MDB1900ZB Zero Delay Buffer for PCIe (Gen1/Gen2/Gen3), SAS, SATA, ESI, and QPI General Description Features The MDB1900ZB is a true zero delay buffer with a fullyintegrated, high-performance, low-power, and low-phase noise programmable PLL. * Supports zero delay (0ps) buffer mode for 100MHz and 133MHz clock frequencies. * External feedback path for true zero delay operations * Zero delay (PLL) mode can filter jitter in incoming clock * Selectable PLL bandwidth for PLL mode * Supports fanout buffer mode for clock frequencies between 0 and 250MHz * Differential input reference with HCSL logic (0~0.7V) * Nineteen differential HCSL-compatible clock output pairs * Eight dedicated OE# pins to control their assigned output. Glitch free assertion/de-assertion. * Spread spectrum modulation tolerant for EMI reduction * SMBus interface for controlling output properties (enable/disable and delay tuning) * Disabled outputs in power-down mode for maximum power savings * Nine selectable SMBus addresses so multiple devices can share the same SMBus * 3.3V or 2.5V operation * Commercial temperature range (0C to +70C) * 72-pin 10mm x 10mm QFN package * GREEN, RoHS, and PFOS compliant The MDB1900ZB is capable of distributing the reference clocks for PCIe (Gen1/Gen2/Gen3), SATA, ESI, SAS, SMI and Intel(R) Quickpath Interconnect (QPI). The MDB1900ZB works in conjunction with a CK410B+, CK509B or CK420BQ clock synthesizer to provide reference clocks to multiple agents. The MDB1900ZB is designed for Intel's DB1900Z specification. The Intel part designation for the MDB1900ZB is identified as G20746-002. Datasheets and support documentation are available on Micrel's web site at: www.micrel.com. Block Diagram Applications * PCI Express timing (Gen1/2/3) in Intel platforms, specifically the Romley platform * SATA / SAS timing (storage) * ESI and SMI systems (storage) * Intel Quickpath Interconnect Key Specifications * * * * * * Cycle-to-cycle jitter (PLL mode): <35ps Output-to-output skew: <35ps Input-to-output delay (PLL mode): Fixed at 0ps Input-to-output delay variation (PLL mode): 13ps Phase Jitter, PCIe Gen3: 0.25ps Accumulated Jitter, QPI 9.6Gb/s: <0.15ps Intel is a registered trademark of Intel Corporation. Micrel Inc. * 2180 Fortune Drive * San Jose, CA 95131 * USA * tel +1 (408) 944-0800 * fax + 1 (408) 474-1000 * http://www.micrel.com October 30, 2014 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Ordering Information Marking Shipping Ambient Temperature Range Package(1) MDB1900ZBQY TR MDB1900ZBQY Tape and Reel -40C to +85C 72-Pin 10mm x 10mm QFN MDB1900ZBQZ TR MDB1900ZBQZ Tape and Reel 0C to +70C 72-Pin 10mm x 10mm QFN Part Number Note: 1. Device is GREEN, RoHS, and PFOS compliant. Lead finish is 100% matte tin. Pin Configuration 72-Pin 10mm x 10mm QFN October 30, 2014 2 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Pin Description Pin Number Pin Name Type(2) 1 VDDA PWR 3.3V or 2.5V Core Power Supply. 2 GNDA GND 3 IREF I 4 100M_133M# I, SE 5 HBW_BYPASS_LBW# I, SE Core Ground. IREF = (1.1V)/(R IREF ). A precision resistor (R IREF ) is attached to this pin and to ground to set the reference current for the differential current mode output pairs. R IREF = 475 for 100 trace, R IREF = 412 for 85 trace. 3.3V LVTTL Input. Input/output frequency select. Logic 1 = 100MHz output (default, 50K pull-up resistor) Logic 0 = 133.33MHz output Tri-level input for selecting bypass or PLL bandwidth mode. High = High PLL bandwidth mode Mid = Bypass mode Low = Low PLL bandwidth mode 6 PWRGD/PWRDN# I, SE 3.3V LVTTL Input for power good and power-down control. 50K pull-down resistor. 7 GND GND Ground. 8 VDDR PWR 3.3V or 2.5V power supply for differential clock input. 9 CLK_IN I, DIF 0.7V HCSL differential clock input reference. True input pin. 10 CLK_IN# I, DIF 0.7V HCSL differential clock input reference. Complementary input pin. 11 SA_0 I, SE Tri-level input to set SMBus address for this device. Works together with SA_1. 12 SDA I/O Open Collector SMBus Data I/O Pin (SDATA). 5V tolerant. 13 SCL I, SE SMBus Slave Clock Input (SCLK). 5V tolerant. 14 SA_1 I, SE Tri-level input to set SMBus address for this device. Works together with SA_0. 15 FB_IN I, DIF ZDB Feedback, 0.7V differential clock input, true input pin. 16 FB_IN# I, DIF ZDB Feedback, 0.7V differential clock input, complementary input pin. 17 FB_OUT O, DIF ZDB Feedback, 0.7V differential clock output (HCSL-compatible), true output pin. 18 FB_OUT# O, DIF ZDB Feedback, 0.7V differential clock output (HCSL-compatible), complementary output pin. 19 DIF_0 O, DIF 0.7V Differential Clock Output 0 (HCSL-compatible), true output pin. 20 DIF_0# O, DIF 0.7V Differential Clock Output 0 (HCSL-compatible), complementary output pin. 21 VDD PWR 3.3V or 2.5V Power Supply. 22 DIF_1 O, DIF 0.7V Differential Clock Output 1 (HCSL-compatible), true output pin. 23 DIF_1# O, DIF 0.7V Differential Clock Output 1 (HCSL-compatible), complementary output pin. 24 DIF_2 O, DIF 0.7V Differential Clock Output 2 (HCSL-compatible), true output pin. Pin Function Note: 2. I = Input O = Output I/O = Bi-directional SE = Single-ended DIF = Differential PWR = 3.3V or 2.5V power GND = Ground October 30, 2014 3 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Pin Description (Continued) Pin Number Pin Name Type(2) Pin Function 25 DIF_2# O, DIF 0.7V Differential Clock Output 2 (HCSL-compatible), complementary output pin. 26 GND GND Ground. 27 DIF_3 O, DIF 0.7V Differential Clock Output 3 (HCSL-compatible ), true output pin. 28 DIF_3# O, DIF 0.7V Differential Clock Output 3 (HCSL-compatible ), complementary output pin. 29 DIF_4 O, DIF 0.7V Differential Clock Output 4 (HCSL-compatible), true output pin. 30 DIF_4# O, DIF 0.7V Differential Clock Output 4 (HCSL-compatible), complementary output pin. 31 VDD PWR 3.3V or 2.5V power supply. 32 DIF_5 O, DIF 0.7V Differential Clock Output 5 (HCSL-compatible), true output pin. 33 DIF_5# O, DIF 0.7V Differential Clock Output 5 (HCSL-compatible), complementary output pin. 34 OE_5# I, SE 3.3V LVTTL active-low input for enabling Differential Output 5 (50k pull-down). 35 DIF_6 O, DIF 0.7V Differential Clock Output 6 (HCSL-compatible), true output pin. 36 DIF_6# O, DIF 0.7V Differential Clock Output 6 (HCSL-compatible), complementary output pin. 37 OE_6# I, SE 3.3V LVTTL active-low input for enabling Differential Output 6 (50k pull-down). 38 DIF_7 O, DIF 0.7V Differential Clock Output 7 (HCSL-compatible), true output pin. 39 DIF_7# O, DIF 0.7V Differential Clock Output 7 (HCSL-compatible), complementary output pin. 40 OE_7# I, SE 3.3V LVTTL active-low input for enabling Differential Output 7 (50k pulldown). 