTR
Transient Load Response
VLDOIN45 = VLDOIN45MIN, 4.5 V
ILDO4 = 10 to 100 mA in 1.0 μs
Peak of overshoot or undershoot of LDO4 with respect to final
value.
Refer to Figure 25
––3.0%
VLDO4LITR
Transient Line Response
ILDO4 = 75 mA
VLDOIN45INITIAL = 2.8 V to VLDOIN45FINAL = 3.3 V for
LDO4[3:0] = 0000 to 0111
VLDOIN45INITIAL = VLDO4+0.3 V to VLDOIN45FINAL = VLDO4+0.8 V
for LDO4[3:0] = 1000 to 1111
Refer to Figure 25
-5.08.0mV
Notes
45. When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper
regulation due to the dropout voltage generated through the internal LDO transistor.
46. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout
region of the regulator under test. VLDOIN45MIN refers to the minimum allowed input voltage for a particular output voltage.
Table 79. LDO4 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN45 = 3.6 V, LDO4[3:0] = 1111, ILDO4 = 10 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN45 = 3.6 V, LDO4[3:0] = 1111, ILDO4 = 10 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
68 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.4.5.5.5 LDO5
Table 80. LDO5 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN45 = 3.6 V, LDO5[3:0] = 1111, ILDO5 = 10 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN45 = 3.6 V, LDO5[3:0] = 1111, ILDO5 = 10 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
LDO5
VLDOIN45
Operating Input Voltage
1.8 V LDO5NOM 2.5 V
2.6 V LDO5NOM 3.3 V
2.8
LDO5NOM+
0.250
4.5
4.5 V (47)
LDO5NOM Nominal Output Voltage Table 68 –V
ILDO5 Operating Load Current 0.0 200 mA
LDO5 DC
VLDO5TOL
Output Voltage Tolerance
VLDOIN45MIN < VLDOIN45 < 4.5 V, 0.0 mA < ILDO5 < 200 mA
LDO5[3:0] = 0000 to 1111
-3.0 3.0 %
VLDO5LOR
Load Regulation
(VLDO5 at ILDO5 = 200 mA) - (VLDO5 at ILDO5 = 0.0 mA)
For any VLDOIN45MIN < VLDOIN45 < 4.5 V
–0.10–mV/mA
VLDO5LIR
Line Regulation
(VLDO5 at VLDOIN45 = 4.5 V) - (VLDO5 at VLDOIN45MIN)
For any 0.0 mA < ILDO5 < 200 mA
–0.50–mV/V
ILDO5LIM
Current Limit
ILDO5 when LDO5 is forced to LDO5NOM/2 232 333 475 mA
ILDO5OCP
Over Current Protection Threshold
ILDO5 required to cause the SCP function to disable LDO when
REGSCPEN = 1 220 475 mA
ILDO5Q
Quiescent Current
No load, Change in IVIN and IVLDOIN45, When LDO5 enabled –13–μA
LDO5 AC and transient
PSRRLDO5
PSRR
•I
LDO5 = 150 mA, 20 Hz to 20 kHz
LDO5[3:0] = 0000 - 1111, VLDOIN45 = VLDOIN45MIN + 100 mV
LDO5[3:0] = 0000 - 1111, VLDOIN45 = LDO5NOM + 1.0 V
35
52
40
60
dB (48)
NOISELDO5
Output Noise Density
•V
LDOIN45 = VLDOIN45MIN, ILDO5 = 150 mA
100 Hz – <1.0 kHz
1.0 kHz – <10 kHz
10 kHz – 1.0 MHz
-114
-129
-135
-102
-123
-130
dBV/Hz
SLWRLDO5
Turn-On Slew Rate
10% to 90% of end value
•V
LDOIN45MIN VLDOIN45 4.5 V. ILDO5 = 0.0 mA
LDO5[3:0] = 0000 to 0011
LDO5[3:0] = 0100 to 0111
LDO5[3:0] = 1000 to 1011
LDO5[3:0] = 1100 to 1111
22.0
26.5
30.5
34.5
mVs
NXP Semiconductors 69
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.5 Control interface I2C block description
The 34VR500 contains an I2C interface port which allows access by a processor, or any I2C master, to the register set. Via these registers,
the resources of the IC can be controlled. The registers also provide status information about how the IC is operating.
The SCL and SDA lines should be routed away from noisy signals and planes to minimize noise pick up. To prevent reflections in the SCL
and SDA traces from creating false pulses, the rise and fall times of the SCL and SDA signals must be greater than 20 ns. This can be
accomplished by reducing the drive strength of the I2C master via software. It is recommended to use a drive strength of 80 Ω or higher
to increase the edge times. Alternatively, this can be accomplished by using small capacitors from SCL and SDA to ground. For example,
use 5.1 pF capacitors from SCL and SDA to ground for bus pull-up resistors of 4.8 kΩ.
6.5.1 I2C device ID
I2C interface protocol requires a device ID for addressing the target IC on a multi-device bus. The I2C address is set to 0x08.
LDO5 AC and transient (continued)
tONLDO5
Turn-On Time
Enable to 90% of end value, VLDOIN45 = VLDOIN45MIN, 4.5 V
ILDO5 = 0.0 mA
60 500 μs
tOFFLDO5
Turn-Off Time
Disable to 10% of initial value, VLDOIN45 = VLDOIN45MIN
ILDO5 = 0.0 mA
––10ms
LDO5OSHT
Start-Up Overshoot
VLDOIN45 = VLDOIN45MIN, 4.5 V, ILDO5 = 0 mA –1.02.0%
VLDO5LOTR
Transient Load Response
VLDOIN45 = VLDOIN45MIN, 4.5 V
ILDO5 = 20 to 200 mA in 1.0 μs
Peak of overshoot or undershoot of LDO5 with respect to final
value. Refer to Figure 25
––3.0%
VLDO5LITR
Transient Line Response
ILDO5 = 150 mA
VLDOIN45INITIAL = 2.8 V to VLDOIN45FINAL = 3.3 V for
LDO5[3:0] = 0000 to 0111
VLDOIN45INITIAL = VLDO5+0.3 V to VLDOIN45FINAL = VLDO5+0.8 V for
LDO5[3:0] = 1000 to 1111
Refer to Figure 25
–5.08.0mV
Notes
47. When the LDO Output voltage is set above 2.6 V the minimum allowed input voltage need to be at least the output voltage plus 0.25 V for proper
regulation due to the dropout voltage generated through the internal LDO transistor.
