RT8168B
1
DS8168B-00 November 2011 www.richtek.com
General Description
The RT8168B is a dual single-pha se PWM controller with
integrated MOSFET drivers, compliant with Intel IMVP7
Pulse Width Modulation Specification to support both
CPU core and GPU core power. This part adopts G-NA VPTM
(Green-Native A VP), which is a Richtek proprietary topology
derived from finite DC gain compen sator in consta nt on-
time control mode. G-NAVPTM makes this part an easy
setting PWM controller to meet all Intel AVP (Active
V oltage Positioning) mobile CPU/GPU requirements. The
RT8168B uses SVID interfa ce to control an 8-bit DAC for
output voltage programming. The built-in high accuracy
DAC converts the received VID code into a voltage value
ranging from 0V to 1.52V with 5mV step voltage. The
system accuracy of the controller can reach 0.8%. The
RT8168B operates in continuous conduction mode or
diode emulation mode, according to the SVID command.
The maximum efficiency can rea ch up to 90% in different
operating modes according to different load conditions.
The droop function (load line) ca n be ea sily progra mmed
by setting the DC gain of the error a mplif ier. With proper
compensation, the load transient response can achieve
optimized A VP performance.
The output voltage transition slew rate is set via the SVID
interface. The RT8168B supports both DCR and sense
resistor current sensing. The RT8168B provides
VR_READY and thermal throttling output signals for
IMVP7 CPU and GPU core. This part also features
complete fault protection functions including over voltage,
under voltage, negative voltage, over current and thermal
shutdown.
The RT8168B is available in a WQFN-40L 5x5 small
footprint pa ckage.
Dual Single-Phase PWM Controller for CPU and GPU Core
Power Supply
Applications
zIMVP7 Intel CPU/GPU Core Power Supply
zLa ptop Computers
zA VP Step-Down Converter
Features
zz
zz
zDual Single-Phase PWM Controller for CPU Core
and GPU Core Power
zz
zz
zIMVP7 Compatible Power Management States
zz
zz
zSerial VID Interface
zz
zz
zG-NAVPTM Topology
zz
zz
zAVP f or CPU V R Only
zz
zz
z0.5% DAC Accuracy
zz
zz
z0.8% System Accuracy
zz
zz
zDifferential Remote Voltage Sensing
zz
zz
zBuilt-in ADC for Platform Programming
`SETINI/SETINIA for CPU/GPU Core VR Initial
Startup Voltage
`TMPMAX to Set Platform Maximum Temperature
`ICCMAX/ICCMAXA for CPU/GPU Core VR
Maximum Current
zz
zz
zPower Good Indicator : VR_READY/VRA_READY for
CPU/GPU Core Power
zz
zz
zThermal Throttling Indicator : VRHOT
zz
zz
zDiode Emulation Mode at Light Load Condition
zz
zz
zFast Line/Load Transient Response
zz
zz
zSwitching Frequency up to 1MHz per Phase
zz
zz
zOVP, UVP, NVP, OTP, UVLO, OCP
zz
zz
zSmall 40-Lead WQFN Package
zz
zz
zRoHS Compliant and Halogen Free
RT8168B
2DS8168B-00 November 2011www.richtek.com
Ordering Information
Note :
Richtek products are :
` RoHS compliant and compatible with the current require-
ments of IPC/JEDEC J-STD-020.
` Suitable for use in SnPb or Pb-free soldering processes.
Pin Configurations
(TOP VIEW)
WQFN-40L 5x5
BOOT1
ISEN1N
ISEN1P
SETINIA
VCC
GFXPS2
RGND
COMP
FB
TONSET ISENAP
FBA
COMPA
VR_READY
VRA_READY
VDIO
RGNDA
VCLK
ISENAN
1
2
3
4
5
6
7
8
9
10
30
29
28
27
26
25
24
23
22
21
SETINI
TMPMAX
ICCMAX
ICCMAXA
TSEN
OCSET
TSENA
OCSETA
IBIAS
UGATE1
PHASE1
LGATE1
PVCC
LGATEA
PHASEA
UGATEA
BOOTA
EN
TONSETA
20191817161514131211
31323334353637383940
41
GND
VRHOT
ALERT
Marking Information
Package Type
QW : WQFN-40L 5x5 (W-Type)
RT8168B
Lead Plating System
G : Green (Halogen Free and Pb Free)
RT8168BGQW : Product Number
YMDNN : Date Code
RT8168B
GQW
YMDNN
RT8168B
3
DS8168B-00 November 2011 www.richtek.com
Typical Application Circuit
V
CORE
40
39
38
32
2
ISEN1N
RT8168B
EN
TONSET
1
VCC
ISEN1P3
L1
V
IN
C3
R14C6C5
C1
C4
Q1
R5
R4
R13
C7
9
GND41 (Exposed Pad)
