STM32F413xG STM32F413xH Arm(R)-Cortex(R)-M4 32b MCU+FPU, 125 DMIPS, up to 1.5MB Flash, 320KB RAM, USB OTG FS, 1 ADC, 2 DACs, 2 DFSDMs Datasheet - production data Features )%*$ * Dynamic Efficiency Line with eBAM (enhanced Batch Acquisition Mode) - 1.7 V to 3.6 V power supply - -40 C to 85/105/125 C temperature range * Core: Arm(R) 32-bit Cortex(R)-M4 CPU with FPU, Adaptive real-time accelerator (ART AcceleratorTM) allowing 0-wait state execution from Flash memory, frequency up to 100 MHz, memory protection unit, 125 DMIPS/ 1.25 DMIPS/MHz (Dhrystone 2.1), and DSP instructions * Memories - Up to 1.5 Mbytes of Flash memory - 320 Kbytes of SRAM - Flexible external static memory controller with up to 16-bit data bus: SRAM, PSRAM, NOR Flash memory - Dual mode Quad-SPI interface * LCD parallel interface, 8080/6800 modes * Clock, reset and supply management - 1.7 to 3.6 V application supply and I/Os - POR, PDR, PVD and BOR - 4-to-26 MHz crystal oscillator - Internal 16 MHz factory-trimmed RC - 32 kHz oscillator for RTC with calibration - Internal 32 kHz RC with calibration * Power consumption - Run: 112 A/MHz (peripheral off) - Stop (Flash in Stop mode, fast wakeup time): 42 A Typ.; 80 A max @25 C - Stop (Flash in Deep power down mode, slow wakeup time): 15 A Typ.; 46 A max @25 C - Standby without RTC: 1.1 A Typ.; 14.7 A max at @85 C - VBAT supply for RTC: 1 A @25 C * 2x12-bit D/A converters * 1x12-bit, 2.4 MSPS ADC: up to 16 channels * 6x digital filters for sigma delta modulator, 12x PDM interfaces, with stereo microphone and sound source localization support * General-purpose DMA: 16-stream DMA September 2017 This is information on a product in full production. LQFP64 (10x10mm) WLCSP81 UFQFPN48 (4.039x3.951 mm) LQFP100 (14x14mm) (7x7 mm) LQFP144 (20x20mm) UFBGA100 (7x7mm) UFBGA144 (10x10mm) * Up to 18 timers: up to twelve 16-bit timers, two 32-bit timers up to 100 MHz each with up to four IC/OC/PWM or pulse counter and quadrature (incremental) encoder input, two watchdog timers (independent and window), one SysTick timer, and a low-power timer * Debug mode - Serial wire debug (SWD) & JTAG - Cortex(R)-M4 Embedded Trace MacrocellTM * Up to 114 I/O ports with interrupt capability - Up to 109 fast I/Os up to 100 MHz - Up to 114 five V-tolerant I/Os * Up to 24 communication interfaces - Up to 4x I2C interfaces (SMBus/PMBus) - Up to 10 UARTS: 4 USARTs / 6 UARTs (2 x 12.5 Mbit/s, 2 x 6.25 Mbit/s), ISO 7816 interface, LIN, IrDA, modem control) - Up to 5 SPI/I2Ss (up to 50 Mbit/s, SPI or I2S audio protocol), out of which 2 muxed full-duplex I2S interfaces - SDIO interface (SD/MMC/eMMC) - Advanced connectivity: USB 2.0 full-speed device/host/OTG controller with PHY - 3x CAN (2.0B Active) - 1xSAI * True random number generator * CRC calculation unit * 96-bit unique ID * RTC: subsecond accuracy, hardware calendar * All packages are ECOPACK(R)2 Table 1. Device summary Reference Part number STM32F413xH STM32F413CH STM32F413MH STM32F413RH STM32F413VH STM32F413ZH STM32F413xG STM32F413CG STM32F413MG STM32F413RG STM32F413VG STM32F413ZG DocID029162 Rev 6 1/208 www.st.com Contents STM32F413xG/H Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2.1 3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.1 Arm(R) Cortex(R)-M4 with FPU core with embedded Flash and SRAM . . . . 19 3.2 Adaptive real-time memory accelerator (ART AcceleratorTM) . . . . . . . . . 19 3.3 Enhanced Batch Acquisition mode (eBAM) . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.5 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.6 CRC (cyclic redundancy check) calculation unit . . . . . . . . . . . . . . . . . . . 20 3.7 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.8 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.9 DMA controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.10 Flexible static memory controller (FSMC) . . . . . . . . . . . . . . . . . . . . . . . . 22 3.11 Quad-SPI memory interface (QUAD-SPI) . . . . . . . . . . . . . . . . . . . . . . . . 23 3.12 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . . 23 3.13 External interrupt/event controller (EXTI) . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.14 Clocks and startup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 3.15 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.16 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.17 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.18 2/208 Compatibility with STM32F4 series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.17.1 Internal reset ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3.17.2 Internal reset OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.18.1 Regulator ON . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.18.2 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3.18.3 Regulator ON/OFF and internal reset ON/OFF availability . . . . . . . . . . 31 3.19 Real-time clock (RTC) and backup registers . . . . . . . . . . . . . . . . . . . . . . 31 3.20 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.21 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 DocID029162 Rev 6 STM32F413xG/H Contents 3.22 Timers and watchdogs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 3.22.1 Advanced-control timers (TIM1, TIM8) . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.22.2 General-purpose timers (TIMx) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 3.22.3 Basic timer (TIM6, TIM7) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.22.4 Low-power timer (LPTIM1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.22.5 Independent watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.22.6 Window watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.22.7 SysTick timer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.23 Inter-integrated circuit interface (I2C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.24 Universal synchronous/asynchronous receiver transmitters (USART) . . 36 3.25 Serial peripheral interface (SPI) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.26 Inter-integrated sound (I2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.27 Serial Audio interface (SAI1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.28 Audio PLL (PLLI2S) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.29 Digital filter for sigma-delta modulators (DFSDM) . . . . . . . . . . . . . . . . . . 39 3.30 Dynamic tuning of PDM delays for sound source localization . . . . . . . . . 39 3.31 Secure digital input/output interface (SDIO) . . . . . . . . . . . . . . . . . . . . . . . 40 3.32 Controller area network (bxCAN) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 3.33 Universal serial bus on-the-go full-speed (USB_OTG_FS) . . . . . . . . . . . 40 3.34 Random number generator (RNG) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.35 General-purpose input/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.36 Analog-to-digital converter (ADC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.37 Digital to analog converter (DAC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 3.38 Temperature sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.39 Serial wire JTAG debug port (SWJ-DP) . . . . . . . . . . . . . . . . . . . . . . . . . . 42 3.40 Embedded Trace MacrocellTM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 Pinouts and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.1 WLCSP81 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2 UFQFPN48 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.3 LQFP64 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4 LQFP100 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 4.5 LQFP144 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 4.6 UFBGA100 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 DocID029162 Rev 6 3/208 5 Contents STM32F413xG/H 4.7 UFBGA144 pinout description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.8 Pins definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 4.9 Alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 5 Memory mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 6 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1 4/208 Parameter conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.1 Minimum and maximum values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.2 Typical values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.3 Typical curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.4 Loading capacitor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.5 Pin input voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.1.6 Power supply scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 6.1.7 Current consumption measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.2 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.3 Operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.1 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 6.3.2 VCAP_1/VCAP_2 external capacitors . . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3.3 Operating conditions at power-up/power-down (regulator ON) . . . . . . . 85 6.3.4 Operating conditions at power-up / power-down (regulator OFF) . . . . . 86 6.3.5 Embedded reset and power control block characteristics . . . . . . . . . . . 86 6.3.6 Supply current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 6.3.7 Wakeup time from low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . 105 6.3.8 External clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 107 6.3.9 Internal clock source characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 112 6.3.10 PLL characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 6.3.11 PLL spread spectrum clock generation (SSCG) characteristics . . . . . 116 6.3.12 Memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 6.3.13 EMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.3.14 Absolute maximum ratings (electrical sensitivity) . . . . . . . . . . . . . . . . 121 6.3.15 I/O current injection characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 6.3.16 I/O port characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 6.3.17 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 6.3.18 TIM timer characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 6.3.19 Communications interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 6.3.20 12-bit ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 DocID029162 Rev 6 STM32F413xG/H 7 Contents 6.3.21 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 6.3.22 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.3.23 Embedded reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 6.3.24 DAC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 6.3.25 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 6.3.26 FSMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158 6.3.27 SD/SDIO MMC/eMMC card host interface (SDIO) characteristics . . . 172 6.3.28 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.1 WLCSP81 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 7.2 UFQFPN48 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 7.3 LQFP64 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 7.4 LQFP100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 7.5 LQFP144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189 7.6 UFBGA100 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 7.7 UFBGA144 package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 7.8 Thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 7.8.1 8 Reference document . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Ordering information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Appendix A Recommendations when using the internal reset OFF . . . . . . . . 201 Appendix B Application block diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 B.1 Sensor Hub application example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 B.2 Display application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 B.3 USB OTG full speed (FS) interface solutions . . . . . . . . . . . . . . . . . . . . . 204 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 DocID029162 Rev 6 5/208 5 List of tables STM32F413xG/H List of tables Table 1. Table 2. Table 3. Table 4. Table 5. Table 6. Table 7. Table 8. Table 9. Table 10. Table 11. Table 12. Table 13. Table 14. Table 15. Table 16. Table 17. Table 18. Table 19. Table 20. Table 21. Table 22. Table 23. Table 24. Table 25. Table 26. Table 27. Table 28. Table 29. Table 30. Table 31. Table 32. Table 33. Table 34. Table 35. Table 36. Table 37. Table 38. Table 39. Table 40. 6/208 Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 STM32F413xG/H features and peripheral counts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 Embedded bootloader interfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 Regulator ON/OFF and internal power supply supervisor availability. . . . . . . . . . . . . . . . . 31 Timer feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 Comparison of I2C analog and digital filters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 USART feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 DFSDM feature comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 Legend/abbreviations used in the pinout table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 STM32F413xG/H pin definition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 FSMC pin definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 STM32F413xG/H alternate functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 STM32F413xG/H register boundary addresses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 Voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 Current characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 Thermal characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 General operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 Features depending on the operating power supply range . . . . . . . . . . . . . . . . . . . . . . . . 84 VCAP_1/VCAP_2 operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Operating conditions at power-up / power-down (regulator ON) . . . . . . . . . . . . . . . . . . . . 85 Operating conditions at power-up / power-down (regulator OFF). . . . . . . . . . . . . . . . . . . . 86 Embedded reset and power control block characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 86 Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM - VDD = 1.7 V . . . . . . . . . . . . . . . . . . . . . . . . . . 88 Typical and maximum current consumption, code with data processing (ART accelerator disabled) running from SRAM - VDD = 3.6 V . . . . . . . . . . . . . . . . . . . . . . . . . . 89 Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled except prefetch) running from Flash memory- VDD = 1.7 V . . . 90 Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled except prefetch) running from Flash memory - VDD = 3.6 V . . 91 Typical and maximum current consumption in run mode, code with data processing (ART accelerator disabled) running from Flash memory - VDD = 3.6 V. . . . . . . . . . . . . . . 92 Typical and maximum current consumption in run mode, code with data processing (ART accelerator disabled) running from Flash memory - VDD = 1.7 V. . . . . . . . . . . . . . . 93 Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled with prefetch) running from Flash memory - VDD = 3.6 V . . . . . 94 Typical and maximum current consumption in run mode, code with data processing (ART accelerator enabled with prefetch) running from Flash memory - VDD = 1.7 V . . . . . 95 Typical and maximum current consumption in Sleep mode - VDD = 3.6 V . . . . . . . . . . . . . 96 Typical and maximum current consumption in Sleep mode - VDD = 1.7 V . . . . . . . . . . . . . 97 Typical and maximum current consumptions in Stop mode - VDD = 1.7 V . . . . . . . . . . . . . 98 Typical and maximum current consumption in Stop mode - VDD=3.6 V. . . . . . . . . . . . . . . 98 Typical and maximum current consumption in Standby mode - VDD= 1.7 V . . . . . . . . . . . 98 Typical and maximum current consumption in Standby mode - VDD= 3.6 V . . . . . . . . . . . 99 Typical and maximum current consumptions in VBAT mode. . . . . . . . . . . . . . . . . . . . . . . . 99 Switching output I/O current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103 Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 DocID029162 Rev 6 STM32F413xG/H Table 41. Table 42. Table 43. Table 44. Table 45. Table 46. Table 47. Table 48. Table 49. Table 50. Table 51. Table 52. Table 53. Table 54. Table 55. Table 56. Table 57. Table 58. Table 59. Table 60. Table 61. Table 62. Table 63. Table 64. Table 65. Table 66. Table 67. Table 68. Table 69. Table 70. Table 71. Table 72. Table 73. Table 74. Table 75. Table 76. Table 77. Table 78. Table 79. Table 80. Table 81. Table 82. Table 83. Table 84. Table 85. Table 86. Table 87. Table 88. Table 89. Table 90. List of tables High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 HSE 4-26 MHz oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 HSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 Main PLL characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 PLLI2S (audio PLL) characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115 SSCG parameter constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 Flash memory programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118 Flash memory programming with VPP voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 EMS characteristics for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 EMI characteristics for LQFP144 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 TIMx characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 I2C characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 SCL frequency (fPCLK1= 50 MHz, VDD = VDD_I2C = 3.3 V) . . . . . . . . . . . . . . . . . . . . . . . . 131 FMPI2C characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 SPI dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134 I2S dynamic characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 SAI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 QSPI dynamic characteristics in SDR mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 QSPI dynamic characteristics in DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141 USB OTG FS startup time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 USB OTG FS DC electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 USB OTG FS electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 ADC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 ADC accuracy at fADC = 18 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145 ADC accuracy at fADC = 30 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 ADC accuracy at fADC = 36 MHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146 ADC dynamic accuracy at fADC = 18 MHz - limited test conditions . . . . . . . . . . . . . . . . . 146 ADC dynamic accuracy at fADC = 36 MHz - limited test conditions . . . . . . . . . . . . . . . . . 146 Temperature sensor characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 Temperature sensor calibration values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150 VBAT monitoring characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Embedded internal reference voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 Internal reference voltage calibration values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151 DAC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 DFSDM characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155 Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Asynchronous non-multiplexed SRAM/PSRAM/NOR read NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160 Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings . . . . . . . . . . . . . . . . . 161 DocID029162 Rev 6 7/208 8 List of tables Table 91. Table 92. Table 93. Table 94. Table 95. Table 96. Table 97. Table 98. Table 99. Table 100. Table 101. Table 102. Table 103. Table 104. Table 105. Table 106. Table 107. Table 108. Table 109. Table 110. Table 111. Table 112. Table 113. Table 114. Table 115. 8/208 STM32F413xG/H Asynchronous non-multiplexed SRAM/PSRAM/NOR write NWAIT timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162 Asynchronous multiplexed PSRAM/NOR read timings. . . . . . . . . . . . . . . . . . . . . . . . . . . 163 Asynchronous multiplexed PSRAM/NOR read-NWAIT timings . . . . . . . . . . . . . . . . . . . . 163 Asynchronous multiplexed PSRAM/NOR write timings . . . . . . . . . . . . . . . . . . . . . . . . . . 165 Asynchronous multiplexed PSRAM/NOR write-NWAIT timings . . . . . . . . . . . . . . . . . . . . 165 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 167 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 170 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 SD / MMC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 eMMC characteristics VDD = 1.7 V to 1.9 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173 RTC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174 WLCSP81 - 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 WLCSP81 recommended PCB design rules (0.4 mm pitch) . . . . . . . . . . . . . . . . . . . . . . 177 UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186 LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190 UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) . . . . . . . . . . . . . . . . . 194 UFBGA144 - 144-ball, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 UFBGA144 recommended PCB design rules (0.80 mm pitch BGA) . . . . . . . . . . . . . . . . 197 Package thermal characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199 Ordering information scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200 Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206 DocID029162 Rev 6 STM32F413xG/H List of figures List of figures Figure 1. Figure 2. Figure 3. Figure 4. Figure 5. Figure 6. Figure 7. Figure 8. Figure 9. Figure 10. Figure 11. Figure 12. Figure 13. Figure 14. Figure 15. Figure 16. Figure 17. Figure 18. Figure 19. Figure 20. Figure 21. Figure 22. Figure 23. Figure 24. Figure 25. Figure 26. Figure 27. Figure 28. Figure 29. Figure 30. Figure 31. Figure 32. Figure 33. Figure 34. Figure 35. Figure 36. Figure 37. Figure 38. Figure 39. Figure 40. Figure 41. Figure 42. Figure 43. Figure 44. Compatible board design for LQFP100 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 Compatible board design for LQFP64 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Compatible board design for LQFP144 package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 STM32F413xG/H block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 Multi-AHB matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 VDDUSB connected to an external independent power supply . . . . . . . . . . . . . . . . . . . . . 26 Power supply supervisor interconnection with internal reset OFF . . . . . . . . . . . . . . . . . . . 27 Regulator OFF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 Startup in regulator OFF: slow VDD slope power-down reset risen after VCAP_1/VCAP_2 stabilization . . . . . . . . . . . . . . . . . . . . . . . . . 30 Startup in regulator OFF mode: fast VDD slope power-down reset risen before VCAP_1/VCAP_2 stabilization. . . . . . . . . . . . . . . . . . . . . . . . 30 STM32F413xG/H WLCSP81 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 STM32F413xG/H UFQFPN48 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 STM32F413xG/H LQFP64 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 STM32F413xG/H LQFP100 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 STM32F413xG/H LQFP144 pinout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 STM32F413xG/H UFBGA100 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 STM32F413xG/H UFBGA144 pinout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Memory map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 Pin loading conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Input voltage measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 Power supply scheme. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 Current consumption measurement scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 External capacitor CEXT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 Typical VBAT current consumption (LSE and RTC ON/LSE oscillator "low power" mode selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Typical VBAT current consumption (LSE and RTC ON/LSE oscillator "high drive" mode selection) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 Low-power mode wakeup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106 High-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Low-speed external clock source AC timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109 Typical application with an 8 MHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 Typical application with a 32.768 kHz crystal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111 ACCHSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 ACCLSI versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113 PLL output clock waveforms in center spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 PLL output clock waveforms in down spread mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 FT/TC I/O input characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 I/O AC characteristics definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128 Recommended NRST pin protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 I2C bus AC waveforms and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 FMPI2C timing diagram and measurement circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133 SPI timing diagram - slave mode and CPHA = 0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135 SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136 I2S slave timing diagram (Philips protocol) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 I2S master timing diagram (Philips protocol). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138 DocID029162 Rev 6 9/208 11 List of figures Figure 45. Figure 46. Figure 47. Figure 48. Figure 49. Figure 50. Figure 51. Figure 52. Figure 53. Figure 54. Figure 55. Figure 56. Figure 57. Figure 58. Figure 59. Figure 60. Figure 61. Figure 62. Figure 63. Figure 64. Figure 65. Figure 66. Figure 67. Figure 68. Figure 69. Figure 70. Figure 71. Figure 72. Figure 73. Figure 74. Figure 75. Figure 76. Figure 77. Figure 78. Figure 79. Figure 80. Figure 81. Figure 82. Figure 83. Figure 84. Figure 85. Figure 86. Figure 87. 10/208 STM32F413xG/H SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 USB OTG FS timings: definition of data signal rise and fall time . . . . . . . . . . . . . . . . . . . 143 ADC accuracy characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147 Typical connection diagram using the ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 Power supply and reference decoupling (VREF+ not connected to VDDA). . . . . . . . . . . . . 149 Power supply and reference decoupling (VREF+ connected to VDDA). . . . . . . . . . . . . . . . 150 12-bit buffered /non-buffered DAC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154 Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 159 Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 161 Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 162 Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 164 Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 166 Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168 Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 170 Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171 SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 WLCSP81 - 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 WLCSP81- 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177 WLCSP81 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178 UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179 UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180 UFQFPN48 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline . . . . . . . . . . . . . . . . 182 LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184 LQFP64 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185 LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline . . . . . . . . . . . . . . 186 LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187 LQFP100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188 LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline . . . . . . . . . . . . . . 189 LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191 LQFP144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192 UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193 UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194 UFBGA100 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195 UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196 UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array recommended footprint. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197 UFBGA144 marking example (package top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198 Sensor Hub application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202 Display application example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203 USB controller configured as peripheral-only and used in Full speed mode . . . . . . . . . . 204 USB peripheral-only Full speed mode with direct connection DocID029162 Rev 6 STM32F413xG/H Figure 88. Figure 89. List of figures for VBUS sense . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 USB peripheral-only Full speed mode, VBUS detection using GPIO . . . . . . . . . . . . . . . . 205 USB controller configured as host-only and used in full speed mode. . . . . . . . . . . . . . . . 205 DocID029162 Rev 6 11/208 11 Introduction 1 STM32F413xG/H Introduction This datasheet provides the description of the STM32F413xG/H microcontrollers. For information on the Cortex(R)-M4 core, please refer to the Cortex(R)-M4 programming manual (PM0214) available from www.st.com. 12/208 DocID029162 Rev 6 STM32F413xG/H 2 Description Description The STM32F413XG/H devices are based on the high-performance Arm(R) Cortex(R)-M4 32-bit RISC core operating at a frequency of up to 100 MHz. Their Cortex(R)-M4 core features a Floating point unit (FPU) single precision which supports all Arm single-precision dataprocessing instructions and data types. It also implements a full set of DSP instructions and a memory protection unit (MPU) which enhances application security. The STM32F413XG/H devices belong to the STM32F4 access product lines (with products combining power efficiency, performance and integration) while adding a new innovative feature called Batch Acquisition Mode (BAM) allowing to save even more power consumption during data batching. The STM32F413XG/H devices incorporate high-speed embedded memories (up to 1.5 Mbytes of Flash memory, 320 Kbytes of SRAM), and an extensive range of enhanced I/Os and peripherals connected to two APB buses, three AHB buses and a 32-bit multi-AHB bus matrix. All devices offer a 12-bit ADC, two 12-bit DACs, a low-power RTC, twelve general-purpose 16-bit timers including two PWM timer for motor control, two general-purpose 32-bit timers and a low power timer. They also feature standard and advanced communication interfaces. * Up to four I2Cs, including one I2C supporting Fast-Mode Plus * Five SPIs * Five I2Ss out of which two are full duplex. To achieve audio class accuracy, the I2S peripherals can be clocked via a dedicate internal audio PLL or via an external clock to allow synchronization. * Four USARTs and six UARTs * An SDIO/MMC interface * An USB 2.0 OTG full-speed interface * Three CANs * An SAI. In addition, the STM32F413xG/H devices embed advanced peripherals: * A flexible static memory control interface (FSMC) * A Quad-SPI memory interface * Two digital filter for sigma modulator (DFSDM) supporting microphone MEMs and sound source localization, one with two filters and up to four inputs, and the second one with four filters and up to eight inputs They are offered in 7 packages ranging from 48 to 144 pins. The set of available peripherals depends on the selected package. The STM32F413xG/H operate in the - 40 to + 125 C temperature range from a 1.7 (PDR OFF) to 3.6 V power supply. A comprehensive set of power-saving mode allows the design of low-power applications. DocID029162 Rev 6 13/208 42 Description STM32F413xG/H These features make the STM32F413xG/H microcontrollers suitable for a wide range of applications: 14/208 * Motor drive and application control * Medical equipment * Industrial applications: PLC, inverters, circuit breakers * Printers, and scanners * Alarm systems, video intercom, and HVAC * Home audio appliances * Mobile phone sensor hub * Wearable devices * Connected objects * Wifi modules DocID029162 Rev 6 STM32F413xG/H Description Table 2. STM32F413xG/H features and peripheral counts Peripherals STM32F413xG STM32F413xH 1024 1536 320 (256 + 64) 320 (256 + 64) Flash memory (Kbyte) SRAM (Kbyte) System Quad-SPI memory interface - FSMC memory controller - 1(1) FSMC LCD parallel interface Data bus size - 8 Generalpurpose 10(2) 10 Advancedcontrol 2(4) Timers 1 - 1(1) 1(1) 1 16 10(3) 10 1 - 1(1) - 8 10(2) 10 1(1) 10(3) 2 2 Low-power timer 1 1 1 1 SPI/ I S 5/5 (2 full duplex) 5/5 (2 full duplex) I2C 3 3 2 1 1 I CFMP USART/ UART Comm. interfaces SDIO/MMC 3/3 4/3 4/6 3/3 4/3 1 USB/OTG FS Dual power rail 1 No 4/6 1 1 Yes 1 No 1 Yes 1 No 1 Yes CAN 3 3 SAI 1 1 Number of digital Filters for Sigma-delta modulator Number of channels 6 6 7 11 GPIOs 36 50 12-bit ADC Number of channels 10 114 7 11 36 50 1 No 1 Yes 12 60 81 114 1 10 16 Yes Yes 2 2 100 MHz 100 MHz 1.7 to 3.6 V 1.7 to 3.6 V Ambient temperatures: - 40 to +85 C / - 40 to +105 C / - 40 to +125 C Ambient temperatures: - 40 to +85 C / - 40 to +105 C / - 40 to +125 C Junction temperature: -40 to + 130 C Junction temperature: -40 to + 130 C Operating voltage 1. 81 16 Maximum CPU frequency Operating temperatures 12 60 1 12-bit DAC Number of channels Package 10 2 Basic 2 1 16 2(4) 2 Random number generator 1(1) UFQFPN 48 LQFP 64 WLCSP 81 UFBGA/ LQFP100 UFBGA/ LQFP144 UFQFPN LQFP64 48 WLCSP 81 UFBGA/ LQFP100 UFBGA/ LQFP144 64 pins package: support only 8 bits multiplexed mode interface 81 pins package: support 1 external memory of up to 64KB in multiplexed mode 100 pins: support 2 external memories of up to 64MB in multiplexed mode Refer to Table 11: FSMC pin definition for more detailed information 2. 48 pins packages: TIM3 and TIM4: ETR pin not available. 3. 4. 81 pins packages: TIM4: ETR pin not available. 48 pins packages: TIM8:CH1, CH2, CH3 and CH4 pins not available. DocID029162 Rev 6 15/208 42 Description 2.1 STM32F413xG/H Compatibility with STM32F4 series The STM32F413xG/H are fully software and feature compatible with the STM32F4 series (STM32F42x, STM32F401, STM32F43x, STM32F41x, STM32F405 and STM32F407) The STM32F413xG/H can be used as drop-in replacement of the other STM32F4 products but some slight changes have to be done on the PCB board. Figure 1. Compatible board design for LQFP100 package 670)[[ 670)[[ 670)[[ 670)[[ 670)[[ 670)[[ 670)[[ 670)670)OLQH 670)670)OLQH 670)670)OLQH 670)670)OLQH 3( 3( 3( 3( 3( 3( 3% 9&$3B 966 9'' 3% QRW DYDLODEOHDQ\PRUH 5HSODFHG E\ 9 &$3B 3' 3' 3' 3' 3% 3% 3% 3% 3( 3( 3( 3( 3( 3( 3% 3% 9&$3B 9'' 966 9'' 3' 3' 3' 3' 3% 3% 3% 3% 966 9'' 06Y9 16/208 DocID029162 Rev 6 STM32F413xG/H Description Figure 2. Compatible board design for LQFP64 package 670)[[ 670)[[ 670)[[ 670)[[ 670)[[ 670)[[ 670)[[ 9'' 9&$3B 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 9'' 966 3%QRWDYDLODEOHDQ\PRUH 5HSODFHGE\9&$3B 9'' 966 3$ 3$ 3$ 3$ 3$ 966 3$ 3& 3& 3& 3& 3% 3% 3% 3% 9'' 3% 3% 9&$3B 966 9'' 3% 3% 3% 9&$3B 9'' 3& 3& 3& 3$ 3$ 3& 3& 3& 3$ 3$ 670)670)OLQH 9&$3BLQFUHDVHGWRI (65RUEHORZ 966 9 6 6 9 '' 9'' 06Y9 Figure 3. Compatible board design for LQFP144 package 670)[ 670)[ 670)[ 670)[[ 3' 3' 3& 3& 3& 3$ 3$ 3' 3' 3& 3& 3& 3$ 3$ 670)670)OLQH 670)670)OLQH 670)670)OLQH 670)670)OLQH 9'' 966 9&$3B 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 9'' 966 3* 6HSDUDWH86%SRZHUUDLO &RQQHFWHGWR9''LIDGLIIHUHQW SRZHUVXSSO\IRUWKH86%LVQRW UHTXLUHG 9'' 966 9&$3B 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 9''86% 966 3* 06Y9 DocID029162 Rev 6 17/208 42 Description STM32F413xG/H Figure 4. STM32F413xG/H block diagram 038)38 (70 )60& 125)ODVK 65$0365$0 $+% -7$* 6: .%65$0 ,%86 '%86 .%65$0 6%86 $&&(/ &$&+( $50&RUWH[0 &RUWH[0 0+] &/.1(>@$>@ '>@12(11:(1 1%/>@1:$,7 &/.&6$&6%'>@ 4XDG63, 19,& $+%EXVPDWUL[60 -7567-7', -7&.6:&/. -7'26:'-7'2 75$&(&/. 75$&('>@ 8SWR0% )ODVKPHPRU\ 51* ),)2 *3,23257$ 3%>@ *3,23257% $+%0+] 6WUHDPV '0$ 3$>@ ),)2 6WUHDPV '0$ 9'' ),)2 #9''$ *3,23257& 3'>@ *3,23257' 3(>@ *3,23257( 3*>@ *3,23257* 3+>@ *3,23257+ 86% 27*)6 3RZHUPDQDJPW 9ROWDJH UHJXODWRU WR9 325 UHVHW ,QW 3//3// 9''$966$ 1567 39' #9'' ;7$/26& 0+] 5HVHW FORFN 0 $1 $*7 FRQWURO 3:5 LQWHUIDFH 3&/. +&/. $3%&/. $3%&/. $+%3&/. $+%3&/. 7,03:0 /6 E E FKDQQHOVDV$) 7,0 E FKDQQHODV$) 7,0 E FKDQQHODV$) 7,0 E VPFDUG 5;7;6&. &76576DV$) VPFDUG 86$57 LU'$ LU'$ 86$57 5;7;DV$) 8$57 5;7;DV$) 8$57 026,0,62 6&.166:6DV$) 63,,6 FKDQQHOVDV$) FKDQQHOVDV$) 7,0 E FKDQQHOVDV$) 7,0 E FKDQQHOVDV$) 7,0 E FKDQQHOVDV$) 7,0 E FKDQQHOVDV$) E VPFDUG LU'$ VPFDUG LU'$ E FKDQQHOVDV$) 5;7;6&. &76576DV$) 5;7;6&. &76576DV$) 5;7;DV$) 8$57 8$57 5;7;DV$) 8$57 5;7;DV$) 8$57 5;7;DV$) 026,0,626&. 166:60&.DV$) 026,0,626&. 166:60&.DV$) ,&60%86 6&/6'$60%$DV$) ,&60%86 6&/6'$60%$DV$) ')6'0 ')6'0 '$& '$& ,) ,7) #9''$ '$& DV$) ,&60%86 6&/6'$60%$DV$) ,&)0360%86 6&/6'$60%$DV$) /37,0 #9''$ '$& DV$) ),)2 6$, 87HPSHUDWXUHVHQVRU 6 $5 7 0 % S V $'& E 63,,6 63,,6 6'6&.)6 0&/.DV$) DQDORJLQSXWV 7,0(5 E $/$50B287 67$03 E 86$57 63,,6 &.,1>@'$7,1>@ &.287 &.,1>@'$7,1>@ &.287 9''5()B$'& 7,0(5 26&B287 7,0 7,0 ::'* 26&B,1 7,0 63,,6 ),)2 026,0,62 6&.166:6DV$) 026,0,62 6&.166:6DV$) 57& $:8 %DFNXSUHJLVWHU 86$57 $3%0+] 7,03:0 5;7;6&. &76576DV$) $+% $3% $3%0+] PD[ 3:03:0 (75%.,1DV$) %$7 ;7$/N+] /6 6',200& 3:03:0 (75%.,1DV$) $+% $3% ),)2 '>@ &0'&.DV$) 9%$7 WR9 #9 '0$ '0$ 26&B,1 26&B287 :'*. &5& (;7,7:.83 9'' WR9 966 9&$3B9&$3B 6XSSO\ VXSHUYLVLRQ 3253'5 %25 #9''$ $) ' ' 6&/6'$,17,'9%86 #9'' 5& +6 5& / 6 3&>@ #9''86% #9'' 3+< $+%0+] E ,1V287,,75DV$) &$1 7;5; &$1 7;5; &$1 7;5; 06Y9 1. The timers connected to APB2 are clocked from TIMxCLK up to 100 MHz, while the timers connected to APB1 are clocked from TIMxCLK up to 50 MHz. 18/208 DocID029162 Rev 6 STM32F413xG/H Functional overview 3 Functional overview 3.1 Arm(R) Cortex(R)-M4 with FPU core with embedded Flash and SRAM The Arm(R) Cortex(R)-M4 with FPU processor is the latest generation of Arm processors for embedded systems. It was developed to provide a low-cost platform that meets the needs of MCU implementation, with a reduced pin count and low-power consumption, while delivering outstanding computational performance and an advanced response to interrupts. The Arm(R) Cortex(R)-M4 with FPU 32-bit RISC processor features exceptional codeefficiency, delivering the high-performance expected from an Arm core in the memory size usually associated with 8- and 16-bit devices. The processor supports a set of DSP instructions which allow efficient signal processing and complex algorithm execution. Its single precision FPU (floating point unit) speeds up software development by using metalanguage development tools, while avoiding saturation. The STM32F413xG/H devices are compatible with all Arm tools and software. Figure 4 shows the general block diagram of the STM32F413xG/H. Note: Cortex(R)-M4 with FPU is binary compatible with Cortex(R)-M3. 3.2 Adaptive real-time memory accelerator (ART AcceleratorTM) The ART AcceleratorTM is a memory accelerator which is optimized for STM32 industrystandard Arm(R) Cortex(R)-M4 with FPU processors. It balances the inherent performance advantage of the Arm(R) Cortex(R)-M4 with FPU over Flash memory technologies, which normally requires the processor to wait for the Flash memory at higher frequencies. To release the processor full 125 DMIPS performance at this frequency, the accelerator implements an instruction prefetch queue and branch cache, which increases program execution speed from the 128-bit Flash memory. Based on CoreMark benchmark, the performance achieved thanks to the ART Accelerator is equivalent to 0 wait state program execution from Flash memory at a CPU frequency up to 100 MHz. 3.3 Enhanced Batch Acquisition mode (eBAM) The Batch acquisition mode allows enhanced power efficiency during data batching. It enables data acquisition through any communication peripherals directly to memory using the DMA in reduced power consumption as well as data processing while the rest of the system is in low-power mode (including the Flash and ART). For example in an audio system, a smart combination of PDM audio sample acquisition and processing from the DFSDM directly to RAM (Flash and ARTTM stopped) with the DMA using BAM followed by some very short processing from Flash allows to drastically reduce the power consumption of the application. The BAM has been enhanced by adding SRAM2 that allows SRAM code to be executed through the Ibus and Dbus, thus improving code execution performance. DocID029162 Rev 6 19/208 42 Functional overview STM32F413xG/H A dedicated application note (AN4515) describes how to implement the STM32F413xG/H BAM to allow the best power efficiency. 3.4 Memory protection unit The memory protection unit (MPU) is used to manage the CPU accesses to memory to prevent one task to accidentally corrupt the memory or resources used by any other active task. This memory area is organized into up to 8 protected areas that can in turn be divided up into 8 subareas. The protection area sizes are between 32 byte and the whole 4 Gbyte of addressable memory. The MPU is especially helpful for applications where some critical or certified code has to be protected against the misbehavior of other tasks. It is usually managed by an RTOS (realtime operating system). If a program accesses a memory location that is prohibited by the MPU, the RTOS can detect it and take action. In an RTOS environment, the kernel can dynamically update the MPU area setting, based on the process to be executed. The MPU is optional and can be bypassed for applications that do not need it. 3.5 Embedded Flash memory The devices embed up to 1.5 Mbytes of Flash memory available for storing programs and data, plus 512 bytes of one-time programmable (OTP) memory organized in 16 blocks of 32 bytes, each which can be independently locked. The user Flash memory area can be protected against read operations by an entrusted code (read protection or RDP). Different protection levels are available. The user Flash memory is divided into sectors, which can be individually protected against write operation. Flash sectors can also be protected individually against D-bus read accesses by using the proprietary readout protection (PCROP). Refer to the product line reference manual for additional information on OTP area and protection features. To optimize the power consumption the Flash memory can also be switched off in Run or in Sleep mode (see Section 3.20: Low-power modes). Two modes are available: Flash in Stop mode or in DeepSleep mode (trade off between power saving and startup time. Before disabling the Flash, the code must be executed from the internal RAM. 3.6 CRC (cyclic redundancy check) calculation unit The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from a 32-bit data word and a fixed generator polynomial. Among other applications, CRC-based techniques are used to verify data transmission or storage integrity. In the scope of the EN/IEC 60335-1 standard, they offer a means of verifying the Flash memory integrity. The CRC calculation unit helps compute a software signature during runtime, to be compared with a reference signature generated at link-time and stored at a given memory location. 20/208 DocID029162 Rev 6 STM32F413xG/H 3.7 Functional overview Embedded SRAM All devices embed 320 Kbytes of system SRAM which can be accessed (read/write) at CPU clock speed with 0 wait states. Multi-AHB bus matrix The 32-bit multi-AHB bus matrix interconnects all the masters (CPU, DMAs) and the slaves (Flash memory, RAM, AHB and APB peripherals) and ensures a seamless and efficient operation even when several high-speed peripherals work simultaneously. Figure 5. Multi-AHB matrix 6 6 6 $FFHVVWKURXJKUHPDS $FFHVVE\DOLDVLQJ '0$B3 '0$B0(0 '0$B0(0 '0$B3, 6EXV 6 *3 '0$ *3 '0$ 6 0 ,&2'( 0 '&2'( %XVPDWUL[6 $&&(/ 6 'EXV $50 &RUWH[0 ,EXV 3.8 )ODVK 0% 0 65$0 .% 0 $+% SHULSK $3% 0 $+% SHULSK $3% 0 )60&H[WHUQDO 0HP&WUO 4XDG63, 0 65$0 .% 06Y9 CPU can access SRAM1 memory via S-bus, when SRAM1 is mapped at the address range: 0x2000 0000 to 0x2003 FFFF. CPU can access SRAM2 memory via S-bus, when SRAM2 is mapped at the address range: 0x2004 0000 to 0x2004 FFFF. CPU can access SRAM1 memory via I-bus and D-bus, when SRAM1 is remapped at address 0x0000 0000 either by booting from RAM memory or by the remap mode. CPU can access SRAM2 memory via I-bus and D-bus, when SRAM2 is mapped at the address range: 0x1000 0000 to 0x1000 FFFF. Performance boosts up, when the CPU access SRAM memory via the I-bus. DocID029162 Rev 6 21/208 42 Functional overview 3.9 STM32F413xG/H DMA controller (DMA) The devices feature two general-purpose dual-port DMAs (DMA1 and DMA2) with 8 streams each. They are able to manage memory-to-memory, peripheral-to-memory and memory-to-peripheral transfers. They feature dedicated FIFOs for APB/AHB peripherals, support burst transfer and are designed to provide the maximum peripheral bandwidth (AHB/APB). The two DMA controllers support circular buffer management, so that no specific code is needed when the controller reaches the end of the buffer. The two DMA controllers also have a double buffering feature, which automates the use and switching of two memory buffers without requiring any special code. Each stream is connected to dedicated hardware DMA requests, with support for software trigger on each stream. Configuration is made by software and transfer sizes between source and destination are independent. The DMA can be used with the main peripherals: 3.10 * SPI and I2S * I2C and I2CFMP * USART * General-purpose, basic and advanced-control timers TIMx * SD/SDIO/MMC/eMMC host interface * Quad-SPI * ADC * DAC * Digital Filter for sigma-delta modulator (DFSDM) with a separate stream for each filter * SAI. Flexible static memory controller (FSMC) The Flexible static memory controller (FSMC) includes a NOR/PSRAM memory controller. It features four Chip Select outputs supporting the following modes: SRAM, PSRAM and NOR Flash memory. The main functions are: * 8-,16-bit data bus width * Write FIFO * Maximum FSMC_CLK frequency for synchronous accesses is 90 MHz. LCD parallel interface The FSMC can be configured to interface seamlessly with most graphic LCD controllers. It supports the Intel 8080 and Motorola 6800 modes, and is flexible enough to adapt to specific LCD interfaces. This LCD parallel interface capability makes it easy to build costeffective graphic applications using LCD modules with embedded controllers or high performance solutions using external controllers with dedicated acceleration. 22/208 DocID029162 Rev 6 STM32F413xG/H 3.11 Functional overview Quad-SPI memory interface (QUAD-SPI) All devices embed a Quad-SPI memory interface, which is a specialized communication interface targeting single, dual or quad-SPI Flash memories. It can work in direct mode through registers, external Flash status register polling mode and memory mapped mode. Up to 256 Mbyte of external Flash memory are mapped. They can be accessed in 8, 16 or 32-bit mode. Code execution is also supported. The opcode and the frame format are fully programmable. Communication can be performed either in single data rate or dual data rate. 3.12 Nested vectored interrupt controller (NVIC) The devices embed a nested vectored interrupt controller able to manage 16 priority levels, and handle up to 102 maskable interrupt channels plus the 16 interrupt lines of the Cortex(R)-M4 with FPU. * Closely coupled NVIC gives low-latency interrupt processing * Interrupt entry vector table address passed directly to the core * Allows early processing of interrupts * Processing of late arriving, higher-priority interrupts * Support tail chaining * Processor state automatically saved * Interrupt entry restored on interrupt exit with no instruction overhead This hardware block provides flexible interrupt management features with minimum interrupt latency. 