41 DIF_8 O, DIF 0.7V Differential Clock Output 8 (HCSL-compatible), true output pin. 42 DIF_8# O, DIF 0.7V Differential Clock Output 8 (HCSL-compatible), complementary output pin. 43 OE_8# I, SE 3.3V LVTTL active-low input for enabling Differential Output 8 (50k pulldown). 44 GND GND Ground 45 VDD PWR 3.3V or 2.5V power supply. 46 DIF_9 O, DIF 0.7V Differential Clock Output 9 (HCSL-compatible), true output pin. 47 DIF_9# O, DIF 0.7V Differential Clock Output 9 (HCSL-compatible), complementary output pin. 48 OE_9# I, SE 3.3V LVTTL active-low input for enabling Differential Output 9 (50k pull-down). 49 DIF_10 O, DIF 0.7V Differential Clock Output 10 (HCSL-compatible), true output pin. 50 DIF_10# O, DIF 0.7V Differential Clock Output 10 (HCSL-compatible), complementary output pin. October 30, 2014 4 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Pin Description (Continued) Pin Number Pin Name Type(2) 51 OE_10# I, SE 3.3V LVTTL active-low input for enabling Differential Output 10 (50k pull-down). 52 DIF_11 O, DIF 0.7V Differential Clock Output 11 (HCSL-compatible), true output pin. 53 DIF_11# O, DIF 0.7V Differential Clock Output 11 (HCSL-compatible), complementary output pin. 54 OE_11# I, SE 3.3V LVTTL active-low input for enabling Differential Output 11 (50k pull-down). 55 DIF_12 O, DIF 0.7V Differential Clock Output 12 (HCSL-compatible), true output pin. 56 DIF_12# O, DIF 0.7V Differential Clock Output 12 (HCSL-compatible), complementary output pin. 57 OE_12# I, SE 3.3V LVTTL active-low input for enabling Differential Output 12 (50K pulldown). 58 VDD PWR 3.3V or 2.5V Power Supply. 59 DIF_13 O, DIF 0.7V Differential Clock Output 13 (HCSL-compatible), true output pin. 60 DIF_13# O, DIF 0.7V Differential Clock Output 13 (HCSL-compatible), complementary output pin. 61 DIF_14 O, DIF 0.7V Differential Clock Output 14 (HCSL-compatible), true output pin. 62 DIF_14# O, DIF 0.7V Differential Clock Output 14 (HCSL-compatible), complementary output pin. 63 GND GND Ground. 64 DIF_15 O, DIF 0.7V Differential Clock Output 15 (HCSL-compatible), true output pin. 65 DIF_15# O, DIF 0.7V Differential Clock Output 15 (HCSL-compatible), complementary output pin. 66 DIF_16 O, DIF 0.7V Differential Clock Output 16 (HCSL-compatible), true output pin. 67 DIF_16# O, DIF 0.7V Differential Clock Output 16 (HCSL-compatible), complementary output pin. 68 VDD PWR 3.3V or 2.5V Power Supply. 69 DIF_17 O, DIF 0.7V Differential Clock Output 17 (HCSL-compatible), true output pin. 70 DIF_17# O, DIF 0.7V Differential Clock Output 17 (HCSL-compatible), complementary output pin. 71 DIF_18 O, DIF 0.7V Differential Clock Output 18 (HCSL-compatible), true output pin. 72 DIF_18# O, DIF 0.7V Differential Clock Output 18 (HCSL-compatible), complementary output pin. ePad Exposed Pad GND October 30, 2014 Pin Function The center pad must be connected to the ground plane both for electrical ground and thermal relief. 5 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Absolute Maximum Ratings(3) Operating Ratings(4) Analog Supply Voltage (VDDA) ..................................... +4.6V I/O Supply Voltage (VDD). ............................................ +4.6V Input Low Voltage (VIL) ................................................ -0.5V Input High Voltage (VIH) .............................................. +4.6V Storage Temperature (TS) ......................... -65C to +150C ESD Rating(5) .................................................................. 2kV Supply Voltage (VDD, VDDA) .................. +2.375V to +3.465V Ambient Temperature (TA) .............................. 0C to +70C Junction Temperature (TJ) ....................................... +125C Case Temperature (TC) ............................................ +110C Thermal Resistance, Junction-to-Ambient (TJA) Still Air................................................................ 26C/W DC Electrical Characteristics(6) VDDA = VDD = 3.3V or 2.5 5%, TA = 0C to +70C. Symbol Parameter Condition Min. VDDA, VDD 3.3V or 2.5V Operating Range 3.3V or 2.5V 5% VIH Input High Voltage VDD = 3.3V. Single-ended inputs, except SMBus and tri-level inputs. VIL Input Low Voltage VDD = 3.3V. Single-ended inputs, except SMBus and tri-level inputs. IIL Input Leakage Current(7) VIL_TRI Max. Units 2.375 3.465 V 2 VDD + 0.3 V GND - 0.3 0.8 V 0 < VIN < VDD -5 5 A Input Low Voltage (Tri-Level Input) VDD = 3.3V 0 0.9 V VIM_TRI Input Mid Voltage (Tri-Level Input) VDD = 3.3V 1.3 1.8 V VIH_TRI Input High Voltage (Tri-Level Input) VDD = 3.3V 2.4 VDD V CIN Input Capacitance(8) 1 4.5 pF 1 4.5 pF 7 nH (8) Typ. COUT Output Capacitance LPIN Pin Inductance IDD_3.3V Operating Supply Current (IDDA + IDD) All outputs driven. 450 mA IDD_3.3PD Power-Down Current VDD = 3.3V. All differential pairs tristated. 43 mA VDDSMB Nominal SMBus Voltage 5.5 V VOLSMB SMBus Output Low Voltage 0.4 V VIHSMB SMBus input High Voltage VDDSMB V VILSMB SMBus input Low Voltage 0.8 V 2.7 @ IPULLUP 2.1 Notes: 3. Exceeding the absolute maximum ratings may damage the device. 4. The device is not guaranteed to function outside its operating ratings. 5. Devices are ESD sensitive. Handling precautions are recommended. Human Body Model. 6. Specification for packaged product only. 7. Input leakage current. Does not include inputs with pull-up or pull-down resistors. 8. Capacitance value does not include pin capacitance. October 30, 2014 6 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB DC Electrical Characteristics(6) (Continued) VDDA = VDD = 3.3V or 2.5 5%, TA = 0C to +70C. Symbol Parameter Condition IPULLUP(SMBUS) Current-Through Pull-Up Resistance or Current Source RPULLUP(SMBUS) Pull-Up Resistance Value VDD = 3.3V 5% TR(SMBUS) Rise Time for SDA and SCL TF(SMBUS) Fall Time for SDA and SCL Min. Typ. Max. Units 100 470 A 4.7 27 K (VIL(MAX) - 0.15) to (VIH(MIN) + 0.15) 1000 ns (VIH(MIN) + 0.15) to (VIL(MAX) - 0.15) 300 ns AC Electrical Characteristics - (CLK_IN, CLK_IN#) Clock Input Parameters VDDA = VDD = 3.3V or 2.5V 5%, TA = 0C to +70C. Symbol Parameter Condition Min. VIH (CLK_IN), (CLK_IN#) Differential Input High Voltage Statistical measurement on singleended signal using oscilloscope VHIGH math function. 660 VIL (CLK_IN), (CLK_IN#) Differential Input Low Voltage Statistical measurement on singleended signal using oscilloscope VLOW math function. -150 VIHMAX (CLK_IN), (CLK_IN#) Differential Input Maximum Voltage (include overshoot) Statistical measurement on singleended signal using absolute value. VILMIN (CLK_IN), (CLK_IN#) Differential Input Minimum Voltage (include undershoot) Statistical measurement on singleended signal using absolute value. -300 VSWING (CLK_IN), (CLK_IN#) Differential Input Swing (include over / undershoot) Differential input (peak-to-peak). 