Products and specifications discussed herein are subject to change by Micron without notice.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Features
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_1.fm - Rev. B 5/07 EN 1©2007 Micron Technology, Inc. All rights reserved.
Async/Page CellularRAM™ 1.0 Memory
MT45W2MW16PGA
Features
Asynchronous and page mode interface
Random access time: 70ns
•V
CC, VCCQ voltages:
1.7–1.95V VCC
1.7–3.6V VCCQ
Page mode read access:
16-word page size
Interpage read access: 70ns
Intrapage read access: 20ns
Low power consumption:
Asynchronous READ: <20mA
Intrapage READ: <15mA
Standby: <11A
Deep power-down: <10µA (TYP at 25°C)
•Low-power features:
Temperature-compensated refresh (TCR)
On-chip temperature sensor
Partial-array refresh (PAR)
Deep power-down (DPD) mode
Notes: 1. –30°C exceeds the CellularRAM Workgroup
1.0 specification of –25°C.
Options Designator
•Configuration
2 Meg x 16 MT45W2MW16P
•Package
48-ball VFBGA (green) GA
•Access time
70ns –70
Operating temperature range
Wireless (–30°C to +85°C)1WT
Industrial (–40°C to +85°C) IT
Figure 1: 48-Ball VFBGA Ball Assignment
Part Num ber Example:
MT45W2MW16PGA-70WT
A
B
C
D
E
F
G
H
1 2 3 4 5 6
Top View
(Ball Down)
LB#
DQ8
DQ9
VssQ
VccQ
DQ14
DQ15
A18
OE#
UB#
DQ10
DQ11
DQ12
DQ13
A19
A8
A0
A3
A5
A17
NC
A14
A12
A9
A2
CE#
DQ1
DQ3
DQ4
DQ5
WE#
A11
A1
A4
A6
A7
A16
A15
A13
A10
ZZ#
DQ0
DQ2
Vcc
Vss
DQ6
DQ7
A20
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24zTOC.fm - Rev. B 5/07 EN 2©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Table of Contents
Table of Contents
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Options. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Functional Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Ball Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
Part-Numbering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Valid Part Number Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Device Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Functional Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Power-Up Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Bus Operating Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Asynchronous Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Page Mode READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
LB#/UB# Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Low-Power Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Standby Mode Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Temperature-Compensated Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Partial-Array Refresh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12
Deep Power-Down Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Configuration Register Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Access Using ZZ# . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Software Access to the Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Maximum and Typical Standby Currents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Timing Diagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Package Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24zLOF.fm - Rev. B 5/07 EN 3©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
List of Figur es
List of Figures
Figure 1: 48-Ball VFBGA Ball Assignment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Figure 2: Fun cti onal Block Diag ram 2 Me g x 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5
Figure 3: Part Number Chart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
Figure 4: Power-Up Initialization Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Figure 5: READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Figure 6: WRITE Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10
Figure 7: Page READ Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
Figure 8: Software Access PAR Functionality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .13
Figure 9: Load Configuration Register Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14
Figure 10: Software Access Load Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Figure 11: Software Access Read Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15
Figure 12: Configuration Register Bit Mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16
Figure 13: Typical Refresh Curre n t vs. Te m perature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Figure 14: AC Input/Output Reference Waveform. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Figure 15: Output Load Circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Figure 16: Power-Up Initialization Period . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 17: Load Configuration Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 18: Deep Power-Down Entry and Exit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
Figure 19: Single READ Operation (WE# = VIH). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Figure 20: Page Mode READ Operation (WE# = VIH) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23
Figure 21: WRITE Cycle (WE# Control). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Figure 22: WRITE Cycle (CE# Control) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24
Figure 23: WRITE Cycle (LB#/UB# Control). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25
Figure 24: 48-Ball VFBGA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24zLOT.fm - Rev. B 5/07 EN 4©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
List of Tables
List of Tables
Table 1: VFBGA Ball Descriptions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6
Table 2: Bus Operations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 3: 32Mb Address Patterns for PAR (CR[4] = 1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 4: Absolute Maximum Ratings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17
Table 5: Electrical Characteristics and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Table 6: Partial-Array Refresh Spec if ic ati o ns and Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18
Table 7: Deep Power-Down Specifications and Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Table 8: Capacitance Specifications and Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Table 9: READ Cycle Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20
Table 10: WRITE Cycle Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Table 11: Load Configuration Register Timing Requirements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Table 12: Deep Power-Down Timing Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21
Table 13: Initialization Timing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 5©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
General Description
General Description
Micron® CellularRAM products are high-speed, CMOS PSRAM memories dev eloped
for lo w-power, portable applications. The MT45W2MW16P is a 32Mb DRAM core device
organized as 2 Meg x 16 bits. These devices include the industry-standard, asynchronous
memory interface found on other low-power SRAM or pseudo-SRAM offerings.