3.13 External interrupt/event controller (EXTI) The external interrupt/event controller consists of 24 edge-detector lines used to generate interrupt/event requests. Each line can be independently configured to select the trigger event (rising edge, falling edge, both) and can be masked independently. A pending register maintains the status of the interrupt requests. The EXTI can detect an external line with a pulse width shorter than the Internal APB2 clock period. Up to 114 GPIOs can be connected to the 16 external interrupt lines. 3.14 Clocks and startup On reset the 16 MHz internal RC oscillator is selected as the default CPU clock. The 16 MHz internal RC oscillator is factory-trimmed to offer 1% accuracy at 25 C. The application can then select as system clock either the RC oscillator or an external 4-26 MHz clock source. This clock can be monitored for failure. If a failure is detected, the system automatically switches back to the internal RC oscillator and a software interrupt is generated (if enabled). This clock source is input to a PLL thus allowing to increase the frequency up to 100 MHz. Similarly, full interrupt management of the PLL clock entry is available when necessary (for example if an indirectly used external oscillator fails). Several prescalers allow the configuration of the three AHB buses, the high-speed APB (APB2) and the low-speed APB (APB1) domains. The maximum frequency of the three AHB DocID029162 Rev 6 23/208 42 Functional overview STM32F413xG/H buses and high-speed APB domains is 100 MHz. The maximum allowed frequency of the low-speed APB domain is 50 MHz. The devices embed a dedicated PLL (PLLI2S) which allows to achieve audio class performance. In this case, the I2S master clock can generate all standard sampling frequencies from 8 kHz to 192 kHz. 3.15 Boot modes At startup, boot pins are used to select one out of three boot options: * Boot from user Flash memory * Boot from system memory * Boot from embedded SRAM The boot loader is located in system memory. It is used to reprogram the Flash memory by using one of the interface listed in the Table 3 or the USB OTG FS in device mode through DFU (device firmware upgrade). Table 3. Embedded bootloader interfaces Package USART1 USART2 USART3 I2C1 PA9/ PD6/ PB11/ PB6/ PA10 PD5 PB10 PB7 SPI3 I2C2 PF0/ PF1 I2C3 PA8/ PB4 I2C FMP1 PB14/ PB15 SPI1 PA4/ PA5/ PA6/ PA7 PA15/ PC10/ PC11/ PC12 SPI4 PE11/ CAN2 USB PE12/ PB5/ PA11 PE13/ PB13 /P12 PE14 UFQFPN48 Y - - Y - Y Y Y - - Y Y LQFP64 Y - - Y - Y Y Y Y - Y Y WLCSP81 Y - - Y - Y Y Y Y Y Y Y LQFP100 Y Y - Y - Y Y Y Y Y Y Y LQFP144 Y Y Y Y Y Y Y Y Y Y Y Y UFBGA100 Y Y Y Y - Y Y Y Y Y Y Y UFBGA144 Y Y Y Y Y Y Y Y Y Y Y Y For more detailed information on the bootloader, refer to Application Note: AN2606, STM32TM microcontroller system memory boot mode. 24/208 DocID029162 Rev 6 STM32F413xG/H 3.16 Note: Functional overview Power supply schemes * VDD = 1.7 to 3.6 V: external power supply for I/Os with the internal supervisor (POR/PDR) disabled, provided externally through VDD pins. Requires the use of an external power supply supervisor connected to the VDD and NRST pins. * VSSA, VDDA = 1.7 to 3.6 V: external analog power supplies for ADC, Reset blocks, RCs and PLL. VDDA and VSSA must be connected to VDD and VSS, respectively, with decoupling technique. The VDD/VDDA minimum value of 1.7 V is obtained with the use of an external power supply supervisor (refer to Section 3.17.2: Internal reset OFF). Refer to Table 4: Regulator ON/OFF and internal power supply supervisor availability to identify the packages supporting this option. * VBAT = 1.65 to 3.6 V: power supply for RTC, external clock 32 kHz oscillator and backup registers (through power switch) when VDD is not present. * VDDUSB can be connected either to VDD or an external independent power supply (3.0 to 3.6 V) for USB transceivers. For example, when device is powered at 1.8 V, an independent power supply 3.3V can be connected to VDDUSB. When the VDDUSB is connected to a separated power supply, it is independent from VDD or VDDA but it must be the last supply to be provided and the first to disappear. The following conditions VDDUSB must be respected: - During power-on phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD - During power-down phase (VDD < VDD_MIN), VDDUSB should be always lower than VDD - VDDUSB rising and falling time rate specifications must be respected. - In operating mode phase, VDDUSB could be lower or higher than VDD: - If USB is used, the associated GPIOs powered by VDDUSB are operating between VDDUSB_MIN and VDDUSB_MAX. - If USB is not used, the associated GPIOs powered by VDDUSB are operating between VDD_MIN and VDD_MAX. DocID029162 Rev 6 25/208 42 Functional overview STM32F413xG/H Figure 6. VDDUSB connected to an external independent power supply 9''86%B0$; 86% IXQFWLRQDODUHD 9''86% 9''86%B0,1 86%QRQ IXQFWLRQDO DUHD 9'' 9''$ 86% QRQ IXQFWLRQDO DUHD 9''B0,1 2SHUDWLQJPRGH 3RZHURQ 3RZHUGRZQ WLPH 069 3.17 Power supply supervisor 3.17.1 Internal reset ON This feature is available for VDD operating voltage range 1.8 V to 3.6 V. On packages embedding the PDR_ON pin, the power supply supervisor is enabled by holding PDR_ON high. On the other package, the power supply supervisor is always enabled. The device has an integrated power-on reset (POR) / power-down reset (PDR) circuitry coupled with a Brownout reset (BOR) circuitry. At power-on, POR is always active, and ensures proper operation starting from 1.8 V. After the 1.8 V POR threshold level is reached, the option byte loading process starts, either to confirm or modify default thresholds, or to disable BOR permanently. Three BOR thresholds are available through option bytes. The device remains in reset mode when VDD is below a specified threshold, VPOR/PDR or VBOR, without the need for an external reset circuit. The device also features an embedded programmable voltage detector (PVD) that monitors the VDD/VDDA power supply and compares it to the VPVD threshold. An interrupt can be generated when VDD/VDDA drops below the VPVD threshold and/or when VDD/VDDA is higher than the VPVD threshold. The interrupt service routine can then generate a warning message and/or put the MCU into a safe state. The PVD is enabled by software. 26/208 DocID029162 Rev 6 STM32F413xG/H 3.17.2 Functional overview Internal reset OFF This feature is available only on packages featuring the PDR_ON pin. The internal power-on reset (POR) / power-down reset (PDR) circuitry is disabled by setting the PDR_ON pin to low. An external power supply supervisor should monitor VDD and should set the device in reset mode when VDD is below 1.7 V. NRST should be connected to this external power supply supervisor. Refer to Figure 7: Power supply supervisor interconnection with internal reset OFF. Figure 7. Power supply supervisor interconnection with internal reset OFF(1) 9'' ([WHUQDO9''SRZHUVXSSO\VXSHUYLVRU ([WUHVHWFRQWUROOHUDFWLYHZKHQ 9''9 1567 3'5B21 9'' 06Y9 1. The PRD_ON pin is available only on WLCSP81, UFBGA100, UFBGA144 and LQFP144 packages. A comprehensive set of power-saving mode allows to design low-power applications. When the internal reset is OFF, the following integrated features are no longer supported: 3.18 * The integrated power-on reset (POR) / power-down reset (PDR) circuitry is disabled. * The brownout reset (BOR) circuitry must be disabled. * The embedded programmable voltage detector (PVD) is disabled. * VBAT functionality is no more available and VBAT pin should be connected to VDD. Voltage regulator The regulator has three operating modes: - Main regulator mode (MR) - Low power regulator (LPR) - Power-down DocID029162 Rev 6 27/208 42 Functional overview 3.18.1 STM32F413xG/H Regulator ON On packages embedding the BYPASS_REG pin, the regulator is enabled by holding BYPASS_REG low. On all other packages, the regulator is always enabled. There are three power modes configured by software when the regulator is ON: * MR is used in the nominal regulation mode (With different voltage scaling in Run mode) In Main regulator mode (MR mode), different voltage scaling are provided to reach the best compromise between maximum frequency and dynamic power consumption. * LPR is used in the Stop mode The LP regulator mode is configured by software when entering Stop mode. * Power-down is used in Standby mode. The Power-down mode is activated only when entering in Standby mode. The regulator output is in high impedance and the kernel circuitry is powered down, inducing zero consumption. The contents of the registers and SRAM are lost. Depending on the package, one or two external ceramic capacitors should be connected on the VCAP_1 and VCAP_2 pins. The VCAP_2 pin is only available on 100- and 144-pin packages. All packages have the regulator ON feature. 3.18.2 Regulator OFF This feature is available only on UFBGA100 and UFBGA144 packages, which feature the BYPASS_REG pin. The regulator is disabled by holding BYPASS_REG high. The regulator OFF mode allows to supply externally a V12 voltage source through VCAP_1 and VCAP_2 pins. Since the internal voltage scaling is not managed internally, the external voltage value must be aligned with the targeted maximum frequency. The two 2.2 F ceramic capacitors should be replaced by two 100 nF decoupling capacitors. When the regulator is OFF, there is no more internal monitoring on V12. An external power supply supervisor should be used to monitor the V12 of the logic power domain. PA0 pin should be used for this purpose, and act as power-on reset on V12 power domain. In regulator OFF mode, the following features are no more supported: 28/208 * PA0 cannot be used as a GPIO pin since it allows to reset a part of the V12 logic power domain which is not reset by the NRST pin. * As long as PA0 is kept low, the debug mode cannot be used under power-on reset. As a consequence, PA0 and NRST pins must be managed separately if the debug connection under reset or pre-reset is required. DocID029162 Rev 6 STM32F413xG/H Functional overview Figure 8. Regulator OFF 9 ([WHUQDO9&$3BSRZHU $SSOLFDWLRQUHVHW VXSSO\VXSHUYLVRU ([WUHVHWFRQWUROOHUDFWLYH VLJQDO RSWLRQDO ZKHQ9&$3B0LQ9 9'' 3$ 9'' 1567 %<3$66B5(* 9 9&$3B 9&$3B DL9 The following conditions must be respected: Note: * VDD should always be higher than VCAP_1 and VCAP_2 to avoid current injection between power domains. * If the time for VCAP_1 and VCAP_2 to reach V12 minimum value is faster than the time for VDD to reach 1.7 V, then PA0 should be kept low to cover both conditions: until VCAP_1 and VCAP_2 reach V12 minimum value and until VDD reaches 1.7 V (see Figure 9). * Otherwise, if the time for VCAP_1 and VCAP_2 to reach V12 minimum value is slower than the time for VDD to reach 1.7 V, then PA0 could be asserted low externally (see Figure 10). * If VCAP_1 and VCAP_2 go below V12 minimum value and VDD is higher than 1.7 V, then a reset must be asserted on PA0 pin. The minimum value of V12 depends on the maximum frequency targeted in the application. DocID029162 Rev 6 29/208 42 Functional overview STM32F413xG/H Figure 9. Startup in regulator OFF: slow VDD slope power-down reset risen after VCAP_1/VCAP_2 stabilization 9'' 3'5 9 9 0LQ9 9&$3B9&$3B WLPH 1567 3$ WLPH 06Y9 1. This figure is valid whatever the internal reset mode (ON or OFF). Figure 10. Startup in regulator OFF mode: fast VDD slope power-down reset risen before VCAP_1/VCAP_2 stabilization 9'' 3'5 9 9&$3B9&$3B 9 0LQ9 1567 WLPH 3$DVVHUWHGH[WHUQDOO\ WLPH 1. This figure is valid whatever the internal reset mode (ON or OFF). 30/208 DocID029162 Rev 6 06Y9 STM32F413xG/H 3.18.3 Functional overview Regulator ON/OFF and internal reset ON/OFF availability Table 4. Regulator ON/OFF and internal power supply supervisor availability Package Regulator ON Regulator OFF Power supply supervisor ON Power supply supervisor OFF UFQFPN48 Yes No Yes No LQFP64 Yes No Yes No WLCSP81 Yes BYPASS_REG set to VSS Yes BYPASS_REG set to VDD Yes PDR_ON set to VDD Yes PDR_ON set to VSS LQFP100 Yes No Yes No LQFP144 Yes No UFBGA100 Yes BYPASS_REG set to VSS Yes BYPASS_REG set to VDD Yes BYPASS_REG set to VDD Yes PDR_ON set to VSS UFBGA144 Yes BYPASS_REG set to VSS Yes PDR_ON set to VDD 3.19 Real-time clock (RTC) and backup registers The backup domain includes: * The real-time clock (RTC) * 20 backup registers The real-time clock (RTC) is an independent BCD timer/counter. Dedicated registers contain the second, minute, hour (in 12/24 hour), week day, date, month, year, in BCD (binarycoded decimal) format. Correction for 28, 29 (leap year), 30, and 31 day of the month are performed automatically. The RTC features a reference clock detection, a more precise second source clock (50 or 60 Hz) can be used to enhance the calendar precision. The RTC provides a programmable alarm and programmable periodic interrupts with wakeup from Stop and Standby modes. The sub-seconds value is also available in binary format. It is clocked by a 32.768 kHz external crystal, resonator or oscillator, the internal low-power RC oscillator or the high-speed external clock divided by 128. The internal low-speed RC has a typical frequency of 32 kHz. The RTC can be calibrated using an external 512 Hz output to compensate for any natural quartz deviation. Two alarm registers are used to generate an alarm at a specific time and calendar fields can be independently masked for alarm comparison. To generate a periodic interrupt, a 16-bit programmable binary auto-reload downcounter with programmable resolution is available and allows automatic wakeup and periodic alarms from every 120 s to every 36 hours. A 20-bit prescaler is used for the time base clock. It is by default configured to generate a time base of 1 second from a clock at 32.768 kHz. The backup registers are 32-bit registers used to store 80 byte of user application data when VDD power is not present. Backup registers are not reset by a system, a power reset, or when the device wakes up from the Standby mode (see Section 3.20: Low-power modes). DocID029162 Rev 6 31/208 42 Functional overview STM32F413xG/H Additional 32-bit registers contain the programmable alarm subseconds, seconds, minutes, hours, day, and date. The RTC and backup registers are supplied through a switch that is powered either from the VDD supply when present or from the VBAT pin. 3.20 Low-power modes The devices support three low-power modes to achieve the best compromise between low power consumption, short startup time and available wakeup sources: * Sleep mode In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can wake up the CPU when an interrupt/event occurs. To further reduce the power consumption, the Flash memory can be switched off before entering in Sleep mode. Note that this requires a code execution from the RAM. * Stop mode The Stop mode achieves the lowest power consumption while retaining the contents of SRAM and registers. All clocks in the 1.2 V domain are stopped, the PLL, the HSI RC and the HSE crystal oscillators are disabled. The voltage regulator can also be put either in normal or in low-power mode. The device can be woken up from the Stop mode by any of the EXTI line (the EXTI line source can be one of the 16 external lines, the PVD output, the RTC alarm/ wakeup/ tamper/ time stamp events). * Standby mode The Standby mode is used to achieve the lowest power consumption. The internal voltage regulator is switched off so that the entire 1.2 V domain is powered off. The PLL, the HSI RC and the HSE crystal oscillators are also switched off. After entering Standby mode, the SRAM and register contents are lost except for registers in the backup domain when selected. The device exits the Standby mode when an external reset (NRST pin), an IWDG reset, a rising edge on one of the WKUP pins, or an RTC alarm/ wakeup/ tamper/time stamp event occurs. Standby mode is not supported when the embedded voltage regulator is bypassed and the 1.2 V domain is controlled by an external power. 3.21 VBAT operation The VBAT pin allows to power the device VBAT domain from an external battery, an external super-capacitor, or from VDD when no external battery and an external super-capacitor are present. VBAT operation is activated when VDD is not present. The VBAT pin supplies the RTC and the backup registers. Note: 32/208 When the microcontroller is supplied from VBAT, external interrupts and RTC alarm/events do not exit it from VBAT operation. When PDR_ON pin is not connected to VDD (internal Reset OFF), the VBAT functionality is no more available and VBAT pin should be connected to VDD. DocID029162 Rev 6 STM32F413xG/H 3.22 Functional overview Timers and watchdogs The devices embed two advanced-control timer, ten general-purpose timers, two basic timers, one low-power timer, two watchdog timers and a SysTick timer. All timer counters can be frozen in debug mode. Table 5 compares the features of the advanced-control and general-purpose timers. Table 5. Timer feature comparison Timer type Advance d-control Max. Max. DMA Capture/ Complemen- interface timer request compare tary output clock clock generation channels (MHz) (MHz) Timer Counter Counter Prescaler resolution type factor TIM1, TIM8 16-bit Any Up, integer Down, between 1 Up/down and 65536 Yes 4 Yes 100 100 32-bit Any Up, integer Down, between 1 Up/down and 65536 Yes 4 No 50 100 16-bit Any Up, integer Down, between 1 Up/down and 65536 Yes 4 No 50 100 16-bit Up Any integer between 1 and 65536 No 2 No 100 100 Up Any integer between 1 and 65536 No 1 No 100 100 Up Any integer between 1 and 65536 No 2 No 50 100 Up Any integer between 1 and 65536 No 1 No 50 100 TIM2, TIM5 TIM3, TIM4 TIM9 General purpose TIM10, TIM11 TIM12 TIM13, TIM14 16-bit 16-bit 16-bit DocID029162 Rev 6 33/208 42 Functional overview STM32F413xG/H Table 5. Timer feature comparison (continued) Timer type Max. Max. DMA Capture/ Complemen- interface timer request compare tary output clock clock generation channels (MHz) (MHz) Timer Counter Counter Prescaler resolution type factor Basic timers TIM6, TIM7 16-bit Up Any integer between 1 and 65536 Yes 0 No 50 100 Lowpower timer LPTIM1 16-bit Up Between 1 and 128 No 2 No 50 100 3.22.1 Advanced-control timers (TIM1, TIM8) The advanced-control timers (TIM1/8) can be seen as three-phase PWM generator multiplexed on 4 independent channels. They have complementary PWM outputs with programmable inserted dead times. They can also be considered as complete generalpurpose timers. Their 4 independent channels can be used for: * Input capture * Output compare * PWM generation (edge- or center-aligned modes) * One-pulse mode output If configured as standard 16-bit timers, they have the same features as the general-purpose TIMx timers. If configured as a 16-bit PWM generator, they have full modulation capability (0-100%). The advanced-control timers can work together with the TIMx timers via the Timer Link feature for synchronization or event chaining. TIM1 and TIM8 support independent DMA request generation. 3.22.2 General-purpose timers (TIMx) There are elven synchronizable general-purpose timers embedded in the STM32F413xG/H (see Table 5 for differences). * TIM2, TIM3, TIM4, TIM5 The STM32F413xG/H devices include 4 full-featured general-purpose timers: TIM2. TIM3, TIM4 and TIM5. TIM2 and TIM5 timers are based on a 32-bit auto-reload up/downcounter and a 16-bit prescaler while TIM3 and TIM4 timers are based on a 16bit auto-reload up/downcounter plus a 16-bit prescaler. They all features four 34/208 DocID029162 Rev 6 STM32F413xG/H Functional overview independent channels for input capture/output compare, PWM or one-pulse mode output. This gives up to 15 input capture/output compare/PWMs TIM2. TIM3, TIM4 and TIM5 general-purpose timers can operate together or in conjunction with the other general-purpose timers and TIM1 advanced-control timer via the Timer Link feature for synchronization or event chaining. Any of these general-purpose timers can be used to generate PWM output. TIM2. TIM3, TIM4 and TIM5 channels have independent DMA request generation. They are capable of handling quadrature (incremental) encoder signals and the digital outputs from 1 to 4 hall-effect sensors. * TIM9, TIM10, TIM11, TIM12, TIM13 and TIM14 These timers are based on a 16-bit auto-reload upcounter and a 16-bit prescaler. TIM10, TIM11, TIM13 and TIM14 feature one independent channel, whereas TIM9 and TIM12 have two independent channels for input capture/output compare, PWM or onepulse mode output. They can be synchronized with TIM2. TIM3, TIM4 and TIM5 fullfeatured general-purpose timers or used as simple time bases. 3.22.3 Basic timer (TIM6, TIM7) TIM6 and TIM7 timers are basic 16-bit timers. They support independent DMA request generation. 3.22.4 Low-power timer (LPTIM1) The low-power timer (LPTIM1) features an independent clock and runs in Stop mode if it is clocked by LSE, LSI or by an external clock. LPTIM1 is able to wakeup the devices from Stop mode. The low-power timer main features are the following: 3.22.5 * 16-bit up counter with 16-bit autoreload register * 16-bit compare register * Configurable output: pulse, PWM * Continuous / one shot mode * Selectable software / hardware input trigger * Selectable clock source - Internal clock source: LSE, LSI, HSI or APB1 clock - External clock source over LPTIM1 input (working even with no internal clock source running, used by the pulse counter application) * Programmable digital glitch filter * Encoder mode * Active in Stop mode. Independent watchdog The independent watchdog is based on a 12-bit downcounter and 8-bit prescaler. It is clocked from an independent 32 kHz internal RC and as it operates independently from the main clock, it can operate in Stop and Standby modes. It can be used either as a watchdog to reset the device when a problem occurs, or as a free-running timer for application timeout management. It is hardware- or software-configurable through the option bytes. DocID029162 Rev 6 35/208 42 Functional overview 3.22.6 STM32F413xG/H Window watchdog The window watchdog is based on a 7-bit downcounter that can be set as free-running. It can be used as a watchdog to reset the device when a problem occurs. It is clocked from the main clock. It has an early warning interrupt capability and the counter can be frozen in debug mode. 3.22.7 SysTick timer This timer is dedicated to real-time operating systems, but could also be used as a standard downcounter. It features: 3.23 * A 24-bit downcounter * Autoreload capability * Maskable system interrupt generation when the counter reaches 0 * Programmable clock source. Inter-integrated circuit interface (I2C) The devices feature up to four I2C bus interfaces which can operate in multimaster and slave modes: * One I2C interface supports the Standard mode (up to 100 kHz), Fast-mode (up to 400 kHz) modes and Fast-mode plus (up to 1 MHz). * Three I2C interfaces support the Standard mode (up to 100 KHz) and the Fast mode (up to 400 KHz). Their frequency can be increased up to 1 MHz. For more details on the complete solution, refer to the nearest STMicroelectronics sales office. All I2C interfaces features 7/10-bit addressing mode and 7-bit addressing mode (as slave) and embed a hardware CRC generation/verification. They can be served by DMA and they support SMBus 2.0/PMBus. The devices also include programmable analog and digital noise filters (see Table 6). Table 6. Comparison of I2C analog and digital filters Pulse width of suppressed spikes 3.24 Analog filter Digital filter 50 ns Programmable length from 1 to 15 I2C peripheral clocks Universal synchronous/asynchronous receiver transmitters (USART) The devices embed four universal synchronous/asynchronous receiver transmitters (USART1, USART2, USART3 and USART6) as well as six universal asynchronous receiver transmitters (UART4, UART5, UART7, UART8, UART9 and UART10). These ten interfaces provide asynchronous communication, IrDA SIR ENDEC support, multiprocessor communication mode, single-wire half-duplex communication mode and have LIN Master/Slave capability. USART1, USART6, UART9 and UART10 can communicate at speeds up to 12.5 Mbit/s. The other interfaces communicate at up to 6.25 bit/s. 36/208 DocID029162 Rev 6 STM32F413xG/H Functional overview USART1, USART2, USART3 and USART6 provide hardware management of the CTS and RTS signals, Smart Card mode (ISO 7816 compliant) and SPI-like communication capability. All interfaces can be served by the DMA controller. Table 7. USART feature comparison Max. baud Max. baud USART Standard Modem SPI Smartcard rate in Mbit/s rate in Mbit/s APB LIN irDA name features (RTS/CTS) master (ISO 7816) (oversampling (oversampling mapping by 16) by 8) USART1 X X X X X X 6.25 12.5 APB2 (max. 100 MHz) USART2 X X X X X X 3.12 6.25 APB1 (max. 50 MHz) USART3 X X X X X X 3.12 6.25 APB1 (max. 50 MHz) UART4 X - X - X - 3.12 6.25 APB1 (max. 50 MHz) UART5 X - X - X - 3.12 6.25 APB1 (max. 50 MHz) USART6 X X X X X X 6.25 12.5 APB2 (max. 100 MHz) UART7 X - X - X - 3.12 6.25 APB1 (max. 50 MHz) UART8 X - X - X - 3.12 6.25 APB1 (max. 50 MHz) UART9 X - X - X - 6.25 12.5 APB2 (max. 100 MHz) UART10 X - X - X - 6.25 12.5 APB2 (max. 100 MHz) DocID029162 Rev 6 37/208 42 Functional overview 3.25 STM32F413xG/H Serial peripheral interface (SPI) The devices feature five SPIs in slave and master modes in full-duplex and simplex communication modes. SPI1, SPI4 and SPI5 can communicate at up to 50 Mbit/s, SPI2 and SPI3 can communicate at up to 25 Mbit/s. The 3-bit prescaler gives 8 master mode frequencies and the frame is configurable to 8 bits or 16 bits. The hardware CRC generation/verification supports basic SD Card/MMC modes. All SPIs can be served by the DMA controller. The SPI interfaces can be configured to operate in TI mode for communications in master mode and slave mode. 3.26 Inter-integrated sound (I2S) Five standard I2S interfaces (multiplexed with SPI1 to SPI5) are available. They can be operated in master or slave mode, in simplex communication mode, and full duplex mode for I2S2 and I2S3. All I2S interfaces can be configured to operate with a 16-/32-bit resolution as an input or output channel. I2Sx audio sampling frequencies from 8 kHz up to 192 kHz are supported. When either or both of the I2S interfaces is/are configured in master mode, the master clock can be output to the external DAC/CODEC at 256 times the sampling frequency. All I2Sx interfaces can be served by the DMA controller. 