300 1450 mV VOX (CLK_IN), (CLK_IN#) Crossing Point Input Voltage (absolute) 250 550 mV VOXV (CLK_IN), (CLK_IN#) Crossing Point Input Voltage (variation) Variation of crossing over all edges. 140 mV Edge Rate (CLK_IN), (CLK_IN#) Minimum (CLK_IN)/(CLK_IN#) Edge Rate(9) Based on single-ended measurement. 0.35 Slew Rise (CLK_IN), (CLK_IN#) Input Rising Slew Rate Differential measurement 0.70 (10) Typ. Max. Units 850 mV mV 1150 mV mV V/ns 4 V/ns Notes: 9. The minimum input edge rate is 0.35V/ns single-ended or 0.7V/ns differential for both 100MHz and 133.33MHz. 10. The slew rate (0.70V/ns to 4V/ns) measurement on differential waveform for both 100MHz and 133.33MHz. October 30, 2014 7 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB AC Electrical Characteristics - (CLK_IN, CLK_IN#) Clock Input Parameters (Continued) VDDA = VDD = 3.3V or 2.5V 5%, TA = 0C to +70C. Symbol Parameter Slew Fall (CLK_IN), (CLK_IN#) Input Falling Slew Rate DC (CLK_IN), (CLK_IN#) Input Duty Cycle CY-CY Jitter (CLK_IN), (CLK_IN#) Cycle-to-cycle Input Jitter (10) Condition Min. Differential measurement. Differential measurement. Typ. Max. Units 0.70 4 V/ns 45 55 % 50 ps Spread Spectrum (SSC) Specification for Clock Input (CLK_IN, CLK_IN#) Symbol Parameter Value Modulation Down Spread (-0.5%) Maximum Modulation Frequency Modulation Frequency 30kHz to 33kHz Modulation Profile Triangular or Lexmark (-0.5%) Maximum October 30, 2014 8 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB AC Electrical Characteristics - HCSL Outputs VDDA = VDD = 3.3V or 2.5V 5%, TA = 0C to +70C. Condition (100MHz, 133.33MHz) Symbol Parameter TSTAB Clock Stabilization Time(11) Min. Typ. Max. Units 160 300 s 100 ppm (12, 13, 14, 15, 16) LACCURACY Long Accuracy TABSMIN Absolute Minimum Host CLK (12, 16, 17) Period When (-0.5%) spread spectrum clock input (SSCON). TABSMIN Absolute Minimum Host CLK Period(12, 16, 17) When non-spread spectrum SSC clock input (SSCOFF). Edge Rate Edge Rate(18) Measurement from differential waveform. 1.0 2.5 4.0 V/ns TR Rise Time(19, Single-ended measurement VOL = 0.175V, VOH = 0.525V. 175 225 700 ps TF Fall Time(19, Single-ended measurement VOH = 0.525V, VOL = 0.175V. 175 225 700 ps 20) 20) (see Figure 2) (see Figure 2) (Period - 0.125ns) ns -2.5% ns Notes: 11. This is the time from ramping the power supply, or assertion the PWRGD and when valid CLK_IN input until the time that stable clocks are output from the device (PLL locked). 12. All long-time accuracy and clock period specifications are guaranteed assuming that the input reference (CLK_IN, CLK_IN#) meets the CK410B+ or CK420BQ clock period specifications. 13. The long accuracy is 0ppm, when average only over any integer number of SSC periods. 14. When (SSCOFF), using the frequency counter with the measurement interval equal to or greater than 0.15s, target frequencies are 100,000,000Hz, 133,333,333Hz. 15. When (SSCON), using the frequency counter with the measurement interval equal to or greater than 0.15s, target frequencies are 99,750,000Hz, 133,000,000Hz. 16. Measurement taken from differential waveform. 17. The average period over any 1s period of time must be greater than the minimum and less than the maximum specified period. 18. Measure taken from differential waveform on a component test board. The edge (slew) rate is measured from (-150mV) to (+150mV) on the differential waveform. Scope is set to average. Signal must be monotonic through the VOL to VOH region for TR and TF. 19. Measured from VOL = 0.175V and VOH = 0.525V. Only valid for rising clock and falling CLK#. Signal must be monotonic through VOL to VOH region for TR and TF. Measurement taken from single-ended waveform. The translation will be (0.5V/ns minimum to 2V/ns maximum) for single-ended edge rate. Refer to Figure 2. 20. Measurement taken from single-ended waveform. October 30, 2014 9 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB AC Electrical Characteristics - HCSL Outputs (Continued) VDDA = VDD = 3.3V or 2.5V 5%, TA = 0C to +70C. Condition (100MHz, 133.33MHz) Symbol Parameter TR Rise Time Variation(20, 21) Min. Typ. Max. Units 125 ps 125 ps T F Fall Time Variation TRFM Rise and Fall Time (20, 21, 22) Matching VHIGH Differential Output High Voltage (typically 0.7V) (20, 23) Statistical measurement on single-ended signal using oscilloscope math function. 660 700 850 mV VLOW Differential Output Low Voltage (typically 0.0V) (20, 24) Statistical measurement on single-ended signal using oscilloscope math function. -150 8 50 mV VOVS Differential Output Maximum Voltage (include overshoot) (see Figure 3) Statistical measurement on single-ended signal using absolute value. VHIGH + 0.3V V VUDS Differential Output Minimum Voltage (include undershoot) (see Figure 3) Statistical measurement on single-ended signal using absolute value. VLOW - 0.3V V VRB Ringback Voltage (see Figure 3) Statistical measurement on single-ended signal using absolute value (-0.5%) SSC input (SSCON). VRB Ringback Voltage (see Figure 3) Statistical measurement on single-ended signal using absolute value non-SSC input (SSCOFF). VOX (Absolute) Absolute Crossing Point (20, 25) Voltages Statistical measurement on single-ended signal using absolute value. Total VOX Total Variation of VOX Over All (20, 26) Edges Statistical measurement on single-ended signal using absolute value. (20, 21) Determined as fraction of 2 x (TR - TF) / (TR+TF). 20 % 0.2 V VX 0.2 V 250 550 mV 140 mV Notes: 21. Measured with oscilloscope, averaging off, and using minimum/maximum statistics. Variation is the delta between minimum and maximum. 22. Measured with oscilloscope, averaging on, the difference between the rising edge rate (average) of clock versus the falling edge rate (average) of clock#. 23. A statistical average high value for VHIGH obtained by using the oscilloscope VHIGH math function. 24. A statistical average low value for VLOW obtained by using the VLOW math function. 25. The crossing point should meet the absolute and relative crossing point specifications simultaneously. 