48. The PSRR of the regulators is measured with the perturbing signal at the input of the regulator. The power management IC is supplied separately
from the input of the regulator and does not contain the perturbed signal. During measurements, care must be taken not to operate in the dropout
region of the regulator under test. VLDOIN45 refers to the minimum allowed input voltage for a particular output voltage.
Table 80. LDO5 electrical characteristics
All parameters are specified at TA = -40 to 105 °C (See Table 3), VIN = 3.6 V, VLDOIN45 = 3.6 V, LDO5[3:0] = 1111, ILDO5 = 10 mA,
VVBIAS = 1.0 V ±4.0%, typical external component values, unless otherwise noted. Typical values are characterized at VIN = 3.6 V,
VLDOIN45 = 3.6 V, LDO5[3:0] = 1111, ILDO5 = 10 mA, and 25 °C, unless otherwise noted.
Symbol Parameter Min. Typ. Max. Unit Notes
70 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.5.2 I2C operation
The I2C mode of the interface is implemented generally following the Fast mode definition which supports up to 400 kbits/s operation
(exceptions to the standard are noted to be 7-bit only addressing and no support for General Call addressing.)
The I2C interface is configured as "Slave".
Timing diagrams, electrical specifications, and further details can be found in the I2C specification, which is available for download at:
http://www.nxp.com/documents/user_manual/UM10204.pdf
I2C read operations are performed in byte increments separated by an ACK. Read operations begin with the MSB and each byte is sent
out unless a STOP command or NACK is received prior to completion.
The 34VR500 only supports single-byte I2C transactions for read and write. The host initiates and terminates all communication. The host
sends a master command packet after driving the start condition. The device responds to the host if the master command packet contains
the corresponding slave address. In the following examples, the device is shown always responding with an ACK to transmissions from
the host. If at any time a NACK is received, the host should terminate the current transaction and retry the transaction.
The 34VR500 uses the "repeated start" operation for reads, as shown in Figure 27.
Figure 26. Data transfer on the I2C bus
Figure 27. Read operation
6.5.3 Interrupt handling
The system is informed about important events based on interrupts. Unmasked interrupt events are signaled to the processor by driving
the INTB pin low.
Each interrupt is latched so that even if the interrupt source becomes inactive, the interrupt will remain set until cleared. Each interrupt
can be cleared by writing a “1” to the appropriate bit in the Interrupt Status register; this will also cause the INTB pin to go high. If there
are multiple interrupt bits set the INTB pin will remain low until all are either masked or cleared. If a new interrupt occurs while the processor
clears an existing interrupt bit, the INTB pin will remain low.
Each interrupt can be masked by setting the corresponding mask bit to a 1. As a result, when a masked interrupt bit goes high, the INTB
pin will not go low. A masked interrupt can still be read from the Interrupt Status register. This gives the processor the option of polling for
status from the IC. The IC powers up with all interrupts masked, so the processor must initially poll the device to determine if any interrupts
are active. Alternatively, the processor can unmask the interrupt bits of interest. If a masked interrupt bit was already high, the INTB pin
will go low after unmasking.
NXP Semiconductors 71
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
The sense registers contain status and input sense bits so the system processor can poll the current state of interrupt sources. They are
read only, and not latched or clearable. Interrupts generated by external events are debounced; therefore, the event needs to be stable
throughout the debounce period before an interrupt is generated. Nominal debounce periods for each event are documented in the INT
summary Table 81. Due to the asynchronous nature of the debounce timer, the effective debounce time can vary slightly.
6.5.4 Interrupt bit summary
Table 81 summarizes all interrupt, mask, and sense bits associated with INTB control. For more detailed behavioral descriptions, refer to
the related chapters.
A full description of all interrupt, mask, and sense registers is provided in Tables 82 to 90.
Table 81. Interrupt, mask and sense bits
Interrupt Mask Sense Purpose Trigger Debounce time (ms)
LOWVINI LOWVINM LOWVINS Low Input Voltage Detect
Sense is 1 if below 2.80 V threshold H to L 3.9(49)
ENI ENM ENS
Enable on button event H to L 31.25(49)