3.27 Serial Audio interface (SAI1) The serial audio interface (SAI1) is based on two independent audio sub-blocks which can operate as transmitter or receiver with their FIFO. Many audio protocols are supported by each block: I2S standards, LSB or MSB-justified, PCM/DSP, TDM, AC'97 and SPDIF output, supporting audio sampling frequencies from 8 kHz up to 192 kHz. Both sub-blocks can be configured in master or in slave mode. In master mode, the master clock can be output to the external DAC/CODEC at 256 times of the sampling frequency. The two sub-blocks can be configured in synchronous mode when full-duplex mode is required. SAI1 can be served by the DMA controller. 3.28 Audio PLL (PLLI2S) The devices feature an additional dedicated PLL for audio I2S and SAI applications. It allows to achieve error-free I2S sampling clock accuracy without compromising on the CPU performance, while using USB peripherals. Different sources can be selected for the I2S master clock of the APB1 and the I2S master clock of the APB2. This gives the flexibility to work with two different audio sampling frequencies. The different possible sources are the main PLL, the PLLI2S, HSE or HSI clocks or an external clock provided through a pin (external PLL or CODEC output) 38/208 DocID029162 Rev 6 STM32F413xG/H Functional overview Different sources can also be selected for the SAI. The different possible sources are the main PLL, the PLLI2S, HSE or HSI clocks or an external clock provided through a pin (external PLL or CODEC output). The PLLI2S configuration can be modified to manage an I2S/SAI sample rate change without disabling the main PLL (PLL) used for CPU, USB and Ethernet interfaces. The audio PLL can be programmed with very low error to obtain sampling rates ranging from 8 KHz to 192 KHz. 3.29 Digital filter for sigma-delta modulators (DFSDM) The device embeds two DFSDMs: * DFSDM1 has 2 digital filters modules and 4 external input serial channels (transceivers) or alternately 2 internal parallel inputs support. * DFSDM2 features 4 digital filters modules and 8 external input serial channels (transceivers) or alternately 4 internal parallel inputs support. The amount of filters defines the number of conversions which can be performed simultaneously. The DFSDM peripheral is dedicated to interface the external modulators to microcontroller and then to perform digital filtering of the received data streams (which represent analog value on modulators inputs). DFSDM can also interface PDM (Pulse Density Modulation) microphones and perform PDM to PCM conversion and filtering in hardware. It is also possible to introduce a programmable delay between different microphones (beamforming feature). DFSDM features optional parallel data stream inputs from microcontrollers memory (through DMA/CPU transfers into DFSDM). DFSDM transceivers support several serial interface formats (to support various modulators). DFSDM digital filter modules perform digital processing according user selected filter parameters with up to 24-bit final ADC resolution. Table 8. DFSDM feature comparison 3.30 DFSDM instance External input serial channels External input parallel channels Digital filters DFSDM1 4 2 2 DFSDM2 8 4 4 Dynamic tuning of PDM delays for sound source localization A mechanism is implemented on top of the DFSDM allowing to dynamically tune PDM delays of each microphone without the need to add external delay lines. Audio application with several microphones require strong microphones placement constraints, as the distance between the microphones must be a multiple of v/F where v is the speed of the sound and F is the PCM sampling frequency. The designed mechanism removes this constraint by programming delays for each digital microphone with the granularity of the PDM clock rate prior to the conversion into PCM rate. The tuning delay is performed by a clock skipping technique. DocID029162 Rev 6 39/208 42 Functional overview STM32F413xG/H The strong benefits of such mechanism coupled with DFSDM are: * Possibility to place the digital microphones close to each other * No need for external delay lines * The delay tuning is done in hardware, preventing the use of MIPs crunching algorithms * Possibility to change the delay tuning on the fly * The low power consumption and CPU time released due to the DFSDM hardware PDM to PCM conversion The impacted audio application are beam forming and sound source localization 3.31 Secure digital input/output interface (SDIO) An SD/SDIO/MMC host interface is available, that supports MultiMediaCard System Specification Version 4.2 in three different databus modes: 1-bit (default), 4-bit and 8-bit. The interface allows data transfer at up to 50 MHz, and is compliant with the SD Memory Card Specification Version 2.0. The SDIO Card Specification Version 2.0 is also supported with two different databus modes: 1-bit (default) and 4-bit. The current version supports only one SD/SDIO/MMC4.2 card at any one time and a stack of MMC4.1 or previous. In addition to SD/SDIO/MMC/eMMC, this interface is fully compliant with the CE-ATA digital protocol Rev1.1. 3.32 Controller area network (bxCAN) The three CANs are compliant with the 2.0A and B (active) specifications with a bitrate up to 1 Mbit/s. They can receive and transmit standard frames with 11-bit identifiers as well as extended frames with 29-bit identifiers. Each CAN has three transmit mailboxes, two receive FIFOS with 3 stages and 28 shared scalable filter banks (all of them can be used even if one CAN is used). 256 bytes of SRAM are allocated for CAN1 and CAN2, and 512 bytes for CAN3. 3.33 Universal serial bus on-the-go full-speed (USB_OTG_FS) The devices embed a USB OTG full-speed device/host/OTG peripheral with integrated transceivers. The USB OTG FS peripheral is compliant with USB 2.0 and OTG 1.0 specifications. It features software-configurable endpoint setting and supports suspend/resume. The USB OTG full-speed controller requires a dedicated 48 MHz clock, which is generated by a PLL connected to the HSE oscillator. The Battery Charging Detection (BCD) can detect and identify the type of port it is connected to (standard USB or charger). The charging type can also be detected: Dedicated Charging Port (DCP), Charging Downstream Port (CDP) and Standard Downstream Port (SDP). Some packages provide a dedicated USB power rail allowing to supply the USB from a different voltage that the rest of the device. As an example, the device can be powered with the minimum specified supply voltage while the USB runs at the level defined by the standard. 40/208 DocID029162 Rev 6 STM32F413xG/H Functional overview The main USB OTG FS features are: 3.34 * Combined Rx and Tx FIFO size of 320 x 35 bits with dynamic FIFO sizing * Support of session request protocol (SRP) and host negotiation protocol (HNP) * 6 bidirectional endpoints * 12 host channels with periodic OUT support * HNP/SNP/IP inside (no need for any external resistor) * For OTG/Host modes, a power switch is needed when bus-powered devices are connected * Link Power Management (LPM) * Battery Charging Detection (BCD) supporting DCP, CDP and SDP Random number generator (RNG) All devices embed an RNG that delivers 32-bit random numbers generated by an integrated analog circuit. 3.35 General-purpose input/outputs (GPIOs) Each of the GPIO pins can be configured by software as output (push-pull or open-drain, with or without pull-up or pull-down), as input (floating, with or without pull-up or pull-down) or as peripheral alternate function. Most of the GPIO pins are shared with digital or analog alternate functions. All GPIOs are high-current-capable and have speed selection to better manage internal noise, power consumption and electromagnetic emission. The I/O configuration can be locked if needed by following a specific sequence in order to avoid spurious writing to the I/Os registers. Fast I/O handling allowing maximum I/O toggling up to 100 MHz. 3.36 Analog-to-digital converter (ADC) One 12-bit analog-to-digital converter is embedded and shares up to 16 external channels, performing conversions in the single-shot or scan mode. In scan mode, automatic conversion is performed on a selected group of analog inputs. The ADC can be served by the DMA controller. An analog watchdog feature allows very precise monitoring of the converted voltage of one, some or all selected channels. An interrupt is generated when the converted voltage is outside the programmed thresholds. To synchronize A/D conversion and timers, the ADCs could be triggered by any of TIM1, TIM2, TIM3, TIM4 or TIM5 timer. 3.37 Digital to analog converter (DAC) The two 12-bit buffered DAC channels can be used to convert two digital signals into two analog voltage signal outputs. This digital interface supports the following features: * Two DAC output channels DocID029162 Rev 6 41/208 42 Functional overview STM32F413xG/H * 8-bit or 12-bit output mode * Left or right data alignment in 12-bit mode * Synchronized update capability * Noise-wave generation * Triangular-wave generation * Dual DAC channel independent or simultaneous conversions * DMA capability for each channel * External triggers for conversion * Input voltage reference (VREF+) Eight DAC trigger inputs are used in the device. The DAC channels are triggered through the timer update outputs that are also connected to different DMA channels. 3.38 Temperature sensor The temperature sensor has to generate a voltage that varies linearly with temperature. The conversion range is between 1.7 V and 3.6 V. The temperature sensor is internally connected to the ADC_IN18 input channel which is used to convert the sensor output voltage into a digital value. Refer to the reference manual for additional information. As the offset of the temperature sensor varies from chip to chip due to process variation, the internal temperature sensor is mainly suitable for applications that detect temperature changes instead of absolute temperatures. If an accurate temperature reading is needed, then an external temperature sensor part should be used. 3.39 Serial wire JTAG debug port (SWJ-DP) The Arm SWJ-DP interface is embedded, and is a combined JTAG and serial wire debug port that enables either a serial wire debug or a JTAG probe to be connected to the target. Debug is performed using 2 pins only instead of 5 required by the JTAG (JTAG pins could be re-use as GPIO with alternate function): the JTAG TMS and TCK pins are shared with SWDIO and SWCLK, respectively, and a specific sequence on the TMS pin is used to switch between JTAG-DP and SW-DP. 3.40 Embedded Trace MacrocellTM The Arm Embedded Trace Macrocell provides a greater visibility of the instruction and data flow inside the CPU core by streaming compressed data at a very high rate from the STM32F413xG/H through a small number of ETM pins to an external hardware trace port analyzer (TPA) device. The TPA is connected to a host computer using any high-speed channel available. Real-time instruction and data flow activity can be recorded and then formatted for display on the host computer that runs the debugger software. TPA hardware is commercially available from common development tool vendors. The Embedded Trace Macrocell operates with third party debugger software tools. 42/208 DocID029162 Rev 6 STM32F413xG/H Pinouts and pin description 4 Pinouts and pin description 4.1 WLCSP81 pinout description Figure 11. STM32F413xG/H WLCSP81 pinout $ 9'' 3& 3$ 3' 3% 3% %227 966 9'' % 966 3$ 3$ 3& 3% 3% 3% 3'5B21 9%$7 & 9&$3B 3$ 3$ 3& 3' 3% 3& 3& $17,B7$03 3& 26&B,1 ' 3$ 3$ 3$ 3& 3& 3% 3& 966 3& 26&B287 ( 3& 3& 3% 3% 3$ 3$ 3& 9'' 3+ 26&B,1 ) 9''86% 3' 3% 3( 3$ %<3$66B 5(* 9''$ 3& 3+ 26&B287 * 3' 3% 3( 3( 3% 3$ 3$:.83 95() 1567 + 3% 9&$3B 3% 3( 3% 3& 966 3$ 966$95() - 9'' 966 3( 3( 3( 3& 3$ 9'' 3$ 06Y9 1. The above figure shows the package top view. DocID029162 Rev 6 43/208 73 Pinouts and pin description 4.2 STM32F413xG/H UFQFPN48 pinout description 966 3&26&B,1 3$ 3&26&B287 3% 3% 9'' 3% 3% 3% 3$ 3& 3$ 3% %227 966 9%$7 3% 9'' Figure 12. STM32F413xG/H UFQFPN48 pinout 3$ 3+26&B,1 3$ 3+26&B287 3$ 1567 3$ 966$95() 3$ 3% 3% 3$ 3% 3$ 3% 3$ 3$ 3$ 3$ 3% 3% 3% 3% 966 9'' 9&$3B 3$ 3$ 9''$95() 8)4)31 069 1. The above figure shows the package top view. 44/208 DocID029162 Rev 6 STM32F413xG/H LQFP64 pinout description 9%$7 3& 3&26&B,1 3&26&B287 3+26&B,1 3+26&B287 1567 3& 3& 3& 3& 966$95() 9''$95() 3$ 3$ 3$ 3% 3% %227 3% 3% 3% 3% 3% 3' 3& 3& 3& 3$ 3$ 966 9'' Figure 13. STM32F413xG/H LQFP64 pinout /4)3 9'' 966 3$ 3$ 3$ 3$ 3$ 3$ 3& 3& 3& 3& 3% 3% 3% 3% 3$ 966 9'' 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 3% 9&$3B 966 9'' 4.3 Pinouts and pin description 069 1. The above figure shows the package top view. DocID029162 Rev 6 45/208 73 Pinouts and pin description 4.4 STM32F413xG/H LQFP100 pinout description 6$$ 633 0% 0% 0" 0" "//4 0" 0" 0" 0" 0" 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0# 0# 0# 0! 0! Figure 14. STM32F413xG/H LQFP100 pinout ,1&0 6$$ 633 6#!0? 0! 0! 0! 0! 0! 0! 0# 0# 0# 0# 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0$ 0" 0" 0" 0" 0! 633 6$$ 0! 0! 0! 0! 0# 0# 0" 0" 0" 0% 0% 0% 0% 0% 0% 0% 0% 0% 0" 6#!0? 633 6$$ 0% 0% 0% 0% 0% 6"!4 0# 0# /3#?). 0# /3#?/54 633 6$$ 0( /3#?). 0( /3#?/54 .234 0# 0# 0# 0# 6$$ 633!62%& 62%& 6$$! 0! 0! 0! -36 1. The above figure shows the package top view. 46/208 DocID029162 Rev 6 STM32F413xG/H 4.5 Pinouts and pin description LQFP144 pinout description 9'' 3'5B21 3( 3( 3% 3% %227 3% 3% 3% 3% 3% 3* 9'' 966 3* 3* 3* 3* 3* 3* 3' 3' 9'' 966 3' 3' 3' 3' 3' 3' 3& 3& 3& 3$ 3$ Figure 15. STM32F413xG/H LQFP144 pinout 3( 3( 3( 3( 9'' 966 9&$3B 3$ 3( 3$ 9%$7 3$ 3& 3&26&B,1 3$ 3$ 3&26&B287 3$ 3) 3& 3) 3) 3& 3& 3) 3& 3) 9''86% 3) 966 966 3* 9'' 3* 3) 3* 3) 3* 3) 3* 3) 3* 3) 3* 3+26&B,1 3' 3+26&B287 3' 1567 9'' 3& 966 3& 3' 3& 3' 3& 3' 9'' 3' 966$95() 3' 95() 3' 9''$ 3% 3$ 3% 3$ 3% 3$ 3% 3$ 966 9'' 3$ 3$ 3$ 3$ 3& 3& 3% 3% 3% 3) 3) 966 9'' 3) 3) 3) 3* 3* 3( 3( 3( 966 9'' 3( 3( 3( 3( 3( 3( 3% 3% 9&$3B 9'' /4)3 06Y9 1. The above figure shows the package top view. DocID029162 Rev 6 47/208 73 Pinouts and pin description 4.6 STM32F413xG/H UFBGA100 pinout description Figure 16. STM32F413xG/H UFBGA100 pinout $ 3( 3( 3% % 3( 3( & 3& 3' 3% 3% 3$ 3$ 3$ 3$ 3' 3' 3' 3' 3& 3& 3$ 3' 3' 3& 9&$3 B 3$ 966 3$ 3$ 3& %<3$66 B5(* 3& 3& 3& 966 966 966 3+ 26&B 287 9'' 9'' 9'' + 3& 1567 3'5 B21 3' 3' 3' - 966$ 3& 3& 3' 3' 3' . 95() 3& 3$ 3$ 3& / 95() 3$ 3$ 3$ 3& 3% 0 9''$ 3$ 3$ 3$ 3% 3% ' ( ) * %227 3' 3% 3% 3% 3( 3( 9'' 3% 3& 26& B,1 3( 3& 26& B287 9%$7 3+ 26&B ,1 3' 3% 3% 3% 3% 3( 3( 3( 3% 9&$3 B 3% 3( 3( 3( 3( 3( 3( 06Y9 1. The above figure shows the package top view. 48/208 DocID029162 Rev 6 STM32F413xG/H 4.7 Pinouts and pin description UFBGA144 pinout description Figure 17. STM32F413xG/H UFBGA144 pinout $ 3& 3( 3( 3( 3( 3% 3% 3' 3' 3$ 3$ 3$ % 3& 26&B,1 3( 3( 3( 3% 3% 3* 3* 3' 3& 3& 3$ & 3& 26&B287 9%$7 3) 3) 3% 3% 3* 3* 3' 3& 9''86% 3$ ' 3+ 26&B,1 966 9'' 3) %227 3% 3* 3* 3' 3' 3$ 3$ ( 3+ 26&B287 3) 3) 3) 3'5B21 966 966 3* 3' 3' 3& 3$ ) 1567 3) 3) 9'' 9'' 9'' 9'' 9'' 9'' 9'' 3& 3& * 3) 3) 3) 966 9'' 9'' 9'' 966 9&$3B 966 3* 3& + 3& 3& 3& 3& %<3$66B 5(* 966 9&$3B 3( 3' 3* 3* 3* - 966$ 3$ 3$ 3& 3% 3* 3( 3( 3' 3* 3* 3* . 95() 3$ 3$ 3& 3) 3* 3( 3( 3' 3' 3' 3' / 95() 3$ 3$ 3% 3) 3) 3( 3( 3' 3' 3% 3% 0 9''$ 3$ 3$ 3% 3) 3) 3( 3( 3% 3% 3% 3% 06Y9 1. The above figure shows the package top view. 4.8 Pins definition Table 9. Legend/abbreviations used in the pinout table Name Pin name Pin type I/O structure Notes Abbreviation Definition Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name S Supply pin I Input only pin I/O Input/ output pin FT 5 V tolerant I/O FTf 5 V tolerant I/O, I2C FM+ option TC Standard 3.3 V I/O TTa 3.3 V tolerant I/O directly connected to DAC B Dedicated BOOT0 pin NRST Bidirectional reset pin with embedded weak pull-up resistor Unless otherwise specified by a note, all I/Os are set as floating inputs during and after reset DocID029162 Rev 6 49/208 73 Pinouts and pin description STM32F413xG/H Table 9. Legend/abbreviations used in the pinout table (continued) Name Abbreviation Definition Alternate functions Functions selected through GPIOx_AFR registers Additional functions Functions directly selected/enabled through peripheral registers Table 10. STM32F413xG/H pin definition LQFP144 UFBGA144 UFBGA100 LQFP100 WLCSP81 LQFP64 UFQFPN48 Pin Number Pin name (function after reset)(1) Pin I/O Notes type structure Alternate functions Additional functions - - - NC 1 B2 A3 1 PE2 I/O FT (2) TRACECLK, SPI4_SCK/I2S4_CK, SPI5_SCK/I2S5_CK, SAI1_MCLK_A, QUADSPI_BK1_IO2, UART10_RX, FSMC_A23, EVENTOUT - - NC 2 A1 A2 2 PE3 I/O FT (2) TRACED0, SAI1_SD_B, UART10_TX, FSMC_A19, EVENTOUT - (2)(3) TRACED1, SPI4_NSS/I2S4_WS, SPI5_NSS/I2S5_WS, SAI1_SD_A, DFSDM1_DATIN3, FSMC_A20, EVENTOUT - (2) TRACED2, TIM9_CH1, SPI4_MISO, SPI5_MISO, SAI1_SCK_A, DFSDM1_CKIN3, FSMC_A21, EVENTOUT - - - - - - NC NC 3 4 B1 C2 B2 B3 3 4 PE4 I/O PE5 I/O FT FT - - NC 5 D2 B4 5 PE6 I/O FT (2)(3) TRACED3, TIM9_CH2, SPI4_MOSI/I2S4_SD, SPI5_MOSI/I2S5_SD, SAI1_FS_A, FSMC_A22, EVENTOUT 1 1 B9 6 E2 C2 6 VBAT S - - - VBAT 2 2 C8 7 C1 A1 7 PC13ANTI_TAMP I/O FT (4)(5) EVENTOUT TAMP_1 3 3 C9 8 D1 B1 8 PC14OSC32_IN I/O FT (4)(5)(6) EVENTOUT OSC32_IN 50/208 DocID029162 Rev 6 STM32F413xG/H Pinouts and pin description Table 10. STM32F413xG/H pin definition (continued) Pin Number UFQFPN48 LQFP64 WLCSP81 LQFP100 UFBGA100 UFBGA144 LQFP144 Pin name (function after reset)(1) 4 4 D9 9 E1 C1 9 PC15OSC32_OUT I/O FT (4)(6) EVENTOUT OSC32_OUT - - - - - C3 10 PF0 I/O FT - I2C2_SDA, FSMC_A0, EVENTOUT - - - - - - C4 11 PF1 I/O FT - I2C2_SCL, FSMC_A1, EVENTOUT - - - - - - D4 12 PF2 I/O FT - I2C2_SMBA, FSMC_A2, EVENTOUT - - - - - - E2 13 PF3 I/O FT - TIM5_CH1, FSMC_A3, EVENTOUT - - - - - - E3 14 PF4 I/O FT - TIM5_CH2, FSMC_A4, EVENTOUT - - - - - - E4 15 PF5 I/O FT - TIM5_CH3, FSMC_A5, EVENTOUT - - - D8 10 F2 D2 16 VSS S - - - - - - E8 11 G2 D3 17 VDD S - - - - - TRACED0, TIM10_CH1, SAI1_SD_B, UART7_Rx, QUADSPI_BK1_IO3, EVENTOUT - - TRACED1, TIM11_CH1, SAI1_MCLK_B, UART7_Tx, QUADSPI_BK1_IO2, EVENTOUT - - SAI1_SCK_B, UART8_RX, TIM13_CH1, QUADSPI_BK1_IO0, EVENTOUT - - - - - - - - - - - - - - - - - F3 F2 G3 18 19 20 PF6 Pin I/O Notes type structure I/O PF7 I/O PF8 I/O FT FT FT Alternate functions Additional functions - - - - - G2 21 PF9 I/O FT - SAI1_FS_B, UART8_TX, TIM14_CH1, QUADSPI_BK1_IO1, EVENTOUT - - - - - G1 22 PF10 I/O FT - TIM1_ETR, TIM5_CH4, EVENTOUT - 5 5 E9 12 F1 D1 23 PH0 - OSC_IN I/O FT (6) EVENTOUT OSC_IN 6 6 F9 13 G1 E1 24 PH1 OSC_OUT I/O FT (6) EVENTOUT OSC_OUT DocID029162 Rev 6 51/208 73 Pinouts and pin description STM32F413xG/H Table 10. STM32F413xG/H pin definition (continued) UFQFPN48 LQFP64 WLCSP81 LQFP100 UFBGA100 UFBGA144 LQFP144 Pin Number 7 7 G9 14 H2 F1 25 - - - 8 9 10 F8 C7 D7 15 16 17 H1 J2 J3 H1 H2 H3 26 27 28 Pin name (function after reset)(1) NRST PC0 PC1 PC2 Pin I/O Notes type structure I/O I/O I/O I/O RST FT FT FT Alternate functions Additional functions - - NRST - LPTIM1_IN1, DFSDM2_CKIN4, SAI1_MCLK_B, EVENTOUT ADC1_IN10, WKUP2 - LPTIM1_OUT, DFSDM2_DATIN4, SAI1_SD_B, EVENTOUT ADC1_IN11, WKUP3 - LPTIM1_IN2, DFSDM2_DATIN7, SPI2_MISO, I2S2ext_SD, SAI1_SCK_B, DFSDM1_CKOUT, FSMC_NWE, EVENTOUT ADC1_IN12 ADC1_IN13 - 11 E7 18 K2 H4 29 PC3 I/O FT - LPTIM1_ETR, DFSDM2_CKIN7, SPI2_MOSI/I2S2_SD, SAI1_FS_B, FSMC_A0, EVENTOUT - - - 19 - - 30 VDD S - - - - 8 12 H9 20 J1 J1 31 VSSA S - - - - - - - - K1 K1 - VREF- S - - - - - - G8 21 L1 L1 32 VREF+ S - - - - 9 13 F7 22 M1 M1 33 VDDA S - - - - 10 14 G7 23 L2 J2 34 PA0 I/O FT - TIM2_CH1/TIM2_ETR, TIM5_CH1, TIM8_ETR, USART2_CTS, UART4_TX, EVENTOUT ADC1_IN0, WKUP1 - TIM2_CH2, TIM5_CH2, SPI4_MOSI/I2S4_SD, USART2_RTS, UART4_RX, QUADSPI_BK1_IO3, EVENTOUT ADC1_IN1 - TIM2_CH3, TIM5_CH3, TIM9_CH1, I2S2_CKIN, USART2_TX, FSMC_D4/FSMC_DA4, EVENTOUT ADC1_IN2 11 12 15 16 52/208 H8 J9 24 25 M2 K3 K2 L2 35 36 PA1 PA2 I/O I/O FT FT DocID029162 Rev 6 STM32F413xG/H Pinouts and pin description Table 10. STM32F413xG/H pin definition (continued) LQFP144 UFBGA144 UFBGA100 LQFP100 WLCSP81 LQFP64 UFQFPN48 Pin Number Pin name (function after reset)(1) Pin I/O Notes type structure Alternate functions Additional functions ADC1_IN3 13 17 E6 26 L3 M2 37 PA3 I/O FT - TIM2_CH4, TIM5_CH4, TIM9_CH2, I2S2_MCK, USART2_RX, SAI1_SD_B, FSMC_D5/FSMC_DA5, EVENTOUT - 18 H7 27 - - 38 VSS S - - - - - - F6 - E3 H5 - BYPASS_ REG I FT - - - - 19 J8 28 - F4 39 VDD S - - - - - SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART2_CK, DFSDM1_DATIN1, FSMC_D6/FSMC_DA6, EVENTOUT ADC1_IN4, DAC_OUT1 - TIM2_CH1/TIM2_ETR, TIM8_CH1N, SPI1_SCK/I2S1_CK, DFSDM1_CKIN1, FSMC_D7/FSMC_DA7, EVENTOUT ADC1_IN5, DAC_OUT2 - TIM1_BKIN, TIM3_CH1, TIM8_BKIN, SPI1_MISO, I2S2_MCK, DFSDM2_CKIN1, TIM13_CH1, QUADSPI_BK2_IO0, SDIO_CMD, EVENTOUT ADC1_IN6 - TIM1_CH1N, TIM3_CH2, TIM8_CH1N, SPI1_MOSI/I2S1_SD, DFSDM2_DATIN1, TIM14_CH1, QUADSPI_BK2_IO1, EVENTOUT ADC1_IN7 - DFSDM2_CKIN2, I2S1_MCK, QUADSPI_BK2_IO2, FSMC_NE4, EVENTOUT ADC1_IN14 14 15 16 17 - 20 21 22 23 24 E5 G6 F5 J7 H6 29 30 31 32 33 M3 K4 L4 M4 K5 J3 K3 L3 M3 J4 40 41 42 43 44 PA4 PA5 PA6 PA7 PC4 I/O I/O I/O I/O I/O TTa TTa FT FT FT DocID029162 Rev 6 53/208 73 Pinouts and pin description STM32F413xG/H Table 10. STM32F413xG/H pin definition (continued) - 18 19 25 26 27 J6 E4 G5 34 35 36 L5 M5 M6 K4 L4 M4 LQFP144 UFBGA144 UFBGA100 LQFP100 WLCSP81 LQFP64 UFQFPN48 Pin Number 45 46 47 Pin name (function after reset)(1) PC5 PB0 PB1 Pin I/O Notes type structure I/O I/O I/O FT FT FT Alternate functions Additional functions - DFSDM2_DATIN2, I2CFMP1_SMBA, USART3_RX, QUADSPI_BK2_IO3, FSMC_NOE, EVENTOUT ADC1_IN15 - TIM1_CH2N, TIM3_CH3, TIM8_CH2N, SPI5_SCK/I2S5_CK, EVENTOUT ADC1_IN8 - TIM1_CH3N, TIM3_CH4, TIM8_CH3N, SPI5_NSS/I2S5_WS, DFSDM1_DATIN0, QUADSPI_CLK, EVENTOUT ADC1_IN9 BOOT1 20 28 H5 37 L6 J5 48 PB2 I/O FT - LPTIM1_OUT, DFSDM1_CKIN0, QUADSPI_CLK, EVENTOUT - - - - - M5 49 PF11 I/O FT - TIM8_ETR, EVENTOUT - - - - - - L5 50 PF12 I/O FT - TIM8_BKIN, FSMC_A6, EVENTOUT - - - - - - G4 51 VSS S - - - - - - - - - G5 52 VDD S - - - - - - - - - K5 53 PF13 I/O FT - I2CFMP1_SMBA, FSMC_A7, EVENTOUT - - - - - - M6 54 PF14 I/O FTf - I2CFMP1_SCL, FSMC_A8, EVENTOUT - - - - - - L6 55 PF15 I/O FTf - I2CFMP1_SDA, FSMC_A9, EVENTOUT - - - - - - K6 56 PG0 I/O FT - CAN1_RX, UART9_RX, FSMC_A10, EVENTOUT - - - - - - J6 57 PG1 I/O FT - CAN1_TX, UART9_TX, FSMC_A11, EVENTOUT - 54/208 DocID029162 Rev 6 STM32F413xG/H Pinouts and pin description Table 10. STM32F413xG/H pin definition (continued) - - - - NC NC 38 39 M7 L7 M7 L7 LQFP144 UFBGA144 UFBGA100 LQFP100 WLCSP81 LQFP64 UFQFPN48 Pin Number 58 59 Pin name (function after reset)(1) PE7 PE8 Pin I/O Notes type structure I/O I/O FT FT Alternate functions Additional functions (2) TIM1_ETR, DFSDM1_DATIN2, UART7_Rx, QUADSPI_BK2_IO0, FSMC_D4/FSMC_DA4, EVENTOUT - (2) TIM1_CH1N, DFSDM1_CKIN2, UART7_Tx, QUADSPI_BK2_IO1, FSMC_D5/FSMC_DA5, EVENTOUT - - - - J5 40 M8 K7 60 PE9 I/O FT - TIM1_CH1, DFSDM1_CKOUT, QUADSPI_BK2_IO2, FSMC_D6/FSMC_DA6, EVENTOUT - - - - - H6 61 VSS S - - - - - - - - - G6 62 VDD S - - - - - TIM1_CH2N, DFSDM2_DATIN0, QUADSPI_BK2_IO3, FSMC_D7/FSMC_DA7, EVENTOUT - - TIM1_CH2, DFSDM2_CKIN0, SPI4_NSS/I2S4_WS, SPI5_NSS/I2S5_WS, FSMC_D8/FSMC_DA8, EVENTOUT - - TIM1_CH3N, DFSDM2_DATIN7, SPI4_SCK/I2S4_CK, SPI5_SCK/I2S5_CK, FSMC_D9/FSMC_DA9, EVENTOUT - - TIM1_CH3, DFSDM2_CKIN7, SPI4_MISO, SPI5_MISO, FSMC_D10/FSMC_DA1 0, EVENTOUT - - - - - - - - - G4 H4 J4 F4 41 42 43 44 L8 M9 L9 M10 J7 H8 J8 K8 63 64 65 66 PE10 PE11 PE12 PE13 I/O I/O I/O I/O FT FT FT FT DocID029162 Rev 6 55/208 73 Pinouts and pin description STM32F413xG/H Table 10. STM32F413xG/H pin definition (continued) - - 21 - - 29 G3 J3 H3 45 46 47 M11 M12 L10 L8 M8 M9 LQFP144 UFBGA144 UFBGA100 LQFP100 WLCSP81 LQFP64 UFQFPN48 Pin Number 67 68 69 Pin name (function after reset)(1) PE14 Pin I/O Notes type structure I/O PE15 I/O PB10 I/O FT FT FTf Alternate functions Additional functions - TIM1_CH4, SPI4_MOSI/I2S4_SD, SPI5_MOSI/I2S5_SD, DFSDM2_DATIN1, FSMC_D11/FSMC_DA1 1, EVENTOUT - - TIM1_BKIN, DFSDM2_CKIN1, FSMC_D12/FSMC_DA1 2, EVENTOUT - - TIM2_CH3, I2C2_SCL, SPI2_SCK/I2S2_CK, I2S3_MCK, USART3_TX, I2CFMP1_SCL, DFSDM2_CKOUT, SDIO_D7, EVENTOUT - - - - NC - K9 M10 70 PB11 I/O FT - TIM2_CH4, I2C2_SDA, I2S2_CKIN, USART3_RX, EVENTOUT 22 30 H2 48 L11 H7 71 VCAP_1 S - - - - 23 31 J2 49 F12 - - VSS S - - - - 24 32 J1 50 G12 G7 72 VDD S - - - - - TIM1_BKIN, I2C2_SMBA, SPI2_NSS/I2S2_WS, SPI4_NSS/I2S4_WS, SPI3_SCK/I2S3_CK, USART3_CK, CAN2_RX, DFSDM1_DATIN1, UART5_RX, FSMC_D13/FSMC_DA1 3, EVENTOUT - - TIM1_CH1N, I2CFMP1_SMBA, SPI2_SCK/I2S2_CK, SPI4_SCK/I2S4_CK, USART3_CTS, CAN2_TX, DFSDM1_CKIN1, UART5_TX, EVENTOUT - 25 26 33 34 56/208 F3 G2 51 52 L12 K12 M11 M12 73 74 PB12 PB13 I/O I/O FT FT DocID029162 Rev 6 STM32F413xG/H Pinouts and pin description Table 10. STM32F413xG/H pin definition (continued) 27 35 E3 53 K11 L11 LQFP144 UFBGA144 UFBGA100 LQFP100 WLCSP81 LQFP64 UFQFPN48 Pin Number 75 Pin name (function after reset)(1) PB14 Pin I/O Notes type structure I/O FTf Alternate functions Additional functions - TIM1_CH2N, TIM8_CH2N, I2CFMP1_SDA, SPI2_MISO, I2S2ext_SD, USART3_RTS, DFSDM1_DATIN2, TIM12_CH1, FSMC_D0/FSMC_DA0, SDIO_D6, EVENTOUT - - 28 36 H1 54 K10 L12 76 PB15 I/O FTf - RTC_REFIN, TIM1_CH3N, TIM8_CH3N, I2CFMP1_SCL, SPI2_MOSI/I2S2_SD, DFSDM1_CKIN2, TIM12_CH2, SDIO_CK, EVENTOUT - - NC 55 - L9 77 PD8 I/O FT (2) USART3_TX, FSMC_D13/FSMC_DA1 3, EVENTOUT - - - F2 56 K8 K9 78 PD9 I/O FT - USART3_RX, FSMC_D14/FSMC_DA1 4, EVENTOUT - FT (7) USART3_CK, UART4_TX, FSMC_D15/FSMC_DA1 5, EVENTOUT - (2) DFSDM2_DATIN2, I2CFMP1_SMBA, USART3_CTS, QUADSPI_BK1_IO0, FSMC_A16, EVENTOUT - (2) TIM4_CH1, DFSDM2_CKIN2, I2CFMP1_SCL, USART3_RTS, QUADSPI_BK1_IO1, FSMC_A17, EVENTOUT - - - - - - - - - G1 NC NC 57 58 59 J12 J11 J10 J9 H9 L10 79 80 81 PD10 PD11 PD12 I/O I/O I/O FT FTf - - NC 60 H12 K10 82 PD13 I/O FTf (2) TIM4_CH2, I2CFMP1_SDA, QUADSPI_BK1_IO3, FSMC_A18, EVENTOUT - - - - - G8 83 VSS S - - - DocID029162 Rev 6 57/208 73 Pinouts and pin description STM32F413xG/H Table 10. STM32F413xG/H pin definition (continued) UFQFPN48 LQFP64 WLCSP81 LQFP100 UFBGA100 UFBGA144 LQFP144 Pin Number - - - - - F8 84 - - NC 61 H11 K11 85 Pin name (function after reset)(1) VDD Pin I/O Notes type structure S PD14 I/O - FTf Alternate functions Additional functions - - - (2) TIM4_CH3, I2CFMP1_SCL, DFSDM2_CKIN0, UART9_RX, FSMC_D0/FSMC_DA0, EVENTOUT - - - - NC 62 H10 K12 86 PD15 I/O FTf (2) TIM4_CH4, I2CFMP1_SDA, DFSDM2_DATIN0, UART9_TX, FSMC_D1/FSMC_DA1, EVENTOUT - - - - - J12 87 PG2 I/O FT - FSMC_A12, EVENTOUT - - - - - - J11 88 PG3 I/O FT - FSMC_A13, EVENTOUT - - - - - - J10 89 PG4 I/O FT - FSMC_A14, EVENTOUT - - - - - - H12 90 PG5 I/O FT - FSMC_A15, EVENTOUT - - - - - - H11 91 PG6 I/O FT - QUADSPI_BK1_NCS, EVENTOUT - - - - - - H10 92 PG7 I/O FT - USART6_CK, EVENTOUT - - - - - - G11 93 PG8 I/O FT - USART6_RTS, EVENTOUT - - - - - - - 94 VSS S - - - - - - - - - F10 - VDD S - - - - - - F1 - - C11 95 VDDUSB S - - - - - TIM3_CH1, TIM8_CH1, I2CFMP1_SCL, I2S2_MCK, DFSDM1_CKIN3, DFSDM2_DATIN6, USART6_TX, FSMC_D1/FSMC_DA1, SDIO_D6, EVENTOUT - - 37 58/208 D5 63 E12 G12 96 PC6 I/O FTf DocID029162 Rev 6 STM32F413xG/H Pinouts and pin description Table 10. STM32F413xG/H pin definition (continued) - - - 29 30 31 38 39 40 41 42 43 D4 E1 E2 D3 D2 D1 64 65 66 67 68 69 E11 E10 D12 D11 D10 C12 F12 F11 E11 E12 D12 D11 LQFP144 UFBGA144 UFBGA100 LQFP100 WLCSP81 LQFP64 UFQFPN48 Pin Number 97 98 99 100 101 102 Pin name (function after reset)(1) PC7 PC8 PC9 PA8 PA9 PA10 Pin I/O Notes type structure I/O I/O I/O I/O I/O I/O FTf FT FT FT FT FT DocID029162 Rev 6 Alternate functions Additional functions - TIM3_CH2, TIM8_CH2, I2CFMP1_SDA, SPI2_SCK/I2S2_CK, I2S3_MCK, DFSDM2_CKIN6, USART6_RX, DFSDM1_DATIN3, SDIO_D7, EVENTOUT - - TIM3_CH3, TIM8_CH3, DFSDM2_CKIN3, USART6_CK, QUADSPI_BK1_IO2, SDIO_D0, EVENTOUT - - MCO_2, TIM3_CH4, TIM8_CH4, I2C3_SDA, I2S2_CKIN, DFSDM2_DATIN3, QUADSPI_BK1_IO0, SDIO_D1, EVENTOUT - - MCO_1, TIM1_CH1, I2C3_SCL, DFSDM1_CKOUT, USART1_CK, UART7_RX, USB_FS_SOF, CAN3_RX, SDIO_D1, EVENTOUT - - TIM1_CH2, DFSDM2_CKIN3, I2C3_SMBA, SPI2_SCK/I2S2_CK, USART1_TX, USB_FS_VBUS, SDIO_D2, EVENTOUT - - TIM1_CH3, DFSDM2_DATIN3, SPI2_MOSI/I2S2_SD, SPI5_MOSI/I2S5_SD, USART1_RX, USB_FS_ID, EVENTOUT - 59/208 73 Pinouts and pin description STM32F413xG/H Table 10. STM32F413xG/H pin definition (continued) 32 44 C3 70 B12 C12 LQFP144 UFBGA144 UFBGA100 LQFP100 WLCSP81 LQFP64 UFQFPN48 Pin Number 103 Pin name (function after reset)(1) PA11 Pin I/O Notes type structure I/O FT Alternate functions Additional functions - TIM1_CH4, DFSDM2_CKIN5, SPI2_NSS/I2S2_WS, SPI4_MISO, USART1_CTS, USART6_TX, CAN1_RX, USB_FS_DM, UART4_RX, EVENTOUT - - 33 45 B3 71 A12 B12 104 PA12 I/O FT - TIM1_ETR, DFSDM2_DATIN5, SPI2_MISO, SPI5_MISO, USART1_RTS, USART6_RX, CAN1_TX, USB_FS_DP, UART4_TX, EVENTOUT 34 46 C2 72 A11 A12 105 PA13 I/O FT - JTMS-SWDIO, EVENTOUT - - - C1 73 C11 G9 106 VCAP_2 S - - - - 35 47 B1 74 F11 G10 107 VSS S - - - - - 48 - 75 G11 - - VDD S - - - - 36 - A1 - - F9 108 VDD S - - - - 37 49 B2 76 A10 A11 109 PA14 I/O FT - JTCK-SWCLK, EVENTOUT - - JTDI, TIM2_CH1/TIM2_ETR, SPI1_NSS/I2S1_WS, SPI3_NSS/I2S3_WS, USART1_TX, UART7_TX, SAI1_MCLK_A, CAN3_TX, EVENTOUT - - DFSDM2_CKIN5, SPI3_SCK/I2S3_CK, USART3_TX, QUADSPI_BK1_IO1, SDIO_D2, EVENTOUT - 38 - 50 51 60/208 A3 A2 77 78 A9 B11 A10 B11 110 111 PA15 PC10 I/O I/O FT FT DocID029162 Rev 6 STM32F413xG/H Pinouts and pin description Table 10. STM32F413xG/H pin definition (continued) - - - - - - - 52 53 - - 54 - - C4 B4 A4 NC C5 NC NC 79 80 81 82 83 84 85 C10 B10 C9 B9 C8 B8 B7 B10 C10 E10 D10 E9 D9 C9 LQFP144 UFBGA144 UFBGA100 LQFP100 WLCSP81 LQFP64 UFQFPN48 Pin Number 112 113 114 115 116 117 118 Pin name (function after reset)(1) PC11 PC12 PD0 PD1 PD2 PD3 PD4 Pin I/O Notes type structure I/O I/O I/O I/O I/O I/O I/O Alternate functions Additional functions - DFSDM2_DATIN5, I2S3ext_SD, SPI3_MISO, USART3_RX, UART4_RX, QUADSPI_BK2_NCS, FSMC_D2/FSMC_DA2, SDIO_D3, EVENTOUT - - SPI3_MOSI/I2S3_SD, USART3_CK, UART5_TX, FSMC_D3/FSMC_DA3, SDIO_CK, EVENTOUT - FT - DFSDM2_CKIN6, CAN1_RX, UART4_RX, FSMC_D2/FSMC_DA2, EVENTOUT - FT (2) DFSDM2_DATIN6, CAN1_TX, UART4_TX, FSMC_D3/FSMC_DA3, EVENTOUT - - TIM3_ETR, DFSDM2_CKOUT, UART5_RX, FSMC_NWE, SDIO_CMD, EVENTOUT - FT (2) TRACED1, SPI2_SCK/I2S2_CK, DFSDM1_DATIN0, USART2_CTS, QUADSPI_CLK, FSMC_CLK, EVENTOUT - FT (2) DFSDM1_CKIN0, USART2_RTS, FSMC_NOE, EVENTOUT - DFSDM2_CKOUT, USART2_TX, FSMC_NWE, EVENTOUT - FT FT FT - - NC 86 A6 B9 119 PD5 I/O FT (2) - - - - - E7 120 VSS S - - - - - - - - - F7 121 VDD S - - - - DocID029162 Rev 6 61/208 73 Pinouts and pin description STM32F413xG/H Table 10. STM32F413xG/H pin definition (continued) - - - - NC NC 87 88 B6 A5 A8 A9 LQFP144 UFBGA144 UFBGA100 LQFP100 WLCSP81 LQFP64 UFQFPN48 Pin Number 122 123 Pin name (function after reset)(1) PD6 PD7 Pin I/O Notes type structure I/O I/O Alternate functions Additional functions - FT (2) SPI3_MOSI/I2S3_SD, DFSDM1_DATIN1, USART2_RX, FSMC_NWAIT, EVENTOUT FT (2) DFSDM1_CKIN1, USART2_CK, FSMC_NE1, EVENTOUT - - - - - - - E8 124 PG9 I/O FT - USART6_RX, QUADSPI_BK2_IO2, FSMC_NE2, EVENTOUT - - - - - D8 125 PG10 I/O FT - FSMC_NE3, EVENTOUT - - - - - - C8 126 PG11 I/O FT - CAN2_RX, UART10_RX, EVENTOUT - - USART6_RTS, CAN2_TX, UART10_TX, FSMC_NE4, EVENTOUT - - TRACED2, USART6_CTS, FSMC_A24, EVENTOUT - - - - - - - - - - - - B8 D7 127 128 PG12 PG13 I/O I/O FT FT - - - - - C7 129 PG14 I/O FT - TRACED3, USART6_TX, QUADSPI_BK2_IO3, FSMC_A25, EVENTOUT - - - - - - 130 VSS S - - - - - - - - - F6 131 VDD S - - - - - - - - - B7 132 PG15 I/O FT - USART6_CTS, EVENTOUT - - JTDO-SWO, TIM2_CH2, I2CFMP1_SDA, SPI1_SCK/I2S1_CK, SPI3_SCK/I2S3_CK, USART1_RX, UART7_RX, I2C2_SDA, SAI1_SD_A, CAN3_RX, EVENTOUT - 39 55 62/208 A5 89 A8 A7 133 PB3 I/O FTf DocID029162 Rev 6 STM32F413xG/H Pinouts and pin description Table 10. STM32F413xG/H pin definition (continued) 40 41 42 56 57 58 B5 A6 B6 90 91 92 A7 C5 B5 A6 B6 C6 LQFP144 UFBGA144 UFBGA100 LQFP100 WLCSP81 LQFP64 UFQFPN48 Pin Number 134 135 136 Pin name (function after reset)(1) PB4 PB5 PB6 Pin I/O Notes type structure I/O I/O I/O FT FT FT Alternate functions Additional functions - JTRST, TIM3_CH1, SPI1_MISO, SPI3_MISO, I2S3ext_SD, UART7_TX, I2C3_SDA, SAI1_SCK_A, CAN3_TX, SDIO_D0, EVENTOUT - - LPTIM1_IN1, TIM3_CH2, I2C1_SMBA, SPI1_MOSI/I2S1_SD, SPI3_MOSI/I2S3_SD, CAN2_RX, SAI1_FS_A, UART5_RX, SDIO_D3, EVENTOUT - - LPTIM1_ETR, TIM4_CH1, I2C1_SCL, DFSDM2_CKIN7, USART1_TX, CAN2_TX, QUADSPI_BK1_NCS, UART5_TX, SDIO_D0, EVENTOUT - - 43 59 B7 93 B4 D6 137 PB7 I/O FT - LPTIM1_IN2, TIM4_CH2, I2C1_SDA, DFSDM2_DATIN7, USART1_RX, FSMC_NL, EVENTOUT 44 60 A7 94 A4 D5 138 BOOT0 I B - - VPP - LPTIM1_OUT, TIM4_CH3, TIM10_CH1, I2C1_SCL, SPI5_MOSI/I2S5_SD, DFSDM2_CKIN1, CAN1_RX, I2C3_SDA, UART5_RX, SDIO_D4, EVENTOUT - - TIM4_CH4, TIM11_CH1, I2C1_SDA, SPI2_NSS/I2S2_WS, DFSDM2_DATIN1, CAN1_TX, I2C2_SDA, UART5_TX, SDIO_D5, EVENTOUT - 45 46 61 62 C6 D6 95 96 A3 B3 C5 B5 139 140 PB8 PB9 I/O I/O FT FT DocID029162 Rev 6 63/208 73 Pinouts and pin description STM32F413xG/H Table 10. STM32F413xG/H pin definition (continued) - - NC 97 C3 A5 LQFP144 UFBGA144 UFBGA100 LQFP100 WLCSP81 LQFP64 UFQFPN48 Pin Number Pin name (function after reset)(1) 141 PE0 Pin I/O Notes type structure I/O Alternate functions Additional functions - FT (2) TIM4_ETR, DFSDM2_CKIN4, UART8_Rx, FSMC_NBL0, EVENTOUT DFSDM2_DATIN4, UART8_Tx, FSMC_NBL1, EVENTOUT - - - NC 98 A2 A4 142 PE1 I/O FT (2) 47 63 A8 99 D3 E6 - VSS S - - - - - - B8 - H3 E5 143 PDR_ON I FT - - - 48 64 A9 100 C4 F5 144 VDD S - - - - 1. Function availability depends on the chosen device. 2. NC (Not Connected) pins are not bonded. They must be configured by software to output push-pull and forced to 0 in the output data register to avoid extra power consumption in low power mode. 3. Compatibility issue on alternate function pin PE4 SAI1_SD_A and PE6 SAI1_FS_A: Pins have been swapped versus other MCUs supporting those alternate SAI functions on those pins 4. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output mode is limited: - The speed should not exceed 2 MHz with a maximum load of 30 pF. - These I/Os must not be used as a current source (e.g. to drive an LED). 5. Main function after the first backup domain power-up. Later on, it depends on the contents of the RTC registers even after reset (because these registers are not reset by the main reset). For details on how to manage these I/Os, refer to the RTC register description sections in the STM32F413/423 reference manual. 6. FT = 5 V tolerant except when in analog mode or oscillator mode (for PC14, PC15, PH0 and PH1). 7. Incompatibility issue on alternate function with other MCUs supporting UART4: UART4_TX wrongly mapped to PD10 instead of PC10 Table 11. FSMC pin definition FSMC Pins 64/208 64 pins 81 pins 100 pins 144 pins LCD/NOR/ PSRAM/SRAM NOR/PSRAM PE2 A23 A23 - - Yes Yes PE3 A19 A19 - - Yes Yes PE4 A20 A20 - - Yes Yes PE5 A21 A21 - - Yes Yes PE6 A22 A22 - - Yes Yes PF0 A0 - - - - Yes Mux DocID029162 Rev 6 STM32F413xG/H Pinouts and pin description Table 11. FSMC pin definition (continued) FSMC Pins 64 pins 81 pins 100 pins 144 pins LCD/NOR/ PSRAM/SRAM NOR/PSRAM PF1 A1 - - - - Yes PF2 A2 - - - - Yes PF3 A3 - - - - Yes PF4 A4 - - - - Yes PF5 A5 - - - - Yes PC2 NWE NWE Yes Yes Yes Yes PC3 A0 - Yes Yes Yes Yes PA2 D4 DA4 Yes Yes Yes Yes PA3 D5 DA5 Yes Yes Yes Yes PA4 D6 DA6 Yes Yes Yes Yes PA5 D7 DA7 Yes Yes Yes Yes PC4 NE4 NE4 Yes Yes Yes Yes PC5 NOE NOE Yes Yes Yes Yes PF12 A6 - - - - Yes PF13 A7 - - - - Yes PF14 A8 - - - - Yes PF15 A9 - - - - Yes PG0 A10 - - - - Yes PG1 A11 - - - - Yes PE7 D4 DA4 - - Yes Yes PE8 D5 DA5 - - Yes Yes PE9 D6 DA6 - Yes Yes Yes PE10 D7 DA7 - Yes Yes Yes PE11 D8 DA8 - Yes Yes Yes PE12 D9 DA9 - Yes Yes Yes PE13 D10 DA10 - Yes Yes Yes PE14 D11 DA11 - Yes Yes Yes PE15 D12 DA12 - Yes Yes Yes PB12 D13 DA13 Yes Yes Yes Yes PB14 D0 DA0 Yes Yes Yes Yes PD8 D13 DA13 - - - Yes PD9 D14 DA14 - Yes Yes Yes PD10 D15 DA15 - Yes Yes Yes Mux DocID029162 Rev 6 65/208 73 Pinouts and pin description STM32F413xG/H Table 11. FSMC pin definition (continued) FSMC Pins 66/208 64 pins 81 pins 100 pins 144 pins LCD/NOR/ PSRAM/SRAM NOR/PSRAM PD11 A16 A16 - - Yes Yes PD12 A17 A17 - - Yes Yes PD13 A18 A18 - - Yes Yes PD14 D0 DA0 - - Yes Yes PD15 D1 DA1 - - Yes Yes PG2 A12 - - - - Yes PG3 A13 - - - - Yes PG4 A14 - - - - Yes PG5 A15 - - - - Yes PC6 D1 DA1 Yes Yes Yes Yes PC11 D2 DA2 Yes Yes Yes Yes PC12 D3 DA3 Yes Yes Yes Yes PD0 D2 DA2 - Yes Yes Yes PD1 D3 DA3 - - Yes Yes PD2 NWE NWE Yes Yes Yes Yes PD3 CLK CLK - - Yes Yes PD4 NOE NOE - - Yes Yes PD5 NWE NWE - - Yes Yes PD6 NWAIT NWAIT - - Yes Yes PD7 NE1 NE1 - - Yes Yes PG9 NE2 NE2 - - - Yes PG10 NE3 NE3 - - - Yes PG12 NE4 NE4 - - - Yes PG13 A24 A24 - - - Yes PG14 A25 A25 - - - Yes PB7 NL NL Yes Yes Yes Yes PE0 NBL0 NBL0 - - Yes Yes PE1 NBL1 NBL1 - - Yes Yes Mux DocID029162 Rev 6 Alternate functions Table 12. STM32F413xG/H alternate functions AF0 Port DocID029162 Rev 6 Port A AF1 AF2 AF3 AF4 DFSDM2/ I2C1/2/3/ TIM3/4/5 TIM8/9/10/11 I2CFMP1 AF5 AF6 AF7 SPI1/I2S1/ SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4 SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4/ SPI5/I2S5/ DFSDM1/2 SPI3/I2S3/ SAI1/ DFSDM2/ USART1/ USART2/ USART3 AF8 AF9 AF10 SAI1/ I2C2/I2C3/ DFSDM1/ DFSDM1/ I2CFMP1/ USART3/4/ DFSDM2/ CAN1/2/ 5/6/7/8/ QUADSPI/ TIM12/13/14/ CAN1 FSMC QUADSPI /OTG1_FS AF11 AF12 UART4/ UART5/ UART9/ FSMC /SDIO UART10 /CAN3 AF13 AF14 AF15 - RNG SYS_ AF TIM1/2/ LPTIM1 PA0 - TIM2_CH1/ TIM2_ ETR TIM5_ CH1 TIM8_ETR - - - USART2_ CTS UART4_ TX - - - - - - EVENT OUT PA1 - TIM2_CH2 TIM5_ CH2 - - SPI4_MOSI/I 2S4_SD - USART2_ RTS UART4_ RX QUADSPI_ BK1_IO3 - - - - - EVENT OUT PA2 - TIM2_CH3 TIM5_ CH3 TIM9_CH1 - I2S2_CKIN - USART2_ TX - - - - FSMC_D4/ FSMC_DA4 - - EVENT OUT PA3 - TIM2_CH4 TIM5_ CH4 TIM9_CH2 - I2S2_MCK - USART2_ RX - - SAI1_SD_B - FSMC_D5/ FSMC_DA5 - - EVENT OUT PA4 - - - - - SPI1_NSS/I2 SPI3_NSS/I S1_WS 2S3_WS USART2_ CK DFSDM1_ DATIN1 - - - FSMC_D6/ FSMC_DA6 - - EVENT OUT PA5 - TIM2_CH1/ TIM2_ ETR - TIM8_CH1N - SPI1_SCK/I2 S1_CK - - DFSDM1_ CKIN1 - - - FSMC_D7/ FSMC_DA7 - - EVENT OUT PA6 - TIM1_ BKIN TIM3_ CH1 TIM8_BKIN - SPI1_MISO I2S2_MCK DFSDM2_ CKIN1 - TIM13_ CH1 QUADSPI_B K2_IO0 - SDIO_ CMD - - EVENT OUT PA7 - TIM1_ CH1N TIM3_ CH2 TIM8_ CH1N - SPI1_MOSI/I 2S1_SD - DFSDM2_ DATIN1 - TIM14_ CH1 QUADSPI_B K2_IO1 - - - - EVENT OUT PA8 MCO_1 TIM1_CH1 - - I2C3_ SCL - DFSDM1_ CKOUT USART1_ CK UART7_ RX - USB_FS_ SOF CAN3_ RX SDIO_ D1 - - EVENT OUT PA9 - TIM1_CH2 - DFSDM2_ CKIN3 I2C3_ SMBA SPI2_SCK/I2 S2_CK - USART1_ TX - - USB_FS_ VBUS - SDIO_ D2 - - EVENT OUT PA10 - TIM1_CH3 - DFSDM2_ DATIN3 - SPI2_MOSI/I SPI5_MOSI/ 2S2_SD I2S5_SD USART1_ RX - - USB_FS_ ID - - - - EVENT OUT PA11 - TIM1_CH4 - DFSDM2_ CKIN5 - SPI2_NSS/I2 SPI4_MISO S2_WS USART1_ CTS USART6_ TX CAN1_RX USB_FS_ DM UART4_ RX - - - EVENT OUT PA12 - TIM1_ETR - DFSDM2_ DATIN5 - SPI2_MISO SPI5_MISO USART1_ RTS USART6_ RX CAN1_TX USB_FS_ DP UART4_ TX - - - EVENT OUT PA13 JTMSSWDIO - - - - - - - - - - - - - - EVENT OUT PA14 JTCKSWCLK - - - - - - - - - - - - - - EVENT OUT PA15 JTDI TIM2_CH1/ TIM2_ ETR - - - SPI1_NSS/ I2S1_WS SPI3_NSS/ I2S3_WS USART1_ TX UART7_ TX - SAI1_ MCLK_A CAN3_ TX - - - EVENT OUT STM32F413xG/H SYS_ AF Pinouts and pin description 67/208 4.9 DocID029162 Rev 6 Port B Port AF1 AF2 AF3 AF4 DFSDM2/ I2C1/2/3/ TIM3/4/5 TIM8/9/10/11 I2CFMP1 AF5 AF6 AF7 SPI1/I2S1/ SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4 SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4/ SPI5/I2S5/ DFSDM1/2 SPI3/I2S3/ SAI1/ DFSDM2/ USART1/ USART2/ USART3 AF8 AF9 AF10 SAI1/ I2C2/I2C3/ DFSDM1/ DFSDM1/ I2CFMP1/ USART3/4/ DFSDM2/ CAN1/2/ 5/6/7/8/ QUADSPI/ TIM12/13/14/ CAN1 FSMC QUADSPI /OTG1_FS AF11 AF12 UART4/ UART5/ UART9/ FSMC /SDIO UART10 /CAN3 AF13 AF14 AF15 - RNG SYS_ AF TIM1/2/ LPTIM1 PB0 - TIM1_ CH2N TIM3_ CH3 TIM8_ CH2N - - SPI5_SCK/I 2S5_CK - - - - - - - - EVENT OUT PB1 - TIM1_ CH3N TIM3_ CH4 TIM8_ CH3N - - SPI5_NSS/ I2S5_WS - DFSDM1_ DATIN0 QUADSPI_C LK - - - - - EVENT OUT PB2 - LPTIM1_ OUT - - - - DFSDM1_ CKIN0 - - QUADSPI_C LK - - - - - EVENT OUT PB3 JTDOSWO TIM2_CH2 - - USART1_ RX UART7_ RX I2C2_SDA SAI1_SD_A CAN3_ RX - - - EVENT OUT PB4 JTRST - TIM3_ CH1 - - I2S3ext_ SD UART7_ TX I2C3_SDA SAI1_SCK_ A CAN3_ TX SDIO_D0 - - EVENT OUT PB5 - LPTIM1_ IN1 TIM3_ CH2 - I2C1_ SMBA - - CAN2_RX SAI1_FS_A UART5_ RX SDIO_D3 - - EVENT OUT PB6 - LPTIM1_ ETR TIM4_ CH1 - I2C1_SCL - DFSDM2_ CKIN7 USART1_ TX - CAN2_TX QUADSPI_ BK1_NCS UART5_ TX SDIO_D0 - - EVENT OUT PB7 - LPTIM1_ IN2 TIM4_ CH2 - I2C1_ SDA - DFSDM2_ DATIN7 USART1_ RX - - - - FSMC_NL - - EVENT OUT PB8 - LPTIM1_ OUT TIM4_ CH3 TIM10_ CH1 I2C1_ SCL - SPI5_MOSI/ I2S5_SD DFSDM2_ CKIN1 CAN1_RX I2C3_SDA - UART5_ RX SDIO_D4 - - EVENT OUT PB9 - - TIM4_ CH4 TIM11_ CH1 I2C1_ SDA SPI2_NSS/I2 S2_WS DFSDM2_ DATIN1 - CAN1_TX I2C2_SDA - UART5_ TX SDIO_D5 - - EVENT OUT PB10 - TIM2_CH3 - - I2C2_ SCL SPI2_SCK/I2 S2_CK I2S3_MCK USART3_ TX - I2CFMP1_ SCL DFSDM2_ CKOUT - SDIO_D7 - - EVENT OUT PB11 - TIM2_CH4 - - I2C2_ SDA I2S2_CKIN - USART3_ RX - - - - - - - EVENT OUT PB12 - TIM1_ BKIN - - I2C2_ SMBA SPI2_NSS/I2 S2_WS SPI4_NSS/ I2S4_WS SPI3_SCK/ I2S3_CK USART3_ CK CAN2_RX DFSDM1_ DATIN1 UART5_ FSMC_D13/F RX SMC_DA13 - - EVENT OUT PB13 - TIM1_ CH1N - - I2CFMP1 SPI2_SCK/I2 _SMBA S2_CK SPI4_SCK/ I2S4_CK - USART3_ CTS CAN2_TX DFSDM1_ CKIN1 UART5_ TX - - - EVENT OUT PB14 - TIM1_ CH2N - TIM8_ CH2N I2CFMP1 _SDA I2S2ext_SD USART3_ RTS DFSDM1_ DATIN2 TIM12_CH1 FSMC_D0/ FSMC_DA0 - SDIO_D6 - - EVENT OUT PB15 RTC_ REFIN TIM1_ CH3N - TIM8_ CH3N I2CFMP1 SPI2_MOSI/I _SCL 2S2_SD - - DFSDM1_ CKIN2 TIM12_CH2 - - SDIO_CK - - EVENT OUT I2CFMP1 SPI1_SCK/I2 SPI3_SCK/I _SDA S1_CK 2S3_CK SPI1_MISO SPI3_MISO SPI1_MOSI/I SPI3_MOSI/ 2S1_SD I2S3_SD SPI2_MISO 68/208 Pinouts and pin description SYS_ AF STM32F413xG/H Table 12. STM32F413xG/H alternate functions (continued) AF0 DocID029162 Rev 6 Port C Port AF1 AF2 AF3 AF4 AF5 AF6 AF7 DFSDM2/ I2C1/2/3/ TIM3/4/5 TIM8/9/10/11 I2CFMP1 SPI1/I2S1/ SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4 SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4/ SPI5/I2S5/ DFSDM1/2 SPI3/I2S3/ SAI1/ DFSDM2/ USART1/ USART2/ USART3 AF8 AF9 AF10 SAI1/ I2C2/I2C3/ DFSDM1/ DFSDM1/ I2CFMP1/ USART3/4/ DFSDM2/ CAN1/2/ 5/6/7/8/ QUADSPI/ TIM12/13/14/ CAN1 FSMC QUADSPI /OTG1_FS AF11 AF12 UART4/ UART5/ UART9/ FSMC /SDIO UART10 /CAN3 AF13 AF14 AF15 - RNG SYS_ AF TIM1/2/ LPTIM1 PC0 - LPTIM1_ IN1 - DFSDM2_CK IN4 - - - SAI1_ MCLK_B - - - - - - - EVENT OUT PC1 - LPTIM1_ OUT - DFSDM2_DA TIN4 - - - SAI1_SD_B - - - - - - - EVENT OUT PC2 - LPTIM1_IN 2 - DFSDM2_DA TIN7 - SPI2_MISO I2S2ext_SD SAI1_SCK_ B DFSDM1_ CKOUT - - - FSMC_NWE - - EVENT OUT PC3 - LPTIM1_ ETR - DFSDM2_CK IN7 - SPI2_MOSI/I 2S2_SD - SAI1_FS_B - - - - FSMC_A0 - - EVENT OUT PC4 - - - DFSDM2_CK IN2 - I2S1_MCK - - - - QUADSPI_ BK2_IO2 - FSMC_NE4 - - EVENT OUT PC5 - - - DFSDM2_DA I2CFMP1 TIN2 _SMBA - - USART3_ RX - - QUADSPI_ BK2_IO3 - FSMC_NOE - - EVENT OUT PC6 - - TIM3_ CH1 TIM8_CH1 I2CFMP1 _SCL I2S2_MCK DFSDM1_ CKIN3 DFSDM2_ DATIN6 USART6_ TX - FSMC_D1/ FSMC_DA1 - SDIO_D6 - - EVENT OUT PC7 - - TIM3_ CH2 TIM8_CH2 I2CFMP1 _SDA SPI2_SCK/ I2S2_CK I2S3_MCK DFSDM2_ CKIN6 USART6_ RX - DFSDM1_ DATIN3 - SDIO_D7 - - EVENT OUT PC8 - - TIM3_ CH3 TIM8_CH3 - - - DFSDM2_ CKIN3 USART6_ CK QUADSPI_ BK1_IO2 - - SDIO_D0 - - EVENT OUT PC9 MCO_2 - TIM3_ CH4 TIM8_CH4 I2C3_ SDA I2S2_CKIN - DFSDM2_ DATIN3 - QUADSPI_ BK1_IO0 - - SDIO_D1 - - EVENT OUT PC10 - - - DFSDM2_ CKIN5 - - SPI3_SCK/ I2S3_CK USART3_ TX - QUADSPI_ BK1_IO1 - - SDIO_D2 - - EVENT OUT PC11 - - - DFSDM2_ DATIN5 - I2S3ext_SD SPI3_MISO USART3_ RX UART4_ RX QUADSPI_ BK2_NCS FSMC_D2/ FSMC_DA2 - SDIO_D3 - - EVENT OUT PC12 - - - - - - SPI3_MOSI/ I2S3_SD USART3_ CK UART5_ TX - FSMC_D3/F SMC_DA3 - SDIO_CK - - EVENT OUT PC13 - - - - - - - - - - - - - - - EVENT OUT PC14 - - - - - - - - - - - - - - - EVENT OUT PC15 - - - - - - - - - - - - - - - EVENT OUT STM32F413xG/H SYS_ AF Pinouts and pin description 69/208 Table 12. STM32F413xG/H alternate functions (continued) AF0 DocID029162 Rev 6 Port D Port AF1 AF2 AF3 AF4 AF5 AF6 AF7 DFSDM2/ I2C1/2/3/ TIM3/4/5 TIM8/9/10/11 I2CFMP1 SPI1/I2S1/ SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4 SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4/ SPI5/I2S5/ DFSDM1/2 SPI3/I2S3/ SAI1/ DFSDM2/ USART1/ USART2/ USART3 AF8 AF9 AF10 SAI1/ I2C2/I2C3/ DFSDM1/ DFSDM1/ I2CFMP1/ USART3/4/ DFSDM2/ CAN1/2/ 5/6/7/8/ QUADSPI/ TIM12/13/14/ CAN1 FSMC QUADSPI /OTG1_FS AF11 AF12 AF13 AF14 AF15 UART4/ UART5/ UART9/ FSMC /SDIO UART10 /CAN3 - RNG SYS_ AF TIM1/2/ LPTIM1 PD0 - - - DFSDM2_ CKIN6 - - - - - CAN1_RX - UART4_ RX FSMC_D2/ FSMC_DA2 - - EVENT OUT PD1 - - - DFSDM2_ DATIN6 - - - - - CAN1_TX - UART4_ TX FSMC_D3/ FSMC_DA3 - - EVENT OUT PD2 - - TIM3_ ETR DFSDM2_ CKOUT - - - - UART5_ RX - FSMC_ NWE - SDIO_CMD - - EVENT OUT PD3 TRACE D1 - - - - SPI2_SCK/ I2S2_CK DFSDM1_ DATIN0 USART2_ CTS - QUADSPI_ CLK - - FSMC_CLK - - EVENT OUT PD4 - - - - - - DFSDM1_ CKIN0 USART2_ RTS - - - - FSMC_ NOE - - EVENT OUT PD5 - - - DFSDM2_ CKOUT - - - USART2_ TX - - - - FSMC_ NWE - - EVENT OUT PD6 - - - - - SPI3_MOSI/ I2S3_SD DFSDM1_ DATIN1 USART2_ RX - - - - FSMC_ NWAIT - - EVENT OUT PD7 - - - - - - DFSDM1_ CKIN1 USART2_ CK - - - - FSMC_NE1 - - EVENT OUT PD8 - - - - - - - USART3_ TX - - - - FSMC_D13/F SMC_DA13 - - EVENT OUT PD9 - - - - - - - USART3_ RX - - - - FSMC_D14/F SMC_DA14 - - EVENT OUT PD10 - - - - - - - USART3_ CK UART4_ TX - - - FSMC_D15/F SMC_DA15 - - EVENT OUT PD11 - - - DFSDM2_ DATIN2 I2CFMP1 _SMBA - - USART3_ CTS - QUADSPI_ BK1_IO0 - - FSMC_A16 - - EVENT OUT PD12 - - TIM4_ CH1 DFSDM2_ CKIN2 I2CFMP1 _SCL - - USART3_ RTS - QUADSPI_ BK1_IO1 - - FSMC_A17 - - EVENT OUT PD13 - - TIM4_ CH2 - I2CFMP1 _SDA - - - - QUADSPI_ BK1_IO3 - - FSMC_A18 - - EVENT OUT PD14 - - TIM4_ CH3 - I2CFMP1 _SCL - - - - - DFSDM2_ CKIN0 UART9_ RX FSMC_D0/ FSMC_DA0 - - EVENT OUT PD15 - - TIM4_ CH4 - I2CFMP1 _SDA - - - - - DFSDM2_ DATIN0 UART9_ TX FSMC_D1/ FSMC_DA1 - - EVENT OUT 70/208 