26. VOX is defined as the total variation of all crossing voltages of rising CLOCK and falling CLOCK#. October 30, 2014 10 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB AC Electrical Characteristics - HCSL Outputs (Continued) VDDA = VDD = 3.3V or 2.5V 5%, TA = 0C to +70C. Symbol Parameter Condition (100MHz, 133.33MHz) Duty Cycle Differential Output Duty (16) Cycle (see Figure 4) Duty Cycle Distortion Differential Output Duty Cycle (16, 31) (see Figure 4) Distortion TSKEW Output-to-Output Delay (see Figure 4) Measured at VOX (common to PLL and bypass mode). TPD (CLK_IN) to DIF [18:0] Input-to-Output Delay(27, 28) Measured at VOX (PLL mode). TPD (CLK_IN) to DIF_[18:0] Input-to-Output Delay (27) Variation CY-CY Jitter DIF_[18:0] DIF#_[18:0] Cycle-to-Cycle Jitter TPD (CLK_IN) to DIF_[18:0] Input-to-Output Delay Measured at VOX (bypass mode). TPD (CLK_IN) to DIF_[18:0] Input-to-Output Delay Variation(27) Measured at VOX (bypass mode) absolute. TDTE Random Differential Tracking Error between two devices in Hi BW mode(29) TDSSTE P2P Differential Spread Spectrum Tracking Error between two devices in Hi BW mode(30) (27, 28) (16) (27) Min. Typ. Max. Units Measurement from differential waveform (measured at VOX). PLL Mode 45 50 55 % Measurement from differential waveform (measured at VOX). Bypass mode at 100MHz -2 0 +2 % 18 35 ps 15 35 ps Measured at VOX (PLL mode). 13 |75| ps PLL mode. 25 35 ps 4.5 ns |225| ps PLL (HBW) mode, no spread spectrum. 3.5 ps PLL (HBW) mode, SSCON. 50 ps -35 0.7 Notes: 27. Measured from differential crossing point (VOX) to differential crossing point (VOX) with scope averaging on to find mean value. VOX (relative) minimum and maximum are derived using the following: VOX (relative) minimum = 0.250 + 0.5 VHAVG - 0.7V) and VOX (relative) maximum = 0.550 - 0.5 (0.7V - VHAVG). 28. Measured into fixed 2pF load capacitor. Input to output skew is measured at the first output edge following the corresponding input. 29. This parameter is measured at the outputs of two MDB1900ZB devices in the HBW mode driven by a CK420BQ. The random differential tracking error is the differential phase jitter. It is the accumulated phase jitter, not including the effect of spread spectrum and not shared by the outputs. The jitter is measured into 2pF load cap and from differential cross-point to differential cross-point 30. This is the P2P difference in spread spectrum tracking error between two MDB1900ZB devices in Hi BW mode. The parameter is measured at the output of two MDB1900ZB devices driven by a CK420BQ with SSCON. 31. Duty Cycle Distortion is the difference in duty cycle between the output and the input clock when the device is operated in bypass mode. October 30, 2014 11 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Clock Period - SSC Disabled Measurement Window SSCOFF Center Frequency MHz 1 Clock 1s 0.1s 0.1s 0.1s 1s 1 Clock -JITTERC - C Absolute per Minimum -SSC Short Average Minimum -ppm Long Average Minimum 0ppm Period +ppm Long Average Maximum +SSC Short Average Maximum +JITTERC - C Absolute per Maximum Units 100 9.94900 9.99900 10.00000 10.00100 10.05100 ns 133.0 7.44925 7.49925 7.50000 7.50075 7.55075 ns Clock Period - SSC Enabled Measurement Window 1 Clock 1s 0.1s 0.1s 0.1s 1s 1 Clock -JITTERC - C Absolute per Minimum -SSC Short Average Minimum -ppm Long Average Minimum 0ppm Period +ppm Long Average Maximum +SSC Short Average Maximum +JITTERC - C Absolute per Maximum 99.75 9.94906 9.99906 10.02406 10.02506 10.02607 10.05107 10.10107 ns 133.0 7.44930 7.44930 7.51805 7.51880 7.51955 7.5830 7.58830 ns SSCON Center Frequency MHz October 30, 2014 12 Units Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB PLL Bandwidth - Peaking and Phase Jitter (SSCOFF) VDDA = VDD = 3.3V or 2.5V 5%, TA = 0C to +70C. Symbol PLL Jitter Peaking(32) PLL Bandwidth(33) Phase Jitter (34, 36, 37) (PCIe Gen1) Phase Jitter (36, 37, 39) (PCIe Gen2) Condition (100MHz, 133.33MHz) Min. Typ. Max. HBW_BYPASS_LBW# = 0 (low bandwidth) 1.0 HBW_BYPASS_LBW# = 1 (high bandwidth) 1.0 HBW_BYPASS_LBW# = 0 (low bandwidth) 0.70 1.0 1.4 HBW_BYPASS_LBW# = 1 (high bandwidth) 2 3.0 4 PCIe Gen1 (including PLL BW 1.5MHz - 22MHz, damping factor = 0.54, TD = 10ns, FTRK = 1.5MHz) 16 50 PCIe Gen2 (including PLL BW 8MHz - 16MHz, jitter peaking = 3dB, damping factor = 0.54, TD = 10ns) (low band, F < 1.5MHz) 0.9 1.75 Units dB MHz ps(Pk-Pk) psRMS PCIe Gen2 (including PLL BW 8MHz - 16MHz, jitter peaking = 3dB, damping factor = 0.54, TD = 10ns) (high band, [1.5MHz < F < Nyquist]) 1.1 2.0 PCIe Gen3 (including PLL BW 2MHz - 4MHz, CDR = 10MHz) (low band) 1.9 2.5 PCIe Gen3 (including PLL BW 2MHz - 4MHz, CDR = 10MHz) (high band) 0.25 1.0 Accumulated Jitter (37, 38, 40) (4.8Gbps QPI) QPI, accumulated jitter (4.8Gbps or 6.4Gbps, 100MHz or 133MHz, 12 UI) 0.12 0.25 psRMS Accumulated Jitter (37, 38, 40) (6.4Gbps QPI) QPI, accumulated jitter (4.8Gbps or 6.4Gbps, 100MHz or 133MHz, 12 UI) 0.14 0.25 psRMS Accumulated Jitter (8Gbps QPI_SMI)(37, 38) QPI, accumulated jitter (8Gbps, 100MHz, 12 UI) 0.08 0.20 psRMS Accumulated Jitter (37, 38) (9.6Gbps QPI_SMI) QPI, accumulated jitter (9.6Gbps, 100MHz, 12 UI) 0.06 0.15 psRMS Accumulated Jitter (4MHz SMI) SMI, 4MHz accumulated jitter 0.06 0.2 psRMS Accumulated Jitter (16MHz SMI) SMI, 16MHz accumulated jitter 0.12 0.5 psRMS Phase Jitter (PCIe Gen3)(35, 36, 37, 39) psRMS Notes: 32. Measured as maximum pass band gain. At frequencies with the loop BW, highest point-of-magnification is called PLL jitter peaking. 33. Measured at 3dB down or half-power point. 34. These jitter numbers are defined for a BER of 1E-12. Measured numbers at a smaller sample size have to be extrapolated to this BER target. 35. PCIe Gen3 filter characteristics are subject to final ratification by PCI-SIG. Check with PCI-SIG for latest specification. 36. The damping factor damping factor = 0.54 is implying a jitter peaking of 3dB. 37. Post processed evaluation through Intel-supplied Matlab scripts. 38. Measuring on 100MHz output using the template file in the clock jitter tool. 39. Measuring on 100MHz PCIe SRC output using the template file in the clock jitter tool. 40. Measuring on 100MHz, 133.33MHz output using the template file in the clock jitter tool. October 30, 2014 13 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB PLL Bandwidth - Peaking and Phase Jitter (SSCON) VDDA = VDD = 3.3V or 2.5V 5%, TA = 0C to +70C. Symbol Condition (100MHz, 133.33MHz) (32) PLL Jitter Peaking Min. Typ. Max. HBW_BYPASS_LBW# = 0 (low bandwidth) 1.0 HBW_BYPASS_LBW# = 1 (high bandwidth) 1.0 Units dB HBW_BYPASS_LBW# = 0 (low bandwidth) 0.70 1.0 1.4 HBW_BYPASS_LBW# = 1 (high bandwidth) 2 3.0 4 PCIe Gen1 (including PLL BW 1.5MHz - 22MHz, damping factor = 0.54, TD = 10ns, FTRK = 1.5MHz) 16 50 PCIe Gen2 (including PLL BW 8MHz - 16MHz, Jitter Peaking = 3dB, damping factor = 0.54, TD = 10ns) (low band, F < 1.5MHz) 1.0 1.75 PCIe Gen2 (including PLL BW 8MHz - 16MHz, Jitter Peaking = 3dB, damping factor = 0.54, TD = 10ns) (high band, [1.5MHz < F < Nyquist]) 1.0 2.0 PCIe Gen3 (including PLL BW 2MHz - 4MHz, CDR = 10MHz) (low band) 2.7 3.0 PCIe Gen3 (including PLL BW 2MHz - 4MHz, CDR = 10MHz) (high band) 0.28 1.0 Accumulated Jitter (37, 38, 40) (4.8Gbps QPI) QPI, accumulated jitter (4.8Gbps or 6.4Gbps, 100MHz or 133MHz, 12 UI) 0.18 0.25 psRMS Accumulated Jitter (37, 38, 40) (6.4Gbps