A user-accessible configuration register (CR) defines how the CellularRAM device
performs on-chip refresh and whether page mode read accesses ar e permitted. This
register is automatically loaded with a default setting during power-up and can be
updated at any time during normal operation.
Fo r seamless operation on an asynchronous memory bus, CellularRAM products incor-
porate a transparent self-refresh mechanism. The hidden refresh requires no additional
support from the system memory controller and has no significant impact on device
read/w rite performance.
S p ecial attention has been focused on current consumption during self refresh. Cellu-
larRAM products include three system-acces s ible mechanism s to mi nimize refresh
current. Temperature-compensated refresh (TCR) uses an on-chip sensor to adjust the
refresh rate to match the device temperature. The refresh rate decr eases at lower
temperatures to minimize current consumption during standby. Setting sleep enable
(ZZ#) to LOW enables one of two low-po wer modes: partial-array r efresh (PAR) or deep
po wer-down (DPD). PAR limits refresh to only that part of the DRAM array that contains
essential data. DPD halts refr esh operation altogether and is used when no vital infor-
mation is stored in the device. The system-configurable refresh mechanisms are
accessed through the CR.
Functional Block Diagram
Figure 2: Functional Block Diagram 2 Meg x 16
Note: Functional block diagrams illustrate simplified device operation. See ball description table,
bus operation s table, and timing diagrams for detailed information.
A[20:0]
DQ[7:0]
DQ[15:8]
LB#
UB#
CE#
WE#
OE#
ZZ#
Control
Logic
Input/
Output
MUX
and
Buffers
2,048K x 16
DRAM
Memory
Array
Configuration
Register (CR)
Address Decode
Logic
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 6©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Ball Descriptions
Ball Descriptions
Table 1: VFBGA Ball Descriptions
VFBGA Ball
Assignment Symbol Type Description
H6, G2, H1, D3,
E4, F4, F3, G4,
G3, H5, H4, H3,
H2, D4, C4, C3,
B4, B3, A5, A4,
A3
A[20:0] Input Address inputs: Inputs for the address accessed during READ or WRITE operations.
The address lines are also used to define the value to be loaded into the CR.
B5 CE# Input Chip enable: Activates the device when LOW. When CE# is HIGH, the device is
disabled and goes into standby power mode.
A1 LB# Input Lower byte enable: DQ[7:0].
A2 OE# Input Output enable: Enables the output buffers when LOW. When OE# is HIGH, the
output buffers are disabled.
B2 UB# Input Upper byte enable: DQ[15:8].
G5WE#Input
Write enable: Enables WRITE operations when LOW.
A6ZZ# Input Sleep enable: When ZZ# is LOW, the CR can be loaded or the device can en ter one
of two low-power modes (DPD or PAR).
G1, F1, F2, E2,
D2, C2, C1, B1,
G6, F6, F5, E5,
D5, C6, C5, B6
DQ[15:0] Input/
Output Data inputs/outputs.
E3 NCNot internally connected.
D6VCC Supply Device power supply: (1.7–1.95V) Power supply for device co re operation.
E1 VCCQ Supply I/O power supply: (1.7–3.6V) Power supply for input/output buffers.
E6VSS Supply VSS must be connected to ground.
D1 VSSQ Supply VSSQ must be connected to ground.
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 7©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Bus Operations
Bus Operations
Notes: 1. When LB# and UB# are in select mode (LOW), DQ[15:0] are affected. When LB# alone is in
select mode, only DQ[7:0] are affected. When UB# alone is in the select mode, only DQ[15:8]
are affecte d .
2. When the device is in standby mode, control inputs (WE#, OE#), address inputs, and data
inputs/outputs are internally isolated fr om any external influence.
3. When WE# is active, the OE# input is internally disabled and has no effect on the I/Os.
4. The device will consume active power in this mode whenever addresses are changed.
5. VIN = VCCQ or 0V; all device balls must be static (unswitched) in order to achieve minimum
standby current.
6. DPD is enabled when configuration register bit CR[4] is “0”; otherwise, PAR is enabled.
Ta ble 2: Bus Operations
Mode Power CE# WE# OE# LB#/UB# ZZ# DQ[15:0]1Notes
Standby Standby H X X X H High-Z 2, 5
Read Active L H L L H Data-out 1, 4
Write Active L L X L H Data-in 1, 3, 4
No operation Idle L X X X H X 4, 5
PAR Partial-array refresh H X X X L High-Z 6
DPD Deep power-down H X X X L High-Z 6
Load configuration register Active L L X X L High-Z
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 8©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Part-Numbering Information
Part-Numbering Information
Micron CellularRAM devices are available in several different configurations and densi-
ties (see Figure 3).
Figure 3: Part Number Chart
Notes: 1. –30°C exceeds the CellularRAM Workgroup 1.0 specification of –25°C.