Pinouts and pin description SYS_ AF STM32F413xG/H Table 12. STM32F413xG/H alternate functions (continued) AF0 DocID029162 Rev 6 Port E Port AF1 AF2 AF3 AF4 DFSDM2/ I2C1/2/3/ TIM3/4/5 TIM8/9/10/11 I2CFMP1 AF5 AF6 AF7 SPI1/I2S1/ SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4 SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4/ SPI5/I2S5/ DFSDM1/2 SPI3/I2S3/ SAI1/ DFSDM2/ USART1/ USART2/ USART3 AF8 AF9 AF10 SAI1/ I2C2/I2C3/ DFSDM1/ DFSDM1/ I2CFMP1/ USART3/4/ DFSDM2/ CAN1/2/ 5/6/7/8/ QUADSPI/ TIM12/13/14/ CAN1 FSMC QUADSPI /OTG1_FS AF11 AF12 UART4/ UART5/ UART9/ FSMC /SDIO UART10 /CAN3 AF13 AF14 AF15 - RNG SYS_ AF TIM1/2/ LPTIM1 PE0 - - TIM4_ ETR DFSDM2_ CKIN4 - - - - UART8_ Rx - - - FSMC_ NBL0 - - EVENT OUT PE1 - - - DFSDM2_ DATIN4 - - - - UART8_ Tx - - - FSMC_ NBL1 - - EVENT OUT PE2 TRACE CLK - - - - SPI4_SCK /I2S4_CK SPI5_SCK/ I2S5_CK SAI1_ MCLK_A - QUADSPI_ BK1_IO2 - UART10 _RX FSMC_A23 - - EVENT OUT PE3 TRACE D0 - - - - - - SAI1_SD_B - - - UART10 _TX FSMC_A19 - - EVENT OUT PE4 TRACE D1 - - - - SPI4_NSS/ I2S4_WS SPI5_NSS/ I2S5_WS SAI1_SD_A DFSDM1_ DATIN3 - - - FSMC_A20 - - EVENT OUT PE5 TRACE D2 - - TIM9_CH1 - SPI4_MISO SPI5_MISO SAI1_SCK_ A DFSDM1_ CKIN3 - - - FSMC_A21 - - EVENT OUT PE6 TRACE D3 - - TIM9_CH2 - SPI4_MOSI/I SPI5_MOSI/ SAI1_FS_A 2S4_SD I2S5_SD - - - - FSMC_A22 - - EVENT OUT PE7 - TIM1_ETR - - - - DFSDM1_ DATIN2 - UART7_ Rx - QUADSPI_ BK2_IO0 - FSMC_D4/ FSMC_DA4 - - EVENT OUT PE8 - TIM1_ CH1N - - - - DFSDM1_ CKIN2 - UART7_ Tx - QUADSPI_ BK2_IO1 - FSMC_D5/ FSMC_DA5 - - EVENT OUT PE9 - TIM1_CH1 - - - - DFSDM1_ CKOUT - - - QUADSPI_ BK2_IO2 - FSMC_D6/ FSMC_DA6 - - EVENT OUT PE10 - TIM1_ CH2N - DFSDM2_ DATIN0 - - - - - - QUADSPI_ BK2_IO3 - FSMC_D7/ FSMC_DA7 - - EVENT OUT PE11 - TIM1_ CH2 - DFSDM2_ CKIN0 - SPI4_NSS/ I2S4_WS SPI5_NSS/ I2S5_WS - - - - - FSMC_D8/ FSMC_DA8 - - EVENT OUT PE12 - TIM1_ CH3N - DFSDM2_ DATIN7 - SPI4_SCK/ I2S4_CK SPI5_SCK/ I2S5_CK - - - - - FSMC_D9/ FSMC_DA9 - - EVENT OUT PE13 - TIM1_ CH3 - DFSDM2_ CKIN7 - SPI4_MISO SPI5_MISO - - - - - FSMC_D10/ FSMC_DA10 - - EVENT OUT PE14 - TIM1_ CH4 - - - SPI4_MOSI/I SPI5_MOSI/ I2S5_SD 2S4_SD - - - DFSDM2_ DATIN1 - FSMC_D11/ FSMC_DA11 - - EVENT OUT PE15 - TIM1_ BKIN - - - - - - DFSDM2_ CKIN1 - FSMC_D12/F SMC_DA12 - - EVENT OUT - - STM32F413xG/H SYS_ AF Pinouts and pin description 71/208 Table 12. STM32F413xG/H alternate functions (continued) AF0 DocID029162 Rev 6 Port F Port AF1 AF2 AF3 AF4 DFSDM2/ I2C1/2/3/ TIM3/4/5 TIM8/9/10/11 I2CFMP1 AF5 AF6 AF7 SPI1/I2S1/ SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4 SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4/ SPI5/I2S5/ DFSDM1/2 SPI3/I2S3/ SAI1/ DFSDM2/ USART1/ USART2/ USART3 AF8 AF9 AF10 SAI1/ I2C2/I2C3/ DFSDM1/ DFSDM1/ I2CFMP1/ USART3/4/ DFSDM2/ CAN1/2/ 5/6/7/8/ QUADSPI/ TIM12/13/14/ CAN1 FSMC QUADSPI /OTG1_FS AF11 AF12 UART4/ UART5/ UART9/ FSMC /SDIO UART10 /CAN3 AF13 AF14 AF15 - RNG SYS_ AF TIM1/2/ LPTIM1 PF0 - - - - I2C2_ SDA - - - - - - - FSMC_A0 - - EVENT OUT PF1 - - - - I2C2_ SCL - - - - - - - FSMC_A1 - - EVENT OUT PF2 - - - - I2C2_ SMBA - - - - - - - FSMC_A2 - - EVENT OUT PF3 - - TIM5_ CH1 - - - - - - - - - FSMC_A3 - - EVENT OUT PF4 - - TIM5_ CH2 - - - - - - - - - FSMC_A4 - - EVENT OUT PF5 - - TIM5_ CH3 - - - - - - - - - FSMC_A5 - - EVENT OUT PF6 TRACE D0 - - TIM10_CH1 - - - SAI1_SD_B UART7_ Rx QUADSPI_ BK1_IO3 - - - - - EVENT OUT PF7 TRACE D1 - - TIM11_CH1 - - - SAI1_ MCLK_B UART7_ Tx QUADSPI_ BK1_IO2 - - - - - EVENT OUT PF8 - - - - - - - SAI1_SCK_ UART8_RX B TIM13_CH1 QUADSPI_B K1_IO0 - - - - EVENT OUT PF9 - - - - - - - SAI1_FS_B UART8_ TX TIM14_CH1 QUADSPI_B K1_IO1 - - - - EVENT OUT PF10 - TIM1_ETR TIM5_ CH4 - - - - - - - - - - - - EVENT OUT PF11 - - - TIM8_ETR - - - - - - - - - - - EVENT OUT PF12 - - - TIM8_BKIN - - - - - - - - FSMC_A6 - - EVENT OUT PF13 - - - - I2CFMP1 _SMBA - - - - - - - FSMC_A7 - - EVENT OUT PF14 - - - - I2CFMP1 _SCL - - - - - - - FSMC_A8 - - EVENT OUT PF15 - - - - I2CFMP1 _SDA - - - - - - - FSMC_A9 - - EVENT OUT 72/208 Pinouts and pin description SYS_ AF STM32F413xG/H Table 12. STM32F413xG/H alternate functions (continued) AF0 AF2 AF3 AF4 DFSDM2/ I2C1/2/3/ TIM3/4/5 TIM8/9/10/11 I2CFMP1 AF5 AF6 AF7 SPI1/I2S1/ SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4 SPI2/I2S2/ SPI3/I2S3/ SPI4/I2S4/ SPI5/I2S5/ DFSDM1/2 SPI3/I2S3/ SAI1/ DFSDM2/ USART1/ USART2/ USART3 AF8 AF9 AF10 SAI1/ I2C2/I2C3/ DFSDM1/ DFSDM1/ I2CFMP1/ USART3/4/ DFSDM2/ CAN1/2/ 5/6/7/8/ QUADSPI/ TIM12/13/14/ CAN1 FSMC QUADSPI /OTG1_FS AF11 AF12 AF13 AF14 AF15 UART4/ UART5/ UART9/ FSMC /SDIO UART10 /CAN3 - RNG SYS_ AF SYS_ AF TIM1/2/ LPTIM1 PG0 - - - - - - - - - CAN1_RX - UART9_ RX FSMC_A10 - - EVENT OUT PG1 - - - - - - - - - CAN1_TX - UART9_ TX FSMC_A11 - - EVENT OUT PG2 - - - - - - - - - - - - FSMC_A12 - - EVENT OUT PG3 - - - - - - - - - - - - FSMC_A13 - - EVENT OUT PG4 - - - - - - - - - - - - FSMC_A14 - - EVENT OUT PG5 - - - - - - - - - - - - FSMC_A15 - - EVENT OUT PG6 - - - - - - - - - - QUADSPI_B K1_NCS - - - - EVENT OUT PG7 - - - - - - - - USART6_ CK - - - - - - EVENT OUT PG8 - - - - - - - - USART6_ RTS - - - - - - EVENT OUT PG9 - - - - - - - - USART6_ RX QUADSPI_ BK2_IO2 - - FSMC_NE2 - - EVENT OUT PG10 - - - - - - - - - - - - FSMC_NE3 - - EVENT OUT PG11 - - - - - - - - - CAN2_RX - UART10 _RX - - - EVENT OUT PG12 - - - - - - - - USART6_ RTS CAN2_TX - UART10 _TX FSMC_NE4 - - EVENT OUT PG13 TRACE D2 - - - - - - - USART6_ CTS - - - FSMC_A24 - - EVENT OUT PG14 TRACE D3 - - - - - - - USART6_ TX QUADSPI_ BK2_IO3 - - FSMC_A25 - - EVENT OUT PG15 - - - - - - - - USART6_ CTS - - - - - - EVENT OUT PH0 - - - - - - - - - - - - - - - EVENT OUT PH1 - - - - - - - - - - - - - - - EVENT OUT STM32F413xG/H PortH DocID029162 Rev 6 Port G Port AF1 Pinouts and pin description 73/208 Table 12. STM32F413xG/H alternate functions (continued) AF0 Memory mapping 5 STM32F413xG/H Memory mapping The memory map is shown in Figure 18. Figure 18. Memory map 5HVHUYHG &RUWH[0LQWHUQDO SHULSKHUDOV 5HVHUYHG [([)))))))) [([())))) [$')))))) $))) $+% [ [))))))) $+% [)))))))) 0E\WH EORFN 5HVHUYHG [ [[))))))) [)) LQWHUQDO SHULSKHUDOV [( ['))))))) 0E\WH EORFN 1RWXVHG [& [%))))))) $+% 5HVHUYHG [$ [$))) 5HVHUYHG [ [[)))) [)) )0& $QG 4XDG63, [ [))))))) [ [))))))) $3% 0E\WH EORFN SHULSKHUDOV 0E\WH EORFNLQF 65$065$0 [ [))))))) 0E\WH EORFN &RGH [ 5HVHUYHG 65$0 .%DOLDVHG E\ELWEDQGLQJ 65$0 .%DOLDVHG E\ELWEDQGLQJ 5HVHUYHG 8VHURSWLRQE\WHV 5HVHUYHG 273DUHDORFN 6\VWHPPHPRU\ [[))))))) [[)))) [ [[)))) [))) [)))&[))))))) [)))&[)))&) [)))$[)))%))) [)))[)))$) [)))[))))) 5HVHUYHG [[))()))) 65$0 .%DFFHVVHGE\ [[)))) &38YLD,EXVDQG'EXV 5HVHUYHG [[))))))) )ODVKPHPRU\ [[)))) $OLDVHGWR)ODVKV\VWHP PHPRU\RU65$0 GHSHQGLQJRQWKH%227SLQV [[)))))) 74/208 5HVHUYHG [[)))) DocID029162 Rev 6 $3% [ 06Y9 STM32F413xG/H Memory mapping Table 13. STM32F413xG/H register boundary addresses Bus (R) Cortex -M4 AHB3 AHB2 AHB1 Boundary address Peripheral 0xE010 0000 - 0xFFFF FFFF Reserved 0xE000 0000 - 0xE00F FFFF Cortex-M4 internal peripherals 0xA000 2000 - 0xDFFF FFFF Reserved 0xA000 1000 - 0xA000 1FFF QuadSPI control register 0xA000 0000 - 0xA000 0FFF FSMC control register 0x9000 0000 - 0x9FFF FFFF QUADSPI 0x7000 0000 - 0x08FFF FFFF Reserved 0x6000 0000 - 0x6FFF FFFF FSMC 0x5006 0C00 - 0x5FFF FFFF Reserved 0x5006 0800 0x5006 0BFF RNG 0x5004 0000 - 0x5006 07FF Reserved 0x5000 0000 - 0x5003 FFFF USB OTG FS 0x4002 6800 - 0x4FFF FFFF Reserved 0x4002 6400 - 0x4002 67FF DMA2 0x4002 6000 - 0x4002 63FF DMA1 0x4002 4000 - 0X4002 5FFF Reserved 0x4002 3C00 - 0x4002 3FFF Flash interface register 0x4002 3800 - 0x4002 3BFF RCC 0x4002 3400 - 0x4002 37FF Reserved 0x4002 3000 - 0x4002 33FF CRC 0x4002 2000 - 0x4002 2FFF Reserved 0x4002 1C00 - 0x4002 1FFF GPIOH 0x4002 1800 - 0x4002 1BFF GPIOG 0x4002 1400 - 0x4002 17FF GPIOF 0x4002 1000 - 0x4002 13FF GPIOE 0x4002 0C00 - 0x4002 0FFF GPIOD 0x4002 0800 - 0x4002 0BFF GPIOC 0x4002 0400 - 0x4002 07FF GPIOB 0x4002 0000 - 0x4002 03FF GPIOA DocID029162 Rev 6 75/208 77 Memory mapping STM32F413xG/H Table 13. STM32F413xG/H register boundary addresses (continued) Bus APB2 76/208 Boundary address Peripheral 0x4001 6800- 0x4001 FFFF Reserved 0x4001 6400 - 0x4001 67FF DFSDM2 0x4001 6000 - 0x4001 63FF DFSDM1 0x4001 5C00 - 0x4001 5FFF Reserved 0x4001 5800 - 0x4001 5BFF SAI1 0x4001 5400 - 0x4001 57FF Reserved 0x4001 5000 - 0x4001 53FF SPI5/I2S5 0x4001 4C00 - 0x4001 4FFF Reserved 0x4001 4800 - 0x4001 4BFF TIM11 0x4001 4400 - 0x4001 47FF TIM10 0x4001 4000 - 0x4001 43FF TIM9 0x4001 3C00 - 0x4001 3FFF EXTI 0x4001 3800 - 0x4001 3BFF SYSCFG 0x4001 3400 - 0x4001 37FF SPI4/I2S4 0x4001 3000 - 0x4001 33FF SPI1/I2S1 0x4001 2C00 - 0x4001 2FFF SDIO 0x4001 2400 - 0x4001 2BFF Reserved 0x4001 2000 - 0x4001 23FF ADC1/2/3 0x4001 1C00 - 0x4001 1FFF UART10 0x4001 1800 - 0x4001 1BFF UART9 0x4001 1400 - 0x4001 17FF USART6 0x4001 1000 - 0x4001 13FF USART1 0x4001 0800 - 0x4001 0FFF Reserved 0x4001 0400 - 0x4001 07FF TIM8 0x4001 0000 - 0x4001 03FF TIM1 DocID029162 Rev 6 STM32F413xG/H Memory mapping Table 13. STM32F413xG/H register boundary addresses (continued) Bus APB1 Boundary address Peripheral 0x4000 8000 - 0x4000 FFFF Reserved 0x4000 7C00 - 0x4000 7FFF UART8 0x4000 7800 - 0x4000 7BFF UART7 0x4000 7400 - 0x4000 77FF DAC1 0x4000 7000 - 0x4000 73FF PWR 0x4000 6C00- 0x4000 6FFF CAN3 0x4000 6800- 0x4000 6BFF CAN2 0x4000 6400- 0x4000 67FF CAN1 0x4000 6000- 0x4000 63FF I2CFMP1 0x4000 5C00 - 0x4000 5FFF I2C3 0x4000 5800 - 0x4000 5BFF I2C2 0x4000 5400 - 0x4000 57FF I2C1 0x4000 5000 - 0x4000 53FF UART5 0x4000 4C00 - 0x4000 4FFF UART4 0x4000 4800 - 0x4000 4BFF USART3 0x4000 4400 - 0x4000 47FF USART2 0x4000 4000 - 0x4000 43FF I2S3ext 0x4000 3C00 - 0x4000 3FFF SPI3 / I2S3 0x4000 3800 - 0x4000 3BFF SPI2 / I2S2 0x4000 3400 - 0x4000 37FF I2S2ext 0x4000 3000 - 0x4000 33FF IWDG 0x4000 2C00 - 0x4000 2FFF WWDG 0x4000 2800 - 0x4000 2BFF RTC & BKP Registers 0x4000 2400 - 0x4000 27FF LPTIM1 0x4000 2000 - 0x4000 23FF TIM14 0x4000 1C00 - 0x4000 1FFF TIM13 0x4000 1800 - 0x4000 1BFF TIM12 0x4000 1400 - 0x4000 17FF TIM7 0x4000 1000 - 0x4000 13FF TIM6 0x4000 0C00 - 0x4000 0FFF TIM5 0x4000 0800 - 0x4000 0BFF TIM4 0x4000 0400 - 0x4000 07FF TIM3 0x4000 0000 - 0x4000 03FF TIM2 DocID029162 Rev 6 77/208 77 Electrical characteristics STM32F413xG/H 6 Electrical characteristics 6.1 Parameter conditions Unless otherwise specified, all voltages are referenced to VSS. 6.1.1 Minimum and maximum values Unless otherwise specified the minimum and maximum values are guaranteed in the worst conditions of ambient temperature, supply voltage and frequencies by tests in production on 100% of the devices with an ambient temperature at TA = 25 C and TA = TAmax (given by the selected temperature range). Data based on characterization results, design simulation and/or technology characteristics are indicated in the table footnotes and are not tested in production. Based on characterization, the minimum and maximum values refer to sample tests and represent the mean value plus or minus three times the standard deviation (mean 3 ). 6.1.2 Typical values Unless otherwise specified, typical data are based on TA = 25 C, VDD = 3.3 V (for the 1.7 V VDD 3.6 V voltage range). They are given only as design guidelines and are not tested. Typical ADC accuracy values are determined by characterization of a batch of samples from a standard diffusion lot over the full temperature range, where 95% of the devices have an error less than or equal to the value indicated (mean 2 ). 6.1.3 Typical curves Unless otherwise specified, all typical curves are given only as design guidelines and are not tested. 6.1.4 Loading capacitor The loading conditions used for pin parameter measurement are shown in Figure 19. 6.1.5 Pin input voltage The input voltage measurement on a pin of the device is described in Figure 20. Figure 19. Pin loading conditions Figure 20. Input voltage measurement -#5 PIN -#5 PIN # P& 6). -36 78/208 DocID029162 Rev 6 -36 STM32F413xG/H 6.1.6 Electrical characteristics Power supply scheme Figure 21. Power supply scheme 9%$7 9%$7 WR9 *3,2V i) 9''B86% 9&$3B 9&$3B 9'' 966 iQ) i) ,2 /RJLF .HUQHOORJLF &38GLJLWDO 5$0 9ROWDJH UHJXODWRU %<3$66B5(* 9''86% Q) ) 3'5B21 9'' )ODVKPHPRU\ 27* )6 3+< 5HVHW FRQWUROOHU 9''$ 95() Q) ) ,1 /HYHOVKLIWHU 287 9'' %DFNXSFLUFXLWU\ 26&.57& :DNHXSORJLF %DFNXSUHJLVWHUV 3RZHU VZLWFK Q) ) 95() 95() $'& $QDORJ 5&V 3// 966$ 06Y9 1. To connect PDR_ON pin, refer to Section: Power supply supervisor. 2. The 4.7 F ceramic capacitor must be connected to one of the VDD pin. 3. VCAP_2 pad is only available on 100-pin and 144-pin packages. 4. VDDA=VDD and VSSA=VSS. 5. VDDUSB is a dedicated independent USB power supply for the on-chip full-speed OTG PHY module and associated DP/DM GPIOs. VDDUSB value does not depend on the VDD and VDDA values, but it must be the last supply to be provided and the first to disappear. Caution: Each power supply pair (for example VDD/VSS, VDDA/VSSA) must be decoupled with filtering ceramic capacitors as shown above. These capacitors must be placed as close as possible to, or below, the appropriate pins on the underside of the PCB to ensure good operation of the device. It is not recommended to remove filtering capacitors to reduce PCB size or cost. This might cause incorrect operation of the device. DocID029162 Rev 6 79/208 174 Electrical characteristics 6.1.7 STM32F413xG/H Current consumption measurement Figure 22. Current consumption measurement scheme ,''B9%$7 9%$7 ,'' 9'' 9''$ DL 6.2 Absolute maximum ratings Stresses above the absolute maximum ratings listed in Table 14: Voltage characteristics, Table 15: Current characteristics, and Table 16: Thermal characteristics may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these conditions is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability. Table 14. Voltage characteristics Symbol VDD-VSS VIN Ratings Min Max -0.3 4.0 Input voltage on FT and TC pins(2) VSS-0.3 VDD+4.0 Input voltage on TTa pins VSS-0.3 4.0 Input voltage on any other pin VSS-0.3 4.0 VSS 9.0 Variations between different VDD power pins - 50 Variations between all the different ground pins including VREF- - 50 External main supply voltage (including VDDA, VDD, VDDUSB and VBAT)(1) Input voltage for BOOT0 |VDDx| |VSSX -VSS| VESD(HBM) Electrostatic discharge voltage (human body model) Unit see Section 6.3.14: Absolute maximum ratings (electrical sensitivity) 1. All main power (VDD, VDDA, VDDUSB) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. VIN maximum value must always be respected. Refer to Table 15 for the values of the maximum allowed injected current. 80/208 DocID029162 Rev 6 V mV STM32F413xG/H Electrical characteristics Table 15. Current characteristics Symbol Ratings Max. IVDD Total current into sum of all VDD_x power lines (source)(1) 180 IVSS (1) -180 IVDDUSB Total current out of sum of all VSS_x ground lines (sink) Total current into VDDUSB power lines (source) 25 IVDD Maximum current into each VDD_x power line (source)(1) 100 IVSS (1) -100 IIO IIO Maximum current out of each VSS_x ground line (sink) Output current sunk by any I/O and control pin 25 Output current sourced by any I/O and control pin -25 Total output current sunk by sum of all I/O and control pins (2) 120 Total output current sunk by sum of all USB I/Os 25 Total output current sourced by sum of all I/Os and control Injected current on FT and TC pins IINJ(PIN) (3) pins(2) mA -120 (4) - 5/ + 0 Injected current on NRST and B pins (4) Injected current on TTa pins(5) IINJ(PIN) Unit 5 Total injected current (sum of all I/O and control pins)(6) 25 1. All main power (VDD, VDDA, VDDUSB) and ground (VSS, VSSA) pins must always be connected to the external power supply, in the permitted range. 2. This current consumption must be correctly distributed over all I/Os and control pins. 3. Negative injection disturbs the analog performance of the device. See note in Section 6.3.20: 12-bit ADC characteristics. 4. Positive injection is not possible on these I/Os and does not occur for input voltages lower than the specified maximum value. 5. A positive injection is induced by VIN>VDDA in the same time a negative injection is induced by VIN5 LSB TUE), out of conventional limits of induced leakage current on adjacent pins (out of -5 A/+0 A range), or other functional failure (for example reset, oscillator frequency deviation). Negative induced leakage current is caused by negative injection and positive induced leakage current by positive injection. The test results are given in Table 58. 122/208 DocID029162 Rev 6 STM32F413xG/H Electrical characteristics Table 58. I/O current injection susceptibility(1) Functional susceptibility Symbol IINJ Description Negative injection Positive injection Injected current on BOOT0, PDR_ON, BYPASS_REG -0 0 Injected current on NRST -0 NA Injected current on PE6, PC13, PC14, PC15, PF0, PF1, PF2, PC0, PC1, PC2, PC3 -0 NA Injected current on any other FT and FTf pins -5 NA Injected current on any other pins -5 +5 Unit mA 1. NA = not applicable. Note: It is recommended to add a Schottky diode (pin to ground) to analog pins which may potentially inject negative currents. 6.3.16 I/O port characteristics General input/output characteristics Unless otherwise specified, the parameters given in Table 59 are derived from tests performed under the conditions summarized in Table 17. All I/Os are CMOS and TTL compliant. Table 59. I/O static characteristics Symbol VIL Parameter Conditions Min Typ Max FT, TTa, TC and NRST I/O input low level voltage 1.7 VVDD3.6 V - - 0.3VDD(1) 1.75 VVDD 3.6 V, -40 CTA 125 C - - 1.7 VVDD 3.6 V, 0 CTA 125 C - - 1.7 VVDD3.6 V 0.7VDD(1) - BOOT0 I/O input low level voltage FT, TTa, TC and NRST I/O input high level voltage(6) VIH BOOT0 I/O input high level voltage FT, TTa, TC and NRST I/O input hysteresis VHYS(3) BOOT0 I/O input hysteresis 1.75 VVDD 3.6 V, -40 CTA 125 C 1.7 VVDD 3.6 V, 0 CTA 125 C 1.7 VVDD3.6 V 1.75 VVDD 3.6 V, -40 CTA 125 C 1.7 VVDD 3.6 V, 0 CTA 125 C DocID029162 Rev 6 Unit V 0.1VDD+0.1(2) V 0.17VDD+0.7(2) - - 10% VDD(2)(4) - - 0.1 - - V 123/208 174 Electrical characteristics STM32F413xG/H Table 59. I/O static characteristics (continued) Symbol Parameter Conditions Min Typ Max VSS VIN VDD - - 1 VIN = 5 V - - 3 All pins except for PA10 (OTG_FS_ID) VIN = VSS 30 40 50 PA10 (OTG_FS_ID) - 7 10 14 All pins except for PA10 (OTG_FS_ID) VIN = VDD 30 40 50 PA10 (OTG_FS_ID) - 7 10 14 - - 5 - I/O input leakage current Ilkg (5) I/O FT/TC input leakage current (6) RPU RPD CIO Weak pull-up equivalent resistor(7) Weak pull-down equivalent resistor(8) I/O pin capacitance Unit A k pF 1. Guaranteed by test in production. 2. Guaranteed by design. 3. Hysteresis voltage between Schmitt trigger switching levels. Guaranteed by characterization results. 4. With a minimum of 200 mV. 5. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins, Refer to Table 58: I/O current injection susceptibility 6. To sustain a voltage higher than VDD +0.3 V, the internal pull-up/pull-down resistors must be disabled. Leakage could be higher than the maximum value, if negative current is injected on adjacent pins.Refer to Table 58: I/O current injection susceptibility 7. Pull-up resistors are designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance is minimum (~10% order). 8. Pull-down resistors are designed with a true resistance in series with a switchable NMOS. This NMOS contribution to the series resistance is minimum (~10% order). All I/Os are CMOS and TTL compliant (no software configuration required). Their characteristics cover more than the strict CMOS-technology or TTL parameters. The coverage of these requirements for FT and TC I/Os is shown in Figure 35. 124/208 DocID029162 Rev 6 STM32F413xG/H Electrical characteristics Figure 35. FT/TC I/O input characteristics 9,/9,+ 9 ' 9' L P ,+ Q 9 QW H P LUH 77/UHTXLUHPHQW U 9,+PLQ 9 26 0 & ' 9' Q R WL XF LQ RG +P , SU 9 LQ QV WLR HG VW XOD P L 7H V LJQ HV $UHDQRW Q' R G VH GHWHUPLQHG '' D % 9 D[ ,/P QV9 ODWLR X LP V VLJQ Q'H HGR 77/UHTXLUHPHQW9,/PD[ %DV 9 7HVWHGLQSURGXFWLRQ&026UHTXLUHPHQW9,/PD[ 9'' X HT 9'' 9 069 Output driving current The GPIOs (general purpose input/outputs) can sink or source up to 8 mA, and sink or source up to 20 mA (with a relaxed VOL/VOH) except PC13, PC14 and PC15 which can sink or source up to 3mA. When using the PC13 to PC15 GPIOs in output mode, the speed should not exceed 2 MHz with a maximum load of 30 pF. In the user application, the number of I/O pins which can drive current must be limited to respect the absolute maximum rating specified in Section 6.2. In particular: * The sum of the currents sourced by all the I/Os on VDD, plus the maximum Run consumption of the MCU sourced on VDD, cannot exceed the absolute maximum rating IVDD (see Table 15). * The sum of the currents sunk by all the I/Os on VSS plus the maximum Run consumption of the MCU sunk on VSS cannot exceed the absolute maximum rating IVSS (see Table 15). Output voltage levels Unless otherwise specified, the parameters given in Table 60 are derived from tests performed under ambient temperature and VDD supply voltage conditions summarized in Table 17. All I/Os are CMOS and TTL compliant. DocID029162 Rev 6 125/208 174 Electrical characteristics STM32F413xG/H Table 60. Output voltage characteristics Symbol Parameter VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL (1) Output low level voltage for an I/O pin VOH (3) Output high level voltage for an I/O pin VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin VOL(1) Output low level voltage for an I/O pin VOH(3) Output high level voltage for an I/O pin Conditions Min Max CMOS port(2) IIO = +8 mA 2.7 V VDD 3.6 V - 0.4 VDD-0.4 - - 0.4 2.4 - - 1.3(4) VDD-1.3(4) - - 0.4(4) VDD-0.4(4) - - 0.4(5) VDD-0.4(5) - TTL port(2) IIO =+8 mA 2.7 V VDD 3.6 V IIO = + 20 mA 2.7 V VDD 3.6 V IIO = + 6 mA 1.8 V VDD 3.6 V IIO = +4 mA 1.7 V VDD 3.6 V Unit V V V V V VOLFM(1) Output low level voltage for an FTf I/O pin in FM+ mode IIO = + 20 mA 2.7 V VDD 3.6 V - 0.4 V VOLFM(1) Output low level voltage for an FTf I/O pin in FM+ mode IIO = + 10 mA 1.8 V VDD 3.6 V - 0.4 V 1. The IIO current sunk by the device must always respect the absolute maximum rating specified in Table 15. and the sum of IIO (I/O ports and control pins) must not exceed IVSS. 2. TTL and CMOS outputs are compatible with JEDEC standards JESD36 and JESD52. 3. The IIO current sourced by the device must always respect the absolute maximum rating specified in Table 15 and the sum of IIO (I/O ports and control pins) must not exceed IVDD. 4. Guaranteed by characterization results. 5. Guaranteed by design. Input/output AC characteristics The definition and values of input/output AC characteristics are given in Figure 36 and Table 61, respectively. Unless otherwise specified, the parameters given in Table 61 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 17. 126/208 DocID029162 Rev 6 STM32F413xG/H Electrical characteristics Table 61. I/O AC characteristics(1)(2) OSPEEDRy Symbol [1:0] bit value(1) Parameter fmax(IO)out Maximum frequency(3) 00 tf(IO)out/ tr(IO)out 01 Output high to low level fall time and output low to high level rise time fmax(IO)out Maximum frequency(3) 10 tf(IO)out/ tr(IO)out Fmax(IO)ou t 11 tf(IO)out/ tr(IO)out Fmax FM+ - Min Typ Max CL = 50 pF, VDD 2.70 V - - 4 CL = 50 pF, VDD 1.7 V - - 2 CL = 10 pF, VDD 2.70 V - - 8 CL = 10 pF, VDD 1.7 V - - 4 - - 100 CL = 50 pF, VDD 2.70 V - - 25 CL = 50 pF, VDD 1.7 V - - 12.5 CL = 10 pF, VDD 2.70 V - - 50 CL = 10 pF, VDD 1.7 V - - 20 CL = 50 pF, VDD 2.7 V - - 10 CL = 50 pF, VDD 1.7 V - - 20 CL = 10 pF, VDD 2.70 V - - 6 CL = 10 pF, VDD 1.7 V - - 10 CL = 40 pF, VDD 2.70 V - - 50(4) CL = 40 pF, VDD 1.7 V - - 25 CL = 10 pF, VDD 2.70 V - - 100(4) CL = 10 pF, VDD 1.7 V - - 50(4) CL = 40 pF, VDD 2.70 V - - 6 CL = 40 pF, VDD 1.7 V - - 10 CL = 10 pF, VDD 2.70 V - - 4 CL = 10 pF, VDD 1.7 V - - 6 CL = 30 pF, VDD 2.70 V - - 100(4) CL = 30 pF, VDD 1.7 V - - 50(4) CL = 30 pF, VDD 2.70 V - - 4 CL = 30 pF, VDD 1.7 V - - 6 CL = 10 pF, VDD 2.70 V - - 2.5 CL = 10 pF, VDD 1.7 V - - 4 - - 1 MHz - - 5 ns 10 - - ns Output high to low level fall time and output low to CL = 50 pF, VDD = 1.7 V to 3.6 V high level rise time fmax(IO)out Maximum frequency(3) tf(IO)out/ tr(IO)out Conditions Output high to low level fall time and output low to high level rise time Maximum frequency(3) Output high to low level fall time and output low to high level rise time Maximum frequency Tf Output high to low level fall time tEXTIpw Pulse width of external signals detected by the EXTI controller CL = 50 pF, 1.6 VDD 3.6 V DocID029162 Rev 6 - Unit MHz ns MHz ns MHz ns MHz ns 127/208 174 Electrical characteristics STM32F413xG/H 1. Guaranteed by characterization results. 