R2
COMP
FB
R21
C11
C10CORE V
CC
SENSE
R23
C9
PVCCC8
37
R1
5V
6
5
4
RGND7
C2
R3
Q2
R12
NTC
1
R15
R28
34
35
36
31
ISENAN
TONSETA
ISENAP30
L2
V
IN
C14
R43C16C17
R35
5V to 25V
R42
C15
R33
COMPA
FBA
R48
C20
C19
R50
C18
27
28
29
RGNDA26
C12
R34
Q4
R41
NTC
A
R44
R51
25VCLK
VCLK24VDIO
VDIO23
ALERT
R8
R7
R6
V
CCP
22VRA_READY
VRA_READY21VR_READY
VR_READY
R9R10R11
VRHOT20
18OCSETA
R17
V
CC
16
10SETINIA
R18R19R20
SETINI
11
R25R26R27
R24
OCSET
OCSETA
SETINIA
SETINI
OCSET
8GFXPS2
V
CC
12
13ICCMAX
R29R30R31
ICCMAXA
14
R37R38R39
TMPMAX
ICCMAX
TMPMAX
IBIAS
19
R54
R47
NTC
T1
R46
TSENA
TSEN
15
17
NTC
TA
V
CC
R16
R22
R45
R52R53
R49
5V
V
CC
BOOT1
V
GFX
V
GFX
R32
R40
ALERT
VRHOT
UGATEA
PHASEA
LGATEA
5V to 25V
UGATE1
PHASE1
LGATE1
Chip Enable
GFX V
CC
SENSE
GFX V
SS
SENSE
33C13
Q3
BOOTAR36
CORE VSS SENSE
VCORE
GFXPS2
ICCMAXA
2.2
1µF
13013015010k
10k75
27k8.7k10k10k
10k
10kNCNC
51k150k100kNC
33k5.1k1.6k10k
12k10k
ß = 338012k10k
ß = 3380
R71
750R72
750
1k1k53.6k
130k
0.1µF
5.1
10µF
0
00.1µF1µH
DCR = 7.6m
Optional
3.9k0.068µF
2.4k4.7k4.7k
ß = 3500
330µF
/9m
C26
330µF
/9m
OptionalOptional
71k10k100
100
Optional
0
1µF
130k5.1
0.1µF
10µF
0
00.1µF
0
Optional
11k0.1µF
1.2k1k1k
ß = 3650
330µF
/15m
C27
330µF
/15m
Optional
OptionalOptional
42k10k100
100
2µH
DCR = 14.6m
RT8168B
4DS8168B-00 November 2011www.richtek.com
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 H1 H0 VDAC Voltage
0 0 0 0 0 0 0 0 0 0 0.000
0 0 0 0 0 0 0 1 0 1 0.250
0 0 0 0 0 0 1 0 0 2 0.255
0 0 0 0 0 0 1 1 0 3 0.260
0 0 0 0 0 1 0 0 0 4 0.265
0 0 0 0 0 1 0 1 0 5 0.270
0 0 0 0 0 1 1 0 0 6 0.275
0 0 0 0 0 1 1 1 0 7 0.280
0 0 0 0 1 0 0 0 0 8 0.285
0 0 0 0 1 0 0 1 0 9 0.290
0 0 0 0 1 0 1 0 0 A 0.295
0 0 0 0 1 0 1 1 0 B 0.300
0 0 0 0 1 1 0 0 0 C 0.305
0 0 0 0 1 1 0 1 0 D 0.310
0 0 0 0 1 1 1 0 0 E 0.315
0 0 0 0 1 1 1 1 0 F 0.320
0 0 0 1 0 0 0 0 1 0 0.325
0 0 0 1 0 0 0 1 1 1 0.330
0 0 0 1 0 0 1 0 1 2 0.335
0 0 0 1 0 0 1 1 1 3 0.340
0 0 0 1 0 1 0 0 1 4 0.345
0 0 0 1 0 1 0 1 1 5 0.350
0 0 0 1 0 1 1 0 1 6 0.355
0 0 0 1 0 1 1 1 1 7 0.360
0 0 0 1 1 0 0 0 1 8 0.365
0 0 0 1 1 0 0 1 1 9 0.370
0 0 0 1 1 0 1 0 1 A 0.375
0 0 0 1 1 0 1 1 1 B 0.380
0 0 0 1 1 1 0 0 1 C 0.385
0 0 0 1 1 1 0 1 1 D 0.390
0 0 0 1 1 1 1 0 1 E 0.395
0 0 0 1 1 1 1 1 1 F 0.400
0 0 1 0 0 0 0 0 2 0 0.405
0 0 1 0 0 0 0 1 2 1 0.410
0 0 1 0 0 0 1 0 2 2 0.415
Table 1. IMVP7/VR12 Compliant VID Table
To be continued
RT8168B
5
DS8168B-00 November 2011 www.richtek.com
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 H1 H0 DAC Voltage
0 0 1 0 0 0 1 1 2 3 0.420
0 0 1 0 0 1 0 0 2 4 0.425
0 0 1 0 0 1 0 1 2 5 0.430
0 0 1 0 0 1 1 0 2 6 0.435
0 0 1 0 0 1 1 1 2 7 0.440
0 0 1 0 1 0 0 0 2 8 0.445
0 0 1 0 1 0 0 1 2 9 0.450
0 0 1 0 1 0 1 0 2 A 0.455
0 0 1 0 1 0 1 1 2 B 0.460
0 0 1 0 1 1 0 0 2 C 0.465
0 0 1 0 1 1 0 1 2 D 0.470
0 0 1 0 1 1 1 0 2 E 0.475
0 0 1 0 1 1 1 1 2 F 0.480
0 0 1 1 0 0 0 0 3 0 0.485
0 0 1 1 0 0 0 1 3 1 0.490
0 0 1 1 0 0 1 0 3 2 0.495
0 0 1 1 0 0 1 1 3 3 0.500
0 0 1 1 0 1 0 0 3 4 0.505
0 0 1 1 0 1 0 1 3 5 0.510
0 0 1 1 0 1 1 0 3 6 0.515
0 0 1 1 0 1 1 1 3 7 0.520
0 0 1 1 1 0 0 0 3 8 0.525
0 0 1 1 1 0 0 1 3 9 0.530
0 0 1 1 1 0 1 0 3 A 0.535
0 0 1 1 1 0 1 1 3 B 0.540
0 0 1 1 1 1 0 0 3 C 0.545
0 0 1 1 1 1 0 1 3 D 0.550
0 0 1 1 1 1 1 0 3 E 0.555
0 0 1 1 1 1 1 1 3 F 0.560
0 1 0 0 0 0 0 0 4 0 0.565
0 1 0 0 0 0 0 1 4 1 0.570
0 1 0 0 0 0 1 0 4 2 0.575
0 1 0 0 0 0 1 1 4 3 0.580
0 1 0 0 0 1 0 0 4 4 0.585
0 1 0 0 0 1 0 1 4 5 0.590
To be continued
RT8168B
6DS8168B-00 November 2011www.richtek.com
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 H1 H0 DAC Voltage
0 1 0 0 0 1 1 0 4 6 0.595
0 1 0 0 0 1 1 1 4 7 0.600
0 1 0 0 1 0 0 0 4 8 0.605
0 1 0 0 1 0 0 1 4 9 0.610
0 1 0 0 1 0 1 0 4 A 0.615
0 1 0 0 1 0 1 1 4 B 0.620
0 1 0 0 1 1 0 0 4 C 0.625
0 1 0 0 1 1 0 1 4 D 0.630
0 1 0 0 1 1 1 0 4 E 0.635
0 1 0 0 1 1 1 1 4 F 0.640
0 1 0 1 0 0 0 0 5 0 0.645
0 1 0 1 0 0 0 1 5 1 0.650
0 1 0 1 0 0 1 0 5 2 0.655
0 1 0 1 0 0 1 1 5 3 0.660
0 1 0 1 0 1 0 0 5 4 0.665
0 1 0 1 0 1 0 1 5 5 0.670
0 1 0 1 0 1 1 0 5 6 0.675
0 1 0 1 0 1 1 1 5 7 0.680
0 1 0 1 1 0 0 0 5 8 0.685
0 1 0 1 1 0 0 1 5 9 0.690
0 1 0 1 1 0 1 0 5 A 0.695
0 1 0 1 1 0 1 1 5 B 0.700
0 1 0 1 1 1 0 0 5 C 0.705
0 1 0 1 1 1 0 1 5 D 0.710
0 1 0 1 1 1 1 0 5 E 0.715
0 1 0 1 1 1 1 1 5 F 0.720
0 1 1 0 0 0 0 0 6 0 0.725
0 1 1 0 0 0 0 1 6 1 0.730
0 1 1 0 0 0 1 0 6 2 0.735
0 1 1 0 0 0 1 1 6 3 0.740
0 1 1 0 0 1 0 0 6 4 0.745
0 1 1 0 0 1 0 1 6 5 0.750
0 1 1 0 0 1 1 0 6 6 0.755
0 1 1 0 0 1 1 1 6 7 0.760
0 1 1 0 1 0 0 0 6 8 0.765
0 1 1 0 1 0 0 1 6 9 0.770
To be continued
RT8168B
7
DS8168B-00 November 2011 www.richtek.com
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 H1 H0 DAC Voltage
0 1 1 0 1 0 1 0 6 A 0.775
0 1 1 0 1 0 1 1 6 B 0.780
0 1 1 0 1 1 0 0 6 C 0.785
0 1 1 0 1 1 0 1 6 D 0.790
0 1 1 0 1 1 1 0 6 E 0.795
0 1 1 0 1 1 1 1 6 F 0.800
0 1 1 1 0 0 0 0 7 0 0.805
0 1 1 1 0 0 0 1 7 1 0.810
0 1 1 1 0 0 1 0 7 2 0.815
0 1 1 1 0 0 1 1 7 3 0.820
0 1 1 1 0 1 0 0 7 4 0.825
0 1 1 1 0 1 0 1 7 5 0.830
0 1 1 1 0 1 1 0 7 6 0.835
0 1 1 1 0 1 1 1 7 7 0.840
0 1 1 1 1 0 0 0 7 8 0.845
0 1 1 1 1 0 0 1 7 9 0.850
0 1 1 1 1 0 1 0 7 A 0.855
0 1 1 1 1 0 1 1 7 B 0.860
0 1 1 1 1 1 0 0 7 C 0.865
0 1 1 1 1 1 0 1 7 D 0.870
0 1 1 1 1 1 1 0 7 E 0.875
0 1 1 1 1 1 1 1 7 F 0.880
1 0 0 0 0 0 0 0 8 0 0.885
1 0 0 0 0 0 0 1 8 1 0.890
1 0 0 0 0 0 1 0 8 2 0.895
1 0 0 0 0 0 1 1 8 3 0.900
1 0 0 0 0 1 0 0 8 4 0.905
1 0 0 0 0 1 0 1 8 5 0.910
1 0 0 0 0 1 1 0 8 6 0.915
1 0 0 0 0 1 1 1 8 7 0.920
1 0 0 0 1 0 0 0 8 8 0.925
1 0 0 0 1 0 0 1 8 9 0.930
1 0 0 0 1 0 1 0 8 A 0.935
1 0 0 0 1 0 1 1 8 B 0.940
1 0 0 0 1 1 0 0 8 C 0.945
1 0 0 0 1 1 0 1 8 D 0.950
To be continued
RT8168B
8DS8168B-00 November 2011www.richtek.com
To be continued
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 H1 H0 DAC Voltage
1 0 0 0 1 1 1 0 8 E 0.955
1 0 0 0 1 1 1 1 8 F 0.960
1 0 0 1 0 0 0 0 9 0 0.965
1 0 0 1 0 0 0 1 9 1 0.970
1 0 0 1 0 0 1 0 9 2 0.975
1 0 0 1 0 0 1 1 9 3 0.980
1 0 0 1 0 1 0 0 9 4 0.985
1 0 0 1 0 1 0 1 9 5 0.990
1 0 0 1 0 1 1 0 9 6 0.995
1 0 0 1 0 1 1 1 9 7 1.000
1 0 0 1 1 0 0 0 9 8 1.005
1 0 0 1 1 0 0 1 9 9 1.010
1 0 0 1 1 0 1 0 9 A 1.015
1 0 0 1 1 0 1 1 9 B 1.020
1 0 0 1 1 1 0 0 9 C 1.025
1 0 0 1 1 1 0 1 9 D 1.030
1 0 0 1 1 1 1 0 9 E 1.035
1 0 0 1 1 1 1 1 9 F 1.040
1 0 1 0 0 0 0 0 A 0 1.045
1 0 1 0 0 0 0 1 A 1 1.050
1 0 1 0 0 0 1 0 A 2 1.055
1 0 1 0 0 0 1 1 A 3 1.060
1 0 1 0 0 1 0 0 A 4 1.065
1 0 1 0 0 1 0 1 A 5 1.070
1 0 1 0 0 1 1 0 A 6 1.075
1 0 1 0 0 1 1 1 A 7 1.080
1 0 1 0 1 0 0 0 A 8 1.085
1 0 1 0 1 0 0 1 A 9 1.090
1 0 1 0 1 0 1 0 A A 1.095
1 0 1 0 1 0 1 1 A B 1.100
1 0 1 0 1 1 0 0 A C 1.105
1 0 1 0 1 1 0 1 A D 1.110
1 0 1 0 1 1 1 0 A E 1.115
1 0 1 0 1 1 1 1 A F 1.120
1 0 1 1 0 0 0 0 B 0 1.125
1 0 1 1 0 0 0 1 B 1 1.130
RT8168B
9
DS8168B-00 November 2011 www.richtek.com
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 H1 H0 DAC Voltage
1 0 1 1 0 0 1 0 B 2 1.135
1 0 1 1 0 0 1 1 B 3 1.140
1 0 1 1 0 1 0 0 B 4 1.145
1 0 1 1 0 1 0 1 B 5 1.150
1 0 1 1 0 1 1 0 B 6 1.155
1 0 1 1 0 1 1 1 B 7 1.160
1 0 1 1 1 0 0 0 B 8 1.165
1 0 1 1 1 0 0 1 B 9 1.170
1 0 1 1 1 0 1 0 B A 1.175
1 0 1 1 1 0 1 1 B B 1.180
1 0 1 1 1 1 0 0 B C 1.185
1 0 1 1 1 1 0 1 B D 1.190
1 0 1 1 1 1 1 0 B E 1.195
1 0 1 1 1 1 1 1 B F 1.200
1 1 0 0 0 0 0 0 C 0 1.205
1 1 0 0 0 0 0 1 C 1 1.210
1 1 0 0 0 0 1 0 C 2 1.215
1 1 0 0 0 0 1 1 C 3 1.220
1 1 0 0 0 1 0 0 C 4 1.225
1 1 0 0 0 1 0 1 C 5 1.230
1 1 0 0 0 1 1 0 C 6 1.235
1 1 0 0 0 1 1 1 C 7 1.240
1 1 0 0 1 0 0 0 C 8 1.245
1 1 0 0 1 0 0 1 C 9 1.250
1 1 0 0 1 0 1 0 C A 1.255
1 1 0 0 1 0 1 1 C B 1.260
1 1 0 0 1 1 0 0 C C 1.265
1 1 0 0 1 1 0 1 C D 1.270
1 1 0 0 1 1 1 0 C E 1.275
1 1 0 0 1 1 1 1 C F 1.280
1 1 0 1 0 0 0 0 D 0 1.285
1 1 0 1 0 0 0 1 D 1 1.290
1 1 0 1 0 0 1 0 D 2 1.295
1 1 0 1 0 0 1 1 D 3 1.300
1 1 0 1 0 1 0 0 D 4 1.305
1 1 0 1 0 1 0 1 D 5 1.310
To be continued
RT8168B
10 DS8168B-00 November 2011www.richtek.com
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 H1 H0 DAC Voltage
1 1 0 1 0 1 1 0 D 6 1.315
1 1 0 1 0 1 1 1 D 7 1.320
1 1 0 1 1 0 0 0 D 8 1.325
1 1 0 1 1 0 0 1 D 9 1.330
1 1 0 1 1 0 1 0 D A 1.335
1 1 0 1 1 0 1 1 D B 1.340
1 1 0 1 1 1 0 0 D C 1.345