Valid Part Number Combinations
After building the part number from the part numbering chart, visit the Micron Web site
at www.micron.com/psram to verify that the part number is offered and valid. If the
device required is not on this list, contact the factor y.
Device Marking
Due to the size of the package, the Micron standard part number is not printed on the
top of the device. Instead, an abbreviated device mark consisting of a five-digit alphanu-
meric code is used. The abbreviated device marks are cr oss-referenced to the Micron
part numbers a t the FBGA P art M arking D ecoder sit e, http://www.micron.com/decoder .
To view the location of the abbreviated mark on the device, refer to customer service
note, CSN-11, “Product Mark/Label,” at www.micron.com/csn.
MT 45 W 2M W 16 P GA -70 WT ES
Micron Technology
Product Family
45 = PSRAM/CellularRAM Memory
Operating Core Voltage
W = 1.7V–1.95V
Address Locations
M = Megabits
Operating Voltage
W = 1.7V–3.6V
Bus Configuration
16 = x16
READ/WRITE Operation Mode
P = Asynchronous/Page
Package Codes
GA = VFBGA “Green” (6 x 8 grid, 0.75mm pitch, 6.0mm x 8.0mm x 1.0mm) 48-ball
Production Status
Blank = Production
ES = Engineering Sample
MS = Mechanical Sample
Operating Temperature
WT = 30°C to +85°C (see Note 1)
IT = 40°C to +85°C
Standby Power Options
Blank = Standard
Access/Cycle Time
70 = 70ns
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 9©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Functional Description
Functional Description
In ge neral, the MT45W2MW16P device i s a high-density alternative to SRAM and P seudo
SRAM products, popular in low-power, portable applications. The MT45W2MW16P
contains a 33,554,432-bit DRAM core organized as 2,097,152 addresses by 16 bits. These
devices include the ind u s try-standard, asynchronous memory interface fo und on othe r
low-power SRAM or Pseudo SRAM offerings. Page mode accesses ar e also included as a
bandwidth-enhancing extension to the asynchronous read protocol .
Power-Up Initialization
CellularRAM products include an on-chip voltage sensor that is used to launch the
power-up initialization process. Initialization will load the CR with its default setting.
VCC and VCCQ must be applied simultaneously, and when they reach a stable level abo v e
1.7V, the device will require 150µs to complete its self-initialization process (see
Figur e4). During the initialization period, CE # should r emain HIGH. When initialization
is complete, the device is ready for normal operation.
Figure 4: Power-Up Initialization Timing
Bus Operating Modes
The MT45W2MW16P Cel lularRAM product incor porates the industry-standar d, asyn-
chronous interface found on other low-po wer SRAM or Pseudo SRAM offerings. This bus
interface supports asynchronous READ and WRITE operations as well as the band-
width-enhancing page mode READ operation. The specific interface that is supported is
defined by the value loaded into the CR.
Asynchronous Mode
CellularRAM products power up in the asynchronous operating mode. This mode uses
the industry-standard SRAM control interface (CE#, OE#, WE#, LB#/UB#). READ opera-
tions (Figure5) are initiated by bringing CE#, OE#, and LB#/ UB # LOW while keeping
WE# HIGH. Valid data will be dri ven out of the I/Os after the specified access time has
elapsed. WRITE operations (Figure 6) occur when CE#, WE#, and LB#/UB# are driven
LOW. During WRITE operatio ns, the level of OE# is a “Don't Care”; WE# will override
OE#. The data to be written will be latched on the rising edge of CE#, WE#, or LB#/UB#,
whichever occurs first. WE# LOW time must be limited to tCEM.
Device ready for
normal operation
Vcc, VccQ = 1.7V tPU
Vcc (MIN)
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 10 ©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Bus Operating Modes
Figure 5: READ Operation
Figure 6: WRITE Operation
Valid address
DATA
CE#
Don’t Care
OE#
WE#
LB#/UB#
tRC = READ cycle time
ADDRESS
Valid data
Valid address
DATA
CE#
Don’t Care
OE#
WE#
LB#/UB#
tWC = WRITE cycle time
< tCEM
ADDRESS
Valid data
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 11 ©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Bus Operating Modes
Page Mode READ Operation
Page mode is a performance-enhancing extension to the legacy asynchronous READ
operation. In page-mode-capable products, an initial asynchronous read access is
performed, then adjacent addresses can be quickly read by simply changing the low-
order address. Addresses A[3:0] are used to determi ne the member s of the 16-address
CellularRAM page. Any change in addresses A[4] or higher will initiate a new tAA access.
Figure 7 shows the ti ming diagram for a page mode access.
Page mode takes advantage of the fact that adjacent addresses can be read in a shorter
period of time than random addresses. WRITE operations do not include comparable
page mode functionality.