2. The I/O speed is configured using the OSPEEDRy[1:0] bits. Refer to the STM32F4xx reference manual for a description of the GPIOx_SPEEDR GPIO port output speed register. 3. The maximum frequency is defined in Figure 36. 4. For maximum frequencies above 50 MHz and VDD > 2.4 V, the compensation cell should be used. Figure 36. I/O AC characteristics definition (;7(51$/ 287387 21&/ WU ,2 RXW WI ,2 RXW 7 0D[LPXPIUHTXHQF\LVDFKLHYHGLI WUWI 7DQGLIWKHGXW\F\FOHLV ZKHQORDGHGE\&/VSHFLILHGLQWKHWDEOH,2$&FKDUDFWHULVWLFV 6.3.17 DLG NRST pin characteristics The NRST pin input driver uses CMOS technology. It is connected to a permanent pull-up resistor, RPU (see Table 59). Unless otherwise specified, the parameters given in Table 62 are derived from tests performed under the ambient temperature and VDD supply voltage conditions summarized in Table 17. Refer to Table 59: I/O static characteristics for the values of VIH and VIL for NRST pin. Table 62. NRST pin characteristics Symbol Parameter Conditions Min Typ Max Unit RPU Weak pull-up equivalent resistor(1) VIN = VSS 30 40 50 k VF(NRST)(2) NRST Input filtered pulse - - - 100 ns VDD > 2.7 V 300 - - ns Internal Reset source 20 - - s VNF(NRST)(2) NRST Input not filtered pulse TNRST_OUT Generated reset pulse duration 1. The pull-up is designed with a true resistance in series with a switchable PMOS. This PMOS contribution to the series resistance must be minimum (~10% order). 2. Guaranteed by design. 128/208 DocID029162 Rev 6 STM32F413xG/H Electrical characteristics Figure 37. Recommended NRST pin protection 9'' ([WHUQDO UHVHWFLUFXLW 1567 538 ,QWHUQDO5HVHW )LOWHU ) 670) DLF 1. The reset network protects the device against parasitic resets. 2. The user must ensure that the level on the NRST pin can go below the VIL(NRST) max level specified in Table 62. Otherwise the reset is not taken into account by the device. 6.3.18 TIM timer characteristics The parameters given in Table 63 are guaranteed by design. Refer to Section 6.3.16: I/O port characteristics for details on the input/output alternate function characteristics (output compare, input capture, external clock, PWM output). Table 63. TIMx characteristics(1)(2) Symbol tres(TIM) Parameter Timer resolution time Conditions(3) Min Max Unit AHB/APBx prescaler=1 or 2 or 4, fTIMxCLK = 100 MHz 1 - tTIMxCLK 11.9 - ns 1 - tTIMxCLK 11.9 - ns AHB/APBx prescaler>4, fTIMxCLK = 100 MHz fEXT ResTIM tCOUNTER Timer external clock frequency on CH1 to CH4 f TIMxCLK = 100 MHz 0 fTIMxCLK/2 MHz 0 50 MHz Timer resolution - 16/32 bit 0.0119 780 s - 65536 x 65536 tTIMxCLK - 51.1 S 16-bit counter clock period when internal clock fTIMxCLK = 100 MHz is selected Maximum possible count tMAX_COUNT with 32-bit counter fTIMxCLK = 100 MHz 1. TIMx is used as a general term to refer to the TIM1 to TIM11 timers. 2. Guaranteed by design. 3. The maximum timer frequency on APB1 is 50 MHz and on APB2 is up to 100 MHz, by setting the TIMPRE bit in the RCC_DCKCFGR register, if APBx prescaler is 1 or 2 or 4, then TIMxCLK = HCKL, otherwise TIMxCLK >= 4x PCLKx. DocID029162 Rev 6 129/208 174 Electrical characteristics 6.3.19 STM32F413xG/H Communications interfaces I2C interface characteristics The I2C interface meets the requirements of the standard I2C communication protocol with the following restrictions: the I/O pins SDA and SCL are mapped to are not "true" opendrain. When configured as open-drain, the PMOS connected between the I/O pin and VDD is disabled, but is still present. The I2C characteristics are described in Table 64. Refer also to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (SDA and SCL). The I2C bus interface supports standard mode (up to 100 kHz) and fast mode (up to 400 kHz). The I2C bus frequency can be increased up to 1 MHz. For more details about the complete solution, contact your local ST sales representative. Table 64. I2C characteristics Standard mode I2C(1)(2) Symbol Fast mode I2C(1)(2) Parameter Unit Min Max Min Max tw(SCLL) SCL clock low time 4.70 - 1.30 - tw(SCLH) SCL clock high time 4.0 - 0.60 - tsu(SDA) SDA setup time 0.25 - 0.10 - th(SDA) SDA data hold time 0 - 0 - tv(SDA,ACK) SDA data hold time - 3.45(3) - 0.90(4) tr(SDA) tr(SCL) SDA and SCL rise time - 0.100 - 0.30 tf(SDA) tf(SCL) SDA and SCL fall time - 0.30 - 0.30 th(STA) Start condition hold time 4 - 0.6 - tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - tsu(STO) Stop condition setup time 4 - 0.60 - tw(STO:STA) Stop to Start condition time (bus free) 4.70 - 1.3 - tSP Pulse width of the spikes that are suppressed by the analog filter for standard fast mode - - 0.05 0.10(5) Cb Capacitive load for each bus line - 400 - 400 s pF 1. Guaranteed by design. 2. fPCLK1 must be at least 2 MHz to achieve standard mode I2C frequencies. It must be at least 4 MHz to achieve fast mode I2C frequencies, and a multiple of 10 MHz to reach the 400 kHz maximum I2C fast mode clock. 3. The device must internally provide a hold time of at least 300 ns for the SDA signal in order to bridge the undefined region of the falling edge of SCL. 4. The maximum data hold time has only to be met if the interface does not stretch the low period of SCL signal. 5. The minimum width of the spikes filtered by the analog filter is above tSP (max) 130/208 DocID029162 Rev 6 STM32F413xG/H Electrical characteristics Figure 38. I2C bus AC waveforms and measurement circuit 9''B,& 53 9''B,& 53 670)[[ 56 6'$ ,&EXV 56 6&/ 67$575(3($7(' 67$57 67$57 WVX 67$ 6'$ WI 6'$ WU 6'$ WK 67$ WVX 6'$ WZ 67267$ 6723 WK 6'$ WZ 6&/+ 6&/ WU 6&/ WZ 6&// WI 6&/ WVX 672 06Y9 1. RS = series protection resistor. 2. RP = external pull-up resistor. 3. VDD_I2C is the I2C bus power supply. Table 65. SCL frequency (fPCLK1= 50 MHz, VDD = VDD_I2C = 3.3 V)(1)(2) I2C_CCR value fSCL (kHz) RP = 4.7 k 400 0x8019 300 0x8021 200 0x8032 100 0x0096 50 0x012C 20 0x02EE 1. RP = External pull-up resistance, fSCL = I2 C speed 2. For speeds around 200 kHz, the tolerance on the achieved speed is of 5%. For other speed ranges, the tolerance on the achieved speed is 2%. These variations depend on the accuracy of the external components used to design the application. DocID029162 Rev 6 131/208 174 Electrical characteristics STM32F413xG/H FMPI2C characteristics The following table presents FMPI2C characteristics. Refer also to Section 6.3.16: I/O port characteristics for more details on the input/output function characteristics (SDA and SCL). Table 66. FMPI2C characteristics(1) Standard mode Fast mode Fast+ mode Parameter Unit Min Max Min Max Min Max 2 - 8 - 18 - fFMPI2CC FMPI2CCLK frequency tw(SCLL) SCL clock low time 4.7 - 1.3 - 0.5 - tw(SCLH) SCL clock high time 4.0 - 0.6 - 0.26 - tsu(SDA) SDA setup time 0.25 - 0.10 - 0.05 - tH(SDA) SDA data hold time 0 - 0 - 0 - - 3.45 - 0.9 - 0.45 tv(SDA,ACK) Data, ACK valid time tr(SDA) tr(SCL) SDA and SCL rise time - 1.0 - 0.30 - 0.12 tf(SDA) tf(SCL) SDA and SCL fall time - 0.30 - 0.30 -0 0.12 th(STA) Start condition hold time 4 - 0.6 - 0.26 - tsu(STA) Repeated Start condition setup time 4.7 - 0.6 - 0.26 - tsu(STO) Stop condition setup time 4 - 0.6 - 0.26 - 4.7 - 1.3 - 0.5 - tSP Pulse width of the spikes that are suppressed by the analog filter for standard and fast mode - - 0.05 0.1 0.05 0.1 Cb Capacitive load for each bus Line - 400 - 400 - 550(2) tw(STO:STA) Stop to Start condition time (bus free) 1. Based on characterization results. 2. Can be limited. Maximum supported value can be retrieved by referring to the following formulas: tr(SDA/SCL) = 0.8473 x Rp x Cload Rp(min) = (VDD -VOL(max)) / IOL(max) 132/208 DocID029162 Rev 6 s pF STM32F413xG/H Electrical characteristics Figure 39. FMPI2C timing diagram and measurement circuit 9''B,& 53 9''B,& 53 670)[[ 56 6'$ ,&EXV 56 6&/ 67$575(3($7(' 67$57 67$57 WVX 67$ 6'$ WI 6'$ WU 6'$ WK 67$ WVX 6'$ WZ 6&/+ WZ 67267$ 6723 WK 6'$ 6&/ WZ 6&// WU 6&/ WI 6&/ WVX 672 06Y9 DocID029162 Rev 6 133/208 174 Electrical characteristics STM32F413xG/H SPI interface characteristics Unless otherwise specified, the parameters given in Table 67 for the SPI interface are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 17, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 10 * Capacitive load C = 30 pF * Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (NSS, SCK, MOSI, MISO for SPI). Table 67. SPI dynamic characteristics(1) Symbol fSCK 1/tc(SCK) Parameter SPI clock frequency Conditions Min Typ Max Master mode, SPI1,4,5 3.0 V < VDD < 3.6 V - - 50 Master mode, SPI1,4,5 2.7 V < VDD < 3.6 V - - 42 Master mode SPI1,4,5 1.7 V < VDD < 3.6 V - - 25 Master transmitter mode SPI1,4,5 1.71 V < VDD < 3.6 V - - 50 Slave receiver mode SPI1,4,5 1.71 V < VDD < 3.6 V - - 50 Slave mode transmitter/full duplex SPI1,4,5 2.7 V < VDD < 3.6 V - - 40(2) Slave mode transmitter/full duplex SPI1,4,5 1.71 V < VDD < 3.6 V - - 26 Master & Slave mode, SPI2/3 1.71 V < VDD < 3.6 V - - 25 Unit MHz tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4*TPCLK - - ns th(NSS) NSS hold time Slave mode, SPI presc = 2 2*TPCLK - - ns tw(SCKH) tw(SCKL) SCK high and low time Master mode TPCLK - 2 TPCLK TPCLK +2 ns Master mode 2.5 - - Slave mode 4.5 - - Master mode 5 - - Slave mode 2 - - tsu(MI) tsu(SI) th(MI) th(SI) 134/208 Data input setup time Data input hold time DocID029162 Rev 6 ns ns STM32F413xG/H Electrical characteristics Table 67. SPI dynamic characteristics(1) (continued) Symbol Parameter Conditions Min Typ Max Unit ta(SO) Data output access time Slave mode 7 - 21 ns tdis(SO) Data output disable time Slave mode 5 - 12 ns Slave mode (after enable edge), 2.7 V < VDD < 3.6 V - 7 12.5 Slave mode (after enable edge), 1.71 V < VDD < 3.6 V - 7 19 tv(MO) Master mode - 2 3 th(SO) Slave mode 1.71 V < VDD < 3.6 V 6 - - 1.5 - - tv(SO) Data output valid time Data output hold time Master mode th(MO) ns ns 1. Guaranteed by characterization results. 2. Maximum frequency in Slave transmitter mode is determined by the sum of tv(SO) and tsu(MI) which has to fit into SCK low or high phase preceding the SCK sampling edge. This value can be achieved when the SPI communicates with a master having tsu(MI) = 0 while Duty(SCK) = 50% Figure 40. SPI timing diagram - slave mode and CPHA = 0 DocID029162 Rev 6 135/208 174 Electrical characteristics STM32F413xG/H Figure 41. SPI timing diagram - slave mode and CPHA = 1 166LQSXW 6&.LQSXW W68 166 &3+$ &32/ &3+$ &32/ WK 166 WF 6&. WZ 6&.+ WZ 6&./ 0,62 287387 06%287 %,7287 WU 6&. WI 6&. WGLV 62 /6%287 WK 6, WVX 6, 026, ,1387 WK 62 WY 62 WD 62 06%,1 %,7,1 /6%,1 DLE Figure 42. SPI timing diagram - master mode +LJK 166LQSXW 6&.2XWSXW &3+$ &32/ 6&.2XWSXW WF 6&. &3+$ &32/ &3+$ &32/ &3+$ &32/ WVX 0, 0,62 ,13 87 WZ 6&.+ WZ 6&./ 06%,1 WU 6&. WI 6&. %,7,1 /6%,1 WK 0, 026, 287387 06%287 WY 02 % , 7287 /6%287 WK 02 DLF 136/208 DocID029162 Rev 6 STM32F413xG/H Electrical characteristics I2S interface characteristics Unless otherwise specified, the parameters given in Table 68 for the I2S interface are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 17, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 10 * Capacitive load C = 30 pF * Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (CK, SD, WS). Table 68. I2S dynamic characteristics(1) Symbol Parameter fMCK I2S Main clock output fCK I2S clock frequency DCK Conditions Min Max Unit 256 * 8K 256 * Fs(2) MHz Master data: 32 bits - 64 * Fs Slave data: 32 bits - 64 * Fs 30 70 - I2S clock frequency duty cycle Slave receiver tv(WS) WS valid time Master mode - 3.5 th(WS) WS hold time Master mode 1.5 - tsu(WS) WS setup time Slave mode 2.5 - th(WS) WS hold time Slave mode 0.5 - Master receiver 3 - Slave receiver 2.5 - Master receiver 5 - Slave receiver 1.5 - Slave transmitter (after enable edge) - 15 Master transmitter (after enable edge) - 6 Slave transmitter (after enable edge) 3.5 - Master transmitter (after enable edge) 1.5 - tsu(SD_MR) tsu(SD_SR) th(SD_MR) th(SD_SR) tv(SD_ST) tv(SD_MT) th(SD_ST) th(SD_MT) Data input setup time Data input hold time Data output valid time Data output hold time MHz % ns 1. Guaranteed by characterization results. 2. The maximum value of 256xFs is 50 MHz (APB1 maximum frequency). Note: Refer to the I2S section of RM0430 reference manual for more details on the sampling frequency (FS). fMCK, fCK, and DCK values reflect only the digital peripheral behavior. The values of these parameters might be slightly impacted by the source clock precision. DCK depends mainly on the value of ODD bit. The digital contribution leads to a minimum value of (I2SDIV/(2*I2SDIV+ODD) and a maximum value of (I2SDIV+ODD)/(2*I2SDIV+ODD). FS maximum value is supported for each mode/condition. DocID029162 Rev 6 137/208 174 Electrical characteristics STM32F413xG/H Figure 43. I2S slave timing diagram (Philips protocol) 1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. Figure 44. I2S master timing diagram (Philips protocol) 1. LSB transmit/receive of the previously transmitted byte. No LSB transmit/receive is sent before the first byte. 138/208 DocID029162 Rev 6 STM32F413xG/H Electrical characteristics SAI characteristics Unless otherwise specified, the parameters given in Table 69 for SAI are derived from tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage conditions summarized in Table 17, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 10 * Capacitive load C=30 pF * Measurement points are performed at CMOS levels: 0.5VDD Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics (SCK,SD,WS). Table 69. SAI characteristics(1) Symbol Parameter Conditions Min Max Unit fMCKL SAI Main clock output - 256 * 8K 256 * Fs(2) MHz FSCK SAI clock frequency Master data: 32 bits - 128 * Fs Slave data: 32 bits - 128 * Fs Master mode 2.7 V <= VDD <= 3.6 V - 19 Master mode 1.71 V <= VDD <= 3.6 V - 28 Master mode 13 - Slave mode 0 - Slave mode 3 - Master receiver 0.5 - Slave receiver 1.5 - Master receiver 5 - Slave receiver 2.5 - Slave transmitter (after enable edge) 2.7 V <= VDD <= 3.6 V - 15 Slave transmitter (after enable edge) 1.71 V <= VDD <= 3.6 V - 28 Slave transmitter (after enable edge) 10 - Master transmitter (after enable edge) 2.7 V <= VDD <= 3.6 V - 15 Master transmitter (after enable edge) 1.71 V <= VDD <= 3.6 V - 29 Master transmitter (after enable edge) 13 - tv(FS) FS valid time th(FS) FS hold time tsu(FS) FS setup time tsu(SD_ A_MR) tsu(SD_B_SR) th(SD_ A_MR) th(SD_B_SR) tv(SD_B_ST) th(SD_B_ST) tv(SD_A_MT) th(SD_A_MT) Data input setup time Data input hold time Data output valid time Data output hold time Data output valid time Data output hold time MHz ns 1. Guaranteed by characterization results. 2. 256 * Fs maximum corresponds to 45 MHz (APB2 maximum frequency) DocID029162 Rev 6 139/208 174 Electrical characteristics STM32F413xG/H Figure 45. SAI master timing waveforms F3#+ 3!)?3#+?8 TH&3 3!)?&3?8 OUTPUT TV&3 TH3$?-4 TV3$?-4 3!)?3$?8 TRANSMIT 3LOT N 3LOT N TSU3$?-2 TH3$?-2 3!)?3$?8 RECEIVE 3LOT N -36 Figure 46. SAI slave timing waveforms F3#+ 3!)?3#+?8 TW#+(?8 3!)?&3?8 INPUT TW#+,?8 TH&3 TSU&3 TH3$?34 TV3$?34 3!)?3$?8 TRANSMIT 3LOT N TSU3$?32 3!)?3$?8 RECEIVE 3LOT N TH3$?32 3LOT N -36 140/208 DocID029162 Rev 6 STM32F413xG/H Electrical characteristics QSPI interface characteristics Unless otherwise specified, the parameters given in the following tables for QSPI are derived from tests performed under the ambient temperature, fAHB frequency and VDD supply voltage conditions summarized in Table 17, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 11 * Capacitive load C=20pF * Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.16: I/O port characteristics for more details on the input/output alternate function characteristics. Table 70. QSPI dynamic characteristics in SDR mode(1) Symbol fSCK 1/tc(SCK) tw(CKH) Parameter QSPI clock frequency Conditions Min Typ Max 2.7 V < VDD < 3.6 V Cload = 20 pF - - 100 1.71 V < VDD < 3.6 V Cload = 15 pF - - 80 t(CK) / 2 - 1 - t(CK) / 2 t(CK) / 2 - t(CK) / 2 + 1 MHz QSPI clock high and low - ts(IN) Data input setup time - 1.5 - - th(IN) Data input hold time - 3 - - tv(OUT) Data output valid time 2.7 V < VDD < 3.6 V - 0.5 1 1.71 V < VDD < 3.6 V - 0.5 3 th(OUT) Data output hold time - 0 - 0 tw(CKL) Unit ns 1. Guaranteed by characterization results. Table 71. QSPI dynamic characteristics in DDR mode(1) Symbol Parameter fSCK QSPI clock frequency 1/tc(SCK) Conditions Min Typ Max 2.7 V < VDD < 3.6 V Cload = 20 pF - - 80 1.71 V< VDD < 3.6 V Cload = 15 pF - - 70 DocID029162 Rev 6 Unit MHz 141/208 174 Electrical characteristics STM32F413xG/H Table 71. QSPI dynamic characteristics in DDR mode(1) (continued) Symbol tw(CKH) tw(CKL) Parameter Conditions QSPI clock high and low time - tsr(IN), tsf(IN) Data input setup time thr(IN), thf(IN) Data input hold time tvr(OUT), tvf(OUT) Data output valid time thr(OUT), thf(OUT) Data output hold time Min Typ Max Unit t(CK) / 2 - 1 - t(CK) / 2 t(CK) / 2 - t(CK) / 2 + 1 2.7 V < VDD < 3.6 V 0.5 - - 1.71 V < VDD < 3.6 V 0.5 - - 2.7 V@ $GGUHVV TV",?.% WK %/B12( )60&B1%/>@ WK 'DWDB1( WVX 'DWDB12( WK 'DWDB12( WVX 'DWDB1( 'DWD )60&B'>@ WY 1$'9B1( WZ 1$'9 )60&B1$'9 )60&B1:$,7 WK 1(B1:$,7 WVX 1:$,7B1( 06Y9 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. DocID029162 Rev 6 159/208 174 Electrical characteristics STM32F413xG/H Table 88. Asynchronous non-multiplexed SRAM/PSRAM/NOR read timings(1)(2) Symbol Min Max 2 * tHCLK - 1 2 * tHCLK + 1 0 0.5 2 * tHCLK - 1 2 * tHCLK + 1 FSMC_NOE high to FSMC_NE high hold time 0 - FSMC_NEx low to FSMC_A valid - 0.5 th(A_NOE) Address hold time after FSMC_NOE high 0 - tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 th(BL_NOE) FSMC_BL hold time after FSMC_NOE high 0 - tsu(Data_NE) Data to FSMC_NEx high setup time tHCLK - 2 - tsu(Data_NOE) Data to FSMC_NOEx high setup time tHCLK - 2 - th(Data_NOE) Data hold time after FSMC_NOE high 0 - th(Data_NE) Data hold time after FSMC_NEx high 0 - tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 0 FSMC_NADV low time - tHCLK + 1 tw(NE) tv(NOE_NE) tw(NOE) th(NE_NOE) tv(A_NE) tw(NADV) Parameter FSMC_NE low time FSMC_NEx low to FSMC_NOE low FSMC_NOE low time Unit ns 1. CL = 30 pF. 2. Based on characterization. Table 89. Asynchronous non-multiplexed SRAM/PSRAM/NOR read NWAIT timings(1)(2) Symbol tw(NE) tw(NOE) tw(NWAIT) Parameter Min Max FSMC_NE low time 7 * tHCLK + 1 7 * tHCLK + 1 FSMC_NWE low time 5 * tHCLK - 1 5 * tHCLK + 1 tHCLK - 0.5 - 5 * tHCLK + 1.5 - 4 * tHCLK + 1 - FSMC_NWAIT low time tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high th(NE_NWAIT) FSMC_NEx hold time after FSMC_NWAIT invalid 1. CL = 30 pF. 2. Based on characterization. 160/208 DocID029162 Rev 6 Unit ns STM32F413xG/H Electrical characteristics Figure 54. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms WZ 1( )60&B1([ )60&B12( WY 1:(B1( WK 1(B1:( WZ 1:( )60&B1:( WK $B1:( TV!?.% )60&B$>@ $GGUHVV TV",?.% )60&B1%/>@ WK %/B1:( 1%/ WY 'DWDB1( WK 'DWDB1:( 'DWD )60&B'>@ WY 1$'9B1( )60&B1$'9 WZ 1$'9 )60&B1:$,7 WK 1(B1:$,7 WVX 1:$,7B1( 06Y9 1. Mode 2/B, C and D only. In Mode 1, FSMC_NADV is not used. Table 90. Asynchronous non-multiplexed SRAM/PSRAM/NOR write timings(1)(2) Symbol tw(NE) tv(NWE_NE) tw(NWE) th(NE_NWE) tv(A_NE) Parameter FSMC_NE low time FSMC_NEx low to FSMC_NWE low FSMC_NWE low time FSMC_NWE high to FSMC_NE high hold time FSMC_NEx low to FSMC_A valid th(A_NWE) Address hold time after FSMC_NWE high tv(BL_NE) FSMC_NEx low to FSMC_BL valid Min Max 3 * tHclk - 1 3 * tHclk - 1 tHCLK - 1 tHCLK + 0.5 tHCLK - 1.5 tHCLK + 0.5 tHCLK - - 0 tHCLK - 0.5 - - 0.5 tHCLK - 0.5 - th(BL_NWE) FSMC_BL hold time after FSMC_NWE high tv(Data_NE) Data to FSMC_NEx low to Data valid - tHCLK + 2.5 th(Data_NWE) Data hold time after FSMC_NWE high tHCLK - tv(NADV_NE) FSMC_NEx low to FSMC_NADV low - 0 FSMC_NADV low time - tHCLK + 1 tw(NADV) DocID029162 Rev 6 Unit ns 161/208 174 Electrical characteristics STM32F413xG/H 1. CL = 30 pF. 2. Based on characterization. Table 91. Asynchronous non-multiplexed SRAM/PSRAM/NOR write NWAIT timings(1)(2) Symbol Parameter FSMC_NE low time tw(NE) tw(NWE) FSMC_NWE low time Min Max Unit 8 * tHCLK - 1 8 * tHCLK + 1 6 * tHCLK - 1.5 6 * tHCLK + 0.5 tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high 6 * tHCLK - 1 - th(NE_NWAIT) FSMC_NEx hold time after FSMC_NWAIT invalid 4 * tHCLK + 2 - ns 1. CL = 30 pF. 2. Based on characterization. Figure 55. Asynchronous multiplexed PSRAM/NOR read waveforms WZ 1( )60&B1( WK 1(B12( WY 12(B1( )60&B12( WZ 12( )60&B1:( WK $B12( TV!?.% )60&B$>@ $GGUHVV WK %/B12( TV",?.% )60&B1%/>@ 1%/ WK 'DWDB1( WVX 'DWDB1( WVX 'DWDB12( WY $B1( )60&B$'>@ WY 1$'9B1( WK 'DWDB12( 'DWD $GGUHVV TH!$?.!$6 WZ 1$'9 )60&B1$'9 )60&B1:$,7 WK 1(B1:$,7 WVX 1:$,7B1( 06Y9 162/208 DocID029162 Rev 6 STM32F413xG/H Electrical characteristics Table 92. Asynchronous multiplexed PSRAM/NOR read timings(1)(2) Symbol Min Max 3 * tHCLK - 1 3 * tHCLK + 1 FSMC_NEx low to FSMC_NOE low 2 * tHCLK 2 * tHCLK + 0.5 FSMC_NOE low time tHCLK - 1 tHCLK + 1 FSMC_NOE high to FSMC_NE high hold time 0 - FSMC_NEx low to FSMC_A valid - 0.5 FSMC_NEx low to FSMC_NADV low 0 0.5 FSMC_NADV low time tHCLK - 0.5 tHCLK + 1 th(AD_NADV) FSMC_AD(address) valid hold time after FSMC_NADV high) tHCLK + 0.5 - th(A_NOE) Address hold time after FSMC_NOE high tHCLK - 0.5 - th(BL_NOE) FSMC_BL time after FSMC_NOE high 0 - tv(BL_NE) FSMC_NEx low to FSMC_BL valid - 0.5 tsu(Data_NE) Data to FSMC_NEx high setup time tHCLK - 2 - tsu(Data_NOE) Data to FSMC_NOE high setup time tHCLK - 2 - th(Data_NE) Data hold time after FSMC_NEx high 0 - th(Data_NOE) Data hold time after FSMC_NOE high 0 - tw(NE) tv(NOE_NE) tw(NOE) th(NE_NOE) tv(A_NE) tv(NADV_NE) tw(NADV) Parameter FSMC_NE low time Unit ns 1. CL = 30 pF. 2. Based on characterization. Table 93. Asynchronous multiplexed PSRAM/NOR read-NWAIT timings(1)(2) Symbol tw(NE) tw(NOE) Parameter FSMC_NE low time Min 8 * tHCLK - 1 Max Unit 8 * tHCLK + 1 FSMC_NWE low time 5 * tHCLK - 1.5 5 * tHCLK + 0.5 tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high 5 * tHCLK + 1.5 - th(NE_NWAIT) FSMC_NEx hold time after FSMC_NWAIT invalid 4 * tHCLK + 1 - ns 1. CL = 30 pF. 2. Based on characterization. DocID029162 Rev 6 163/208 174 Electrical characteristics STM32F413xG/H Figure 56. Asynchronous multiplexed PSRAM/NOR write waveforms WZ 1( )60&B1([ )60&B12( WK 1(B1:( WZ 1:( WY 1:(B1( )60&B1:( WK $B1:( TV!?.% )60&B$>@ $GGUHVV WK %/B1:( TV",?.% )60&B1%/>@ 1%/ WY $B1( )60&B$'>@ WY 'DWDB1$'9 $GGUHVV W Y 1$'9B1( WK 'DWDB1:( 'DWD TH!$?.!$6 WZ 1$'9 )60&B1$'9 )60&B1:$,7 WK 1(B1:$,7 WVX 1:$,7B1( 164/208 DocID029162 Rev 6 06Y9 STM32F413xG/H Electrical characteristics Table 94. Asynchronous multiplexed PSRAM/NOR write timings(1)(2) Symbol Parameter tw(NE) FSMC_NE low time FSMC_NEx low to FSMC_NWE low tv(NWE_NE) tw(NWE) FSMC_NWE low time th(NE_NWE) Min Max 4 * THCLK - 1 4 * THCLK + 1 THCLK - 1 THCLK + 0.5 2 * THCLK - 0.5 2 * THCLK - 0.5 FSMC_NWE high to FSMC_NE high hold time THCLK - 0.5 - FSMC_NEx low to FSMC_A valid - 0 FSMC_NEx low to FSMC_NADV low 0 0.5 THCLK THCLK + 1 FSMC_AD (address) valid hold time after FSMC_NADV high) THCLK + 0.5 - th(A_NWE) Address hold time after FSMC_NWE high THCLK + 0.5 - th(BL_NWE) FSMC_BL hold time after FSMC_NWE high THCLK - 0.5 - - 0.5 - THCLK + 2.5 THCLK - tv(A_NE) tv(NADV_NE) tw(NADV) FSMC_NADV low time th(AD_NADV) FSMC_NEx low to FSMC_BL valid tv(BL_NE) tv(Data_NADV) FSMC_NADV high to Data valid Data hold time after FSMC_NWE high th(Data_NWE) Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. Table 95. Asynchronous multiplexed PSRAM/NOR write-NWAIT timings(1)(2) Symbol tw(NE) Parameter FSMC_NE low time tw(NWE) Min Max 9 * THCLK - 1 9 * THCLK + 1 FSMC_NWE low time 7 * THCLK - 0.5 7 * THCLK + 0.5 tsu(NWAIT_NE) FSMC_NWAIT valid before FSMC_NEx high 6 * THCLK + 2 - th(NE_NWAIT) FSMC_NEx hold time after FSMC_NWAIT invalid 4 * THCLK - 1 - Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. Synchronous waveforms and timings Figure 57 through Figure 60 represent synchronous waveforms and Table 96 through Table 99 provide the corresponding timings. The results shown in these tables are obtained with the following FSMC configuration: * BurstAccessMode = FSMC_BurstAccessMode_Enable; * MemoryType = FSMC_MemoryType_CRAM; * WriteBurst = FSMC_WriteBurst_Enable; * CLKDivision = 1; (0 is not supported, see the STM32F446 reference manual: RM0390) * DataLatency = 1 for NOR Flash; DataLatency = 0 for PSRAM DocID029162 Rev 6 165/208 174 Electrical characteristics STM32F413xG/H In all timing tables, the THCLK is the HCLK clock period (with maximum FSMC_CLK = 90 MHz). Figure 57. Synchronous multiplexed NOR/PSRAM read timings WZ &/. %867851 WZ &/. )60&B&/. 