Sense is 1 if EN is high L to H 31.25
THERM110 THERM110M THERM110S Thermal 110 °C threshold
Sense is 1 if above threshold Dual 3.9
THERM120 THERM120M THERM120S Thermal 120 °C threshold
Sense is 1 if above threshold Dual 3.9
THERM125 THERM125M THERM125S Thermal 125 °C threshold
Sense is 1 if above threshold Dual 3.9
THERM130 THERM130M THERM130S Thermal 130 °C threshold
Sense is 1 if above threshold Dual 3.9
SW1FAULTI SW1FAULTM SW1FAULTS Regulator 1 overcurrent limit
Sense is 1 if above current limit L to H 8.0
SW2FAULTI SW2FAULTM SW2FAULTS Regulator 2 overcurrent limit
Sense is 1 if above current limit L to H 8.0
SW3FAULTI SW3FAULTM SW3FAULTS Regulator 3 overcurrent limit
Sense is 1 if above current limit L to H 8.0
SW4FAULTI SW4FAULTM SW4FAULTS Regulator 4 overcurrent limit
Sense is 1 if above current limit L to H 8.0
LDO1FAULTI LDO1FAULTM LDO1FAULTS LDO1 overcurrent limit
Sense is 1 if above current limit L to H 8.0
LDO2FAULTI LDO2FAULTM LDO2FAULTS LDO2 overcurrent limit
Sense is 1 if above current limit L to H 8.0
LDO3FAULTI LDO3FAULTM LDO3FAULTS LDO3 overcurrent limit
Sense is 1 if above current limit L to H 8.0
LDO4FAULTI LDO4FAULTM LDO4FAULTS LDO4 overcurrent limit
Sense is 1 if above current limit L to H 8.0
LDO5FAULTI LDO5FAULTM LDO5FAULTS LDO5 overcurrent limit
Sense is 1 if above current limit L to H 8.0
Notes
49. Debounce timing for the falling edge can be extended with ENDBNC[1:0].
72 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 82. Register INTSTAT0 - ADDR 0x05
Name Bit # R/W Default Description
ENI 0 R/W1C 0 Power on interrupt bit
LOWVINI 1 R/W1C 0 Low-voltage interrupt bit
THERM110I 2 R/W1C 0 110 °C Thermal interrupt bit
THERM120I 3 R/W1C 0 120 °C Thermal interrupt bit
THERM125I 4 R/W1C 0 125 °C Thermal interrupt bit
THERM130I 5 R/W1C 0 130 °C Thermal interrupt bit
Table 83. Register INTMASK0 - ADDR 0x06
Name Bit # R/W Default Description
ENM 0 R/W1C 1 Power on interrupt mask bit
LOWVINM 1 R/W1C 1 Low-voltage interrupt mask bit
THERM110M 2 R/W1C 1 110 °C Thermal interrupt mask bit
THERM120M 3 R/W1C 1 120 °C Thermal interrupt mask bit
THERM125M 4 R/W1C 1 125 °C Thermal interrupt mask bit
THERM130M 5 R/W1C 1 130 °C Thermal interrupt mask bit
Table 84. Register INTSENSE0 - ADDR 0x07
Name Bit # R/W Default Description
ENS 0 R 0
Enable on sense bit
0 = EN low
1 = EN high
LOWVINS 1 R 0
Low voltage sense bit
0 = VIN > 2.8 V
1 = VIN 2.8 V
THERM110S 2 R 0
110 °C Thermal sense bit
0 = Below threshold
1 = Above threshold
THERM120S 3 R 0
120 °C Thermal sense bit
0 = Below threshold
1 = Above threshold
THERM125S 4 R 0
125 °C Thermal sense bit
0 = Below threshold
1 = Above threshold
THERM130S 5 R 0
130 °C Thermal sense bit
0 = Below threshold
1 = Above threshold
Table 85. Register INTSTAT1 - ADDR 0x08
Name Bit # R/W Default Description
SW1FAULTI 2:0 R/W1C 0 SW1 Overcurrent interrupt bit
SW2FAULTI 3 R/W1C 0 SW2 Overcurrent interrupt bit
SW3FAULTI 5:4 R/W1C 0 SW3 Overcurrent interrupt bit
SW4FAULTI 6 R/W1C 0 SW4 Overcurrent interrupt bit
NXP Semiconductors 73
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 86. Register INTMASK1 - ADDR 0x09
Name Bit # R/W Default Description
SW1FAULTM 2:0 R/W 1 SW1 Overcurrent interrupt mask bit
SW2FAULTM 3 R/W 1 SW2 Overcurrent interrupt mask bit
SW3FAULTM 5:4 R/W 1 SW3 Overcurrent interrupt mask bit
SW4FAULTM 6 R/W 1 SW4 Overcurrent interrupt mask bit
Table 87. Register INTSENSE1 - ADDR 0x0A
Name Bit # R/W Default Description
SW1FAULTS 2:0 R 0
SW1 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
SW2FAULTS 3 R 0
SW2 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
SW3FAULTS 5:4 R 0
SW3 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
SW4FAULTS 6 R 0
SW4 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
Table 88. Register INTSTAT4 - ADDR 0x11
Name Bit # R/W Default Description
LDO1FAULTI 1 R/W1C 0 LDO1 Overcurrent interrupt bit
LDO2FAULTI 2 R/W1C 0 LDO2 Overcurrent interrupt bit
LDO3FAULTI 3 R/W1C 0 LDO3 Overcurrent interrupt bit
LDO4FAULTI 4 R/W1C 0 LDO4 Overcurrent interrupt bit
LDO5FAULTI 5 R/W1C 0 LDO5 Overcurrent interrupt bit
Table 89. Register INTMASK4 - ADDR 0x12
Name Bit # R/W Default Description
LDO1FAULTM 1 R/W 1 LDO1 Overcurrent interrupt mask bit
LDO2FAULTM 2 R/W 1 LDO2 Overcurrent interrupt mask bit
LDO3FAULTM 3 R/W 1 LDO3 Overcurrent interrupt mask bit
LDO4FAULTM 4 R/W 1 LDO4 Overcurrent interrupt mask bit
LDO5FAULTM 5 R/W 1 LDO5 Overcurrent interrupt mask bit
74 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.5.5 Specific registers
6.5.5.1 IC and version identification
The IC and other version details can be read via identification bits. These are hard-wired on chip and described in Tables 91 to 93.
Table 90. Register INTSENSE4 - ADDR 0x13
Name Bit # R/W Default Description
LDO1FAULTS 1 R 0
LDO1 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
LDO2FAULTS 2 R 0
LDO2 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
LDO3FAULTS 3 R 0
LDO3 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
LDO4FAULTS 4 R 0
LDO4 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
LDO5FAULTS 5 R 0
LDO5 Overcurrent sense bit
0 = Normal operation
1 = Above current limit
Table 91. Register DEVICEID - ADDR 0x00
Name Bit # R/W Default Description
DEVICEID 3:0 R 0x00 Die version.
0100 = 34VR500
Table 92. Register SILICON REV- ADDR 0x03
Name Bit # R/W Default Description
METAL_LAYER_REV 3:0 R 0x00
Represents the metal mask revision
Pass 0.0 = 0000
.
.
Pass 0.15 = 1111
FULL_LAYER_REV 7:4 R 0x01
Represents the full mask revision
Pass 1.0 = 0001
.
.
Pass 15.0 = 1111
Table 93. Register FABID - ADDR 0x04
Name Bit # R/W Default Description
FIN 1:0 R 0x00 Allows for characterizing different options within
the same reticule
FAB 3:2 R 0x00 Represents the wafer manufacturing facility
NXP Semiconductors 75
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
6.5.6 Register bitmap
The register map is comprised of thirty-two pages, and its address and data fields are each eight bits wide. Only the first two pages can
be accessed. On each page, registers 0 to 0x7F are referred to as 'functional', and registers 0x80 to 0xFF as 'extended'. On each page,
the functional registers are the same, but the extended registers are different. To access the Functional page from one of the extended
pages, no write to the page register is necessary.
