Typical Connection
HALF-BRIDGE DRIVER
Features
Floating channel designed for bootstrap operation
Fully operational to +600V
Tolerant to negative transient voltage
dV/dt immune
Gate drive supply range from 10 to 20V
Undervoltage lockout for both channels
3.3V, 5V and 15V input logic compatible
Cross-conduction prevention logic
Matched propagation delay for both channels
High side output in phase with IN input
Logic and power ground +/- 5V offset.
Internal 540ns dead-time, and programmable
up to 5us with one external RDT resistor (IR21094)
Lower di/dt gate driver for better noise immunity
Shut down input turns off both channels.
Available in Lead-Free
Description
The IR2109(4)(S) are high voltage, high speed power
MOSFET and IGBT drivers with dependent high and
low side referenced output channels. Proprietary HVIC
and latch immune CMOS technologies enable rugge-
dized monolithic construction. The logic input is
compatible with standard CMOS or LSTTL output,
down to 3.3V logic. The output drivers feature a high
IR21094
IR2109
Packages
IR2109(4) (S) & (PbF)
Data Sheet No. PD60163-U
VOFFSET 600V max.
IO+/- 120 mA / 250 mA
VOUT 10 - 20V
ton/off (typ.) 750 & 200 ns
Dead Time 540 ns
(programmable up to 5uS for IR21094)
Product Summary
www.irf.com 1
VCC VB
VS
HO
LOCOM
IN
SD
SD
IN
up to 600V
TO
LOAD
VCC
IN
up to 600V
TO
LOAD
VCC VB
VS
HO
LO
COM
IN
DT
VSS
SD
VCC
SD
VSS RDT
8 Lead PDIP
14 Lead PDIP
8 Lead SOIC
14 Lead SOIC
pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to
drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.
(Refer to Lead Assignments for correct
configuration). This/These diagram(s) show
electrical connections only. Please refer to our
Application Notes and DesignTips for proper
circuit board layout.
IR2109(4) (S) & (PbF)
2www.irf.com
Symbol Definition Min. Max. Units
VBHigh side floating absolute voltage -0.3 625
VSHigh side floating supply offset voltage VB - 25 VB + 0.3
VHO High side floating output voltage VS - 0.3 VB + 0.3
VCC Low side and logic fixed supply voltage -0.3 25
VLO Low side output voltage -0.3 VCC + 0.3
DT Programmable dead-time pin voltage (IR21094 only) VSS - 0.3 VCC + 0.3
VIN Logic input voltage (IN & SD) VSS - 0.3 VCC + 0.3
VSS Logic ground (IR21094/IR21894 only) VCC - 25 VCC + 0.3
dVS/dt Allowable offset supply voltage transient 50 V/ns
PDPackage power dissipation @ TA +25°C (8 Lead PDIP) 1.0
(8 Lead SOIC) 0.625
(14 lead PDIP) 1.6
(14 lead SOIC) 1.0
RthJA Thermal resistance, junction to ambient (8 Lead PDIP) 125
(8 Lead SOIC) 200
(14 lead PDIP) 75
(14 lead SOIC) 120
TJJunction temperature 150
TSStorage temperature -50 150
TLLead temperature (soldering, 10 seconds) 300
Absolute Maximum Ratings
Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage param-
eters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured
under board mounted and still air conditions.
V
°C
°C/W
W
IR2109(4) (S) & (PbF)
www.irf.com 3
Dynamic Electrical Characteristics
VBIAS (VCC, VBS) = 15V, VSS = COM, CL = 1000 pF, TA = 25°C, DT = VSS unless otherwise specified.
Symbol Definition Min. Typ. Max. Units Test Conditions
ton Turn-on propagation delay 750 950 VS = 0V
toff Turn-off propagation delay 200 280 VS = 0V or 600V
tsd Shut-down propagation delay 200 280
MT Delay matching, HS & LS turn-on/off 0 70
trTurn-on rise time 150 220 VS = 0V
tfTurn-off fall time 50 80 VS = 0V
DT Deadtime: LO turn-off to HO turn-on(DTLO-HO) & 400 540 680 RDT= 0
HO turn-off to LO turn-on (DTHO-LO) 4 5 6 usec RDT = 200k (IR21094)
MDT Deadtime matching = DTLO - HO - DTHO-LO 0 60 RDT=0
0 600 RDT = 200k (IR21094)
nsec
nsec
Note 1: Logic operational for VS of -5 to +600V. Logic state held for VS of -5V to -VBS. (Please refer to the Design Tip
DT97-3 for more details).