QPI) QPI, accumulated jitter (4.8Gbps or 6.4Gbps, 100MHz or 133MHz, 12 UI) 0.20 0.25 psRMS Accumulated Jitter (8Gbps QPI_SMI)(37, 38) QPI, accumulated jitter (8Gbps, 100MHz, 12 UI) 0.09 0.20 psRMS Accumulated Jitter (37, 38) (9.6Gbps QPI_SMI) QPI, accumulated jitter (9.6Gbps, 100MHz, 12 UI) 0.08 0.15 psRMS Accumulated Jitter (4MHz SMI) SMI, 4MHz accumulated jitter 0.12 0.2 psRMS Accumulated Jitter (16MHz SMI) SMI, 16MHz accumulated jitter 0.06 0.5 psRMS PLL Bandwidth (33) Phase Jitter (34, 36, 37) (PCIe Gen1) Phase Jitter (36, 37, 39) (PCIe Gen2) Phase Jitter (PCIe Gen3)(35, 36, 37, 39) October 30, 2014 MHz 14 ps(Pk-Pk) psRMS psRMS Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Functional Diagram October 30, 2014 15 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB External Feedback (FB_OUT, FB_OUT#) and (FB_IN, FB_IN#) Topology The MDB1900ZB utilizes external feedback topology to achieve low input-to-output delay variation. Place the shunt and series resistors as close to the (FB_OUT, FB_OUT#) (Pins 18 and 17) as possible (refer to Figure 1). Figure 1. External Feedback Table 1. Feedback Series and Shunt Resistors Board Table Impedance RS RP Units 100 33 (5%) 49.9 (1%) 85 27 (5%) 42.2 (1%) October 30, 2014 16 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Measurements Points for Differential Figure 2. Single-Ended Measurement Points for TRISE and TFALL Figure 3. Single-Ended Measurement Points for VOVS, VUDS, and VRB Figure 4. Differential (Clock/Clock#) Measurement Points for TPERIOD, Duty Cycle, and Jitter October 30, 2014 17 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Termination of HCSL [DIF, DIF# (18:0)] Output Buffers for Testing Conditions All differential output parameters are measured while driving 10in 100 or 85 differential impedance transmission line segments with 2pF load capacitors at the end of each segment. Measurements are taken across the 2pF load capacitor associated with Clock and Clock# as shown in Figure 5 and Figure 6. For resistive lumped load, board trace impedance and trace length refer to Table 3. Table 2. IREF and DIF Clock (HCSL) Output Current Board Trace Impedance Z Reference RIREF IREF = (1.1V) / (RIREF) Output Current (mA) VOH at Z 100 RIREF = 475 (1%) IREF = 2.32mA IOH = (6mA x IREF) 0.7V @ 50 85 RIREF = 412 (1%) IREF = 2.67mA IOH = (6mA x IREF) 0.7V @ 42.2 Table 3. Resistive Lumped Test Loads for HCSL Differential Clocks Clock Board Trace Impedance RS RP RIREF Units Clocks (100MHz and 133.33MHz) with 50 configuration 100 33 (5%) 49.9 (1%) 475 (1%) 10in. (maximum) into 2pF load with 100 differential impedance. Clocks (100MHz and 133.33MHz) with 42.5 configuration 85 27 (5%) 42.2 (1%) 412 (1%) 10in. (maximum) into 2pF load with 85 differential impedance. October 30, 2014 18 Notes Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Figure 5. 0.7V Configuration Test Load Board Termination with 100 Differential Impedance Transmission Line Figure 6. 0.7V Configuration Test Load Board Termination with 85 Differential Impedance Transmission Line October 30, 2014 19 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Functional Description CLK_IN, CLK_IN# Input Reference The reference clock (CLK_IN, CLK_IN#) is an HCSL (0.7V) differential input with 100MHz or 133.33MHz frequency from CK410B+, CK509B or CK420BQ clock Synthesizer. The input (CLK_IN, CLK_IN#) has the option to have spread spectrum ON or spread spectrum OFF. The spread spectrum clocking (SSC) has modulation frequency value of 30kHz - 33kHz, with modulation of -0.5% down-spread (maximum). The modulation profile is Triangular or Lexmark. OE# Assertion (Transition from Logic 1 to Logic 0) All differential outputs that were tri-stated are to resume normal operation in a glitch free manner. The latency from the assertion to active outputs is 4 - 12 DIF clock periods. OE# De-Assertion (Transition from Logic 0 to Logic 1) The impact of de-asserting OE# is each corresponding differential output will transition from normal operation to tri-state in a glitch free manner. A minimum of four valid clocks will be provided after OE# de-assertion. The maximum latency from the de-assertion to tri-stated outputs is twelve DIF clock periods. OE# and Output Enables (Control Registers) OE# pins are dedicated control pins for DIF [12:5] outputs and are asynchronous asserted-low signals. Each output can be individually enabled or disabled by SMBus control register bits. The output enable bits in the SMBus registers are active high and by default are set to enable. Table 4. OE Functionality Inputs OE# Hardware Pins and Control Register Bits Outputs PWRGD/ PWRGD# CLK_IN/ CLK_IN# SMBus Enable Bit OE # DIF/DIF#_ [12:5] DIF/DIF#_ [18:13], [4:0] FB_OUT/ FB_OUT# PLL State 0 X X X Hi-Z Hi-Z Hi-Z ON 0 X Hi-Z Hi-Z Running ON 1 0 Running Running Running ON 1 1 Hi-Z Running Running ON 1 October 30, 2014 Running 20 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB 100M_133M# (Frequency Selection) The 100M_133M# is a hardware pin which programs the appropriate output frequency. The MDB1900ZB is operated in the 1:1 mode only; therefore the CLK_IN frequency is equal to DIF [18:0] frequency. The frequency selection can be enabled by 100M_133M# pin or by SMBus control register bit. Note: The default frequency at power-up is 100MHz. Table 5. Frequency Program Figure 7. PWRGD Assertion (Power-Down De-Assertion) 100M_133M# Optimized Frequency (CLK_IN = DIF_[18:0]} 0 133.33MHz 1 100.00MHz (Default) PWRDN# Assertion When PWRDN# is sampled as being asserted by two consecutive rising edges of DIF#, all differential outputs must be tri-stated on the next DIF# high-to-low transition. PWRGD / PWRDN# De-assertion of PWRGD (Logic 0) which becomes PWRDN# indicates a power-down mode, which will shut off all clocks cleanly. PWRDN# is asynchronous active low input, and instructs the device to enter power saving mode. PWRDN# should be asserted low prior to shutting off the input clock or power to ensure all clocks shut down in a glitch-free manner, and all outputs will be tristated. Figure 8. PWRDN# Assertion Table 6. PWRGD/PWRGDN# Functionality PWRGD/ PWRGDN# DIF_/DIF# [18.0] Notes 0 Tri-State Power-Down Mode 1 Normal Active Mode HBW_BYPASS_LBW# The HBW_BYPASS_LBW# is a tri-level function input pin. It is used to select between PLL high-bandwidth, bypass mode and PLL low bandwidth. The PLL HBW, BYPASS and PLL LBW mode may be selected via writing to SMBus register or by asserting the HBW_BYPASS_LBW input pin to the appropriate level per Table 7. PWRGD Assertion The power-up latency is less than 1.8ms. This is the time from the assertion of the PWRGD pin or the ramping of the power supply and the time from valid CLK_IN input