PIN CONFIGURATION (TOP VIEW)
Package type : 80P6N-A
80-pin plastic-molded QFP
DESCRIPTION
The 3806 group is 8-bit microcomputer based on the 740 family
core technology.
The 3806 group is designed for controlling systems that require
analog signal processing and include two serial I/O functions, A-D
converters, and D-A converters.
The various microcomputers in the 3806 group include variations
of internal memory size and packaging. For details, refer to the
section on part numbering.
For details on availability of microcomputers in the 3806 group, re-
fer to the section on group expansion.
FEATURES
Basic machine-language instructions....................................... 71
Memory size
ROM ................................................................ 12 K to 48 K bytes
RAM ................................................................. 384 to 1024 bytes
Programmable input/output ports ............................................. 72
Interrupts .................................................. 16 sources, 16 vectors
Timers ............................................................................. 8 bit 4
Serial I/O1 .................... 8-bit 1 (UART or Clock-synchronized)
Serial I/O2 ....................................8-bit 1 (Clock-synchronized)
A-D converter .................................................. 8-bit 8 channels
D-A converter .................................................. 8-bit 2 channels
Clock generating circuit ....................... Internal feedback resistor
(connect to external ceramic resonator or quartz-crystal)
Memory expansion possible
APPLICATIONS
Office automation, VCRs, tuners, musical instruments, cameras,
air conditioners, etc.
Specification
(unit)
Minimum instruction
execution time (µs)
Oscillation frequency
(MHz)
Power source voltage
(V)
Power dissipation
(mW)
Operating temperature
range
(°C)
Standard
0.5
8
3.0 to 5.5
32
–20 to 85
0.5
8
4.0 to 5.5
32
–40 to 85
Extended operating
temperature version
0.4
10
2.7 to 5.5
40
–20 to 85
High-speed
version
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
P3
0
P3
1
P3
4
/φ
P3
5
/SYNC
P0
0
/AD
0
P0
3
/AD
3
P0
4
/AD
4
P0
5
/AD
5
P0
6
/AD
6
P0
7
/AD
7
P1
1
/AD
9
P1
2
/AD
10
P1
3
/AD
11
P1
4
/AD
12
P1
5
/AD
13
P1
6
/AD
14
P1
7
/AD
15
P6
2
/AN
2
P6
1
/AN
1
P6
0
/AN
0
P7
7
M38063M6-XXXFP
P7
6
P7
5
P7
4
P7
2
/S
CLK2
P7
1
/S
OUT2
P7
0
/S
IN2
P5
7
/DA
2
P5
0
P4
6
/S
CLK1
P4
5
/T
X
D
P4
4
/R
X
D
P4
3
/INT
1
P6
3
/AN
3
P6
4
/AN
4
P6
5
/AN
5
AV
SS
V
REF
V
CC
P8
0
P8
1
P8
2
P8
3
P8
4
P8
5
P8
6
P8
7
P4
2
/INT
0
CNV
SS
X
IN
X
OUT
V
SS
P2
7
/DB
7
P2
6
/DB
6
P2
5
/DB
5
P2
4
/DB
4
P2
3
/DB
3
P2
2
/DB
2
P2
1
/DB
1
P2
0
/DB
0
RESET
P7
3
/S
RDY2
P5
1
/INT
2
P5
5
/CNTR
1
P5
4
/CNTR
0
P5
3
/INT
4
P5
2
/INT
3
P5
6
/DA
1
P1
0
/AD
8
P0
1
/AD
1
P0
2
/AD
2
P4
7
/S
RDY1
P3
2
/ONW
P3
3
/RESET
OUT
P3
6
/WR
P3
7
/RD
P4
0
P4
1
P6
7
/AN
7
P6
6
/AN
6
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
2
PIN CONFIGURATION (TOP VIEW)
Package type : 80P6S-A/80P6D-A
80-pin plastic-molded QFP
P36/WR
P37/RD
P00/AD0
P01/AD1
P02/AD2
P03/AD3
P04/AD4
P05/AD5
P06/AD6
P07/AD7
P10/AD8
P11/AD9
P12/AD10
P13/AD11
P14/AD12
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41 P15/AD13
6
P60/AN0
P77
P76
P75
P74
P73/SRDY2
P72/SCLK2
P71/SOUT2
P70/SIN2
P57/DA2
P56/DA1
P55/CNTR1
P54/CNTR0
P53/INT4
P52/INT3
P51/INT2
P50
1
4
3
2
5
7
8
9
10
11
12
13
14
15
16
17
18
19
20
P47/SRDY1
P46/SCLK1
P45/TXD
68
80
79
78
77
76
75
74
73
72
71
69
67
66
65
70
P64/AN4
P63/AN3
P65/AN5
P66/AN6
AVSS
VREF
VCC
P85
63
62
61
P87
P31
64
21
23
22
24
30
25
27
28
29
31
34
35
36
Vss
P27/DB7
P26/DB6
33
32
26
P25/DB5
38
39
40
P24/DB4
P23/DB3
P22/DB2
37
P44/RXD
P43/INT1
XIN
P42/INT0
RESET
XOUT
CNVSS
P41
P30
P86
P84
P62/AN2
P61/AN1
M38063M6-XXXGP
M38063M6AXXXHP
P21/DB1
P20/DB0
P17/AD15
P16/AD14
P40
P32/ONW
P33/RESETOUT
P34/φ
P35/SYNC
P67/AN7
P83
P82
P81
P80
3
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
FUNCTIONAL BLOCK DIAGRAM (Package : 80P6N)
CNTR
1
CNTR
0
V
REF
AV
SS
INT
2
to
INT
4
RAM ROM
CPU
A
X
Y
S
PC
H
PC
L
PS
V
SS
32
RESET
27
V
CC
73 26
CNV
SS
P0(8)
49 50 51 52 53 54 55 56
P1(8)
41 43 45 47
42 44 46 48
P2(8)
33 35 37 3934 36 38 40
P3(8)
57 59 61 6358 60 62 64
P4(8)
20 22 24 28
21 23 25 29
P5(8)
12 14 16 1813 15 17 19
P7(8)
46810579
11
P8(8)
65 67 69 7166 68 70 72
P6(8)
76 78
2
77
13
74 75
X
IN
30
X
OUT
31
Serial I/O2
(8) D-A
(8)
D-A
(8)
Reset input
Clock generating circuit
Clock input Clock output
A-D
converter
converter 2 converter 1
Prescaler 12 (8)
Timer 1 (8)
Timer 2 (8)
I/O port P4 I/O port P0I/O port P1I/O port P2I/O port P3
I/O port P5
I/O port P7
I/O port P8 I/O port P6
(8)
79 80
Serial I/O1
(8)
INT
0
to
INT
1
Prescaler X (8) Timer X (8)
Prescaler Y (8) Timer Y (8)
CPU
Data bus
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
4
Function
Apply voltage of 3.0 V to 5.5 V to VCC, and 0 V to VSS.