VB High side floating supply absolute voltage VS + 10 VS + 20
VSHigh side floating supply offset voltage Note 1 600
VHO High side floating output voltage VSVB
VCC Low side and logic fixed supply voltage 10 20
VLO Low side output voltage 0 VCC
VIN Logic input voltage (IN & SD) VSS VCC
DT Programmable dead-time pin voltage (IR21094 only) VSS VCC
VSS Logic ground (IR21094 only) -5 5
TAAmbient temperature -40 125 °C
Symbol Definition Min. Max. Units
Recommended Operating Conditions
The input/output logic timing diagram is shown in figure 1. For proper operation the device should be used within the
recommended conditions. The VS and VSS offset rating are tested with all supplies biased at 15V differential.
V
IR2109(4) (S) & (PbF)
4www.irf.com
Static Electrical Characteristics
VBIAS (VCC, VBS) = 15V, VSS = COM, DT= VSS and TA = 25°C unless otherwise specified. The VIL, VIH and IIN
parameters are referenced to VSS /COM and are applicable to the respective input leads: IN and SD. The VO, IO and Ron
parameters are referenced to COM and are applicable to the respective output leads: HO and LO.
Symbol Definition Min. Typ. Max. Units Test Conditions
VIH Logic “1” input voltage for HO & logic “0” for LO 2.9 VCC = 10V to 20V
VIL Logic “0” input voltage for HO & logic “1” for LO 0.8 VCC = 10V to 20V
VSD,TH+ SD input positive going threshold 2.9 —— V
CC = 10V to 20V
VSD,TH- SD input negative going threshold ——
0.8 VCC = 10V to 20V
VOH High level output voltage, VBIAS - VO 0.8 1.4 IO = 20 mA
VOL Low level output voltage, VO 0.3 0.6 IO = 20 mA
ILK Offset supply leakage current 50 VB = VS = 600V
IQBS Quiescent VBS supply current 20 75 130 VIN = 0V or 5V
IQCC Quiescent VCC supply current 0.4 1.0 1.6 mA VIN = 0V or 5V
RDT = 0
IIN+ Logic “1” input bias current 5 20 IN = 5V, SD = 0V
IIN- Logic “0” input bias current 2 IN = 0V, SD = 5V
VCCUV+ VCC and VBS supply undervoltage positive going 8.0 8.9 9.8
VBSUV+ threshold
VCCUV- VCC and VBS supply undervoltage negative going 7.4 8.2 9.0
VBSUV- threshold
VCCUVH Hysteresis 0.3 0.7
VBSUVH
IO+ Output high short circuit pulsed vurrent 120 200 VO = 0V, PW10 µs
IO- Output low short circuit pulsed current 250 350 VO = 15V,PW10 µs
V
µA
V
µA
mA
IR2109(4) (S) & (PbF)
www.irf.com 5
Functional Block Diagrams
IR2109
SD
UV
DETECT
DELAY COM
LO
VCC
IN VS
HO
VB
PULSE
FILTER
HV
LEVEL
SHIFTER
R
R
S
Q
UV
DETECT
PULSE
GENERATOR
VSS/COM
LEVEL
SHIFT
VSS/COM
LEVEL
SHIFT
+5V
DEADTIME
SD
UV
DETECT
DELAY
COM
LO
VCC
IN
DT
VSS
VS
HO
VB
PULSE
FILTER
HV
LEVEL
SHIFTER
R
R
S
Q
UV
DETECT
PULSE
GENERATOR
VSS/COM
LEVEL
SHIFT
VSS/COM
LEVEL
SHIFT
+5V
DEADTIME
IR21094
IR2109(4) (S) & (PbF)
6www.irf.com
14 Lead PDIP 14 Lead SOIC
IR21094 IR21094S
Lead Assignments
8 Lead PDIP 8 Lead SOIC
1
2
3
4
8
7
6
5
VCC
IN
SD
COM
VB
HO
VS
LO
1
2
3
4
8
7
6
5
VCC
IN
SD
COM
VB
HO
VS
LO
1
2
3
4
5
6
7
14
13
12
11
10
9
8
VCC
IN
SD
DT
VSS
COM
LO
VB
HO
VS
1
2
3
4
5
6
7
14
13
12
11
10
9
8
VCC
IN
SD
DT
VSS
COM
LO
VB
HO
VS
Lead Definitions
Symbol Description
IN Logic input for high and low side gate driver outputs (HO and LO), in phase with HO (referenced to COM