1 1 0 1 1 1 0 1 D D 1.350
1 1 0 1 1 1 1 0 D E 1.355
1 1 0 1 1 1 1 1 D F 1.360
1 1 1 0 0 0 0 0 E 0 1.365
1 1 1 0 0 0 0 1 E 1 1.370
1 1 1 0 0 0 1 0 E 2 1.375
1 1 1 0 0 0 1 1 E 3 1.380
1 1 1 0 0 1 0 0 E 4 1.385
1 1 1 0 0 1 0 1 E 5 1.390
1 1 1 0 0 1 1 0 E 6 1.395
1 1 1 0 0 1 1 1 E 7 1.400
1 1 1 0 1 0 0 0 E 8 1.405
1 1 1 0 1 0 0 1 E 9 1.410
1 1 1 0 1 0 1 0 E A 1.415
1 1 1 0 1 0 1 1 E B 1.420
1 1 1 0 1 1 0 0 E C 1.425
1 1 1 0 1 1 0 1 E D 1.430
1 1 1 0 1 1 1 0 E E 1.435
1 1 1 0 1 1 1 1 E F 1.440
1 1 1 1 0 0 0 0 F 0 1.445
1 1 1 1 0 0 0 1 F 1 1.450
1 1 1 1 0 0 1 0 F 2 1.455
1 1 1 1 0 0 1 1 F 3 1.460
1 1 1 1 0 1 0 0 F 4 1.465
1 1 1 1 0 1 0 1 F 5 1.470
1 1 1 1 0 1 1 0 F 6 1.475
1 1 1 1 0 1 1 1 F 7 1.480
1 1 1 1 1 0 0 0 F 8 1.485
To be continued
RT8168B
11
DS8168B-00 November 2011 www.richtek.com
VID7 VID6 VID5 VID4 VID3 VID2 VID1 VID0 H1 H0 DAC Voltage
1 1 1 1 1 0 0 1 F 9 1.490
1 1 1 1 1 0 1 0 F A 1.495
1 1 1 1 1 0 1 1 F B 1.500
1 1 1 1 1 1 0 0 F C 1.505
1 1 1 1 1 1 0 1 F D 1.510
1 1 1 1 1 1 1 0 F E 1.515
1 1 1 1 1 1 1 1 F F 1.520
RT8168B
12 DS8168B-00 November 2011www.richtek.com
Functional Pin Description
Pin No. Pin Name Pin Function
1 BOOT1 CPU VR Bootstrap Power Pin. This pin powers the high side MOSFET drivers.
Connect this pin to the PHASE1 pin with a bootstrap capacitor.
2 TONSET
Single-Phase CPU VR On-Time Setting Pin. Connect this pin to VIN with a
resis tor to s et ripple si ze in PWM m ode .
3 ISEN1P Positive Current Sense Input Pin of CPU VR.
4 IS EN 1N N egati ve C urren t S en se In put P in of C PU VR .
5 C OMP CPU VR Compensation Pin. This pin is the output of the error amplifier.
6 FB CPU VR Feedback Pin. This pin is the inverting input node of the error amplifier.
7 RGND Return Ground for CPU VR. This pin is the inverting input node for differential
remote voltage sensing.
8 GFXPS2
Set Pin for GPU VR Operation Mode. Logic-high on this pin will force the GPU VR
to enter DCM.
9 VCC Controller Power Supply Pin. Connect this pin to GND via a ceramic capacitor
la rger tha n 1 μF.
10 SETINIA ADC Input for Single-Phase GPU VR VBOOT Voltage Setting.
11 SETINI ADC Input for Single-Phase CPU VR VBOOT Voltage Setting.
12 TMPMAX ADC Input for Single-Phase CPU VR Maximum Temperature Setting.
13 ICCMAX ADC Input for Single-Phase CPU VR Maximum Current Setting.
14 ICCMAXA ADC Input for Single-Phase GPU VR Maximum Current Setting.
15 TSEN Thermal Monitor Sense Input Pin for CPU VR.
16 OCSET
Set Pin for Single-Phase CPU VR Over Current Protection Threshold.
C on nec t a resis ti ve v ol t ag e di vi der fr om V CC to g r oun d, a nd c onnec t th e jo int of
the voltage divider to the OCSET pin. The voltage, VOCSET, at this pin sets the
over current threshold, ILIMIT, for CP U VR.
17 TSENA Ther mal Monit or Sens e Input for GPU VR.
18 OCSETA
Set Pin for Single-Phase GPU VR Over Current Protec tion Threshold.
C on nec t a resis ti ve v ol t ag e di vi der fr om V CC to g r oun d, a nd c onnec t th e jo int of
the voltage divider to the OCSE TA pin. The voltage, VOCSETA, at this pin sets the
over current threshold, ILIMIT, for GPU VR.
19 IBIAS In ternal Bias Curr en t Set ting. C on nec t a 53.6k Ω r e si sto r from t h is pin t o G N D to
set the internal bias current.
20 VRHOT Th e rmal Monitor Outpu t Pin (active low).
21 VR_READY CPU VR Voltage Ready Indicator. This pin has an open drain output.
22 VRA_READY GPU VR Voltage Ready Indicator. This pin has an open drain output.
23 ALERT Alert Line of SVID Interface (active low). This pin has an open drain output.
24 VDIO Data Transmission Line of SVID Interface.
25 VCLK C lock Signal Line of S VID Interface.
26 RGNDA Return Ground for Single-Phase GPU VR.
This pin is the inverting input node for differential remote voltage sensing.
27 FBA GPU VR Feedback Pin. This pin is the inverting input node of the error amplifier.
28 COMPA Single-Phase GPU VR Compensation Pin. This pin is the output of the error
amplifier.
29 ISENAN N eg ati ve Curr en t S en se In put Pin of S i ng le-Ph as e G PU V R.
30 ISENAP Positive Current Sense Input Pin of Single-Phase GPU VR.
31 TONSETA
Single-Phase GPU VR On-Time Setting Pin. Connect this pin to VIN with a
resis tor to s et ripp le si ze in PWM m ode.
To be continued
RT8168B
13
DS8168B-00 November 2011 www.richtek.com
Pin No. Pin Name Pin Function
32 EN Voltage Regulator Enable Signal Input Pin.
33 BOOTA
GPU VR Boo ts trap Po w er P in . Thi s pi n po w ers the h igh s id e M OSFE T driv er s .
Connect this pin to the PHASEA pin with a bootstrap capacitor.
34 UGATEA
U ppe r G ate D riv er of G PU VR . This pi n d r iv es the hi gh si de MO SFE T of GPU
VR.
35 PHASEA
Switc h Nod e of G P U V R. T his pin is t he return n ode of the h igh si de M O SFET
driver for GPU VR. Connect this pin to the joint of the source of high side
MOSFET, drain of the low side M OSFET, and the output inductor.
36 LGATEA
Lower Gate Driver of GPU VR. This pin drives the low side MOSFET of GPU
VR.
37 PVCC
MOSFET Driver Power Supply Pin. Connect this pin to GND via a ceramic
capacitor larger than 1μF.
38 LGATE1
Lower Gate Driver of CPU VR. This pin drives the low side MOSFET of CPU
VR.
39 PHASE1
Switc h N od e o f C PU VR . Th is pin is the ret ur n n od e o f th e h igh si de dri ver f or
CPU VR. Connec t this pin to the joint of the source of high side MOSFET, drain
of the low side MOSFET, and the output inductor.
40 UGATE1
U ppe r G ate D riv er of C PU VR. T his pin d r iv es th e h igh s ide M O SFE T o f CPU
VR.
41 (E xp os ed Pad) G ND Gr ound of Low Sid e M OSFE T D riv er. The ex pos ed pa d m us t b e s old ered to a
large P CB and connected to GND for maximum power dissipation.
RT8168B
14 DS8168B-00 November 2011www.richtek.com
Function Block Diagram
ICCMAX
ICCMAXA
TSEN
FBA
COMPA
ERROR
AMP
TMPMAX
Control & Protection Logic
MUX
ADC
SVID XCVR
VDIO
VCLK
EN
VR_READY
VRA_READY
RGNDA
PWM CMP
From Control Logic
VREFA
VCC
UVLO
PVCC
BOOTA
UGATEA
PHASEA
LGATEA
SETINIA
SETINI
TSENA
TONSETA
TON Time
Generator
Driver Logic
Control
Offset
Cancellation
GFXPS2
VRHOT
+
-
+
-
ALERT
DAC
+
-
10
OCPOVP/UVP/NVP
ERROR
AMP
RGND
PWM CMP
From Control Logic
Soft-Start & Slew
Rate Control VREF
BOOT1
UGATE1
PHASE1
LGATE1
TONSET
TON Time
Generator
Driver Logic
Control
Offset
Cancellation +
-
+
-
DAC
To Protection Logic
Soft-Start & Slew
Rate Control
+
-
10 OCP OVP/UVP/NVP
To Protection Logic
FB
COMP
ISEN1P
ISEN1N
OCSET
ISENAP
ISENAN
OCSETA
IBIAS
RT8168B
15
DS8168B-00 November 2011 www.richtek.com
Recommended Operating Conditions (Note 4)
zSupply Voltage, VCC ------------------------------------------------------------------------------------- 4.5V to 5.5V
zInput Voltage, VIN ----------------------------------------------------------------------------------------- 5V to 25V
zJunction T emperature Range--------------------------------------------------------------------------- 40°C to 125°C
zAmbient T emperature Range--------------------------------------------------------------------------- 40°C to 85°C
Absolute Maximum Ratings (Note 1)
zPVCC, VCC to GND ------------------------------------------------------------------------------------- 0.3V to 6.5V
zRGNDx to GND ------------------------------------------------------------------------------------------- 0.3V to 0.3V
zTONSETx to GND ---------------------------------------------------------------------------------------- 0.3V to 28V
zOthers------------------------------------------------------------------------------------------------------- 0.3V to (VCC + 0.3V)
zBOOTx to PHASEx-------------------------------------------------------------------------------------- 0.3V to 6.5V
zPHASEx to GND
DC------------------------------------------------------------------------------------------------------------ 3V to 28V
<20ns ------------------------------------------------------------------------------------------------------- 8V to 32V
zUGATEx to PHASEx
DC------------------------------------------------------------------------------------------------------------ 0.3V to (BOOTx PHASEx)