The CE# LOW time is limited by refresh considerations. CE# must not stay LOW longer
than tCEM.
Figure 7: Page READ Operation
LB#/UB# Operation
The lower byte (LB#) enable and upper byte (UB#) enable signals allow for byte-wide
data transfers. During READ operations, enabled bytes are driven onto the DQs. The
DQs associated with a disabled byte ar e put into a High-Z state during a READ opera-
tion. During WRITE operations, any disabled b ytes will not be transferr ed to the memory
array and the internal value will remain unchanged. During a WRITE cycle, the data to
be written is latched on the rising edge of CE#, WE#, LB#, or UB#, whichever occurs first.
When both the LB# and UB# are disabled (HIGH) during an operation, the device will
disable the data bus from receiving or transmitting data. Although the device will seem
to be deselected, the device remains in an active mode as long as CE# remains LOW.
DATA
C
E#
CE#
OE#
WE#
LB#/UB#
ADDRESS Address[0]
D[1] D[2] D[3]
tAA tAPA tAPA tAPA
D[0]
< tCEM
Address
[2]
Don't Care
Address
[1] Address
[3]
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 12 ©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Low-Power Operation
Low-Power Operation
Standby Mode Operation
During standby, the device current consumption is reduced to the level necessary to
perform the DRAM REFRESH operation on the full array. Standby operation occurs
when CE# and ZZ# are HIGH.
The device will enter a reduced power state upon completion of READ and WRITE oper-
ations where the address and control inputs remain static for an extended period of
time. This mode will continue until a change occurs to the address or control inputs.
Temperature-Compensated Refresh
Temperature-compensated refresh (TCR) allows for adequate refresh at differe nt
temperatures. This CellularRAM device includes an on-chip temperature sensor. It
continually adjusts the refresh rate according to the operating temperature.
Partial-Array Refresh
P artial-array r efresh (P AR) r estricts REFRESH operation to a portion of the total memory
array. This feature enables the system to r educe refresh current b y only refreshing that
part of the memory array that is absolutely necessary. The refresh options ar e full array,
one-half array, one-quarter array, one-eighth array, or none of the array. Data stored in
addresses not receiving refresh will become corrupted. The mapping of these partitions
can start at either the beginning or the en d of the address map (Table 3 on page 17).
READ and WRITE operations are ignored during PAR operation.
The device only enters PAR mode if the SLEEP bit in the CR has been set HIGH
(CR[4] = 1). PAR can be initiated by bring the ZZ# ball to the LOW state for longer than
10µs. Returning ZZ# to HIGH will cause an exit from PAR and the entir e array will be
immediately available for READ and WRITE operations.
Alternatively, PAR can be initiated using the CR software access s equence (s ee Software
Access to the Configuration Register” on page 14). PAR is enabled immediately upon
setting CR[4] to “1” using this method. Ho wever, using software access to write to the CR
alters the function of ZZ# so that ZZ# LOW no longer initiates PAR, although ZZ#
continues to enable WRITEs to the CR. This functional change persists until the next
time the device is powered up (see Figure8 on page 13).
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 13 ©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Low-Power Operation
Figure 8: Software Access PAR Functionality
Deep Power-Down Operation
Deep power-down (DPD) operation disables all refresh-related activity. This mode is
used when the system does not require the storage provided by the Ce llularRAM device.
Any stored data will become corrupted when DPD is entered. When refresh activity has
been re-enabled, the CellularRAM device will require 150µs to perform an initialization
procedure before normal operations can resume. READ and WRITE operations are
ignored during DPD operation.
The device can only enter DPD if the SLEEP bit in the CR has been set LOW (CR[4] = 0).
DPD is initiated by bringing ZZ# to the LOW state for longer than 10µs. Returning ZZ# to
HIGH will cause the device to exit DPD and begin a 150µs initialization process. During
this 150µs period, the current consumption will be higher than the specified standby
levels but consi derably lower than the active current specification.
Driving ZZ# LOW will place the device in the PAR mode if the SLEEP bit in the CR has
been set HIGH (CR[4] = 1).
The device should not be put into DPD using CR software access.
NO
YES
Powe
r-Up
To enable PAR,
bring ZZ# LOW
for 10µs.
Change to ZZ#
functionality;
PAR permanently
enabled
independent of
ZZ# level.
Software
LOAD
executed?
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 14 ©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Configuration Register Operation
Configuration Register Operation
The configuration register (CR) defines how the CellularRAM device performs its trans-
parent self refresh. Altering the refresh parameters can dramatically reduce current
consumption during standby mode. Page mode control is also embedded into the CR.
This register can be updated any time the device is operating in a standby state.
Figure 12 on page 16 describes the control bits used in the CR. At power-up, the CR is set
to 0010h.