for IR2109 and VSS for IR21094)
SD Logic input for shutdown (referenced to COM for IR2109 and VSS for IR21094)
DT Programmable dead-time lead, referenced to VSS. (IR21094 only)
VSS Logic Ground (21094 only)
VBHigh side floating supply
HO High side gate drive output
VSHigh side floating supply return
VCC Low side and logic fixed supply
LO Low side gate drive output
COM Low side return
IR2109 IR2109S
IR2109(4) (S) & (PbF)
www.irf.com 7
Figure 1. Input/Output Timing Diagram Figure 2. Switching Time Waveform Definitions
Figure 4. Deadtime Waveform Definitions
IN
HO
50% 50%
90%
10%
LO 90%
10%
DTLO-HO
DTLO-HO
MDT= - DTHO-LO
DTHO-LO
SD
IN
HO
LO
IN(HO)
tr
ton tf
toff
LO
HO
50% 50%
90% 90%
10% 10%
IN(LO)
Figure 3. Shutdown Waveform Definitions
SD
tsd
HO
LO
50%
90%
Figure 5. Delay Matching Waveform Definitions
HO
50% 50%
10%
LO
90%
MT
HOLO
MT
IN(LO)
IN (HO)
IR2109(4) (S) & (PbF)
8www.irf.com
500
700
900
1100
1300
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Turn-on Propagation Delay (ns)
Typ.
Max
500
700
900
1100
1300
10 12 14 16 18 20
V
BIAS
Supply Voltage (V)
Turn-on Propagation Delay (ns)
Typ.
Max.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Turn-off Propagation Delay (ns)
Max.
Typ.
0
100
200
300
400
500
10 12 14 16 18 20
V
BIAS
Supply Voltage (V)
Turn-off Propagation Delay (ns)
Typ.
Max.
Figure 6A. Turn-on Propagation Delay
vs. Temperature
Figure 6B. Turn-on Propagation Delay
vs. Supply Voltage
Figure 7A. Turn-off Propagation Delay
vs. Temperature
Figure 7B. Turn-off Propagation Delay
vs. Supply Voltage
IR2109(4) (S) & (PbF)
www.irf.com 9
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
SD Propagation Delay (ns)
Max.
Typ.
0
100
200
300
400
500
10 12 14 16 18 20
V
BIAS
Supply Voltage (V)
SD Propagation Delay (ns)
Typ.
Max.
0
100
200
300
400
500
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Turn-on Rise Time (ns)
Max.
Typ.
0
100
200
300
400
500
10 12 14 16 18 20
V
BIAS
Supply V oltage (V )
Turn-on Rise Time (ns)
Typ.
Max.
Figure 8A. SD Propagation Delay
vs. Temperature
Figure 8B. SD Propagation Delay
vs. Supply Voltage
Figure 9A. Turn-on Rise Time
vs. Temperature
Figure 9B. Turn-on Rise Time
vs. Supply Voltage
IR2109(4) (S) & (PbF)
10 www.irf.com
0
50
100
150
200
-50-250 255075100125
Temperature (
o
C)
Turn-off Fall Time (ns)
Max.
Typ.
0
50
100
150
200
10 12 14 16 18 20
V
BIAS
Supply Voltage (V)
Turn-off Fall Time (ns)
Typ.
Max.
200
400
600
800
1000
-50-25 0 255075100125
Temperature (
o
C)
Deadtime (ns)
Min.
Typ.
Max.
200
400
600
800
1000
10 12 14 16 18 20
V
BIAS
Supply V oltage (V )
Deadtime (ns)
Max.
Typ.
Min.
Figure 10A. Turn-off Fall Time
vs. Temperature
Figure 10B. Turn-off Fall Time
vs. Supply Voltage
Figure 11A. Deadtime vs. Temperature Figure 11B. Deadtime vs. Supply Voltage
IR2109(4) (S) & (PbF)
www.irf.com 11
0
1
2
3
4
5
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Logic "1" Input V oltage (V)
Max.
0
1
2
3
4
5
6
7
0 50 100 150 200
R
DT
(K)
Deadtime ( s)
Typ.
Max.
Min.
0
1
2
3
4
5
10 12 14 16 18 20
V
CC
Supply V oltage (V )
Logic "1" Input Voltage (V)
Max.