Registers that are missing in the sequence are reserved; reading from them will return a value 0x00, and writing to them will have no effect.
The contents of all registers are given in the tables defined in this chapter; each table is structure as follows:
Name: Name of the bit.
Bit #: The bit location in the register (7-0)
R/W: Read / Write access and control
R is read-only access
R/W is read and write access
RW1C is read and write access with write 1 to clear
Reset: Reset signals are color coded based on the following legend.
Default: The value after reset, as noted in the Default column of the memory map.
Fixed defaults are explicitly declared as 0 or 1.
“X” corresponds to Read / Write bits that are initialized at start-up. Bits are subsequently I2C modifiable, when their reset has been
released. “X” may also refer to bits that may have other dependencies. For example, some bits may depend on the version of the
IC, or a value from an analog block, for instance the sense bits for the interrupts.
6.5.6.1 Register map
Bits reset by VCOREDIG_PORB
Bits reset by EN or loaded default
Bits reset by DIGRESETB
Bits reset by PORB
Bits reset by VCOREDIG_PORB
Bits reset by POR or OFFB
Table 94. Functional page
BITS[7:0]
Add Register name R/W Default 7 6 5 4 3 2 1 0
00 DeviceID R8'b0001_0000
DEVICE ID [3:0]
00 0 1 0 1 0 0
03 SILICONREVID R8'b0001_0000
FULL_LAYER_REV[3:0] METAL_LAYER_REV[3:0]
00 0 1 0 0 0 0
04 FABID R8'b0000_0000
FAB[1:0] FIN[1:0]
00 0 0 0 0 0 0
05 INTSTAT0 RW1C 8'b0000_0000
––
THERM130I THERM125I THERM120I THERM110I LOWVINI ENI
00 0 0 0 0 0 0
06 INTMASK0 R/W 8'b0011_1111
––
THERM130M THERM125M THERM120M THERM110M LOWVINM ENM
00 1 1 1 1 1 1
07 INTSENSE0 R8'b00xx_xxxx
RSVD RSVD THERM130S THERM125S THERM120S THERM110S LOWVINS ENS
00 x x x x x x
76 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
08 INTSTAT1 RW1C 8'b0000_0000
SW4FAULTI SW3FAULTI SW2FAULTI SW1FAULTI
00 0 0 0 0 0 0
09 INTMASK1 R/W 8'b0111_1111
SW4FAULTM SW3FAULTM SW2FAULTM SW1FAULTM
01 1 1 1 1 1 1
0A INTSENSE1 R8'b0xxx_xxxx
SW4FAULTS SW3FAULTS SW2FAULTS SW1FAULTS
0xx xxx x x
11 INTSTAT4 RW1C 8'b0000_0000
––LDO5FAULTI LDO4FAULTI LDO3FAULTI LDO2FAULTI LDO1FAULTI
00 0 0 0 0 0 0
12 INTMASK4 R/W 8'b0011_1111
––
LDO5
FAULTM
LDO4
FAULTM
LDO3
FAULTM
LDO2
FAULTM
LDO1
FAULTM
00 1 1 1 1 1 1
13 INTSENSE4 R8'b00xx_xxxx
––
LDO5
FAULTS
LDO4
FAULTS
LDO3
FAULTS
LDO2
FAULTS
LDO1
FAULTS
00x xxx x x
1B PWRCTL R/W 8'b0001_0000
REGSCPEN STANDBYINV STBYDLY[1:0] ENDBNC[1:0] ENRSTEN RESTARTEN
00 0 1 0 0 0 0
2E SW1VOLT R/W 8'b00xx_xxxx
–– SW1[5:0]
00x xxx x x
2F SW1STBY R/W 8'b00xx_xxxx
–– SW1STBY[5:0]
00x xxx x x
30 SW1OFF R/W 8'b00xx_xxxx
–– SW1OFF[5:0]
00x xxx x x
31 SW1MODE R/W 8'b0000_1000
––SW1OMODE SW1MODE[3:0]
00 0 0 1 0 0 0
32 SW1CONF R/W 8'bxx00_xx00
SW1DVSSPEED[1:0] SW1PHASE[1:0] SW1FREQ[1:0] SW1ILIM
xx 0 0 x x 0 0
35 SW2VOLT R/W 8'b0xxx_xxxx
SW2[6:0]
0xx xxx x x
36 SW2STBY R/W 8'b0xxx_xxxx
SW2STBY[6:0]
0xx xxx x x
37 SW2OFF R/W 8'b0xxx_xxxx
SW2OFF[6:0]
0xx xxx x x
38 SW2MODE R/W 8'b0000_1000
––
SW2OMODE SW2MODE[3:0]
00 0 0 1 0 0 0
39 SW2CONF R/W 8'bxx01_xx00
SW2DVSSPEED[1:0] SW2PHASE[1:0] SW2FREQ[1:0] SW2ILIM
xx 0 1 x x 0 0
Table 94. Functional page (continued)
BITS[7:0]
Add Register name R/W Default 7 6 5 4 3 2 1 0
NXP Semiconductors 77
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
3C SW3AVOLT R/W 8'b0xxx_xxxx
SW3[6:0]
0x x x x x x x
3D SW3ASTBY R/W 8'b0xxx_xxxx
SW3STBY[6:0]
0x x x x x x x