<20ns ------------------------------------------------------------------------------------------------------- 5V to 7.5V
zLGA TEx to GND
DC------------------------------------------------------------------------------------------------------------ 0.3V to (PVCC + 0.3V)
<20ns ------------------------------------------------------------------------------------------------------- 2.5V to 7.5V
zPower Dissipation, PD @ TA = 25°C
WQFN40L 5x5------------------------------------------------------------------------------------------- 2.778W
zPa ckage Thermal Resista nce (Note 2)
WQFN40L 5x5, θJA ------------------------------------------------------------------------------------- 36°C/W
WQFN40L 5x5, θJC------------------------------------------------------------------------------------- 6°C/W
zJunction T emperature------------------------------------------------------------------------------------ 150°C
zLead T emperature (Soldering, 10 sec.)-------------------------------------------------------------- 260°C
zStorage T emperature Range --------------------------------------------------------------------------- 65°C to 150°C
zESD Susceptibility (Note 3)
HBM (Human Body Mode) ----------------------------------------------------------------------------- 2kV
MM (Ma chine Mode) ------------------------------------------------------------------------------------- 200V
Electrical Characteristics
(VCC = 5V, TA = 25°C, unless otherwise specified)
Parameter Symbol Test Conditions Min Typ Max Unit
Sup ply Inpu t VCC/VPVCC V
EN = 1.05V, Not Switching 4.5 5 5.5 V
Input Voltage Range VIN Battery Input Voltage 5 -- 25 V
Supply Current
(VCC + PVCC) IVCC + IPVCC V
EN = 1.05V, Not Switching -- 12 20 mA
Supply Current
(TONSETx) ITONSETx V
FB =1 V, VIN = 1 2V, RTON = 100kΩ -- 110 -- μA
To be continued
RT8168B
16 DS8168B-00 November 2011www.richtek.com
To be continued
Parameter Symbol Test Conditions Min Typ Max Unit
Shu tdown Current
(PVCC + VCC) IVCC_SHDN
+ IPVCC_SHDN VEN = 0V -- -- 5 μA
Shu tdown Current
(TONSETx) ITONSETx_SHDN V
EN = 0V -- -- 5 μA
TON Setting
TO NSETx Voltage VTONSETx I
RTON = 80μA, VFBx = 1V 0.95 1.075 1. 2 0V
On-Time tON I
RTON = 80μA, VFBx = 1V 315 350 385 ns
TONS ETx Input
Current Range IRTON V
FBx = 1.1V 25 -- 2 80 μA
Minimum Off-Time T OFF_MIN -- 350 -- ns
GFX VR Force d D EM
GFXPS2x Ena ble
Threshold VGFXPS 4.3 -- -- V
GFXPS2x Disable
Threshold VGFXPS -- -- 0.7 V
Refer ences and System Out put Vo lt age
VIDSVID Se tt in g = 1.000V~ 1. 520V
OFSSVID Setting = 0 V 0.5 0 0.5 %VID
VIDSVID Se tt in g = 0.800V~ 1. 000V
OFSSVID Setting = 0 V 5 0 5
VIDSVID Se tt in g = 0.500V~ 0. 800V
OFSSVID Setting = 0 V 8 0 8
VIDSVID Se tt in g = 0.250V~ 0. 500V
OFSSVID Setting = 0 V 8 0 8
DA C Accuracy
(PS0/PS1) VFBx
VIDSVID Se tt in g = 1.100V
OFSSVID Setting = 0.640V~0.635V 10 0 10
mV
VINI_CORE = 0 V, VINI_GFX = 0V 0 0 .3125 0.5125
VINI_CORE = 0.9V, VINI_GFX = 0.9V 0.7375 0. 9375 1. 13 75
VINI_CORE = 1 V, VINI_GFX = 1V 1. 3625 1.5625 1.7625
SETINIx Voltage VSETINIx
VINI_CORE = 1.1V, VINI_GFX = 1.1V 2.6125 -- 5
V
IBIA S Pin Voltage VIBIAS R
IBIAS = 5 3.6 kΩ 2.09 2.14 2.19 V
S et VI D Slow 2. 5 3.125 3.75
Dynam ic VI D Slew
Rate SRDVID SetVID Fas t 10 1 2.5 15 mV/μs
Error Amplifier
DC Gain ADC R
L = 4 7 kΩ (Note5) 70 80 -- dB
Gain-Ban dwidth
Product GBW CLOAD = 5pF (Note5) -- 10 -- MHz
Slew Rate SRCOMP CLOAD = 10pF (Gai n = 4,
RLOAD_COMP = 47kΩ, VCOMPx =
0. 5V to 3V) -- 5 -- V/μs
Output Voltage
Range VCOMP R
L = 4 7 kΩ 0.5 -- 3.6 V
MA X Source /S ink
Current ICOMP V
COMP = 2V -- 250 - - μA
Im pedance of FB x RFBx 1 -- -- MΩ
RT8168B
17
DS8168B-00 November 2011 www.richtek.com
To be continued
Parameter Symbol Test Conditions Min Typ Max Unit
Current Sen se Amplifier
I nput Of f s et Voltage V OFS_CSA 1 -- 1 mV
I mpedance of Neg. I nput R ISENxN 1 -- -- MΩ
Impedance of Pos. Input RISENxP 1 -- -- MΩ
Current Sense
D if ferenti al Input Range VCSDIx VFBx = 1.1V,
VCSDIx = V ISENxP VISENxN 50 -- 100 mV
Current Sense D C Gain
(Loop) AI V
FBx = 1.1V, 30m V < V CSDIx < 50mV -- 1 0 -- V/V
VISEN Lin ear it y VISEN_ACC V
DAC = 1.1V 30mV < VISEN_IN < 50mV 1 -- 1 %
Gate Driver
U pper Driver S our ce R UGATEx_sr VBOOTx VPHASEx = 5 V
VBOOTx VUGATEx = 0.1V -- 1 -- Ω
U pper Driver Sink R UGATEx_sk V
UGATEx = 0.1V - - 1 -- Ω
Lower Dr i v er S our ce R LGATEx_sr PVCC = 5V, PVCC VLGATEx = 0.1V -- 1 -- Ω
Lower Dr ive r Sink RLGATEx_sk V
LGATEx = 0.1V - - 0.5 -- Ω
Internal Boot Charging
Sw itc h On -Resis ta n ce RBOOTx PVCC to BOOTx -- 30 -- Ω
Zer o Current Det ect ion
Threshold VZCD_TH V
ZCD_TH = GND VPHASEx -- 10 -- mV
Protection
U nder V ol t age Lock- out
Threshold VUVLO V C C Fal ling edge 4. 04 4. 24 -- V
U nder V ol t age Lock- out
Hysteresis ΔVUVLO -- 100 -- mV
Over Volt age Protection
Threshold VOVP Respect to VOUT_MAXSVID, with 1μs
fi lte r time 100 150 200 mV
U nder V ol t age Pr ot ecti on
Threshold VUVP VUVP = VISENxN VREFx, 0.8V < VREFx
<1. 52V, wit h 3μs fi lt er t ime 350 300 250 mV
Negat i ve Vol tage
P ro tecti on Thres hold VNVP V
NVP = VISENxN GND 100 50 -- mV
C ur rent S ense Ga in for
Over Current Protectio n AOC VOCSET = 2. 4V
VISENxP VISENxN = 5 0mV -- 48 -- V/V
Logi c Inputs
Logic-High VIH Wi th r espect t o 1V, 70% 0. 7 -- --
EN Input
Threshold
Voltage Logic-Low VIL Wi th r espect t o 1V, 30% - - - - 0.3 V
Leakage Current of EN 1 -- 1 μA
VIH W ith res p ect to Intel Spec . 0 .65 - - --
VC LK,VDIO Input
Thr eshold Vol tage VIL W ith re s p ec t to Intel Spec . -- - - 0 .45 V
Leakage Current of
VCL K, VDIO ILEAK_IN 1 -- 1 μA
RT8168B
18 DS8168B-00 November 2011www.richtek.com
Parameter Symbol Test Conditions Min Typ Max Unit
ALERT
ALE RT Low Voltage VALERT IALERT _ SIN K = 4mA -- -- 0.4 V
V R R eady
V Rx_RE AD Y Low Vol tage V VRx_READY I
VRx_ R EADY_ SINK = 4mA -- - - 0. 4 V
VRx_READY Delay tVRx_READY V
ISENxN = VBOOT to VVRx_READY high 70 100 160 μs
T her ma l T hro ttlin g
V RH O T Ou tpu t V ol t age VVRHOT I
VRHOT_SINK = 40mA -- 0.4 -- V
H igh Im pedance Outp ut
AL ERT, VRx_READY,
VRHOT ILEAK_OUT 1 -- 1 μA
Temperature Zone
TSE N Threshold for
Tm p_Zone [7] t ransit ion 100°C -- 1.8725 -- V
TSE N Threshold for
Tm p_Zone [6] t ransit ion 97°C -- 1.8175 -- V
TSE N Threshold for
Tm p_Zone [5] t ransit ion 94°C -- 1.7625 -- V
TSE N Threshold for
Tm p_Zone [4] t ransit ion 91°C -- 1.7075 -- V
TSE N Threshold for
Tm p_Zone [3] t ransit ion
VTSENx
88°C -- 1.6525 -- V
TSE N Threshold for
Tm p_Zone [2] t ransit ion 85°C -- 1.5975 -- V
TSE N Threshold for
Tm p_Zone [1] t ransit ion 82°C -- 1.5425 -- V
TSE N Threshold for
Tm p_Zone [0] t ransit ion
VTSENx
75°C -- 1.4875 -- V
U pdate Peri od tTSEN -- 1600 -- μs
ADC
Latency tLAT -- -- 400 μs
CICCMAX1 V
ICCMAX = 0.637V 29 32 35 decim al
CICCMAX2 V
ICCMAX = 1.2642V 61 64 67 decim al
Di gi tal Code of ICCMAX
CICCMAX3 V
ICCMAX = 2.5186V 125 128 131 decim al
CICCMAXA1 V
ICCMAXA = 0 .1666V 5 8 11 deci mal
CICCMAXA2 V
ICCMAXA = 0.3234V 13 16 19 decimal Di gi tal Code of ICCMAXA
CICCMAXA3 V
ICCMAXA = 0.637V 29 32 35 decimal
CTMPMAX1 V
TMPMAX = 1.6758V 82 85 88 decim al
CTMPMAX2 V
TMPMAX = 1.9698V 97 100 103 decim al D ig it al C ode of TM PMAX
CTMPMAX3 V
TMPMAX = 2.4598V 122 125 128 decim al
RT8168B
19
DS8168B-00 November 2011 www.richtek.com
Note 1. Stresses listed as the above Absolute Maximum Ratings may cause permanent damage to the device. These are for
stress ratings. Functional operation of the device at these or any other conditions beyond those indicated in the
operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended
periods may remain possibility to affect device reliability.
Note 2. θJA is measured in the natural convection at TA = 25°C on a high effective thermal conductivity four-layer test board of
JEDEC 51-7 thermal measurement standard. The measurement case position of θJC is on the exposed pad of the
package.
Note 3. Devices are ESD sensitive. Handling precaution is recommended.
Note 4. The device is not guaranteed to function outside its operating conditions.
Note 5. Guaranteed by design.