0
1
2
3
4
5
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Logic "0" Input Voltage (V)
Min.
Figure 11C. Deadtime vs. RDT
(IR21094 only)
Figure 12A. Logic “1” Input Voltage
vs. Temperature
Figure 12B. Logic “1” Input Voltage
vs. Supply Voltage
Figure 13A. Logic “0” Input Voltage
vs. Temperature
IR2109(4) (S) & (PbF)
12 www.irf.com
0
1
2
3
4
5
10 12 14 16 18 20
V
CC
Supply Voltage (V)
Logic "0" Input Voltage (V)
Min.
0
1
2
3
4
5
-50-250 255075100125
Temperature (
o
C)
SD Positive Going Threshold (V)
Max.
0
1
2
3
4
5
10 12 14 16 18 20
V
CC
Supply V oltage (V )
SD Positive Going Threshold (V)
Max.
0
1
2
3
4
5
-50-25 0 255075100125
Temperature (
o
C)
SD Negative Going Threshold (V)
Min.
Figure 13B. Logic “0” Input Current
vs. Supply Voltage
Figure 14A. SD Positive Going Threshold
vs. Temperature
Figure 14B. SD Positive Going Threshold
vs. Supply Voltage
Figure 15A. SD Negative Going Threshold
vs. Temperature
IR2109(4) (S) & (PbF)
www.irf.com 13
0
0.3
0.6
0.9
1.2
1.5
-50-250255075100125
Temperature (
o
C)
Low Level Output Voltage (V)
Typ.
Max.
0
1
2
3
4
5
10 12 14 16 18 20
V
CC
Supply Voltage (V)
SD Negative Going Threshold (V)
Min.
0
1
2
3
4
-50 -25 0 25 50 75 100 125
Temperature (oC)
High Level Output Voltage (V)
Typ.
Max.
0
1
2
3
4
10 12 14 16 18 20
VBIAS Supply Voltage (V)
High Level Output Voltage (V)
Typ.
Max.
Figure 15B. SD Negative Going Threshold
vs. Supply Voltage
Figure 16A. High Level Output Voltage
vs. Temperature
Figure 16B. High Level Output Voltage
vs. Supply Voltage
Figure 17A. Low Level Output Voltage
vs. Temperature
IR2109(4) (S) & (PbF)
14 www.irf.com
0
100
200
300
400
500
-50-25 0 25 50 75100125
Temperature (oC)
Offset Supply Leakage Current ( A)
Max.
0
100
200
300
400
500
0 100 200 300 400 500 600
V
B
Boost Voltage (V)
Offset Supply Leakage Current ( A)
Max.
0
100
200
300
400
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
V
BS
Supply Current ( A)
Typ.
M ax.
M in.
0
0.3
0.6
0.9
1.2
1.5
10 12 14 16 18 20
V
BIAS
Supply Voltage (V)
Low Level Output Voltage (V)
Typ.
Max.
Figure 17B. Low Level Output Voltage
vs. Supply Voltage
Figure 18A. Offset Supply Leakage Current
vs. Temperature
igure 18B. Offset Supply Leakage Current
vs. Boost Voltage
Figure 19A. VBS Supply Current
vs. Temperature
IR2109(4) (S) & (PbF)
www.irf.com 15
0
100
200
300
400
10 12 14 16 18 20
V
BS
Supply Voltage (V)
V
BS
Supply Current ( A)
Typ.
Max .
Mi n.
0.0
0.5
1.0
1.5
2.0
2.5
3.0
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Vcc Supply Current (mA)
Max.
Typ.
Min.
0
10
20
30
40
50
60
-50-250 255075100125
Temperature (
o
C)
Logic "1" Input Current ( A)
Typ.
Max.
Fi 21A L i "1" I C
0.0
0.5
1.0
1.5
2.0
2.5
3.0
10 12 14 16 18 20
V
CC
Supply Voltage (V)
V
CC
Supply Current (mA)
Max.
Typ.
Min.
Figure 19B. VBS Supply Current
vs. Supply Voltage
Figure 20A. VCC Supply Current
vs. Temperature
Figure 20B. VCC Supply Current
vs. VCC Supply Voltage
Figure 21A. Logic “1” Input Current
vs. Temperature
IR2109(4) (S) & (PbF)
16 www.irf.com
0
10
20
30
40
50
60
10 12 14 16 18 20
V
CC
Supply Voltage (V)
Logic "1" Input Current ( A)
Max.