3E SW3AOFF R/W 8'b0xxx_xxxx
SW3OFF[6:0]
0x x x x x x x
3F SW3MODE R/W 8'b0000_1000
SW3OMODE SW3MODE[3:0]
00 0 0 1 0 0 0
40 SW3CONF R/W 8'bxx10_xx00
SW3DVSSPEED[1:0] SW3PHASE[1:0] SW3FREQ[1:0] SW3ILIM
xx 1 0 x x 0 0
4A SW4VOLT R/W 8'b0xxx_xxxx
SW4[5:0]
00 x x x x x x
4B SW4STBY R/W 8'b0xxx_xxxx
SW4STBY[5:0]
00 x x x x x x
4C SW4OFF R/W 8'b0xxx_xxxx
SW4OFF[5:0]
00 x x x x x x
4D SW4MODE R/W 8'b0000_1000
––SW4OMODE SW4MODE[3:0]
00 0 0 1 0 0 0
4E SW4CONF R/W 8'bxx11_xx00
SW4DVSSPEED[1:0] SW4PHASE[1:0] SW4FREQ[1:0] SW4ILIM
xx 1 1 x x 0 0
6A REFOUTCRTRL R/W 8'b000x_0000
–– REFOUTEN
00 0 x 0 0 0 0
6D LDO1CTL R/W 8'b000x_xxxx
LDO1LPWR LDO1STBY LDO1EN LDO1[3:0]
00 0 x x x x x
6E LDO2CTL R/W 8'b000x_xxxx
LDO2LPWR LDO2STBY LDO2EN LDO2[3:0]
00 0 x x x x x
6F LDO3CTL R/W 8'b000x_xxxx
LDO3LPWR LDO3STBY LDO3EN LDO3[3:0]
00 0 x x x x x
70 LDO4CTL R/W 8'b000x_xxxx
LDO4LPWR LDO4STBY LDO4EN LDO4[3:0]
00 0 x x x x x
71 LDO5CTL R/W 8'b000x_xxxx
LDO5LPWR LDO5STBY LDO5EN LDO5[3:0]
00 0 x x x x x
7F Page Register R/W 8'b0000_0000
–– PAGE[4:0]
00 0 x x x x x
Table 94. Functional page (continued)
BITS[7:0]
Add Register name R/W Default 7 6 5 4 3 2 1 0
78 NXP Semiconductors
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
Table 95. Extended page 1: internal RAM
Address Register name TYPE Default
BITS[7:0]
7 6 5 4 3 2 1 0
A8 SW1 VOLT R/W 8'b00xx_xxxx
–– SW1_VOLT[5:0]
00 x x xxxx
A9 SW1 SEQ R/W 8'b000x_xxxx
SW1_SEQ[4:0]
00 0 x xxxx
AA SW1 CONFIG R/W 8'b0000_00xx
–– –– SW1_FREQ[1:0]
00 0 0 00xx
AC SW2 VOLT R/W 8'b0xxx_xxxx
SW2_VOLT[6:0]
0x x x xxxx
AD SW2 SEQ R/W 8'b000x_xxxx
–– SW2_SEQ[4:0]
00 0 x xxxx
AE SW2 CONFIG R/W 8'b0000_00xx
–– –– SW2_FREQ[1:0]
00 0 0 00xx
B0 SW3 VOLT R/W 8'b0xxx_xxxx
SW3A_VOLT[6:0]
0x x x xxxx
B1 SW3 SEQ R/W 8'b000x_xxxx
–– SW3_SEQ[4:0]
00 0 x xxxx
B2 SW3 CONFIG R/W 8'b0000_xxxx
–– SW3_CONFIG[1:0] SW3_FREQ[1:0]
00 0 0 xxxx
B8 SW4 VOLT R/W 8'b00xx_xxxx
SW4_VOLT[5:0]
00 x x xxxx
B9 SW4 SEQ R/W 8'b000x_xxxx
–– SW4_SEQ[4:0]
00 0 x xxxx
BA SW4 CONFIG R/W 8'b000x_xxxx
–– VTT SW4_FREQ[1:0]
00 0 x xxxx
C4 REFOUT SEQ R/W 8'b000x_x0xx
–– REFOUT_SEQ[4:0]
00 0 x x0xx
CC LDO1 VOLT R/W 8'b0000_xxxx
–– LDO1_VOLT[3:0]
00 0 0 xxxx
CD LDO1 SEQ R/W 8'b000x_xxxx
–– LDO1_SEQ[4:0]
00 0 x xxxx
D0 LDO2 VOLT R/W 8'b0000_xxxx
–– LDO2_VOLT[3:0]
00 0 0 xxxx
NXP Semiconductors 79
34VR500
FUNCTIONAL BLOCK REQUIREMENTS AND BEHAVIORS
D1 LDO2 SEQ R/W 8'b000x_xxxx
–– LDO2_SEQ[4:0]
00 0 x xxxx
D4 LDO3 VOLT R/W 8'b0000_xxxx
–– LDO3_VOLT[3:0]
00 0 0 xxxx
D5 LDO3 SEQ R/W 8'b000x_xxxx
–– LDO3_SEQ[4:0]
00 0 x xxxx
D8 LDO4 VOLT R/W 8'b0000_xxxx
–– LDO4_VOLT[3:0]
00 0 0 xxxx
D9 LDO4 SEQ R/W 8'b000x_xxxx
–– LDO4_SEQ[4:0]
00 0 x xxxx
DC LDO5 VOLT R/W 8'b0000_xxxx
–– LDO5_VOLT[3:0]
00 0 0 xxxx
DD LDO5 SEQ R/W 8'b000x_xxxx
–– LDO5_SEQ[4:0]
00 0 x xxxx
E0 PU CONFIG1 R/W 8'b000x_xxxx
––
PWRON_
CFG1 SWDVS_CLK1[1:0] SEQ_CLK_SPEED1[1:0]
00 0 x xxxx
E4 TBB_POR R/W 8'b0000_00x0
TBB_POR RSVD RSVD
0 RSVD RSVD RSVD RSVD RSVD RSVD RSVD
E8 PWRGD EN R/W/M 8'b0000_000x
–– –––PG_EN
00 0 0 00x0
Table 95. Extended page 1: internal RAM (continued)
Address Register name TYPE Default
BITS[7:0]
7 6 5 4 3 2 1 0
80 NXP Semiconductors
34VR500
TYPICAL APPLICATIONS
7 Typical applications
7.1 Introduction
Figure 28 provides a typical application diagram of the 34VR500 PMIC together with its functional components. For details on component
references and additional components such as filters, refer to the individual sections.