RT8168B
20 DS8168B-00 November 2011www.richtek.com
Typical Operating Characteristics
Boot VID = 1V
Time (100μs/Div)
CORE VR Power On from EN
EN
(2V/Div)
VCORE
(500mV/Div)
VR_READY
(2V/Div)
UGATE
(20V/Div)
Time (100μs/Div)
CORE VR Power Off from EN
Boot VID = 1V
EN
(2V/Div)
VCORE
(500mV/Div)
VR_READY
(2V/Div)
UGATE
(20V/Div)
VID = 1.1V
Time (100μs/Div)
CORE VR OCP
ILOAD
(10A/Div)
VCORE
(1V/Div)
VR_READY
(1V/Div)
UGATE
(20V/Div)
Time (40μs/Div)
CORE VR OVP and NVP
VID = 1.1V
LGATE
(10V/Div)
VCORE
(1V/Div)
VR_READY
(1V/Div)
UGATE
(20V/Div)
0.7V to 1.2V, Slew Rate = Slow, ILOAD = 4A
Time (40μs/Div)
CORE VR Dynamic VID Up
VDIO
(2V/Div)
VCLK
(2V/Div)
VCORE
(500mV/Div)
ALERT
(2V/Div)
Time (40μs/Div)
CORE VR Dy n amic VID Down
1.2V to 0.7V, Slew Rate = Slow, ILOAD = 4A
ALERT
(2V/Div)
VCORE
(500mV/Div)
VDIO
(2V/Div)
VCLK
(2V/Div)
RT8168B
21
DS8168B-00 November 2011 www.richtek.com
Time (10μs/Div)
CORE VR Dynamic VID Up
0.7V to 1.2V, Slew Rate = Fast, ILOAD = 4A
VDIO
(2V/Div)
VCLK
(2V/Div)
VCORE
(500mV/Div)
ALERT
(2V/Div)
Time (10μs/Div)
CORE VR Dy n amic VID Down
1.2V to 0.7V, Slew Rate = Fast, ILOAD = 4A
VCORE
(500mV/Div)
ALERT
(2V/Div)
VDIO
(2V/Div)
VCLK
(2V/Div)
VID = 1.1V, ILOAD = 1A to 8A, Slew Time = 150ns
Time (100μs/Div)
CORE VR Load Transient
VCORE
(20mV/Div)
8
1
ILOAD
(A/Div)
Time (100μs/Div)
CORE VR Load Transient
VID = 1.1V, ILOAD = 8A to 1A, Slew Time = 150ns
VCORE
(20mV/Div)
8
1
ILOAD
(A/Div)
VID = 1.1V, PS0 to PS2, ILOAD = 0.2A
Time (100μs/Div)
CORE VR Mode Transition
UGATE
(20V/Div)
VCLK
(1V/Div)
LGATE
(10V/Div)
VCORE
(20mV/Div)
Time (100μs/Div)
CORE VR Mode Transition
VID = 1.1V, PS2 to PS0, ILOAD = 0.2A
UGATE
(20V/Div)
VCORE
(20mV/Div)
VCLK
(1V/Div)
LGATE
(10V/Div)
RT8168B
22 DS8168B-00 November 2011www.richtek.com
CORE VR VREF vs. Temperature
0.990
0.992
0.994
0.996
0.998
1.000
1.002
1.004
1.006
-50 -25 0 25 50 75 100 125
Temperature (°C)
VREF (V)
Time (100μs/Div)
GFX VR OCP
ILOAD
(5A/Div)
VGFX
(1V/Div)
VRA_READY
(1V/Div)
UGATEA
(20V/Div)
Time (40μs/Div)
GFX VR OVP and NVP
VID = 1.1V
LGATEA
(10V/Div)
VGFX
(1V/Div)
VRA_READY
(1V/Div)
UGATEA
(20V/Div)
Time (100μs/Div)
GFX VR Power On from EN
Boot VID = 1V
EN
(2V/Div)
VGFX
(500mV/Div)
VRA_READY
(2V/Div)
UGATEA
(20V/Div)
Time (100μs/Div)
GFX VR Power Off from EN
Boot VID = 1V
UGATEA
(20V/Div)
EN
(2V/Div)
VGFX
(500mV/Div)
VRA_READY
(2V/Div)
TSEN Sweep from 1.7V to 1.9V
Time (10ms/Div)
CORE VR Thermal Monitoring
VRHOT
(500mV/Div)
TSEN
(V/Div)
1.9
1.7
RT8168B
23
DS8168B-00 November 2011 www.richtek.com
Time (40μs/Div)
GFX VR Dynamic VID
0.7V to 1.2V, Slew Rate = Slow, ILOAD = 1.25A
VDIO
(2V/Div)
VCLK
(2V/Div)
VGFX
(500mV/Div)
ALERT
(2V/Div)
Time (40μs/Div)
GFX VR Dynamic VID
ALERT
(2V/Div)
VGFX
(500mV/Div)
1.2V to 0.7V, Slew Rate = Slow, ILOAD = 1.25A
VDIO
(2V/Div)
VCLK
(2V/Div)
Time (10μs/Div)
GFX VR Dynamic VID
0.7V to 1.2V, Slew Rate = Fast, ILOAD = 1.25A
VDIO
(2V/Div)
VCLK
(2V/Div)
VGFX
(500mV/Div)
ALERT
(2V/Div)
Time (10μs/Div)
GFX VR Dynamic VID
ALERT
(2V/Div) 1.2V to 0.7V, Slew Rate = Fast, ILOAD = 1.25A
VDIO
(2V/Div)
VCLK
(2V/Div)
VGFX
(500mV/Div)
Time (100μs/Div)
GFX VR Load Transient
VID = 1.1V, ILOAD = 1A to 4A, Slew Time = 150ns
VGFX
(20mV/Div)
4
1
ILOAD
(A/Div)
Time (100μs/Div)
GFX VR Load Transient
VID = 1.1V, ILOAD = 4A to 1A, Slew Time = 150ns
VGFX
(20mV/Div)
4
1
ILOAD
(A/Div)
RT8168B
24 DS8168B-00 November 2011www.richtek.com
GFX VR VREF vs. Temperature
0.988
0.990
0.992
0.994
0.996
0.998
1.000
1.002
1.004
1.006
-50-250 255075100125
Tempera tu re (°C )
VREF (V)
Time (100μs/Div)
GFX VR Mode Transition
VID = 1.1V, PS2 to PS0, ILOAD = 0.1A
UGATEA
(20V/Div)
VGFX
(20mV/Div)
VCLK
(1V/Div)
LGATEA
(10V/Div)
Time (100μs/Div)
GFX VR Mode Transition
VID = 1.1V, PS0 to PS2, ILOAD = 0.1A
UGATEA
(20V/Div)
VCLK
(1V/Div)
LGATEA
(10V/Div)
VGFX
(20mV/Div)
Time (10ms/Div)
GFX VR Thermal Monitoring
TSENA Sweep from 1.7V to 1.9V
1.9
1.7
TSENA
(V/Div)
VRHOT
(500mV/Div)
RT8168B
25
DS8168B-00 November 2011 www.richtek.com
Application Information
The RT8168B is a VR12/IMVP7 compliant, dual single-
phase synchronous Buck PWM controller for the CPU
CORE V R a nd GFX VR. The gate drivers are embedded
to facilitate PCB design and reduce the total BOM cost. A
serial VID (SVID) interface is built-in in the RT8168B to
communicate with Intel V R12/IMVP7 compliant CPU.
The RT8168B adopts G-NAVPTM (Green Native AVP),
which is Richtek's proprietary topology derived from finite
DC gain compensator, making it an easy setting PWM
controller to meet AVP requirements. The load line can
be ea sily progra mmed by setting the DC gain of the error
amplifier. The RT8168B has fast tra n sient response due
to the G-NAVPTM commanding variable switching
frequency.
G-NAVPTM topology also represents a high efficiency
system with green power concept. With G-NAVPTM
topology , the RT8168B becomes a green power controller
with high efficiency under heavy load, light load, a nd very
light load conditions. The RT8168B supports mode
transition function between CCM and DEM. These different
operating states allow the overall power system to have
low power loss. By utilizing the G-NAVPTM topology, the
operating frequency of RT8168B varies with output voltage,
load and VIN to further enhance the efficiency even in CCM.
The built-in high accuracy DAC converts the SVID code
ranging from 0.25V to 1.52V with 5mV per step. The
differential remote output voltage sense and high accuracy
DAC allow the system to have high output voltage accuracy.
The RT8168B supports VR12/IMVP7 compatible power
management states and VID on-the-fly function. The power
management states include DEM in PS2/PS3 and Forced-
CCM in PS1/PS0. The VID on-the-fly function has three
different slew rates : Fa st, Slow and Decay . The RT8168B
integrates a high accuracy ADC for platform setting
functions, such as no-load offset and over current level.
The controller supports both DCR and sense-resistor
current sensing. The RT8168B provides VR ready output
signals of both CORE VR and GFX VR. It also features
complete fault protection functions including over voltage,
under voltage, negative voltage, over current a nd under
voltage lockout. The RT8168B is available in a WQFN-
48L 6x6 small f oot print package.
De sign Tool
To help users reduce efforts and errors caused by ma nual
calculations, a user-friendly design tool is now available
on request. This design tool calculates all necessary
design parameters by entering user's requirements.
Please conta ct Richtek's representatives for details.
Serial VID (SVID) Interface
SVID is a three-wire serial synchronous interface defined
by Intel. The three wire bus includes VDIO, VCLK and
ALERT signals. The master (Intel's VR12/IMVP7 CPU)
initiates and terminates SVID transa ctions and drives the
V DIO, VCLK, a nd ALERT during a transaction. The slave
(RT8168B) receives the SVID transactions and acts
accordingly.
RT8168B
26 DS8168B-00 November 2011www.richtek.com
Standard Serial VID Command
Code Commands Master Payload
Contents Slave Payload
Contents Description
00h not supported N/A N/A N/A
01h SetVID_Fast VID code N/A Se t new tar get VID code, VR ju mps t o n ew VID
target with controlled default “fast” slew rate
12.5mV/μs.
02h SetVID_Slow VID code N/A Se t new tar get VID code, VR ju mps t o n ew VID
target with controlled default “slow” slew rate
3.125mV/μs.
03h SetVID_Decay VID code N/A
Se t new tar get VID code, VR ju mps t o n ew VID
target, but does not control the slew rate. The
output voltage decays at a rate proportional to
the load current
04h SetPS Byte indicating
power states N/A Set power state
05h SetRegADR
Pointer of registers
in data table N/A Set the pointer of the data register
06h SetReg DAT New data r egister
content N/A Write the contents to the data register
07h GetReg
Pointer of registers
in data table
Specified
Register
Contents
Slave returns the contents of the specified
register as the payload
08h
-
1Fh not supported N/A N/A N/A
RT8168B
27
DS8168B-00 November 2011 www.richtek.com
Data and Configuration Register
Index Register Name Description Access Default
00h V endor ID V endor I D, defa ult 1Eh. RO, V endor 1 Eh
01h Pr oduct ID Product ID . RO, V endor 65h
02h Pr oduct Revisi on Product Rev isi on. RO, V endor 01h
05h Protocol ID SVI D Prot ocol ID . RO, Vendor 01h
06h VR_Capability Bi t m apped r egi s t er , iden ti fies the SVID VR c apabil it ies
and whi ch of the opt ional telem etry r egi ster are
supported. RO, V endor 81h
10h S t at us _1 Da ta register contai ning the st at us of V R. R -M, W- PWM 00h
11h Status-2 Da ta r egi s ter contai ning the st at us of t ransmi ss i on. R -M, W- P WM 00h
12h Temperature
Zone Data r egi s ter show ing temper ature zone t hat have been
entered. R-M, W-PWM 00h
15h Output_Current Da ta register show ing dir ect AD C convers ion of av eraged
output cur rent . R-M, W-PWM 00h
1C h St at us_2_l as t read The register cont ai ns a copy of t he st atus_2. R -M, W-PWM 00h
21h ICC_Max Data r egister contai ni ng the m axi mu m ICC o f pl at form
supports.