Typ.
0
1
2
3
4
5
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Logic "0" Input Current ( A)
Max.
7
8
9
10
11
12
-50-25 0 25 50 75100125
Temperature (
o
C)
V
CC
UVLO Threshold (+) (V)
Typ.
Max.
Min.
0
1
2
3
4
5
10 12 14 16 18 20
V
CC
Supply Voltage (V)
Logic "0" Input Current ( A)
Max.
Figure 21B. Logic “1” Input Current
vs. Supply Voltage
Figure 22A. Logic “0” Input Current
vs. Temperature
Figure 22B. Logic “0” Input Currentt
vs. Supply Voltage
Figure 23. VCC Undervoltage Threshold (+)
vs. Temperature
IR2109(4) (S) & (PbF)
www.irf.com 17
6
7
8
9
10
11
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
V
CC
UVLO Threshold (-) (V)
Typ.
Max.
Min.
7
8
9
10
11
12
-50-25 0 255075100125
Temperature (
o
C)
V
BS
UVLO Threshold (+) (V)
Typ.
Max.
Min.
6
7
8
9
10
11
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
V
BS
UVLO Threshold (-) (V)
Typ.
Max.
Min.
0
100
200
300
400
500
-50-25 0 25 50 75100125
Temperature (
o
C)
Output Source Current ( A)
Typ.
Min.
Figure 24. VCC Undervoltage Threshold (-)
vs. Temperature
Figure 25. VBS Undervoltage Threshold (+)
vs. Temperature
Figure 26. VBS Undervoltage Threshold (-)
vs. Temperature
Figure 27A. Output Source Current
vs. Temperature
IR2109(4) (S) & (PbF)
18 www.irf.com
0
100
200
300
400
500
10 12 14 16 18 20
V
BIAS
Supply Voltage (V)
Output Source Current ( A)
Typ.
Min.
0
100
200
300
400
500
600
-50 -25 0 25 50 75 100 125
Temperature (
o
C)
Output Sink Current ( A)
Typ.
Min.
0
100
200
300
400
500
600
10 12 14 16 18 20
V
BIAS
Supply Voltage (V)
Output Sink Current ( A)
Typ.
Mi n.
-10
-8
-6
-4
-2
0
10 12 14 16 18 20
VBS Flouting Supply Voltage (V)
V
S
Offset Supply Voltage (V)
Typ.
Figure 27B. Output Source Current
vs. Supply Voltage
Figure 28A. Output Sink Current
vs. Temperature
Figure 28B. Output Sink Currentt
vs. Supply Voltage
Figure 29. Maximum VS Negative Offset
vs. Supply Voltage
IR2109(4) (S) & (PbF)
www.irf.com 19
Figure 33. IR2109 vs Frequency (IRFPE50)
Rgate = 10W, VCC = 15V
Figure 30. IR2109 vs Frequency (IRFBC20)
Rgate = 33W, VCC = 15V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temprature (
o
C)
70V
140V
0V
Figure 31. IR2109 vs Frequency (IRFBC30)
Rgate = 22W, VCC = 15V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temperature (
o
C)
140V
0V
70V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temperature (
o
C)
140V
70V
0V
Figure 32. IR2109 vs Frequency (IRFBC40)
Rgate = 15W, VCC = 15V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temperature (
o
C)
0V
1 40V 70V
IR2109(4) (S) & (PbF)
20 www.irf.com
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temperature (
o
C)
140V
0V
70V
Figure 34. IR21094 vs. Frequency (IRFBC20),
R
gate
=33
:
, V
CC
=15V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temperature (
o
C)
140V
70V
0V
Figure 35. IR21094 vs. Frequency (IRFBC30),
R
gate
=22
:
, V
CC
=15V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temperature (
o
C)
140V
70V
0V
Figure 36. IR21094 vs. Frequency (IRFBC40),
R
g
ate
=15
:
, V
CC
=15V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temperature (
o
C)
70V
0V
1 4 0
V
Figure 37. IR21094 vs. Frequency (IRFPE50),
R
gate
=10
:
, V
CC
=15V
IR2109(4) (S) & (PbF)
www.irf.com 21