clock until the time that stable clocks are output from the buffer chip (PLL locked). Table 7. PLL Bandwidth and Readback HBW_BYPASS_LBW# Mode Byte 0, Bit 7 Byte 0, Bit 6 The assertion and de-assertion of PWRDN# is absolutely asynchronous L (Low) LBW (Low PLL Bandwidth) 0 0 Note: It is not recommended to disable (CLK_IN, CLK_IN#) input prior to assertion of PWRDN# and operation in this mode can result in glitches and excessive frequency shifting. M (Mid) BYPASS (Bypass PLL) 0 1 H (High) HBW (High PLL Bandwidth) 1 1 October 30, 2014 21 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB SA_0, SA_1 (Address Selection) SA_0 and SA_1 are tri-level hardware pins that can configure the MDB1900ZB to nine different addresses. Table 8. SA_0, SA_1, and SMBus Address SA_1 SA_0 SMBus Address L L D8 L M DA L H DE M L C2 M M C4 M H C6 H L CA H M CC H H CE October 30, 2014 22 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB MDB1900ZB Control Registers SDA, SCL (Pins 12, 13) The serial data (SDA) and serial clock (SCL) are dedicated for SMBus application and designed for 400Kb/s (maximum). All electrical characteristics meet the standard mode specifications of the SMBus 2.0 specification. For SDA and SCL input specs, refer to the DC Electrical Characteristics. The SDA and SCL pins do not have internal pull-up resistors. When the device is in power-down mode, the SDA and SCL inputs are tri-stated and all programming information is retained. Table 9. Byte 0: Frequency Select, Output Enable, PLL-Mode Control Register Bit Description 7 HBW_BYPASS_LBW# Mode 1 If Bit = 0 If Bit = 1 Type Default Pin(s) R Latched at Power-Up 5 R Latched at Power-Up 5 Refer to Table 4 6 HBW_BYPASS_LBW# Mode 0 5 Output Enable DIF, DIF#_18 Hi-Z Enable RW 1 71, 72 4 Output Enable DIF, DIF#_17 Hi-Z Enable RW 1 69, 70 3 Output Enable DIF, DIF#_16 Hi-Z Enable RW 1 66, 67 2 Reserved - - - - - 1 Reserved - - - - - 0 100M_133M# Frequency Select 133.33MHz 100MHz R Latched at Power-Up 4 Table 10. Byte 1: Output Enable Control Register Bit Description If Bit = 0 If Bit = 1 Type Default Pin(s) 7 Output Enable DIF, DIF#_[7] Hi-Z Enabled RW 1 38, 39 6 Output Enable DIF, DIF#_[6] Hi-Z Enabled RW 1 35, 36 5 Output Enable DIF, DIF#_[5] Hi-Z Enabled RW 1 32, 33 4 Output Enable DIF, DIF#_[4] Hi-Z Enabled RW 1 29, 30 3 Output Enable DIF, DIF#_[3] Hi-Z Enabled RW 1 27, 28 2 Output Enable DIF, DIF#_[2] Hi-Z Enabled RW 1 24, 25 1 Output Enable DIF, DIF#_[1] Hi-Z Enabled RW 1 22, 23 0 Output Enable DIF, DIF#_[0] Hi-Z Enabled RW 1 19, 20 October 30, 2014 23 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Table 11. Byte 2: Output Enable Control Register Bit Description If Bit = 0 If Bit = 1 Type Default Pin(s) 7 Output Enable DIF, DIF#_[15] Hi-Z Enabled RW 1 64, 65 6 Output Enable DIF, DIF#_[14] Hi-Z Enabled RW 1 61, 62 5 Output Enable DIF, DIF#_[13] Hi-Z Enabled RW 1 59, 60 4 Output Enable DIF, DIF#_[12] Hi-Z Enabled RW 1 55, 56 3 Output Enable DIF, DIF#_[11] Hi-Z Enabled RW 1 52, 53 2 Output Enable DIF, DIF#_[10] Hi-Z Enabled RW 1 49, 50 1 Output Enable DIF, DIF#_[9] Hi-Z Enabled RW 1 46, 47 0 Output Enable DIF, DIF#_[8] Hi-Z Enabled RW 1 41, 42 Table 12. Byte 3: OE# Pin Real-time Readback Control Register Bit Description If Bit = 0 If Bit = 1 Type Default Pin(s) 7 Real-Time Readback of OE_12# OE_5# Low OE_5# High R Real-Time 57 6 Real-Time Readback of OE_11# OE_6# Low OE_6# High R Real-Time 54 5 Real-Time Readback of OE_10# OE_7# Low OE_7# High R Real-Time 51 4 Real-Time Readback of OE_9# OE_8# Low OE_8# High R Real-Time 48 3 Real-Time Readback of OE_8# OE_9# Low OE_9# High R Real-Time 43 2 Real-Time Readback of OE_7# OE_10# Low OE_10# High R Real-Time 40 1 Real-Time Readback of OE_6# OE_11# Low OE_11# High R Real-Time 37 0 Real-Time Readback of OE_5# OE_12# Low OE_12# High R Real-Time 34 October 30, 2014 24 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Table 13. Byte 4: Reserved Control Register Bit Description If Bit = 0 If Bit = 1 Type Default Pin(s) 7 Reserved - - - - - 6 Reserved - - - - - 5 Reserved - - - - - 4 Reserved - - - - - 3 Reserved - - - - - 2 Reserved - - - - - 1 Reserved - - - - - 0 Reserved - - - - - Default Pin(s) Table 14. Byte 5: Vendor/Revision Identification Control Register Bit Description If Bit = 0 If Bit = 1 Type 7 Revision Code Bit 3 - - R - Vendor Specific (contact factory for details) 6 Revision Code Bit 2 - - R - 5 Revision Code Bit 1 - - R 4 Revision Code Bit 0 - - R 3 Vendor ID Bit 3 - - R 0 - 2 Vendor ID Bit 2 - - R 0 - 1 Vendor ID Bit 1 - - R 1 - 0 Vendor ID Bit 0 - - R 1 - If Bit = 1 Type Default Pin(s) - - Table 15. Byte 6: Device ID Control Register Bit Description 7 Device ID 7 (MSB) R 1 - 6 Device ID 6 R 1 - 5 Device ID 5 R 0 - 4 Device ID 4 R 1 - 3 Device ID 3 R 1 - 2 Device ID 2 R 0 - 1 Device ID 1 R 1 - 0 Device ID 0 R 1 - October 30, 2014 If Bit = 0 Device ID is 0xDB (Hex), or 219 (Decimal) 25 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Byte 7: Byte Count Register Writing to bits [0:4] of Byte 7 configures how many bytes will be read back. Table 16. Byte 7: Byte Count Register Bit Description If Bit = 0 If Bit = 1 Type Default Pin(s) 7 Reserved - - - - - 6 Reserved - - - - - 5 Reserved - - - - - 4 BC4 - - RW 0 - 3 BC3 - - RW 1 - 2 BC2. - - RW 0 - 1 BC1 - - RW 0 - 0 BC0 - - RW 0 - Byte 8, 9, 10: Access and Controls for Optional Advanced Features Registers 8, 9, and 10 are additional Micrel-defined registers to allow access to and control of optional advanced features. For optional features details, please see the Optional Features section. Optional advanced features use a two level read or write access, wherein the first step is to enter an access code in Byte 8, followed by entering a feature's bit address in Byte 9, and then reading or writing control information in Byte 10. Byte 8: Advanced Features Access Register This is a write-only register which defines the access to Register 9 and 10. When value 0xBB(`1011'1011) is written to Register 8, then Registers 9 and 10 become accessible. Otherwise, Registers 9 and 10 cannot be either read or written. Table 17. Byte 8: Advanced Features Access Register Bit Description If Bit = 0 If Bit = 1 Type Default Pin(s) 7 access[7] - - W - - 6 access[6] - - W - - 5 access[5] - - W - - 4 access[4] - - W - - 3 access[3] - - W - - 2 access[2] - - W - - 1 access[1] - - W - - 0 access[0] - - W - - October 30, 2014 26 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Byte 9: Features Bits Address Register Each optional feature has an associate set of bits and each bit has a unique address. For details of optional features and their associated bit addresses, please see the Optional Features section. In order to access a bit, its address has to