Bi nary for m at i n Amp, I E 64h = 10 0A. RO, Platform --
22h Temp_Max
Da ta re gist er cont aining the tempe ra ture max t he plat for m
supports.
Bi nary for m at i n °C , I E 64h = 100°C
On ly for CORE VR
RO, Platform --
24h SR-Fast Da ta reg ist er cont aining the capabil ity of fast slew r at e th e
platform can sustains. Binary format in mV/μs, IE 0Ah =
10mV/μs. RO 0Ah
25h SR-Slow Dat a regist er cont aining t he capabil ity of slow slew rate.
Binary format in mV /μs I E 02h = 2. 5m V/μs. RO 02h
30h VOUT_Max The register i s progr am m ed by th e master a nd sets the
maximum VID. RW, Mast er BFh
31h VID Setting Data r egi s ter contai ning currently pro gra mm ed VID . RW, Master 00h
32h Power St at e R egi ster containing the curr ent programm ed power state. RW, Master 00h
33h Of f set Se t of fset in V ID steps. RW, M as t er 00h
34h Mult i VR Conf ig Bit mapped dat a register which conf igures m ul ti ple V Rs
behavior on the same bus. RW, Master 00h
35h Pointer Scratch pad regist er f or tem por ar y storage of the
Set RegA DR poi nter register. RW, Master 30h
Notes :
RO = Read Only
RW = Read/Write
R-M = Read by Master
W-PWM = Write by PWM only
Vendor = hard coded by VR vendor
Platform = programmed by platform
Master = programmed by the master
PWM = programmed by the VR control IC
RT8168B
28 DS8168B-00 November 2011www.richtek.com
Figure 5. ADC Pins Setting
A/D
Converter
ICCMAX
ICCMAXA
TMPMAX
VCC
ICCMAX, ICCMAXA and TMPMAX
The RT8168B provides ICCMAX, ICCMAXA and TMPMAX
pins for platform users to set the maximum level of output
current or VR temperature: ICCMAX for CORE VR
maximum current, ICCMAXA for GFX VR maximum
current, and TMPMAX for CORE VR maximum
temperature.
To set ICCMAX, ICCMAXA and TMPMAX, platform
designers should use resistive voltage dividers on these
three pins. The current of the divider should be several
milli-Amps to avoid noise effect. The three items share
the sa me algorithms : the ADC divides 5V into 255 levels.
Therefore, LSB = 5/255 = 19.6mV, which mea ns 19.6mV
a pplied to ICCMAX pin equals to 1A setting. For exa mple,
if a platform designer wants to set TMPMAX to 120°C, the
voltage applied to TMPMAX should be 120 x 19.6mV =
2.352V. The ADC circuit inside these three pins will
decode the voltage a pplied and store the maximum current/
temperature setting into ICC_MAX and Temp_Max
registers. The ADC monitors a nd decodes the voltage at
these three pins only after EN = high. If EN = low, the
RT8168B will not take any a ction even when the VR output
current or temperature exceeds its maximum setting at
these ADC pins. The maximum level settings at these
ADC pins are different from over current protection or over
temperature protection. That means, these maximum level
setting pins are only for platform users to define their
system operating conditions and these messages will only
be utilized by the CPU.
VINI_CORE and VINI_GFX Setting
The initial start up voltage (VINI_CORE, VINI_GFX) of the
RT8168B can be set by platform users through SETINI
and SETINIA pins. V oltage divider circuit is recommended
to be a pplied to SETINI and SETINIA pins. The VINI_CORE/
VINI_GFX relate to SETINI/SETINIA pin voltage setting as
shown in Figure 6. Recommended voltage setting at SETINI
a nd SETINIA pins are also shown in Figure 6.
Precise Reference Current Generation
The RT8168B includes extensive analog circuits inside
the controller. These analog circuits need very precise
reference voltage/current to drive these a nalog devices.
The RT8168B will auto-generate a 2.14V voltage source
at IBIAS pin, and a 53.6kΩ resistor is required to be
connected between IBIAS and analog ground. Through
this connection, the RT8168B generates a 40μA current
from IBIAS pin to analog ground and this 40μA current will
be mirrored inside the RT8168B for internal use. Other
types of connection or other values of resista nce a pplied
at the IBIAS pin may cause failure of the RT8168B's analog
circuits. Thus a 53.6kΩ resistor is the only recommended
component to be connected to the IBIAS pin. The
resistance accuracy of this resistor is recommended to
be at least 1%.
Figure 4. IBIAS Setting
+
-
IBIAS
53.6k
Current
Mirror
+
-
2.14V
Power Ready Detection and Power On Reset (POR)
During start-up, the RT8168B detects the voltage on the
voltage input pins : VCC and EN. When VCC > VUVLO,
the RT8168B will recognize the power state of system to
be ready (POR = high) and wait for enable command at
EN pin. After POR = high a nd EN > VENTH, the RT8168B
will enter start-up sequence for both CORE VR a nd GFX
VR. If the voltage on any voltage pin drops below POR
threshold (POR = low), the RT8168B will enter power down
sequence and all the functions will be disabled. SVID will
be invalid within 300μs after chip becomes enabled. All
the protection latches (OVP, OCP, UVP, OTP) will be
cleared only after POR = low. EN = low will not clear
these latches.
Figure 3. Power Ready Detection a nd Power On Reset
(POR)
V
UVLO
V
ENTH
+
-
+
-
POR
Chip EN
VCC
EN
RT8168B
29
DS8168B-00 November 2011 www.richtek.com
Figure 6. SETINI a nd SETINIA Pin Voltage Setting
Start Up Sequence
The RT8168B utilizes internal soft-start sequence which
strictly follows Intel VR12/IMVP7 start up sequence
specifications. After POR = high and EN = high, a 300μs
delay is needed for the controller to determine whether all
the power inputs are ready for entering start up sequence.
If pin voltage of SETINI/SETINIA is zero, the output voltage
of CORE/GFX VR is programmed to stay at 0V. If pin
voltage of SETINI/SETINIA is not zero, VR output voltage
will ra mp up to initial boot voltage (VINI_CORE, VINI_GFX) after
both POR = high a nd EN = high. After the output voltage
of CORE/GFX V R rea ches target initial boot voltage, the
controller will keep the output voltage at the initial boot
voltage and wait for the next SVID comma nds. After the
RT8168B receives valid VID code (typically SetVID_Slow
command), the output voltage will ramp up/down to the
target voltage with specified slew rate. After the output
voltage reaches the target voltage, the RT8168B will send
out VR_READY signal to indicate the power state of the
RT8168B is ready. The VR_READY circuit is an open-
drain structure so a pull-up resistor is recommended for
connecting to a voltage source.
VINI_CORE
VINI_GFX Recomm ended
SETINI/SETINIA Pin Voltage
1.1V 5
8x VCC3.125V or VCC
1V 3
8x VCC1.875V
0.9V 3
16 x VCC0.9375V
0V 1
16 x VCC0.3125V or GND
VCC (5V)
GND
1/8 VCC
1/4 VCC
1/2 VCC
VINI_CORE= 0.9V
VINI_GFX= 0.9V
VINI_CORE = 1.1V
VINI_GFX= 1.1V
VINI_CORE= 1V
VINI_GFX= 1V
VINI_CORE= 0V
VINI_GFX= 0V
Power Down Sequence
Similar to the start up sequence, the RT8168B also utilizes
a soft shutdown mecha nism during turn-off. After POR =
low, the internal reference voltage (positive terminal of
compensation EA) starts ra mping down with 3.125mV/μs
slew rate, and output voltage will follow the reference
voltage to 0V. After output voltage drops below 0.2V, the
RT8168B shuts down a nd all functions are disabled. The
VR_READY will be pulled down immediately after POR =
low.
RT8168B
30 DS8168B-00 November 2011www.richtek.com
Figure 7 (a). Power sequence for RT8168B (VINI_CORE = VINI_GFX = 0V)
Figure 7 (b). Power sequence for RT8168B (VINI_CORE 0, VINI_GFX 0V)
EN
SVID Valid xx
XX
VCORE
VR_READY 100µs
POR
0.2V
CORE VR
Operation Mode CCM CCM
0.2V
VGFX
SVID defined
CCM SVID defined
GFX VR
Operation Mode
100µs
VRA_READY
CCM
300µs
Off
Off
VCC
EN Chip
(Internal Signal)
Off
Off
VRA_READY
EN Chip
(Internal Signal)
SVID Valid xx
XX
VCORE
VR_READY 100µs
POR
0.2V
CORE VR
Operation Mode CCM CCMOff
0.2V
VGFX
SV ID d efin ed
CCMOff SVID d e fine d
GFX VR
Operation Mode CCM
250µs
Off
Off
VCC
EN
100µs
300µs
VINI_GFX
VINI_CORE
50µs
RT8168B
31
DS8168B-00 November 2011 www.richtek.com
Since the DCR of inductor is temperature dependent, it
affects the output a ccuracy in high temperature conditions.
Temperature compensation is recommended for the
lossless inductor DCR current sense method. Figure 10
shows a simple but effective way of compensating the
temperature variations of the sense resistor using an NTC
thermistor pla ced in the feedback path.
Figure 10. Loop Setting with Temperature Compensation
VCC_SENSE
-
+VSS_SENSE
FBx
RGNDx
COMPx
C2 C1
R2 R1b
EA
R1a
NTC
-
+
VREFx
Figure 8. Simplified Schematic for Droop a nd Remote
Sense in CCM
Disable GFX VR : Before EN = High
GFX VR enable or disable is determined by the internal
circuitry that monitors the ISENAN voltage during start
up. Before EN = high, GFX VR detects whether the voltage
of ISENAN is higher than VCC 1V to disable GFX
VR. The unused driver pins ca n be connected to GND or
left floating.
GFX VR Forced-DEM Function Enable : After
VRA_Ready = High
The GFX VR's forced-DEM function can be enabled or
disabled with GFXPS2 pin. The RT8168B detects the
voltage of GFXPS2 for forced-DEM function. If the voltage
at GFXPS2 pin is higher than 4.3V, the GFX VR operates
in forced-DEM. If this voltage is lower tha n 0.7V , the GFX
VR f ollows SVID power state command.
Loop Control
Both CORE a nd GFX VR a dopt Richtek's proprietary G-
NAVPTM topology. G-NAVPTM is based on the finite-gain
valley current mode with CCRCOT (Constant Current
Ripple Con stant On Time) topology. The output voltage,
VCORE or VGFX, will decrease with increasing output load
current. The control loop consists of PWM modulator with
power stage, current sense amplifier and error amplifier
as shown in Figure 8.
Similar to the valley current mode control with finite
compensator gain, the high side MOSFET on-time is
determined by the CCRCOT PWM generator . When load
current increa ses, VCS increa ses, the steady state COMP
voltage also increases which makes the output voltage
decrease, thus achieving A VP.
