
© 2007-2015 Exar Corporation 13 / 19 exar.com/CLC1005
Rev 2D
CLC1005, CLC1015, CLC2005
Overdrive Recovery
For an amplier, an overdrive condition occurs when the
output and/or input ranges are exceeded. The recovery time
varies based on whether the input or output is overdriven
and by how much the ranges are exceeded. The CLC1005,
CLC1015, and CLC2005 will typically recover in less than
20ns from an overdrive condition. Figure 6 shows the
CLC2005 in an overdriven condition.
Input Voltage (0.5V/div)
Time (20ns/div)
Output
Input
RL = 2kΩ
Vin =2Vpp
G = 5
Rf = 1kΩ
Figure 6: Overdrive Recovery
Enable/Disable Function
The CLC1015 offers an active-low disable pin that can be
used to lower its supply current. Leave the pin oating to
enable to part. Pull the disable pin to the negative supply
(which is ground in a single supply application) to disable
the output. During the disable condition, the nominal supply
current will drop below 127μA and the output will be at a
high impedance with about 2pF capacitance.
Power Dissipation
Power dissipation should not be a factor when operating
under the stated 2kΩ load condition. However, applications
with low impedance, DC coupled loads should be analyzed
to ensure that maximum allowed junction temperature is
not exceeded. Guidelines listed below can be used to verify
that the particular application will not cause the device to
operate beyond it’s intended operating range.
Maximum power levels are set by the absolute maximum
junction rating of 150°C. To calculate the junction
temperature, the package thermal resistance value ThetaJA
(θJA) is used along with the total die power dissipation.
TJunction = TAmbient + (θJA × PD)
Where TAmbient is the temperature of the working
environment.
In order to determine PD, the power dissipated in the load
needs to be subtracted from the total power delivered by the
supplies.
PD = Psupply - Pload
Supply power is calculated by the standard power equation.
Psupply = Vsupply × IRMSsupply
Vsupply = VS+ - VS-
Power delivered to a purely resistive load is:
Pload = ((Vload)RMS2)/Rloadeff
The effective load resistor (Rloadeff) will need to include the
effect of the feedback network. For instance,
Rloadeff in Figure 3 would be calculated as:
RL || (Rf + Rg)
These measurements are basic and are relatively easy to
perform with standard lab equipment. For design purposes
however, prior knowledge of actual signal levels and load
impedance is needed to determine the dissipated power.
Here, PD can be found from
PD = PQuiescent + PDynamic - Pload
Quiescent power can be derived from the specied IS values
along with known supply voltage, Vsupply. Load power can
be calculated as above with the desired signal amplitudes
using:
(Vload)RMS = Vpeak / √2
( Iload)RMS = ( Vload)RMS / Rloadeff
The dynamic power is focused primarily within the output
stage driving the load. This value can be calculated as:
PDynamic = (VS+ - Vload)RMS × ( Iload)RMS
Assuming the load is referenced in the middle of the power
rails or Vsupply/2.
The CLC1015 is short circuit protected. However, this may
not guarantee that the maximum junction temperature
(+150°C) is not exceeded under all conditions. Figure 7
shows the maximum safe power dissipation in the package
vs. the ambient temperature for the packages available.