be written to Register 9. Table 18. Byte 9. Features Bits Address Register Bit Description If Bit = 0 If Bit = 1 Type Default Pin(s) 7 fbitaddr[7] - - RW - - 6 fbitaddr[6] - - RW - - 5 fbitaddr[5] - - RW - - 4 fbitaddr[4] - - RW - - 3 fbitaddr[3] - - RW - - 2 fbitaddr[2] - - RW - - 1 fbitaddr[1] - - RW - - 0 fbitaddr[0] - - RW - - Table 19. Byte 10: Optional Advanced Features Bits Command Register Bit Description If Bit = 0 If Bit = 1 Type Default Pin(s) 7 Write Enable - - W - - 6 Feature Bit State (Read) - - R - - 5 Reserved - - - - - 4 Reserved - - - - - 3 Reserved - - - - - 2 Reserved - - - - - 1 Feature Bit State (Write) - - W - - 0 Reserved - - - - - Byte 10: Features Bits Command Register To read or write a feature bit value, first write the 1011 1011 access code to byte 8 followed by the feature bit address to byte 9. The current value of the feature bit will appear in bit 6 of byte 10, where it can be read. To write the value of the feature bit, write the desired value into bit 1 of byte 10 and also set bit 7 of byte 10 to `1' to enable the writing. Next, write `0000 0000' to byte 10 to close writing before changing to another address in byte 9. October 30, 2014 27 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Feature Bit Commands READ: To Read a Current Feature Bit Value 1. Write `1011'1011 to Register 8 (to enable Register 9 and 10). WRITE: To change the Value of a Feature Bit 1. Write `1011'1011 to Register 8 (to enable Register 9 and 10). 2. Write the feature bit address to Register 9. 2. Write the feature bit address to Register 9. 3. Read Register 10, the feature bit state is available in bit 6 of register 10. 3. Write `1000'00s0 to Register 10, where s is the feature bit value (`0' or `1'). Example 1 4. Write `0000'0000 to Register 10 to close the write command. To read the LSB of the delay on CLK_IN path (delay_clkin[0], Address 132): Example 1 1. Write `1011'1011 to Register 8 (to enable Register 9 and 10). To set (write) the LSB of the delay on CLK_IN path to 1 (delay_clkin[0], Address 132): 2. Write `1000'0100 to Register 9 (Address 132). 1. Write `1011'1011 to Register 8 (to enable Register 9 and 10). 3. Read Register delay_clkin[0]. 10, Bit 6 for the value of 2. Write `1000'0000 to Register 9 (Address 132). Example 2 3. Write `1000'0010 to Register 10 for delay_clkin[0]=1 or `1000'0000 for delay_clkin[0]=0. To read the MSB of output0 (Out0trim[3], Address 143, Default 1): 4. Write `0000'0000 to Register 10. Example 2 1. Write `1011'1011 to Register 8 (to enable Register 9 and 10). To set (write) the MSB of output0 to 0 (Out0trim[3], Address 143, Default 1). 2. Write `1000'1111 to Register 9 (Address 143). 1. Write `1011'1011 to Register 8 (to enable Register 9 and 10). 3. Read Register 10, Bit 6 for the value of Out0trim[3]. 2. Write `1000'1111 to Register 9 (Address 143). 3. Write `1000'0010 to register 10 for Out0trim[3]=1 or `1000'0000 for Out0trim[3]=0. 4. Write `0000'0000 to Register 10. October 30, 2014 28 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Figure 9. Buffer Power-Up State Diagram Table 20. Buffer Power-Up State Machine State Description 0 Buffer power off. 1 After supply is detected to rise above 1.8 V - 2.0 V, the buffer enters (state 1) and initiates (>0.25ms - 0.3ms) delay. 2 Buffer waits for a valid (CLK_IN, CLK_IN#) and PWRDN# de-assertion. 3 After the PLL locked to input reference (CLK_IN, CLK_IN#), the buffer enters (State 3) and enables all outputs for normal operation. The total power-up latency is < 1.8ms (assuming a valid clock is present on (CLK_IN, CLK_IN#) input. If power is valid and PWRDN# is de-asserted but no input (CLK_IN, CLK_IN#), therefore all DIF,DIF#_[18:0] remain disabled. Only after input clock is detected, valid power, PWRDN# de-asserted with the PLL locked/stable and the DIF, DIF# are enabled. October 30, 2014 29 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Optional Features The MDB1900ZB is 100% compatible with the Intel DB1900Z specification document and can be used in any application where that part is called for. However, Micrel has made available optional features that are largely enabled through three additional registers (Registers 8, 9, and 10). These optional features allow for significant power savings and for coping with PCB manufacturing variability. Zero Delay Optimization The MDB1900ZB has excellent zero delay characteristics that are far better than required by the Intel specification. However, the exact value of the zero delay is partially dependent on the external feedback path and this can vary with the PCB board design and with manufacturing variations in the PCB. To compensate for errors in the PCB design or to relax the manufacturing tolerance required from the PCB board vendor, Micrel has provided the ability to independently add delay into either or both the CLK_IN path and the FB_IN path (see Table 21 and 2.5V Operation In addition to the 3.3V (5%) operation voltage called for by the Intel specification, the MDB1900ZB supports 2.5V (5%) operation voltage. No changes to registers or power supply filtering components are required to use this feature. Simply connect a 2.5V supply where the 3.3V supply is specified and the part will continue to work correctly, including all output voltages and levels. Switching to 2.5V from 3.3V will save approximately 25% in total power dissipation for this part. October 30, 2014 30 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Table 22). Table 21. Feature Bit Address [135:132] DELAY_CLKIN[3:0] DELAY_CLKIN[3:0] Additional Delay in CLK_IN Path (Typical Value with Respect to Default) Unit `0000 (Default) - ps `0001 18 ps `0010 29 ps `0011 50 ps `0100 68 ps `0101 88 ps `0110 101 ps `0111 121 ps `1000 141 ps `1001 163 ps October 30, 2014 31 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Table 22. Feature Bit Address [139:136] DELAY_FB[3:0] DELAY_FB[3:0] Additional Delay in FB_IN Path (Typical Value with Respect to Default) Unit `0000 (Default) - ps `0001 18 ps `0010 29 ps `0011 50 ps `0100 68 ps `0101 88 ps `0110 101 ps `0111 121 ps `1000 141 ps `1001 163 ps October 30, 2014 32 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Input Signal Pin Capacitance The zero delay value is defined not only by the external feedback path but also by the input pin capacitance driven by that feedback path. The input pin capacitance is allowed by the Intel specification to be within a fairly broad range. The Micrel part is always within the low end of the allowed range ensuring a low capacitive load and sharp edge rates. However, the user can adjust the MDB1900ZB so that it presents a larger input capacitance load at CLK_IN, CLK_IN#, FB_IN, FB_IN#. This