Access Using ZZ#
The CR can be loaded using a WRITE operation immediately after ZZ# makes a HIGH-
to-LOW transition (see Figur e9). The values placed on addr esses A[19:0] ar e latche d into
the CR on the rising edge of CE# or WE#, whichever occurs first. LB#/UB# are “Dont
Care.” Access using ZZ# is WRITE only.
Figure 9: Load Configuration Register Operation
Software Access to the Configuration Register
The contents of the CR can either be read or modified using a software sequence. The
nature of this access mechanism may eliminate the need for the ZZ# ball.
If the software mechanism is used, ZZ# can simply be tied to VCCQ. The port line typi-
cally used for ZZ# control purposes will no longer be required. However, ZZ# should not
be tied to VCCQ if the s ystem will use DPD; DPD cannot be enabled or disabled usi ng the
software access sequen ce.
The CR is loaded using a four -step sequence consisting of two READ operations foll o wed
b y two WRITE operations (see Figur e10 on page 15). The read s equence is virtually i den-
tical except that an asynchronous READ is performed during the fourth operation (see
Figure 11 on page 15). Note that a third READ cycle of the highest ad dr ess will cancel the
access sequence until a different address is read.
The address used during all READ and WRITE operations is the highest address of the
CellularRAM device being accessed (1FFFFFh for 32Mb); the content of this address is
not changed by using this sequence. The data bus is used to transfe r data into or out of
bits 15–0 of the CR.
Writing to the CR using the softwar e sequence modifies the function of the ZZ# ball.
After the software sequence loads the CR, the level of the ZZ# ball no longer enabl es PAR
operation. PAR operation will be updated whenever the software sequence loads a new
value into the CR. This ZZ# functionality will continue until the next time the device is
po wered-up. The operation of the ZZ# ball is not affected if the software sequence is only
used to re ad the contents of the CR. The use of the software sequence does not affect the
ability to perform the standard (ZZ#-controlled) method of loading the CR.
Valid address
CE#
ZZ#
WE# t < 500ns
ADDRESS
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 15 ©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Configuration Register Operation
Figure 10: Software Access Load Configuration Register
Figure 11: Software Access Read Configuration Register
Address
(MAX) Address
(MAX) Address
(MAX)
XXXXh XXXXh CR value
in
ADDRESS
CE#
OE#
WE#
LB#/UB#
DATA
Don't Care
READ READ WRITE WRITE
Address
(MAX)
0000h
Address
(MAX) Address
(MAX) Address
(MAX)
XXXXh XXXXh CR value
out
ADDRESS
CE#
OE#
WE#
LB#/UB#
DATA
Don't Care
READ READ WRITE READ
Address
(MAX)
0000h
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 16©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Configuration Register Operation
Figure 12: Configuration Register Bit Mapping
Partial-Array Refresh (CR[2:0]) Default = Full-Array Refresh
The PAR bits restrict REFRESH operation to a portion of the total memory array. This
feature allows the system to reduce current by only refreshing that part of the memory
array required by the host system. The refresh options are full array, one-half array, one-
quarter array, one-eighth array, or none of the array. The mapping of these partitions can
start at either th e be g inni ng or th e end of the address map (see Table 3 on page 17).
Sleep Mode (CR[4]) Default = PAR Enabled, DPD Disabled
The sleep mode bit determines which low-power mode is to be entered when ZZ# is
driven LOW. If CR[4] = 1, PAR operation is enabled. If CR[4] = 0, DPD operation is
enabled. PAR can also be enabled directly by writing to the CR using the software access
sequence. Note that this then disables ZZ# initiation of PAR. DPD cannot be enabled or
disabled using the software access sequence; this should only be done using ZZ# to
access the CR.
DPD operation disables all refresh-related activity. This mode will be used when the
system does not r equire the s torage pro vided b y the CellularRAM device . Any store d data
will become corrupted when DPD is enabled. When refr esh activity has been r e-enabled,
the CellularRAM device will require 150µs to perform an initialization procedure before
normal operation can resume. DPD should not be enabled using CR software access.
PAR
A4 A3 A2 A1 A0 Address Bus
4 1
2
3 0
Reserved
6 5
A5
0
1
Sleep Mode
DPD enabled
PAR enabled (default)
CR[4]
Ignored
A6
20–8
Reserved
A[20:8]
CR[1] CR[0] PAR Refresh Coverage
CR[2]
Sleep
Setting is ignored
(default 00b)Must be set to "0" All must be set to "0"
A7
7
Page
0
1
Page Mode Enable/Disable
Page mode disabled (default)
Page mode enabled
CR[7]
Full array (default)
Bottom 1/2 array
Bottom 1/4 array
Bottom 1/8 array
None of array
Top 1/2 array
Top 1/4 array
Top 1/8 array
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 17 ©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Electrical Characteristics
Page Mode READ Operation (CR[7]) Default = Disabled
The page mode operation bit determines whether page mode READ ope rations are
enabled. In the po wer-up defaul t state, page mode is disabled.