7.1.1 Application diagram
Figure 28. Typical application schematic
INTB
EN
STBY
ICTEST1
Output Pin
Input Pin
Bi-directional Pin
Package Pin Legend
SCL
SDA
VCCI2C
SW3
2500 mA
Buck
VDIG
VBG
SGND4
1uF
220nF
To/From
AP
PVIN1
FB1
LX1
SW1
4500 mA
Buck
0.68uH
7 x22 uF
SW1 Output
Vin 3 x 4.7 uF
+3 x 0.1 uF
PORTB
SW2
2000 mA
Buck
LDO1
250mA
LDO1
4.7uF
LDO2
100mA
LDO2
2.2uF
LDO3
350mA
LDO3
4.7uF
LDO4
100mA
LDO4
2.2uF
LDO5
200mA
LDO5
2.2uF
SW4
1000 mA
Buck
REFOUT
1uF
REFIN
VHALF
100nF
100nF
VCC
100k
100k
4.7k
VR500
CONTROL
Clocks
32kHz and 16MHz
Initialization State Machine
I2C
Interface
Clocks and
resets
I2C
Register
map
Trim-In-Package
4.7k
1uF
O/P
Drive
FB2
LX2
O/P
Drive
PVIN2
4.7 uF
+0.1 uF
1.5uH
SW2 Output
3 x 22 uF
Vin
PVIN3
FB3
LX3 1.5uH 3 x 22 uF
SW3 Output
Vin 2 x 4.7 uF
+2 x 0.1 uF
O/P
Drive
PVIN4
FB4
LX4 1.5uH 3 x 22 uF
SW4 Output
Vin 4.7 uF
+0.1 uF
O/P
Drive
Supplies
Control
DVS Control
DVS CONTROL
Reference
Generation
VSW3
Core Control logic
VLDOIN1
VLDOIN23
VLDOIN45
VSW2
VSW2
1.0uF
1.0uF
1.0uF
100k
VSW2
VCCI2C
To
MCU
ICTEST2
VBIAS
0.47uF
NXP Semiconductors 81
34VR500
TYPICAL APPLICATIONS
7.1.2 Application instructions
Table 96 provides a complete list of the recommended components on a full featured system using the 34VR500 device. Critical
components such as inductors, transistors, and diodes are provided with a recommended part number, but equivalent components may
be used.
7.2 Bill of materials
Table 96. Bill of materials (50)
Item Qty Schematic
label Value Description Part number Manufacturer Component/pin Assy
opt
Freescale components
1 1 Power management IC 34VR500 Freescale
BUCK, SW1 - (0.625-1.875 V), 4.5 A
2 1 0.60 μH
4 x 4 x 2.1
ISAT = 10.4 A for 30% drop,
DCRMAX = 10.45 mΩ
XAL4020-601ME Coilcraft Output Inductor
3 6 22 μF10 V X5R 0805 LMK212BJ226MG-T Taiyo Yuden Output capacitance
4 3 4.7 μF10 V X5R 0603 LMK107BJ475KA-T Taiyo Yuden Input capacitance
5 3 0.1 μF10 V X5R 0402 C0402C104K8PAC Kemet Input capacitance
BUCK, SW2 - (0.625-3.3 V), 2.0 A
6 1 1.5 μH
3.9 x 3.9 x 1.1
ISAT = 2.6 A for 10% drop,
DCRMAX = 70 mΩ
LPS4012-152MR Coilcraft Output Inductor
7 2 22 μF10 V X5R 0805 LMK212BJ226MG-T Taiyo Yuden Output capacitance
8 1 4.7 μF10 V X5R 0603 LMK107BJ475KA-T Taiyo Yuden Input capacitance
9 1 0.1 μF10 V X5R 0402 C0402C104K8PAC Kemet Input capacitance
BUCK, SW3 - (0.625-3.3 V), 2.5 A
10 11.5 μH
4 x 4 x 2.1
ISAT = 7.0 A for 10% drop,
DCRMAX = 21.45 mΩ
XFL4020-152ME Coilcraft Output Inductor
11 1.5 μH
4.3 x 4.3 x 1.4
ISAT = 2.9 A for 10% drop,
DCRMAX = 78 mΩ
LPS4014_152ML Coilcraft Output Inductor
(Alternate)
12 1.0 μH4 x 4 x 1.2
ISAT = 6.2 A, DCR = 37 mΩFDSD0412-H-1R0M Toko Output inductor
(Alternate)
13 422 μF10 V X5R 0805 LMK212BJ226MG-T Taiyo Yuden Output capacitance
14 24.7 μF10 V X5R 0603 LMK107BJ475KA-T Taiyo Yuden Input capacitance
15 10.1 μF10 V X5R 0402 C0402C104K8PAC Kemet Input capacitance
82 NXP Semiconductors
34VR500
TYPICAL APPLICATIONS
BUCK, SW4 - (0.625-1.975 V), 1.0 A
16 11.5 μH
3.9 x 3.9 x 1.1
ISAT = 2.6 A for 10% drop,
DCRMAX = 70 mΩ
LPS4012-152MR Coilcraft Output Inductor
17 222 μF10 V X5R 0805 LMK212BJ226MG-T Taiyo Yuden Output capacitance
18 14.7 μF10 V X5R 0603 LMK107BJ475KA-T Taiyo Yuden Input capacitance
19 10.1 μF10 V X5R 0402 C0402C104K8PAC Kemet Input capacitance
LDO, LDO1 - (0.80-1.55), 250 mA
20 14.7 μF6.3 V X5R 0402 C0402X5R6R3- Venkel Output capacitance
LDO, LDO2 - (1.80-3.30), 100 mA
21 12.2 μF6.3 V X5R 0402 C0402C225M9PACTU Kemet Output capacitance
LDO, LDO3 - (1.80-3.30), 350 mA
22 14.7 μF6.3 V X5R 0402 C0402X5R6R3- Venkel Output capacitance
LDO, LDO4 - (1.80-3.30), 100 mA
23 12.2 μF6.3 V X5R 0402 C0402C225M9PACTU Kemet Output capacitance
LDO, LDO5 - (1.80-3.30), 200 mA
24 12.2 μF6.3 V X5R 0402 C0402C225M9PACTU Kemet Output capacitance
Reference, REFOUT - (0.60-0.90V), 10 mA
25 11.0 μF10 V X5R 0402 CC0402KRX5R6BB105 Yageo America Output capacitance
26 20.1 μF10 V X5R 0402 C0402C104K8PAC Kemet VHALF, REFIN
Internal references, VDIG, VBG, VCC
27 11.0 μF10 V X5R 0402 CC0402KRX5R6BB105 Yageo America VDIG
28 11.0 μF10 V X5R 0402 CC0402KRX5R6BB105 Yageo America VCC
29 10.22 μF10 V X5R 0402 GRM155R61A224KE1 Murata VBG
Miscellaneous
30 10.1 μF10 V X5R 0402 CD402C104K8PAC Kemet VCCI2C
31 11.0 μF10 V X5R 0402 CC0402KRX5R6BB105 Yageo America VIN
32 1100 kΩ1/16 W 0402 RK73H1ETTP1003F KOA SPEER EN
33 1100 kΩ1/16 W 0402 RK73H1ETTP1003F KOA SPEER PORB
34 1100 kΩ1/16 W 0402 RK73H1ETTP1003F KOA SPEER STBY
35 1100 kΩ1/16 W 0402 RK73H1ETTP1003F KOA SPEER INTB
Notes
50. Freescale does not assume liability, endorse, or warrant components from external manufacturers are referenced in circuit drawings or tables.