'DWDODWHQF\ WG &/./1([/ )60&B1([ WG &/./1$'9/ WG &/.+1([+ WG &/./1$'9+ )60&B1$'9 WG &/.+$,9 WG &/./$9 )60&B$>@ WG &/./12(/ WG &/.+12(+ )60&B12( WG &/./$',9 WG &/./$'9 )60&B$'>@ WK &/.+$'9 WVX $'9&/.+ WVX $'9&/.+ $'>@ ' WVX 1:$,79&/.+ WK &/.+$'9 ' WK &/.+1:$,79 )60&B1:$,7 :$,7&)* E:$,732/E WVX 1:$,79&/.+ WK &/.+1:$,79 )60&B1:$,7 :$,7&)* E:$,732/E WVX 1:$,79&/.+ WK &/.+1:$,79 06Y9 166/208 DocID029162 Rev 6 STM32F413xG/H Electrical characteristics Table 96. Synchronous multiplexed NOR/PSRAM read timings(1)(2) Symbol tw(CLK) Parameter FSMC_CLK period Min Max 2 * THCLK - 0.5 - - 2 THCLK + 0.5 - td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) td(CLKH_NExH) FSMC_CLK high to FSMC_NEx high (x= 0...2) td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1 td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 - td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16...25) - 2.5 td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16...25) THCLK - - 1.5 THCLK - 0.5 - td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low td(CLKH-NOEH) FSMC_CLK high to FSMC_NOE high td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 3 td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - tsu(ADV-CLKH) FSMC_A/D[15:0] valid data before FSMC_CLK high 1.5 - th(CLKH-ADV) FSMC_A/D[15:0] valid data after FSMC_CLK high 3.5 - tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 2.5 - th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 3.5 - Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. DocID029162 Rev 6 167/208 174 Electrical characteristics STM32F413xG/H Figure 58. Synchronous multiplexed PSRAM write timings WZ &/. %867851 WZ &/. )60&B&/. 'DWDODWHQF\ WG &/./1([/ WG &/.+1([+ )60&B1([ WG &/./1$'9/ WG &/./1$'9+ )60&B1$'9 WG &/.+$,9 WG &/./$9 )60&B$>@ WG &/.+1:(+ WG &/./1:(/ )60&B1:( WG &/./$',9 WG &/./$'9 )60&B$'>@ WG &/./'DWD WG &/./'DWD $'>@ ' ' )60&B1:$,7 :$,7&)* E:$,732/E WVX 1:$,79&/.+ WK &/.+1:$,79 WG &/.+1%/+ )60&B1%/ 06Y9 168/208 DocID029162 Rev 6 STM32F413xG/H Electrical characteristics Table 97. Synchronous multiplexed PSRAM write timings(1)(2) Symbol Parameter Min Max tw(CLK) FSMC_CLK period, VDD range= 2.7 to 3.6 V 2 * THCLK - 0.5 - td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x= 0...2) - 2 td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0...2) THCLK + 0.5 - td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 1 td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 - td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16...25) - 2.5 td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16...25) THCLK - - 1.5 THCLK + 0.5 - td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low t(CLKH-NWEH) FSMC_CLK high to FSMC_NWE high td(CLKL-ADV) FSMC_CLK low to FSMC_AD[15:0] valid - 3 td(CLKL-ADIV) FSMC_CLK low to FSMC_AD[15:0] invalid 0 - td(CLKL-DATA) FSMC_A/D[15:0] valid data after FSMC_CLK low - 4 td(CLKL-NBLL) FSMC_CLK low to FSMC_NBL low 0 2 td(CLKH-NBLH) FSMC_CLK high to FSMC_NBL high THCLK + 0.5 - 2 - 3.5 - tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. DocID029162 Rev 6 169/208 174 Electrical characteristics STM32F413xG/H Figure 59. Synchronous non-multiplexed NOR/PSRAM read timings WZ &/. WZ &/. )60&B&/. WG &/./1([/ WG &/.+1([+ 'DWDODWHQF\ )60&B1([ WG &/./1$'9/ WG &/./1$'9+ )60&B1$'9 WG &/./$9 WG &/.+$,9 )60&B$>@ WG &/.+12(+ WG &/./12(/ )60&B12( WVX '9&/.+ WK &/.+'9 WVX '9&/.+ WK &/.+'9 ' )60&B'>@ WVX 1:$,79&/.+ )60&B1:$,7 :$,7&)* E :$,732/E ' WK &/.+1:$,79 WVX 1:$,79&/.+ )60&B1:$,7 :$,7&)* E :$,732/E WVX 1:$,79&/.+ WK &/.+1:$,79 WK &/.+1:$,79 06Y9 Table 98. Synchronous non-multiplexed NOR/PSRAM read timings(1)(2) Symbol tw(CLK) t(CLKL-NExL) Parameter FSMC_CLK period FSMC_CLK low to FSMC_NEx low (x=0..2) Min Max 2THCLK - 0.5 - - 2 THCLK +0.5 - td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0...2) td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 0.5 td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 - td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16...25) - 2.5 td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16...25) THCLK - - 1.5 THCLK - 0.5 - td(CLKL-NOEL) FSMC_CLK low to FSMC_NOE low td(CLKH-NOEH) FSMC_CLK high to FSMC_NOE high tsu(DV-CLKH) FSMC_D[15:0] valid data before FSMC_CLK high 1.5 - th(CLKH-DV) FSMC_D[15:0] valid data after FSMC_CLK high 3.5 - tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high 2.5 - th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high 3.5 - 1. CL = 30 pF. 2. Guaranteed by characterization results. 170/208 DocID029162 Rev 6 Unit ns STM32F413xG/H Electrical characteristics Figure 60. Synchronous non-multiplexed PSRAM write timings WZ &/. WZ &/. )60&B&/. WG &/./1([/ WG &/.+1([+ 'DWDODWHQF\ )60&B1([ WG &/./1$'9/ WG &/./1$'9+ )60&B1$'9 WG &/./$9 WG &/.+$,9 )60&B$>@ WG &/./1:(/ WG &/.+1:(+ )60&B1:( WG &/./'DWD ' )60&B'>@ )60&B1:$,7 :$,7&)* E :$,732/E WG &/./'DWD WVX 1:$,79&/.+ ' WG &/.+1%/+ WK &/.+1:$,79 )60&B1%/ 06Y9 Table 99. Synchronous non-multiplexed PSRAM write timings(1)(2) Symbol tw(CLK) Parameter FSMC_CLK period Min Max 2 * THCLK - 0.5 - - 2 THCLK + 0.5 - td(CLKL-NExL) FSMC_CLK low to FSMC_NEx low (x=0..2) td(CLKH-NExH) FSMC_CLK high to FSMC_NEx high (x= 0...2) td(CLKL-NADVL) FSMC_CLK low to FSMC_NADV low - 0.5 td(CLKL-NADVH) FSMC_CLK low to FSMC_NADV high 0 - td(CLKL-AV) FSMC_CLK low to FSMC_Ax valid (x=16...25) - 2.5 td(CLKH-AIV) FSMC_CLK high to FSMC_Ax invalid (x=16...25) THCLK - - 1.5 THCLK + 1 - td(CLKL-NWEL) FSMC_CLK low to FSMC_NWE low td(CLKH-NWEH) FSMC_CLK high to FSMC_NWE high td(CLKL-Data) FSMC_D[15:0] valid data after FSMC_CLK low - 4 td(CLKL-NBLL) FSMC_CLK low to FSMC_NBL low - 2 td(CLKH-NBLH) FSMC_CLK high to FSMC_NBL high THCLK + 1 - 2 - 3.5 - tsu(NWAIT-CLKH) FSMC_NWAIT valid before FSMC_CLK high th(CLKH-NWAIT) FSMC_NWAIT valid after FSMC_CLK high Unit ns 1. CL = 30 pF. 2. Guaranteed by characterization results. DocID029162 Rev 6 171/208 174 Electrical characteristics 6.3.27 STM32F413xG/H SD/SDIO MMC/eMMC card host interface (SDIO) characteristics Unless otherwise specified, the parameters given in Table 100 for the SDIO are derived from tests performed under the ambient temperature, fPCLK2 frequency and VDD supply voltage conditions summarized in Table 17, with the following configuration: * Output speed is set to OSPEEDRy[1:0] = 10 * Capacitive load C = 30 pF * Measurement points are done at CMOS levels: 0.5VDD Refer to Section 6.3.16: I/O port characteristics for more details on the input/output characteristics. Figure 61. SDIO high-speed mode WU WI W& W: &./ W: &.+ &. W2+ W29 '&0' RXWSXW W,68 W,+ '&0' LQSXW DL Figure 62. SD default mode 172/208 DocID029162 Rev 6 STM32F413xG/H Electrical characteristics Table 100. SD / MMC characteristics(1)(2) Symbol Parameter Conditions Min Typ Max Unit fPP Clock frequency in data transfer mode - 0 - 50 MHz - SDIO_CK/fPCLK2 frequency ratio - - - 8/3 - tW(CKL) Clock low time fpp =50MHz 9.5 10.5 - tW(CKH) Clock high time fpp =50MHz 8.5 9.5 - ns CMD, D inputs (referenced to CK) in MMC and SD HS mode tISU Input setup time HS fpp =50MHz 5 - - tIH Input hold time HS fpp =50MHz 1 - - ns CMD, D outputs (referenced to CK) in MMC and SD HS mode tOV Output valid time HS fpp =50MHz - 12 13.5 tOH Output hold time HS fpp =50MHz 10.5 - - ns CMD, D inputs (referenced to CK) in SD default mode tISUD Input setup time SD fpp =25MHz 5 - - tIHD Input hold time SD fpp =25MHz 1 - - ns CMD, D outputs (referenced to CK) in SD default mode tOVD Output valid default time SD fpp =25 MHz - 2 3 tOHD Output hold default time SD fpp =25 MHz 1 - - ns 1. Guaranteed by characterization results. 2. VDD = 2.7 to 3.6 V. Table 101. eMMC characteristics VDD = 1.7 V to 1.9 V(1)(2) Symbol Parameter Conditions Min Typ Max Unit fPP Clock frequency in data transfer mode - 0 - 50 MHz SDIO_CK/fPCLK2 frequency ratio - - - 8/3 - tW(CKL) Clock low time fpp =50MHz 9.5 10.5 - tW(CKH) Clock high time fpp =50MHz 8.5 9.5 - ns CMD, D inputs (referenced to CK) in eMMC mode tISU Input setup time HS fpp =50MHz 3 - - tIH Input hold time HS fpp =50MHz 2.5 - - ns CMD, D outputs (referenced to CK) in eMMC mode tOV Output valid time HS fpp =50MHz - 15 15.5 tOH Output hold time HS fpp =50MHz 13 - - ns 1. Guaranteed by characterization results. 2. CLOAD = 20 pF. DocID029162 Rev 6 173/208 174 Electrical characteristics 6.3.28 STM32F413xG/H RTC characteristics Table 102. RTC characteristics 174/208 Symbol Parameter - fPCLK1/RTCCLK frequency ratio Conditions Any read/write operation from/to an RTC register DocID029162 Rev 6 Min Max 4 - STM32F413xG/H 7 Package information Package information In order to meet environmental requirements, ST offers these devices in different grades of ECOPACK(R) packages, depending on their level of environmental compliance. ECOPACK(R) specifications, grade definitions and product status are available at: www.st.com. ECOPACK(R) is an ST trademark. 7.1 WLCSP81 package information Figure 63. WLCSP81 - 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale package outline $EDOO ORFDWLRQ H $2ULHQWDWLRQ UHIHUHQFH ' H $ H H - ( * %RWWRPYLHZ %XPSVLGH DDD 7RSYLHZ :DIHUEDFNVLGH ) %803 EEE = HHH = $ $ $ $ FFF0 GGG 0 '(7$,/$ 6,'(9,(: = E [ =;< = 6HDWLQJSODQH '(7$,/$ :/&63B$%B0(B9 1. Drawing is not to scale. DocID029162 Rev 6 175/208 205 Package information STM32F413xG/H Table 103. WLCSP81 - 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A 0.525 0.555 0.585 0.0207 0.0219 0.0230 A1 - 0.175 - - 0.0069 - A2 - 0.380 - - 0.0150 - - 0.025 - - 0.0010 - O b(3) 0.220 0.250 0.280 0.0087 0.0098 0.0110 D 4.004 4.039 4.074 0.1576 0.1590 0.1604 E 3.916 3.951 3.986 0.1542 0.1556 0.1569 e - 0.400 - - 0.0157 - e1 - 3.200 - - 0.1260 - e2 - 3.200 - - 0.1260 - F - 0.4195 - - 0.0165 - G - 0.3755 - - 0.0148 - aaa - - 0.100 - - 0.0039 bbb - - 0.100 - - 0.0039 ccc - - 0.100 - - 0.0039 ddd - - 0.050 - - 0.0020 eee - - 0.050 - - 0.0020 A3 (2) 1. Values in inches are converted from mm and rounded to 4 decimal digits. 2. Back side coating 3. Dimension is measured at the maximum bump diameter parallel to primary datum Z. 176/208 DocID029162 Rev 6 STM32F413xG/H Package information Figure 64. WLCSP81- 81-ball, 4.039 x 3.951 mm, 0.4 mm pitch wafer level chip scale package recommended footprint 'SDG 'VP :/&63B$%B)3B9 Table 104. WLCSP81 recommended PCB design rules (0.4 mm pitch) Dimension Recommended values Pitch 0.4 mm Dpad 0.225 mm Dsm 0.290 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.250 mm Stencil thickness 0.100 mm DocID029162 Rev 6 177/208 205 Package information STM32F413xG/H Device marking for WLCSP81 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 65. WLCSP81 marking example (package top view) 3LQLGHQWLILHU 3URGXFW LGHQWLILFDWLRQ )* 'DWHFRGH < :: $ $GGLWLRQDO LQIRUPDWLRQ 06Y9 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 178/208 DocID029162 Rev 6 STM32F413xG/H 7.2 Package information UFQFPN48 package information Figure 66. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package outline 3LQLGHQWLILHU ODVHUPDUNLQJDUHD ' $ ( ( 7 GGG $ 6HDWLQJ SODQH E H 'HWDLO< ' ([SRVHGSDG DUHD < ' / &[ SLQFRUQHU ( 5W\S 'HWDLO= = $%B0(B9 1. Drawing is not to scale. 2. All leads/pads should also be soldered to the PCB to improve the lead/pad solder joint life. 3. There is an exposed die pad on the underside of the UFQFPN package. It is recommended to connect and solder this back-side pad to PCB ground. DocID029162 Rev 6 179/208 205 Package information STM32F413xG/H Table 105. UFQFPN48 - 48-lead, 7x7 mm, 0.5 mm pitch, ultra thin fine pitch quad flat package mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A 0.500 0.550 0.600 0.0197 0.0217 0.0236 A1 0.000 0.020 0.050 0.0000 0.0008 0.0020 D 6.900 7.000 7.100 0.2717 0.2756 0.2795 E 6.900 7.000 7.100 0.2717 0.2756 0.2795 D2 5.500 5.600 5.700 0.2165 0.2205 0.2244 E2 5.500 5.600 5.700 0.2165 0.2205 0.2244 L 0.300 0.400 0.500 0.0118 0.0157 0.0197 T - 0.152 - - 0.0060 - b 0.200 0.250 0.300 0.0079 0.0098 0.0118 e - 0.500 - - 0.0197 - ddd - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 67. UFQFPN48 recommended footprint 1. Dimensions are in millimeters. 180/208 DocID029162 Rev 6 !"?&0?6 STM32F413xG/H Package information Device marking for UFQFPN48 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 68. UFQFPN48 marking example (package top view) 3URGXFWLGHQWLILFDWLRQ 670) &+8 'DWHFRGH < :: 3LQ LQGHQWLILHU 5HYLVLRQFRGH $ 06Y9 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DocID029162 Rev 6 181/208 205 Package information 7.3 STM32F413xG/H LQFP64 package information Figure 69. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package outline PP *$8*(3/$1( F $ $ $ 6($7,1*3/$1( & $ FFF & ' ' ' . / / 3,1 ,'(17,),&$7,21 ( ( ( E H :B0(B9 1. Drawing is not to scale. 182/208 DocID029162 Rev 6 STM32F413xG/H Package information Table 106. LQFP64 - 64-pin, 10 x 10 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D - 12.000 - - 0.4724 - D1 - 10.000 - - 0.3937 - D3 - 7.500 - - 0.2953 - E - 12.000 - - 0.4724 - E1 - 10.000 - - 0.3937 - E3 - 7.500 - - 0.2953 - e - 0.500 - - 0.0197 - 0 3.5 7 0 3.5 7 L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. DocID029162 Rev 6 183/208 205 Package information STM32F413xG/H Figure 70. LQFP64 recommended footprint AIC 1. Dimensions are in millimeters. 184/208 DocID029162 Rev 6 STM32F413xG/H Package information Device marking for LQFP64 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 71. LQFP64 marking example (package top view) 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ $ 670) 5+7 'DWHFRGH < :: 3LQ LQGHQWLILHU 06Y9 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DocID029162 Rev 6 185/208 205 Package information 7.4 STM32F413xG/H LQFP100 package information Figure 72. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat package outline MM C ! ! ! 3%!4).' 0,!.% # '!5'% 0,!.% $ ! + CCC # , $ , $ 0). )$%.4)&)#!4)/. % % % B E ,?-%?6 1. Drawing is not to scale. Dimensions are in millimeters. Table 107. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol 186/208 Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 15.800 16.000 16.200 0.6220 0.6299 0.6378 D1 13.800 14.000 14.200 0.5433 0.5512 0.5591 D3 - 12.000 - - 0.4724 - E 15.800 16.000 16.200 0.6220 0.6299 0.6378 DocID029162 Rev 6 STM32F413xG/H Package information Table 107. LQPF100 - 100-pin, 14 x 14 mm low-profile quad flat package mechanical data (continued) inches(1) millimeters Symbol Min Typ Max Min Typ Max E1 13.800 14.000 14.200 0.5433 0.5512 0.5591 E3 - 12.000 - - 0.4724 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0.0 3.5 7.0 0.0 3.5 7.0 ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 73. LQFP100 - 100-pin, 14 x 14 mm low-profile quad flat recommended footprint AIC 1. Dimensions are in millimeters. DocID029162 Rev 6 187/208 205 Package information STM32F413xG/H Device marking for LQFP100 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 74. LQFP100 marking example (package top view) 3URGXFWLGHQWLILFDWLRQ 670) 9+7$ 5HYLVLRQFRGH 'DWHFRGH < :: 3LQ LQGHQWLILHU 06Y9 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 188/208 DocID029162 Rev 6 STM32F413xG/H LQFP144 package information Figure 75. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package outline C ! ! 3%!4).' 0,!.% # ! MM CCC # $ , $ + ! '!5'% 0,!.% , $ % % % B 7.5 Package information 0). )$%.4)&)#!4)/. E !?-%?6 1. Drawing is not to scale. DocID029162 Rev 6 189/208 205 Package information STM32F413xG/H Table 108. LQFP144 - 144-pin, 20 x 20 mm low-profile quad flat package mechanical data inches(1) millimeters Symbol Min Typ Max Min Typ Max A - - 1.600 - - 0.0630 A1 0.050 - 0.150 0.0020 - 0.0059 A2 1.350 1.400 1.450 0.0531 0.0551 0.0571 b 0.170 0.220 0.270 0.0067 0.0087 0.0106 c 0.090 - 0.200 0.0035 - 0.0079 D 21.800 22.000 22.200 0.8583 0.8661 0.8740 D1 19.800 20.000 20.200 0.7795 0.7874 0.7953 D3 - 17.500 - - 0.6890 - E 21.800 22.000 22.200 0.8583 0.8661 0.8740 E1 19.800 20.000 20.200 0.7795 0.7874 0.7953 E3 - 17.500 - - 0.6890 - e - 0.500 - - 0.0197 - L 0.450 0.600 0.750 0.0177 0.0236 0.0295 L1 - 1.000 - - 0.0394 - k 0 3.5 7 0 3.5 7 ccc - - 0.080 - - 0.0031 1. Values in inches are converted from mm and rounded to 4 decimal digits. 190/208 DocID029162 Rev 6 STM32F413xG/H Package information Figure 76. LQFP144 - 144-pin,20 x 20 mm low-profile quad flat package recommended footprint DLH 1. Dimensions are expressed in millimeters. DocID029162 Rev 6 191/208 205 Package information STM32F413xG/H Device marking for LQFP144 The following figure gives an example of topside marking orientation versus pin 1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 77. LQFP144 marking example (package top view) 5HYLVLRQFRGH 3URGXFWLGHQWLILFDWLRQ $ 670)=+7 'DWHFRGH < :: 3LQ LGHQWLILHU 06Y9 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. 192/208 DocID029162 Rev 6 STM32F413xG/H 7.6 Package information UFBGA100 package information Figure 78. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package outline = 6HDWLQJSODQH GGG = $ $ $ $ $ ( $EDOO $EDOO LGHQWLILHU LQGH[DUHD = H ; ( $ = ' ' H < 0 %277209,(: E EDOOV HHH 0 = < ; III 0 = 7239,(: $&B0(B9 1. Drawing is not to scale. Table 109. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. A - - 0.600 - - 0.0236 A1 - - 0.110 - - 0.0043 A2 - 0.450 - - 0.0177 - A3 - 0.130 - - 0.0051 0.0094 A4 - 0.320 - - 0.0126 - b 0.240 0.290 0.340 0.0094 0.0114 0.0134 D 6.850 7.000 7.150 0.2697 0.2756 0.2815 D1 - 5.500 - - 0.2165 - E 6.850 7.000 7.150 0.2697 0.2756 0.2815 E1 - 5.500 - - 0.2165 - e - 0.500 - - 0.0197 - Z - 0.750 - - 0.0295 - DocID029162 Rev 6 193/208 205 Package information STM32F413xG/H Table 109. UFBGA100 - 100-ball, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package mechanical data (continued) inches(1) millimeters Symbol Min. Typ. Max. Min. Typ. Max. ddd - - 0.080 - - 0.0031 eee - - 0.150 - - 0.0059 fff - - 0.050 - - 0.0020 1. Values in inches are converted from mm and rounded to 4 decimal digits. Figure 79. UFBGA100 - 100-pin, 7 x 7 mm, 0.50 mm pitch, ultra fine pitch ball grid array package recommended footprint 'SDG 'VP $&B)3B9 Table 110. UFBGA100 recommended PCB design rules (0.5 mm pitch BGA) Dimension 194/208 Recommended values Pitch 0.5 Dpad 0.280 mm Dsm 0.370 mm typ. (depends on the soldermask registration tolerance) Stencil opening 0.280 mm Stencil thickness Between 0.100 mm and 0.125 mm DocID029162 Rev 6 STM32F413xG/H Package information Device marking for UFBGA100 The following figure gives an example of topside marking orientation versus ball A1 identifier location. Other optional marking or inset/upset marks, which identify the parts throughout supply chain operations, are not indicated below. Figure 80. UFBGA100 marking example (package top view) WZZ 670) 9++ Z < :: Z ZZZ $ 06Y9 1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified and therefore not approved for use in production. ST is not responsible for any consequences resulting from such use. In no event will ST be liable for the customer using any of these engineering samples in production. ST's Quality department must be contacted prior to any decision to use these engineering samples to run a qualification activity. DocID029162 Rev 6 195/208 205 Package information 7.7 STM32F413xG/H UFBGA144 package information Figure 81. UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package outline & 6HDWLQJSODQH GGG = $ $ $ $ $ ( H $EDOO $EDOO LGHQWLILHU LQGH[DUHD ) $ ( $ ) ' ' H % 0 %277209,(: E EDOOV HHH 0 & $ % III 0 & 7239,(: $''@ *3,2 ,QWHUUXSW 3% 3% 6&/ ,& 6'$ 7RXFK6FUHHQ &RQWUROOHU 06Y9 Note: 16 bit displays interfaces can be addressed with 100 and 144 pins packages. MSv40843 DocID029162 Rev 6 203/208 205 Application block diagrams B.3 STM32F413xG/H USB OTG full speed (FS) interface solutions Figure 86. USB controller configured as peripheral-only and used in Full speed mode 9''86% 9'' 9WR9''86% 9ROWDJHUHJXODWRU 9%86 '0 3$ 26&B,1 '3 3$ 26&B287 966 86%6WG%FRQQHFWRU 670)[[ 670)[[ SLQVSDFNDJHV SLQVSDFNDJHV 06Y9 06Y9 1. External voltage regulator only needed when building a VBUS powered device. Figure 87. USB peripheral-only Full speed mode with direct connection for VBUS sense 9''!9 9''86% 3$ 9%86 '0 3$ 26&B,1 '3 3$ 26&B287 966 86%6WG%FRQQHFWRU 670)[[ 670)[[ SLQVSDFNDJHV SLQVSDFNDJHV 06Y9 06Y9 1. External voltage regulator only needed when building a VBUS powered device. 204/208 DocID029162 Rev 6 STM32F413xG/H Application block diagrams Figure 88. USB peripheral-only Full speed mode, VBUS detection using GPIO 99''9 9''86% *3,2 9%86 '0 3$ 26&B,1 '3 3$ 26&B287 966 86%6WG%FRQQHFWRU 670)[[ SLQVSDFNDJHV 06Y9 1. External voltage regulator only needed when building a VBUS powered device. Figure 89. USB controller configured as host-only and used in full speed mode 9'' 670)[[ *3,2,54 (1 2YHUFXUUHQW &XUUHQWOLPLWHU SRZHUVZLWFK 9 9%86 26&B,1 3$ 3$ 26&B287 '0 '3 966 86%6WG$FRQQHFWRU *3,2 06Y9 2. The current limiter is required only if the application has to support a VBUS powered device. A basic power switch can be used if 5 V are available on the application board. DocID029162 Rev 6 205/208 205 Revision history STM32F413xG/H Revision history Table 115. Document revision history Date Revision 29-Aug-2016 1 Initial release. 2 Updated: - Table 10: STM32F413xG/H pin definition - Section 7: Package information - Figure 65: WLCSP81 marking example (package top view) 3 Updated: - Table 39: Peripheral current consumption - Table 55: EMI characteristics for LQFP144 - Table 56: ESD absolute maximum ratings - Table 70: QSPI dynamic characteristics in SDR mode - Table 111: UFBGA144 - 144-ball, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package mechanical data - Figure 81: UFBGA144 - 144-pin, 10 x 10 mm, 0.80 mm pitch, ultra fine pitch ball grid array package outline 4 Updated: - Table 2: STM32F413xG/H features and peripheral counts - Table 12: STM32F413xG/H alternate functions Added: - Table 11: FSMC pin definition 21-Oct-2016 13-Dec-2016 09-Mar-2017 206/208 Changes DocID029162 Rev 6 STM32F413xG/H Revision history Table 115. Document revision history Date 14-Jun-2017 19-Sep-2017 Revision Changes 5 Added: - Section 4.1: WLCSP81 pinout description - Section 4.2: UFQFPN48 pinout description - Section 4.3: LQFP64 pinout description - Section 4.4: LQFP100 pinout description - Section 4.5: LQFP144 pinout description - Section 4.6: UFBGA100 pinout description - Section 4.7: UFBGA144 pinout description - Section 4.8: Pins definition - Section 4.9: Alternate functions Updated: - Table 10: STM32F413xG/H pin definition - Table 11: FSMC pin definition - Table 38: Switching output I/O current consumption - Table 39: Peripheral current consumption 6 Updated: - Section 3.29: Digital filter for sigma-delta modulators (DFSDM) - Table 53: Flash memory endurance and data retention - Table 59: I/O static characteristics - Table 75: ADC characteristics DocID029162 Rev 6 207/208 207 STM32F413xG/H IMPORTANT NOTICE - PLEASE READ CAREFULLY STMicroelectronics NV and its subsidiaries ("ST") reserve the right to make changes, corrections, enhancements, modifications, and improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST products before placing orders. ST products are sold pursuant to ST's terms and conditions of sale in place at the time of order acknowledgement. Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the design of Purchasers' products. No license, express or implied, to any intellectual property right is granted by ST herein. Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product. ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners. Information in this document supersedes and replaces information previously supplied in any prior versions of this document. (c) 2017 STMicroelectronics - All rights reserved 208/208 DocID029162 Rev 6