Electrical Characteristics
S tresses greater than those listed in Table 4 may cause permanent damage to the devi ce.
This is a stress rating only, and functional operation of the device at these or any other
conditions above those indicated in the operational sections of this specification is not
implied. Exposure to absolute maximum rating conditions for extended periods may
affect reli ability.
Notes: 1. –30°C exceeds the CellularRAM Workgroup 1.0 specification of –25°C.
Table 3: 32Mb Address Patterns for PAR (CR[4] = 1)
CR[2] CR[1] CR[0] Active Section Address Space Size Density
0 0 0 Full die 000000h–1FFFFFh 2 Meg x 1632Mb
0 0 1 One-half of die 000000h–0FFFFFh 1 Meg x 1616Mb
0 1 0 One-quar ter of die 000000h–07 FFFFh 512K x 168Mb
0 1 1 One-eighth of die 000000h–03FFFFh 256K x 164Mb
1 0 0 None of die 0 0 Meg x 160Mb
1 0 1 One-half of die 100000h–1FFFFFh 1 Meg x 1616Mb
1 1 0 One-quarter of die 180000h–1FFFFFh 512K x 168Mb
1 1 1 One-eighth of die 1C0000h–1FFFFFh 256K x 164Mb
Ta ble 4: Absolute Maximum Ratings
Parameter Rating
Voltage to any ball except VCC, VCCQ relative to VSS –0 .5V to (4.0V or VCCQ + 0.3V, whichever is less)
Voltage on VCC supply relative to VSS –0.2V to +2.45V
Voltage on VCCQ supply relative to VSS –0.2V to +4.0V
Storage temperature –55°C to +150°C
Operating temperature (case)
Wireless1
Industrial –30°C to +85°C
–40°C to +85°C
Soldering temperature and time
10 seconds (solder ball only) 26C
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 18 ©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Electrical Characteristics
Notes: 1. –30°C exceeds the CellularRAM Workgroup 1.0 specification of –25°C.
2. Input signals may overshoot to VCCQ + 1.0V for periods less than 2ns during transitions.
3. VIH (MIN) value is not aligned with CellularRAM Workgroup 1.0 specification of
VCCQ - 0.4V.
4. Input signals may undershoot to VSS - 1.0V for periods less than 2ns during transitions.
5. This parameter is specified with the outputs disabled to avoid external loading effects. The
user must add the current required to drive output capacitance expected in the actual sys-
tem.
6.I
SB (MAX) values measured with PAR set to FULL ARRAY and at +85°C. In order to achieve
low standby current, all inputs must be driven to VCCQ or VSS. ISB may be slightly higher for
up to 500ms after power-up or when en te r i n g standby mode .
Maximum and Typical Standby Currents
The follo wing table and figur e r efer to the maximu m and typical standb y cur re nts for the
MT45W2MW16PGA device. The typical values shown in Figure 13 on page 19 are
measured with the default on-chip temperature sensor control enabled.
Notes: 1. IPAR (MAX) values measured at 85°C. IPAR might be slightly higher for up to 500ms after
changes to the PAR array partition or when entering standby mode. In order to achieve low
standby current, all inputs must be driven to either VCCQ or VSS.
Table 5: Electrical Characteristics and Operating Conditions
Wireless temperature1 (–30ºC TC +85 ºC), Industrial temperature (–40ºC < TC < +85ºC)
Description Conditions Symbol Min Max Units Notes
Supply voltage VCC 1.7 1.95 V
I/O supply voltage VCCQ1.73.6V
Input high volt ag e VIH 1.4 VCCQ + 0.2 V 2, 3
Input low voltage VIL -0.2 +0.4 V 4
Output high voltage IOH = –0.2mA VOH 0.8 VCCQV
Output low voltage IOL = 0.2mA VOL 0.2 VCCQV
Input leakage current VIN = 0 to VCCQILI 1μA
Output leakage current OE# = VIH or
Chip disabled ILO 1μA
Operating Current
Asynchronous random
READ/WRITE VIN = VCCQ or 0V
Chip enabled; IOUT = 0 ICC1 –70 20 mA 5
Asynchronous page READ ICC1P –70 15 mA 5
Standby current VIN = VCCQ or 0V
CE# = VCCQISB 110 μA6
Table 6: Partial-Array Refresh Specifications and Conditions
Description Conditions Symbol Array Partit ion Max Unit
Partial-array refresh
standby current VIN = VCCQ or 0V;
CE# = VCCQIPAR Standard power
(no designation) Full 110 µA
1/2 105
1/4 95
1/8 95
070
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 19 ©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Electrical Characteristics
Figure 13: Typical Refresh Current vs. Temperature
Notes: 1. These parameters are verified in device characterization and are not 100-percent tested.