While Freescale offers component recommendations in this configuration, it is the customer’s responsibility to validate their application.
51. Do not populate
52. Critical components. For critical components, it is vital to use the manufacturer listed.
Table 96. Bill of materials (50) (continued)
Item Qty Schematic
label Value Description Part number Manufacturer Component/pin Assy
opt
NXP Semiconductors 83
34VR500
TYPICAL APPLICATIONS
7.3 34VR500 layout guidelines
7.3.1 General board recommendations
1. It is recommended to use an eight layer board stack-up arranged as follows:
High current signal
•GND
Signal
•Power
•Power
Signal
•GND
High current signal
2. Allocate TOP and BOTTOM PCB Layers for POWER ROUTING (high current signals), copper-pour the unused area.
3. Use internal layers sandwiched between two GND planes for the SIGNAL routing.
7.3.2 Component placement
It is desirable to keep all component related to the power stage as close to the PMIC as possible, specially decoupling input and output
capacitors.
7.3.3 General routing requirements
1. Some recommended things to keep in mind for manufacturability:
Via in pads require a 4.5 mil minimum annular ring. Pad must be 9.0 mils larger than the hole
Maximum copper thickness for lines less than 5.0 mils wide is 0.6 oz copper
Minimum allowed spacing between line and hole pad is 3.5 mils
Minimum allowed spacing between line and line is 3.0 mils
2. Care must be taken with FBx pins traces. These signals are susceptible to noise and must be routed far away from power, clock, or
high power signals, like the ones on the PVINx, SWx, and LXx pins. They could be also shielded.
3. Shield feedback traces of the regulators and keep them as short as possible (trace them on the bottom so the ground and power
planes shield these traces).
4. Avoid coupling traces between important signal/low noise supplies (like VBG, VCC, VDIG) from any switching node (i.e. LX1, LX2,
LX3, and LX4).
5. Make sure that all components related to a specific block are referenced to the corresponding ground.
84 NXP Semiconductors
34VR500
TYPICAL APPLICATIONS
7.3.4 Parallel routing requirements
1. I2C signal routing
CLK is the fastest signal of the system, so it must be given special care.
To avoid contamination of these delicate signals by nearby high power or high frequency signals, it is a good practice to shield them
with ground planes placed on adjacent layers. Make sure the ground plane is uniform throughout the whole signal trace length.
Figure 29. Recommended shielding for critical signals
These signals can be placed on an outer layer of the board to reduce their capacitance with respect to the ground plane.
Care must be taken with these signals not to contaminate analog signals, as they are high frequency signals. Another good practice
is to trace them perpendicularly on different layers, so there is a minimum area of proximity between signals.
7.3.5 Switching regulator layout recommendations
1. Per design, the switching regulators in 34VR500 are designed to operate with only one input bulk capacitor. However, it is
recommended to add a high frequency filter input capacitor (CIN_hf), to filter out any noise at the regulator input. This capacitor
should be in the range of 100 nF and should be placed right next to or under the IC, closest to the IC pins.
2. Make high-current ripple traces low-inductance (short, high W/L ratio).
3. Make high-current traces wide or copper islands.
NXP Semiconductors 85
34VR500
TYPICAL APPLICATIONS
Figure 30. Generic buck regulator architecture
Figure 31. Layout example for buck regulators
7.4 Thermal information
7.4.1 Rating data
The thermal rating data of the packages has been simulated with the results listed in Table 4.
Junction to Ambient Thermal Resistance Nomenclature: the JEDEC specification reserves the symbol RθJA or θJA (Theta-JA) strictly for
junction-to-ambient thermal resistance on a 1s test board in natural convection environment. RθJMA or θJMA (Theta-JMA) will be used for
both junction-to-ambient on a 2s2p test board in natural convection and for junction-to-ambient with forced convection on both 1s and
2s2p test boards. It is anticipated that the generic name, Theta-JA, will continue to be commonly used.
The JEDEC standards can be consulted at http://www.jedec.org.
Driver Controller
PVINx
LXx
FBx
COUT
CIN
L
SWx
VIN
Compensation
CIN_HF
86 NXP Semiconductors
34VR500
TYPICAL APPLICATIONS
7.4.2 Estimation of junction temperature
An estimation of the chip junction temperature TJ can be obtained from the equation:
TJ = TA + (RθJA x PD)
with:
TA = Ambient temperature for the package in °C
RθJA = Junction to ambient thermal resistance in °C/W
PD = Power dissipation in the package in W
The junction to ambient thermal resistance is an industry standard value that provides a quick and easy estimation of thermal performance.
Unfortunately, there are two values in common usage: the value determined on a single layer board RθJA and the value obtained on a four
layer board RθJMA. Actual application PCBs show a performance close to the simulated four layer board value although this may be
somewhat degraded in case of significant power dissipated by other components placed close to the device.
At a known board temperature, the junction temperature TJ is estimated using the following equation
TJ = TB + (RθJB x PD) with
TB = Board temperature at the package perimeter in °C
RθJB = Junction to board thermal resistance in °C/W
PD = Power dissipation in the package in W
When the heat loss from the package case to the air can be ignored, acceptable predictions of junction temperature can be made.
See Functional block requirements and behaviors for more details on thermal management.
NXP Semiconductors 87
34VR500
PACKAGING
8 Packaging
8.1 Packaging dimensions
Package dimensions are provided in package drawings. To find the most current package outline drawing, go to www.nxp.com and
perform a keyword search for the drawing’s document number. See the Thermal characteristics section for specific thermal characteristics
for each package.