Droop Setting (with Temperature Compensation)
It's very easy to achieve the Active Voltage Positioning
(AVP) by properly setting the error amplifier gain due to
the native droop chara cteristics. The target is to have
VOUT = VREFx ILOAD x RDROOP (1)
Then solving the switching condition VCOMPx = VCSx in
Figure 8 yields the desired error a mplif ier gain a s
where AI is the internal current sen se amplifier gain and
RSENSE is the current sense resistance. If no external sense
resistor is present, the DCR of the inductor will act as
RSENSE. RDROOP is the resistive slope value of the converter
output a nd is the desired static output i mpedance.
Figure 9. Error Amplifier Gain (AV) Influence on VOUT
Accuracy
AV1
AV2
AV2 > AV1
VOUT
Load Current
0
×
==
I SENSE
VDROOP
AR
R2
AR1 R (2)
VIN
ISENxP
ISENxN
FBx
RGNDx
High Side
MOSFET L
RXCX
RC
C
R1
R2 CORE/GFX VR
VCC_SENSE
COMPx
VCSx
C2 C1
VREFx
GFX/CORE VR
CCRCOT
PWM Generator
Driver
Logic
Control
CByp
UGATEx
PHASEx
LGATEx
CORE/GFX VR
VSS_SENSE
VOUT
(VCORE/VGFX)
+
-
+
-
EA
+
-
Ai
+
-
CMP
Low Side
MOSFET
RT8168B
32 DS8168B-00 November 2011www.richtek.com
Loop Compensation
Optimized compensation of the CORE VR allows for best
possible load step response of the regulator's output. A
type-I compensator with one pole and one zero is adequate
for a proper compensation. Figure 10 shows the
compensation circuit. It wa s previously mentioned that to
determine the resistive feedback components of error
amplifier gain, C1 and C2 must be calculated for the
compensation. The target is to achieve constant resistive
output impedance over the widest possible frequency
range.
The pole frequency of the compensator must be set to
compensate the output capacitor ESR zero :
where C is the ca pacitance of the output capa citor and RC
is the ESR of the output capa citor. C2 ca n be calculated
as follows :
The zero of compensator has to be placed at half of the
switching frequency to filter the switching-related noise.
Such that,
TON Setting
High frequency operation optimizes the application by
trading off efficiency due to higher switching losses with
smaller component size. This may be a cceptable in ultra-
portable devices where the load currents are lower and
the controller is powered from a lower voltage supply . Low
frequency operation offers the best overall efficiency at
the expense of component size a nd board space. Figure
11 shows the on-time setting circuit. Connect a resistor
(RTONSETx) between VIN and TONSETx to set the on-ti me
of UGATEx :
SENSE, HOT NTC, HOT NTC, COLD
SENSE, COLD
SENSE, HOT
SENSE, COLD
R1b
R(R1a//R ) (R1a//R )
RR
1R
=
×−
⎛⎞
⎜⎟
⎝⎠
(8)
PC
1
f2CR
=×π× × (9)
C
CR
C2 R2
×
= (10)
(1 1)
()
NTC, 25 C SW
1
C1 R1b R1a //R f
°
=π×
Usually, R1a is set to equal RNTC (25°C), while R1b is
selected to linearize the NTC's temperature characteristic.
For a given NTC, the design would be to obtain R1b a nd
R2 and then C1 and C2. According to (2), to compensate
the temperature variations of the sense resistor , the error
amplifier gain (AV) should have the same temperature
coefficient with RSENSE. Hence
From (2), we can have Av at any temperature (T) a s
The standard formula for the resistance of NTC thermistor
as a function of temperature is given by :
where RNTC, 25 is the thermistor's nominal resistance at
room temperature, β (beta) is the thermistor's material
constant in Kelvins, and T is the thermistor's actual
temperature in Celsius.
The DCR value at different temperatures can be calculated
using the equation below :
DCRT = DCR25 x [1+0.00393 x (T-25)] (6)
where 0.00393 is the temperature coefficient of copper.
For a given NTC thermistor, solving (4) at room temperature
(25°C) yields
R2 = AV, 25 x (R1b + R1a // RNTC, 25) (7)
where AV, 25°C is the error a mplifier gain at room temperature
obtained from (2). R1b can be obtained by substituting
(7) to (3),
V, HOT SENSE, HOT
V, COLD SENSE, COLD
AR
AR
= (3)
V, T NTC, T
R2
AR1a / /R R1b
=+ (4)
(
)
(
)
{
}
11
T+273 298
NTC, T NTC, 25
RR e
⎡⎤
β−
⎢⎥
⎣⎦
= (5)
(12)
××
<=
-12 TONSETx
ONx REFx IN REFx
28 10 R
t (V 1.2V) VV
where tONx is the UGA TEx turn on period, VIN is the input
voltage of converter, and VREFx is the internal reference
voltage.
RT8168B
33
DS8168B-00 November 2011 www.richtek.com
Figure 11. On-T ime Setting with RC Filter
(13)
×× ×
=
ONx REFx -12 TONSETx REFx
IN REFx
t (V 1.2V)
23.33 10 R V
VV
(14)
−−
⎡⎤
+
⎣⎦
⎡⎤
⎣⎦
S(MAX) ON HS Delay
REFx(MAX) LOAD(MAX) ON_LS FET DROOP
IN(MAX) LOAD(MAX) ON_LS FET ON_HS FET
1
f(kHz)
tt
VI R DCRR
VI R R
When VREFx is larger than 1.2V, the equivalent switching
frequency may be over the maximum design range, making
it una cceptable. Therefore, the VR implements a pseudo-
constant-frequency technology to avoid this disadvantage
of CCRCOT topology. When VREFx is larger than 1.2V,
the on-time equation will be modified to :
On-time tra nslates roughly to switching frequencies. The
on-times guaranteed in the Electrical Characteristics are
influenced by switching delays in external high side
MOSFET. Also, the dead-time effect increases the effective
on-time, reducing the switching frequency. It occurs only
in CCM during dynamic output voltage transitions when
the inductor current reverses at light or negative load
currents. With reversed inductor current, PHASEx goes
high earlier than normal, extending the on-time by a period
equal to the high side MOSFET rising dead time.
For better efficiency of the given load range, the maximum
switching frequency is suggested to be :
where fS(MAX) is the maximum switching frequency, tHS-
Delay is the turn on delay of high side MOSFET, VREFx(MAX)
is the maximum application DAC voltage of application,
VIN(MAX) is the maximum application input voltage,
ILOAD(MAX) is the maximum loa d of a pplication, RON_LS-FET
is the low side MOSFET RDS(ON), RON_HS-FET is the high
side MOSFET RDS(ON), DCRL is the inductor DCR, and
RDROOP is the load line setting.
GFX/CORE
VR CCRCOT
PWM
Generator
TONSETx RTONSETx R1
C1
VIN
VREFx
On-Time
Differential Remote Sense Setting
The CORE/GFX VR includes differential, remote-sense
inputs to eliminate the effects of voltage drops along the
PC board tra c es, CPU intern al power routes and socket
contacts. The CPU contains on-die sense pins CORE/
GFX VCC_SENSE and VSS_SENSE. Connect RGNDx to CORE/
GFX VSS_SENSE. Connect FBx to CORE/GFX VCC_SENSE
with a resistor to build the negative input path of the error
a mplifier. The precision voltage reference VREFx is referred
to RGND f or accurate remote sen sing.
Current Sense Setting
The current sense topology of the CORE/GFX VR is
continuous inductor current sensing. Therefore, the
controller can be less noise sensitive. Low offset a mplifiers
are used for loop control a nd over current detection. The
internal current sense a mplifier gain (AI) is fixed to be 10.
The ISENxP and ISENxN denote the positive and negative
input of the current sense amplifier .
Users can either use a current sense resistor or the
inductor's DCR for current sensing. Using inductor's DCR
allows higher eff iciency a s shown in Figure 12. To let
then the transient performance will be optimum. For
example, choose L = 0.36μH with 1mΩ DCR and
CX = 100nF, to yields for RX :
XX
LRC
DCR (15)
X0.36 H
R3.6k
1m 100nF
μ
==Ω
Ω× (16)
LDCR
RXCX
VOUT
(VCORE/VGFX)
CByp
+
-
ISENxP
ISENxN
PHASEx
AI
VCSx
Figure 12. Lossless Inductor Sensing
RT8168B
34 DS8168B-00 November 2011www.richtek.com
Considering the inducta nce tolerance, the resistor RX ha s
to be tuned on board by exa mining the tra nsient voltage.
If the output voltage tra nsient has an initi al dip below the
minimum loa d line requirement with a slow recovery, RX
is too small. V ice versa, if the resistance is too large the
output voltage transient will only have a small initial dip
a nd the recovery will be too fast, causing a ring-ba ck.
Using current-sense resistor in series with the inductor
can have better accuracy , but the efficiency is a trade-off.
Considering the equivalent inductance (LESL) of the current
sense resistor , a RC filter is recommended. The RC filter
calculation method is similar to the above-mentioned
inductor DCR sensing method.
Operation Mode Transition
The RT8168B supports operation mode transition function
in CORE/GFX VR for the SetPS command of Intel's VR12/
IMVP7 CPU. The default operation mode of the RT8168B's
CORE/GFX VR is PS0, which is CCM operation. The other
operation mode is PS2 (DEM operation).
After receiving SetPS comma nd, the CORE/GFX VR will
immediately change to the new operation state. When
VR receives SetPS command of PS2 operation mode,
the V R operates as a DEM controller.
If VR receives dynamic VID cha nge command (SetVID),
VR will automatically enter PS0 operation mode. After
output voltage reaches target voltage, VR will stay at PS0
state and ignore former SetPS command. Only by
re-sending SetPS command after SetVID comma nd will
VR be forced into PS2 operation state again.
Thermal Monitoring and Temperature Reporting
CORE/GFX VR provides thermal monitoring function via
sensing TSEN pin voltage. Through the voltage divider
resistors R1, R2, R3 and RNTC, the voltage of TSEN will
be proportional to VR temperature. When VR temperature
rises, the TSENx voltage also rises. The ADC circuit of
VR monitors the voltage variation at TSENx pin from 1.47V
to 1.89V with 55mV resolution, and this voltage is decoded
into digital format and stored into the Temperature Zone
register.
Figure 13. Thermal Monitoring Circuit
To meet Intel's VR12/IMVP7 specification, platform users
have to set the TSEN voltage to meet the temperature
variation of VR from 75% to 100% VR max temperature.
For exa mple, if the VR max temperature is 100°C, platform
users have to set the TSEN voltage to be 1.4875V when
VR temperature reaches 75°C and 1.8725V when VR
temperature reaches 100°C. Detailed voltage setting
versus temperature variation is shown in Table 2.
Thermometer code is implemented in the Temperature
Zone register.