Figure 14: AC Input/Output Reference Waveform
Notes: 1. AC test inputs are driven at VCCQ for a logic 1 and VSSQ for a logic 0. Input rise and fall
times (10 percent to 90 percent) < 1.6ns.
2. Input timing begins at VCC/2. Due to the possibility of a difference between VCC and VCCQ,
the input test point may not be shown to scale.
3. Output timing ends at VCCQ/2.
Table 7: Deep Power-Down Specifications and Conditions
Description Conditions Symbol TYP Units
Deep power-down VIN = VCCQ or 0V; +25°C
ZZ# = 0V
CR[4] = 0
IZZ 10 µA
Table 8: Capacitance Specifications and Conditions
Description Conditions Symbol Min Max Units Notes
Input capacitance TC = +25ºC; f = 1 MHz;
VIN = 0V CIN 2.0 6.5 pF 1
Input/output capacitance (DQ) CIO 3.0 6.5 pF 1
Output
Test Points
Input
1
VCC
VSS
Q
VCCQ/2
3
VCC/2
2
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 20 ©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Electrical Characteristics
Figure 15: Output Load Circuit
Notes: 1. High-Z to Low-Z timings are tested with the circuit shown in Figure 15 on page 20. The Low-
Z timings measure a 100mV transition away from the High-Z (VCCQ/2) level toward either
VOH or VOL.
2. Low-Z to High-Z timings are tested with the circuit shown in Figure 15 on page 20. The
High-Z timings measure a 100mV transition from either VOH or VOL toward VCCQ/2.
3. Page mode enabled only.
Table 9: READ Cycle Timing Requirements
Parameter Symbol
–70
Units NotesMin Max
Address access time tAA 70 ns
Page access time tAPA 20 ns
LB#/UB# access time tBA 70 ns
LB#/UB# disable to High-Z output tBHZ 8ns2
LB#/UB# enable to Low-Z output tBLZ 10 ns 1
Maximum CE# pulse width tCEM s3
Chip select access time tCO70 ns
Chip disable to High-Z output tHZ 8ns2
Chip enable to Low-Z output tLZ 10 ns 1
Output enable to valid output tOE 20 ns
Output hold from address change tOH 5ns
Output disable to High-Z output tOHZ 8ns2
Output enable to Low-Z output tOLZ 5ns1
Page cycle time tPC20 ns
Read cycle time tRC70 ns
DUT
VccQ/2
30pF
Test Point
50Ω
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 21 ©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Electrical Characteristics
Notes: 1. High-Z to Low-Z timings are tested with the circuit shown in Figure 15 on page 20. The Low-
Z timings measure a 100mV transition away from the High-Z (VCCQ/2) level toward either
VOH or VOL.
2. Low-Z to High-Z timings are tested with the circuit shown in Figure 15 on page 20. The
High-Z timings measure a 100mV transition from either VOH or VOL toward VCCQ/2.
3. WE# LOW time must be limited to tCEM (8µs).
Table 10: WRITE Cycle Timing Requirements
Parameter Symbol
–70
Units NotesMin Max
Address setup time tAS 0ns
Address valid to end of write tAW 70 ns
Byte select to end of write tBW 70 ns
CE# HIGH time during write tCPH 5ns
Chip enable to end of write tCW70 ns
Data hold from write time tDH 0ns
Data write setup time tDW 23 ns
Chip enable to Low-Z output tLZ 10 ns 1
End write to Low-Z output tOW 5ns1
WRITE cycle time tWC 70 ns
Write to High-Z output tWHZ 8ns2
Write pulse width tWP 46ns 3
Write pulse width HIGHtWPH 10 ns
Write recovery time tWR 0ns
Ta ble 11: Load Configuration Register Timing Requirements
Description Symbol
–70
Units Min Max
Address setup time tAS 0ns
Address valid to end of write tAW 70 ns
Chip deselect to ZZ# LOW tCDZZ 5ns
Chip enable to end of write tCW70 ns
WRITE cycle time tWC70 ns
Write pulse width tWP 40 ns
Write recovery time tWR 0ns
ZZ# LOW to WE# LOW tZZWE 10 500 ns
Table 12: Deep Power-Down Timing Requirements
Description Symbol
–70
Units Min Max
Chip deselect to ZZ# LOW tCDZZ 5ns
Deep power-down recovery tR150 µs
Minimum ZZ# pulse width tZZ (MIN) 10 µs