Table 97. Package drawing information
Package Suffix Package outline drawing number
56 QFN 8x8 mm - 0.5 mm pitch.
WF-Type (wettable flank) ES 98ASA00589D
88 NXP Semiconductors
34VR500
PACKAGING
NXP Semiconductors 89
34VR500
PACKAGING
90 NXP Semiconductors
34VR500
REVISION HISTORY
9 Revision history
Revision Date Description of changes
1.0 5/2014 Initial release
2.0 8/2014
SW2, SW3, and SW4 voltage range modification
Table 6.1.2 added to explain how to change the start sequence.
Table 95 added
Added PC34VR500V2ES to the Orderable part Table 1
Update the 98A number
Added Bill of Materials
3.0 1/2015
Updated Table 1 (corrected a typo)
Updated values for VSW2ACC in Table 47
Updated values for VSW3ACC in Table 56
Updated values for VSW4ACC in Table 65
Updated package outline (changed 98ASA00379D to 98ASA00589D)
Added optimized value for the buck regulator external components
4.0 7/2015
Added MC34VR500V3ES, MC34VR500V4ES, MC34VR500V5ES to the Orderable Part Variations Table
Added SW1, SW2, SW3, SW4 transient load plots
Added SW1, SW2 efficiency plots
Updated Control interface I2C block description, I2C device ID, and I2C operation sections
Updated SW2 rated current to 2.0 A
5.0 1/2017
Updated document to NXP form and style
Added MC34VR500V6ES, MC34VR500V7ES, and MC34VR500V8ES to Table 1
Updated Table 8 and added the new part numbers to 5.1 Features, page 12, and 6.4.4.17 SW4, page 49
Updated Figure 16
6.0 1/2018
Updated voltage values under “Four independent outputs” for SW2 and SW3 from “0.625 V to 1.975 V” to
“0.625V to 3.3V” in Section 5.1
Updated Figure 4 in Section 5.2, to reflect revised voltage values for SW2 and SW3
Updated voltage values for SW2 and SW3 in Table 21 from “0.625 - 1.975” to “0.625 - 1.975 / 0.8 - 3.3”
Updated Step size values for SW2 and SW3 from “25” to “25 / 50” in Table 21
Updated SW2 and SW3 voltage from “1.975 V” to “3.3” V in Figure 10
Updated Section 6.4.4.10 and Table 39
Updated Table 41, Table 42 and Table 43, adding two rows to the bottom of each table
Updated Table 47, as follows:
Added high voltage range values “2.0 V < VSW2 < 3.3 V”, “-6.0” and “6.0” in the first bullet of Parameter,
Min and Max columns for VSW2ACC
Added high voltage range values “2.0 V < VSW2 < 3.3 V”, “-3.0” and “3.0” in the second bullet of Parameter,
Min and Max columns for VSW2ACC
Updated the parameter value for VSW2 from2.8 V < VIN < 4.5 V, 0.625 V < VSW2 < 1.975 V” to “2.8 V < VIN
< 4.5 V, 0.625 V < VSW2 < 3.3 V”
Added third bullet under Parameter along with associated Typ values for ηSW2
Updated Section 6.4.4.13, revising “1.975 V” to “3.3 V”
Updated the first paragraph of Section 6.4.4.14 and the content of Table 48
Updated Table 50, Table 51 and Table 52, adding two rows to the bottom of each table
Updated Table 56 as follows:
Added high voltage range values “2.0 V < VSW3 < 3.3 V”, “-6.0” and “6.0” in the first bullet of Parameter,
Min and Max columns for VSW3ACC
Added high voltage range values “2.0 V < VSW2 < 3.3 V”, “-3.0” and “3.0” in the second bullet of Parameter,
Min and Max columns for VSW3ACC
Updated the parameter value for VSW3 from2.8 V < VIN < 4.5 V, 0.625 V < VSW3 < 1.975 V” to “2.8 V < VIN
< 4.5 V, 0.625 V < VSW3 < 3.3 V”
Removed “single/dual phase” from “PWM, APS mode single/dual phase”
Removed “PWN, APS mode independent (per phase)” from the parameter value for ISW3 and removed the
associated Max value
Removed “x” after “SW3” in the note at the bottom of the table.
Updated Table 94 as follows:
Remove the values for Bit 6 for addresses 35, 36, 37, 3C, 3D, 3E, AC and B0
Updated bold text before item 6 for SW2 and bold text before item 7 for SW3 from “(0.625-1.975 V)” to “(0.625-
3.3 V)” in Table 96.
NXP Semiconductors 91
34VR500
REVISION HISTORY
7.0 5/2018
Added MC34VR500V9ES to Table 1
Added 34VR500V9 to “Four independent outputs” for SW4 in Section 5.1 Features, page 12
Updated Table 8
8.0 8/2018 Added MC34VR500VAES to Table 1
Added configuration for 34VR500VA to Table 8
9.0 1/2019 Added MC34VR500VBES to Table 1
Added configuration for 34VR500VB to Table 8
Revision Date Description of changes
Information in this document is provided solely to enable system and software implementers to use NXP products.
There are no expressed or implied copyright licenses granted hereunder to design or fabricate any integrated circuits
based on the information in this document. NXP reserves the right to make changes without further notice to any
products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for any particular
purpose, nor does NXP assume any liability arising out of the application or use of any product or circuit, and
specifically disclaims any and all liability, including without limitation, consequential or incidental damages. "Typical"
parameters that may be provided in NXP data sheets and/or specifications can and do vary in different applications,
and actual performance may vary over time. All operating parameters, including "typicals," must be validated for each
customer application by the customer's technical experts. NXP does not convey any license under its patent rights nor
the rights of others. NXP sells products pursuant to standard terms and conditions of sale, which can be found at the
following address:
http://www.nxp.com/terms-of-use.html.
How to Reach Us:
Home Page:
NXP.com
Web Support:
http://www.nxp.com/support
NXP, the NXP logo, Freescale, the Freescale logo and SMARTMOS are trademarks of NXP B.V. All other product or
service names are the property of their respective owners. All rights reserved.
© NXP B.V. 2019.
Document Number: MC34VR500
Rev. 9.0
1/2019