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temperature (oC)
0V
70V
1 40V
Figure 38. IR2109S vs. Frequency (IRFBC20),
R
g
ate
=33
:
, V
CC
=15V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temperature (
oC)
140V
70V
0V
Figure 39. IR2109S vs. Frequency (IRFBC30),
R
gate
=22
:
, V
CC
=15V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Tempreture (
o
C)
140V 70V 0V
Figure 41. IR2109S vs. Frequency
(IRFPE50), R
g
ate
=10
:
, V
CC
=15V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temperature (
o
C)
0V
140V 70V
Figure 40. IR2109S vs. Frequency (IRFBC40),
R
g
ate
=15
:
, V
CC
=15V
IR2109(4) (S) & (PbF)
22 www.irf.com
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temperature (
o
C)
140V
70V
0V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temperature (
o
C)
1 4
V 7
V
0V
Figure 44. IR21094S vs. Frequency (IRFBC40),
R
gate
=15
:
, V
CC
=15V
Figure 45. IR21094S vs. Frequency (IRFPE50),
R
gate
=10
:
, V
CC
=15V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temperature (
o
C)
140V
70V
0V
Figure 42. IR21094S vs. Frequency (IRFBC20),
R
gate
=33
:
, V
CC
=15V
20
40
60
80
100
120
140
1 10 100 1000
Frequency (KHz)
Temperature (
oC)
140V
70V
0V
Figure 43. IR21094S vs. Frequency (IRFBC30),
R
gate
=22
:
, V
CC
=15V
IR2109(4) (S) & (PbF)
www.irf.com 23
Case Outlines
01-6027
01-0021 11 (MS-012AA)
8 Lead SOIC
87
5
65
D B
E
A
e
6X
H
0.25 [.010] A
6
4312
4. OU TLINE CONFORMS TO JEDEC OUT LINE MS-012AA.
NOT ES :
1. DIMENS IONING & TOLE RANCING PER ASME Y14.5M-1994.
2. CONT ROL LING DI MENS I ON: MIL LIME T E R
3. DIMENSIONS ARE S HOWN IN MILLIMET ERS [INCHES ].
7
K x 45°
8X L 8X c
y
FOOTPRINT
8X 0.72 [.028]
6.46 [.255]
3X 1.27 [.050] 8X 1.78 [.070]
5 DIMENS ION DOE S NOT INCL UDE MOLD PR OT RUS IONS .
6 DIMENS ION DOE S NOT INCL UDE MOLD PR OT RUS IONS .
MOLD PROTRUS IONS NOT TO EXCEED 0.25 [.010].
7 DIMENS ION IS T HE LE NGT H OF LEAD FOR S OL DE R ING T O
A S UBS TRAT E.
MOLD PROTRUS IONS NOT TO EXCEED 0.15 [.006].
0.25 [.010] C A B
e1
A
A1
8X b
C
0.10 [.004]
e1
D
E
y
b
A
A1
H
K
L
.189
.1497
.013
.050 BAS IC
.0532
.0040
.2284
.0099
.016
.1968
.1574
.020
.0688
.0098
.2440
.0196
.050
4.80
3.80
0.33
1.35
0.10
5.80
0.25
0.40
1.27 BAS IC
5.00
4.00
0.51
1.75
0.25
6.20
0.50
1.27
MIN MAX
MILLIMETERSINCHES
MIN MAX
DIM
e
c .0075 .0098 0.19 0.25
.025 BAS IC 0.635 BAS IC
01-6014
01-3003 01 (MS-001AB)
8 Lead PDIP
IR2109(4) (S) & (PbF)
24 www.irf.com
01-6010
01-3002 03 (MS-001AC)
14 Lead PDIP
01-6019
01-3063 00 (MS-012AB)
14 Lead SOIC (narrow body)
Data and specifications subject to change without notice. 7/11/2003
IR2109(4) (S) & (PbF)
www.irf.com 25
Basic Part (Non-Lead Free) Lead-Free Part
8-Lead PDIP IR2109 order IR2109 8-Lead PDIP IR2109 order IR2109PbF
8-Lead SOIC IR2109S order IR2109S 8-Lead SOIC IR2109S order IR2109SPbF
14-Lead PDI
P
IR21094 order IR21094 14-Lead PDIP IR21094 order IR21094PbF
14-Lead SOI
C
IR21094S order IR21094S 14-Lead SOI
C
IR21094S order IR21094SPbF
This product has been designed and qualified for the Industrial market.
Qualification Standards can be found on IR’s Website.
Data and specifications subject to change without notice.
IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.09/08/04