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 22 ©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Timing Diagrams
Timing Diagrams
Figure 16: Power-Up Initialization Period
Figure 17: Load Configuration Register
Figure 18: Deep Power-Down Entry and Exit
Table 13: Initia lization Timing Parameters
Parameter Symbol
-70
UnitsMin Max
Initialization period (required before normal operations) tPU 150 µs
Device ready for
normal operation
Vcc, VccQ = 1.7V tPU
Vcc (MIN)
ADDRESS
ZZ#
tWC
tAW tWR
tAS
CE#
LB#/UB#
tZZWE
Don’t Care
WE#
tWP
tCDZZ
OPCODE
tCW
OE#
ZZ#
CE#
tZZ (M IN)
Don’t Care
tCDZZ
tR
Device ready for
normal operation
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 23 ©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Timing Diagrams
Figure 19: Single READ Operation (WE# = VIH)
Figure 20: Page Mode READ Operation (WE# = VIH)
ADDRESS
OE#
tRC
tAA
DATA-OUT
CE#
LB#/UB#
tOLZ
Don’t Care Undefined
High-Z High-Z
Valid data
tOHZ
tBA tBHZ
tHZ
tBLZ
tCO
Valid address
tOE
tLZ
ADDRESS
A[20:4]
OE#
tAA
DATA-OUT
CE#
LB#/UB#
tOLZ
tLZ
Don’t Care Undefined
High-Z High-Z
Valid
data
tOHZ
tBA tBHZ
tHZ
tCEM
tBLZ
tCO
ADDRESS
A[3:0]
tRC
tOH
tPC
Valid address
tAPA
tOE
Valid
data Valid
data Valid
data
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 24 ©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Timing Diagrams
Figure 21: WRITE Cycle (WE# Control)
Figure 22: WRITE Cycle (CE# Control)
ADDRESS
WE#
tWC
tAW tWR
DATA-IN
CE#
LB#/UB#
tBW
tWHZ tOW
tDH
tDW
tAStWP tWPH
Don’t Care
High-Z
DATA-OUT
Valid data
tCW
OE#
Valid address
ADDRESS
WE#
tWC
tAW
tCW
tWR
tCPH
DATA-IN
CE#
LB#/UB#
tBW
tWHZ
tLZ
tAS
tDH
tDW
tWP
Don’t Care
High-Z
DATA-OUT
Valid data
Valid address
OE#
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 25 ©2007 Micron Technology, Inc. All rights reserved.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Timing Diagrams
Figure 23: WRITE Cycle (LB#/UB# Control)
ADDRESS
WE#
tWC
tAW tWR
DATA-IN
CE#
LB#/UB#
tBW
tWHZ
tDH
tAS
tDW
tLZ
Don’t Care
DATA-OUT
Valid data
Valid address
tCW
OE#
High-Z
®
8000 S. Federal Way, P.O. Box 6, Boise, ID 83707-0006, Tel: 208-368-3900
prodmktg@micron.com www.micron.com Customer Comm en t Line: 800-932-4992
Micron, the M logo, and the Micron logo are trademarks of Micron Technology, Inc. CellularRAM is a trademark of Micron
Technology, Inc., inside the U.S. and a trademark of Qimonda AG outside the U.S. All other trademarks are the property of
their respective owners. This data sheet contains minimum and maximum limits specified over the compl ete power supply
and temperature range for production devices. Although considered final, these specifications are subject to change, as fur-
ther product development and data characterization sometimes occur.
32Mb: 2 Meg x 16 Async/Page CellularRAM 1.0 Memory
Package Dimensions
PDF: 09005aef82832fa7 / Source: 09005aef82832f97 Micron Technology, Inc., reserves the right to change products or specifica tions without notice.
32mb_asyncpage_cr1_0_p24z_2.fm - Rev. B 5/07 EN 26©2007 Micron Technology, Inc. All rights reserved.
Package Dimensions
Figure 24: 48-Ball VFBGA
Notes: 1. All dimensions are in millimeters.
2. Package width and length do not include mold protrusion; allowable mold protrusion is
0.25mm per side.
3. The MT45W2MW16PGA uses “green” packaging.
BALL A1 ID
1.00 MAX
4.00 ±0.05
3.00 ±0.051.875
6.00 ±0.10
C
L
C
L
SOLDER BALL MATERIAL:
96.5% Sn, 3% Ag, 0.5% Cu
MOLD COMPOUND: EPOXY NOVOLAC
SUBSTRATE MATERIAL: PLASTIC LAMINATE
0.75
TYP
0.75 TYP
8.00 ±0.10
5.25
2.625
BALL A1
BALL A1 ID
3.75
0.70 ±0.05
SEATING
PLANE
0.10 A
A
BALL A6
DIMENSIONS APPLY
TO SOLDER BALLS
POST REFLOW.
PRE-REFLOW BALL
DIAMETER IS 0.35
ON A 0.30 SMD
BALL PAD.
48X Ø0.37