feature can be used to ensure compatibility with third-party vendors who can still meet the Intel specification, but have significantly different input capacitances (see Table 23 and Table 24). Table 23. Feature Bit Address [218:216] INPUT_CAP_CLKIN[2:0] INPUT_CAP_CLKIN[2:0] Input Capacitance (Typical Value) Unit `000 (Default) 2.46 pF `001 2.82 pF `010 3.24 pF `011 3.58 pF `100 4.02 pF `101 4.34 pF `110 4.77 pF `111 5.12 pF Table 24. Feature Bit Address [221:219] INPUT_CAP_FBIN[2:0] INPUT_CAP_FBIN[2:0] Input Capacitance (Typical Value) Unit `000 (Default) 2.46 pF `001 2.82 pF `010 3.24 pF `011 3.58 pF `100 4.02 pF `101 4.34 pF `110 4.77 pF `111 5.12 pF October 30, 2014 33 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Bypass Delay The Intel specification calls for a fairly long delay of 2.5ns when the PLL is in bypass mode. The MDB1900ZB fully meets this specification in default mode. However, if the user wishes to have a much shorter bypass delay of 0.9ns this feature can be enabled. The specification calls for all enabled outputs to drive at the same current level. However, the MDB1900ZB allows the user to independently control the current drive to each output. This feature can be used to selectively save power on lightly loaded or short traces where VOH, VOL and edge rate can readily be met with reduced current without impacting other traces. Output Drive Levels The Intel specification calls for very specific current drive levels on each of the HCSL outputs based on whether the part is driving 85 traces or 100 traces. Table 25. Feature Bit Address [222] DELAY_BYPASS Delay Bypass Input-to-Output Delay - PLL Bypass Mode (Typical Value) Unit `0 (Default) 2.5 ns `1 0.9 ns Output Feature Bit Address Feature Bits 0 Address[143:140] Out0trim[3:0] 1 Address[147:144] Out1trim[3:0] 2 Address[151:148] Out2trim[3:0] 3 Address[155:152] Out3trim[3:0] 4 Address[159:156] Out4trim[3:0] 5 Address[163:160] Out5trim[3:0] 6 Address[167:164] Out6trim[3:0] 7 Address[171:168] Out7trim[3:0] 8 Address[175:172] Out8trim[3:0] 9 Address[179:176] Out9trim[3:0] 10 Address[183:180] Out10trim[3:0] 11 Address[187:184] Out11trim[3:0] 12 Address[191:188] Out12trim[3:0] 13 Address[195:192] Out13trim[3:0] 14 Address[199:196] Out14trim[3:0] 15 Address[203:200] Out15trim[3:0] 16 Address[207:204] Out16trim[3:0] 17 Address[211:208] Out17trim[3:0] 18 Address[215:212] Out18trim[3:0] Table 26. Feature Bit Address [215:140] Output Drive Level October 30, 2014 34 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Table 27. Output Drive Level, Output Trim Feature Bits Definition (also refer to Table 26) Output Trim Feature Bits [3:0] Output Drive Level (Relative to Default) Output Current 100 Loads (mA) Output Current 85 Loads (mA) '0000 (Default) 100% 14.0 16.0 '0001 90% 12.6 14.4 '0011 80% 11.2 12.8 '0100 70% 9.8 11.2 '0110 60% 8.4 9.6 '0111 50% 7.0 8.0 '1010 40% 5.6 6.4 '1011 30% 4.2 4.8 '1100 20% 2.8 3.2 '1110 10% 1.4 1.6 '1111 0% 0.0 0.0 Example of Setting Output 1 to 60% Strength (change from default 100%) Feature Bits: out1trim[3:0], address[147:144] In order to set output1 to 60% strength, out1trim[3:0] needs to be `0110. Therefore, feature bits 145 and 146 need to be inverted: 1. Write `1011'1011 to Register 8 (to enable Register 9 and 10) 2. Write `1001'0001 to Register 9 (Feature Bit 145) 3. Write `1000'0010 to Register 10 (set Feature Bit 145 to 1) 4. Write `0000'0000 to Register 10 5. Write `1001'0010 to Register 9 (Feature Bit 146) 6. Write `1000'0010 to Register 10 (set Feature Bit 146 to 1) 7. Write `0000'0000 to Register 10 October 30, 2014 35 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Package Information and Recommended Land Pattern(41) Note: 41. Package information is correct as of the publication date. For updates and most current information, go to: www.micrel.com. October 30, 2014 36 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB MICREL, INC. 2180 FORTUNE DRIVE SAN JOSE, CA 95131 USA TEL +1 (408) 944-0800 FAX +1 (408) 474-1000 WEB http://www.micrel.com Micrel, Inc. is a leading global manufacturer of IC solutions for the worldwide high-performance linear and power, LAN, and timing & communications markets. The Company's products include advanced mixed-signal, analog & power semiconductors; high-performance communication, clock management, MEMs-based clock oscillators & crystal-less clock generators, Ethernet switches, and physical layer transceiver ICs. Company customers include leading manufacturers of enterprise, consumer, industrial, mobile, telecommunications, automotive, and computer products. Corporation headquarters and state-of-the-art wafer fabrication facilities are located in San Jose, CA, with regional sales and support offices and advanced technology design centers situated throughout the Americas, Europe, and Asia. Additionally, the Company maintains an extensive network of distributors and reps worldwide. Micrel makes no representations or warranties with respect to the accuracy or completeness of the information furnished in this datasheet. This information is not intended as a warranty and Micrel does not assume responsibility for its use. Micrel reserves the right to change circuitry, specifications and descriptions at any time without notice. No license, whether express, implied, arising by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Micrel's terms and conditions of sale for such products, Micrel assumes no liability whatsoever, and Micrel disclaims any express or implied warranty relating to the sale and/or use of Micrel products including liability or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright, or other intellectual property right. Micrel Products are not designed or authorized for use as components in life support appliances, devices or systems where malfunction of a product can reasonably be expected to result in personal injury. Life support devices or systems are devices or systems that (a) are intended for surgical implant into the body or (b) support or sustain life, and whose failure to perform can be reasonably expected to result in a significant injury to the user. A Purchaser's use or sale of Micrel Products for use in life support appliances, devices or systems is a Purchaser's own risk and Purchaser agrees to fully indemnify Micrel for any damages resulting from such use or sale. (c) 2014 Micrel, Incorporated. October 30, 2014 37 Revision 1.1 tcghelp@micrel.com or (408) 955-1690 Micrel, Inc. MDB1900ZB Revision History Date Change Description/Edits by: 9/22/14 Initial release of template-compliant datasheet 1.0 10/15/14 Fixing minor issues 1.1 October 30, 2014 Rev. 38 Revision 1.1 tcghelp@micrel.com or (408) 955-1690