TSENx
VCC
R1
R2
R3
RNTC
Table 2. Temperature Zone Register
VRHOT SVID
Thermal
Alert
C om par at or Tr ip P oin ts
Temper atures Scaled to maximum =
100%
Vol tage Represents Assert bit
Minimu m L ev el
b7 b6 b5 b4 b3 b2 b1 b0
100% 97% 94% 91% 88% 85% 82% 75%
1.855V 1.8V 1.745
V 1.69
V 1.635
V 1.58
V 1.52
5V 1.47
V
TS E N Pin Volt age Tem peratur e_Z one
Register Content
1.855 VTSEN 1111_1111
1.800 VTSEN 1.835 0 1 1 1_11 1 1
1.745 VTSEN 1.780 0011_1 1 11
1.690 VTSEN 1.725 0001_ 1 1 1 1
1.635 VTSEN 1.670 0000_ 1 1 1 1
1.580 VTSEN 1.615 00 00_011 1
1.525 VTSEN 1.560 0000_ 001 1
1.470 VTSEN 1.505 00 00_000 1
VTSEN < 1.470 0000_0000
RT8168B
35
DS8168B-00 November 2011 www.richtek.com
Figure 15. OCP Setting with Temperature Compensation
OCSETx
VCC
ROC1b
ROC2
ROC1a NTC
Usually, ROC1a is selected to be equal to the thermistor's
nominal resista nce at room temperature. Ideally, VOCSET
is assumed to have the same temperature coefficient as
RSENSE (Inductor DCR) :
OCSET, HOT SENSE, HOT
OCSET, COLD SENSE, COLD
VR
VR
= (19)
(18)
CC
OC1 OC2 OCSET
V
RR 1
V
⎛⎞
⎜⎟
⎝⎠
Figure 14. OCP Setting without Temperature
Compensation
VCC
OCSETx
ROC1
ROC2
The current limit is triggered when inductor current
exceeds the current limit threshold ILIMIT, defined by
VOCSET. The driver will be f orced to turn off UGATE until
the over current condition is cleared. If the over current
condition remains valid for 15 PWM cycles, VR will trigger
OCP latch. Latched OCP forces both UGA TE and LGA TE
to go low. When OCP is triggered in one of VRs, the
other VR will enter into soft shutdown sequence. The OCP
latch mechanism will be masked when VRx_READY =
low , which mea ns that only the current li mit will be a ctive
when VOUT is ramping up to initial voltage (or V REFx).
If inductor DCR is used as the current sense component,
then temperature compensation is recommended for
protection under all conditions. Figure 15 shows a typical
OCP setting with temperature compensation.
Over Current Protection
The CORE/GFX VR compares a programmable current
limit set point to the voltage from the current sense amplifier
output for Over Current Protection (OCP). The voltage
applied to OCSETx pin defines the desired peak current
limit threshold ILIMIT :
VOCSET = 48 x ILIMIT x RSENSE (17)
Connect a resistive voltage divider from VCC to GND, with
the joint of the resistive divider connected to OCSET pin
a s shown in Figure 14. For a given ROC2, then
The RT8168B supports two temperature reporting,
VRHOT(hardware reporting) and ALERT(software
reporting), to fulfill VR12/IMVP7 specification. VRHOT is
an open-drain structure which sends out active-low VRHOT
signals. When TSEN voltage rises above 1.855V (100%
of VR temperature), the VRHOT signal will be set to low.
When TSEN voltage drops below 1.8V (97% of VR
temperature), the VRHOT signal will be reset to high. When
TSEN voltage rises above 1.8V (97% of VR temperature),
The RT8168B will update the bit1 data from 0 to 1 in the
Status_1 register and assert ALERT. When TSEN voltage
drops below 1.745V (94% of VR temperature), VR will
update the bit1 data from 1 to 0 in the Status_1 register
and a ssert ALERT.
The temperature reporting function for the GFX VR can be
disabled by pulling TSENA pin to VCC in case the
temperature reporting function for the GFX VR is not used
or the GFX VR is disabled. When the GFX VR's
temperature reporting function is disabled, the RT8168B
will reject the SVID command of getting the
Temperature_Zone register content of the GFX VR.
However , note that the temperature reporting function for
the CORE V R is always active. CORE VR's temperature
reporting function can not be disabled by pulling TSEN
pin to VCC.
RT8168B
36 DS8168B-00 November 2011www.richtek.com
According to the basic circuit calculation, VOCSET ca n be
obtained at a ny temperature :
OC2
OCSET, T CC OC1a NTC, T OC1b OC2
R
VV
R//R R R
++
(20)
Re-write (19) from (20), to get VOCSET at room temperature
OC1a NTC, COLD OC1b OC2 SENSE, HOT
OC1a NTC, HOT OC1b OC2 SENSE, COLD
R//R R R R
R//R R R R
++=
++ (21)
(22)
OCSET, 25
OC2
CC OC1a NTC, 25 OC1b OC2
VR
V R//R R R
=
×++
Solving (21) and (22) yields ROC1b and ROC2
(23)
OC2
EQU, HOT EQU, COLD EQU, 25
CC
OCSET, 25
RRR (1)R
V(1 )
V
=
α× + α ×
×−α
(24)
OC1b
EQU, HOT EQU, COLD
R(1)R2 R R
(1 )
=
α− × ×
−α
where
SENSE, HOT 25 HOT
SENSE, COLD 25 COLD
RDCR [1 0.00393 (T 25)]
R DCR [1 0.00393 (T 25)]
α=
×+ ×
=×+ ×
(25)
REQU, T = ROC1a // RNTC, T (26)
Over Voltage Protection (OVP)
The over voltage protection circuit of CORE/GFX VR
monitors the output voltage via the ISENxN pin. The
supported maximum operating VID of VR (V(MAX)) is stored
in the Vout_Max register. Once VISENxN exceeds V(MAX)
+ 200mV, OVP is triggered and latched. VR will try to
turn on low side MOSFETs and turn off high side
MOSFETs to protect CPU. When OVP is triggered by
the one of the VRs, the other VR will enter soft shutdown
sequence. A 10μs delay is used in OVP detection circuit
to prevent false trigger .
(27)
IN OUT
MIN ON
Ripple(MAX)
VV
Lt
I
Negative Voltage Protection (NVP)
During OVP latch state, both CORE/GFX VRs also monitor
ISENxN pin for negative voltage protection. Since the OVP
latch will continuously turn on low side MOSFET of VR,
VR may suffer negative output voltage. Therefore, when
the voltage of ISENxN drops below 0.05V after triggering
OVP, VR will turn of f low side MOSFETs while high side
MOSFETs remain off. The N VP function will be active only
after OVP is triggered.
Under Voltage Protection (UVP)
Both CORE/GFX VR implement Under V oltage Protection
(UVP). If ISENxN is less than VREFx by 300mV + VOFFSET,
VR will trigger UVP latch. The UVP latch will turn off both
high side and low side MOSFET s. When UVP is triggered
by one of the VRs, the other VR will enter into soft
shutdown sequence. The UVP mechanism is masked
when V Rx_READY = low.
Under Voltage Lock Out (UVLO)
During normal operation, if the voltage at the VCC pin
drops below UVLO falling edge threshold, both VR will
trigger UVLO. The UVLO protection forces all high side
MOSFETs and low side MOSFETs off to turn off.
Inductor Selection
The switching frequency and ripple current determine the
inductor value a s f ollows :
where tON is the UGA TE turn on period.
Higher inducta nce induces less ripple current a nd hence
higher efficiency. However, the tradeoff is a slower transient
response of the power stage to load transients. This might
increa se the need for more output ca pacitors, thus driving
up the cost. Find a low-loss inductor having the lowest
possible DC resistance that fits in the allotted dimensions.
The core must be large enough not to be saturated at the
pea k inductor current.
RT8168B
37
DS8168B-00 November 2011 www.richtek.com
Output Capacitor Selection
Output capacitors are used to obtain high bandwidth for
the output voltage beyond the bandwidth of the converter
itself. Usually, the CPU manufacturer recommends a
capacitor configuration. Two different kinds of output
capacitors can be found, bulk capa citors closely located
to the inductors and ceramic output capacitors in close
proximity to the load. Latter ones are for mid-frequency
decoupling with very small ESR and ESL values while the
bulk ca p acitors have to provide enough stored energy to
overcome the low-frequency bandwidth ga p between the
regulator and the CPU.
Layout Consideration
Careful PC board layout is critical to achieving low
switching losses and clean, stable operation. The
switching power stage requires particular attention. If
possible, mount all of the power components on the top
side of the board with their ground terminals flushed
against one another . Follow these guidelines for optimum
PC board layout :
`Keep the high current paths short, especially at the
ground terminals.
`Keep the power traces and load connections short. This
is essenti al for high efficiency.
`When trade-offs in trace lengths must be made, it's
preferable to allow the inductor charging path to be made
longer than the discharging path.
`Place the current sense component close to the
controller. ISENxP and ISENxN connections for current
limit a nd voltage positioning must be made using Kelvin
sense connections to guarantee the current sense
a ccuracy . The PCB tra ce from the sense nodes should
be parallel to the controller .
`Route high-speed switching nodes away from sensitive
analog areas (COMPx, FBx, ISENxP, ISENxN, etc...)
`Special attention should be paid in placing the DCR
current sensing components. The DCR current sensing
capacitor and resistors must be placed close to the
controller.
`The capacitor connected to the ISEN1N/ISENAN for noise
decoupling is optional a nd it should also be placed close
to the ISEN1N/ISENAN pin.
`The NTC thermistor should be placed physically close
to the inductor for better DCR thermal compensation.
RT8168B
38 DS8168B-00 November 2011www.richtek.com
Information that is provided by Richtek Technology Corporation is believed to be accurate and reliable. Richtek reserves the right to make any change in circuit
design, specification or other related things if necessary without notice at any time. No third party intellectual property infringement of the applications should be
guaranteed by users when integrating Richtek products into any application. No legal responsibility for any said applications is assumed by Richtek.
Richtek Technology Corporation
Headquarter
5F, No. 20, Taiyuen Street, Chupei City
Hsinchu, Taiwan, R.O.C.
Tel: (8863)5526789 Fax: (8863)5526611
Richtek Technology Corporation
Taipei Office (Marketing)
5F, No. 95, Minchiuan Road, Hsintien City
Taipei County, Taiwan, R.O.C.
Tel: (8862)86672399 Fax: (8862)86672377
Email: marketing@richtek.com
Outline Dimension
Dimensions In Millimete rs Dimensions In Inches
Symbol Min Max Min Max
A 0.700 0.800 0.028 0.031
A1 0.000 0.050 0.000 0.002
A3 0.175 0.250 0.007 0.010
b 0.150 0.250 0.006 0.010
D 4.950 5.050 0.195 0.199
D2 3.250 3.500 0.128 0.138
E 4.950 5.050 0.195 0.199
E2 3.250 3.500 0.128 0.138
e 0.400 0.016
L 0.350 0.450
0.014 0.018
W-Type 40L QFN 5x5 Package
Note : The configuration of the Pin #1 identifier is optional,
but must be located within the zone indicated.
DETAIL A
Pin #1 ID a nd T ie Bar Mark Option s
1
1
22
D
E
D2
E2
L
b
A
A1 A3
e
1
SEE DETAIL A