(Extended operating temperature version : 4.0 V to 5.5 V)
(High-speed version : 2.7 V to 5.5 V)
This pin controls the operation mode of the chip.
Normally connected to VSS.
If this pin is connected to VCC, the internal ROM is inhibited and external memory is accessed.
Reference voltage input pin for A-D and D-A converters
GND input pin for A-D and D-A converters
Connect to VSS.
Reset input pin for active “L”
Input and output signals for the internal clock generating circuit.
Connect a ceramic resonator or quartz-crystal oscillator between the XIN and XOUT pins to set the
oscillation frequency.
If an external clock is used, connect the clock source to the XIN pin and leave the XOUT pin open.
The clock is used as the oscillating source of system clock.
8 bit CMOS I/O port
I/O direction register allows each pin to be individually programmed as either input or output.
At reset this port is set to input mode.
In modes other than single-chip, these pins are used as address, data, and control bus I/O pins.
CMOS compatible input level
CMOS 3-state output structure
8-bit CMOS I/O port with the same function as port P0
CMOS compatible input level
CMOS 3-state output structure
8-bit CMOS I/O port with the same function as port P0
CMOS compatible input level
CMOS 3-state output structure
8-bit CMOS I/O port with the same function as
port P0
CMOS compatible input level
CMOS 3-state output structure
Pin
VCC
VSS
CNVSS
VREF
AVSS
______
RESET
XIN
XOUT
P00 – P07
P10 – P17
P20 – P27
P30 – P37
P40, P41
P42/INT0,
P43/INT1
P44/RXD,
P45/TXD,
P46/SCLK1,
_____
P47/SRDY1
P50
P51/INT2
P53/INT4
P54/CNTR0,
P55/CNTR1
P56/DA1,
P57/DA2
P60/AN0
P67/AN7
PIN DESCRIPTION
Name
Power source
CNVSS
Analog reference
voltage
Analog power
source
Reset input
Clock input
Clock output
I/O port P0
I/O port P1
I/O port P2
I/O port P3
I/O port P4
I/O port P5
I/O port P6
Function except a port function
External interrupt input pin
Serial I/O1 I/O pins
External interrupt input pin
Timer X and Timer Y I/O pins
D-A conversion output pins
A-D conversion input pins
5
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Function
8-bit I/O port with the same function as port P0
CMOS compatible input level
N-channel open-drain output structure
8-bit CMOS I/O port with the same function as port P0
CMOS compatible input level
CMOS 3-state output structure
Pin
P70/SIN2,
P71/SOUT2,
P72/SCLK2,
_____
P73/SRDY2
P74 – P77
P80 – P87
Name
I/O port P7
I/O port P8
Function except a port function
Ser ial I/O2 I/O pins
PIN DESCRIPTION (Continued)
M3806 3 M 6 - XXX FP
Product
Package type
FP : 80P6N-A package
GP : 80P6S-A package
FS : 80D0 package
ROM number
Omitted in some types.
ROM/PROM size
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
: 4096 bytes
: 8192 bytes
: 12288 bytes
: 16384 bytes
: 20480 bytes
: 24576 bytes
: 28672 bytes
: 32768 bytes
: 36864 bytes
: 40960 bytes
: 45056 bytes
: 49152 bytes
: 53248 bytes
: 57344 bytes
: 61440 bytes
The first 128 bytes and the last 2 bytes of ROM
are reserved areas ; they cannot be used.
Memory type
M
E : Mask ROM version
: EPROM or One Time PROM version
RAM size
0
1
2
3
4
5
6
7
: 192 bytes
: 256 bytes
: 384 bytes
: 512 bytes
: 640 bytes
: 768 bytes
: 896 bytes
: 1024 bytes
Normally, using hyphen
When electrical characteristic, or division of quality
identification code using alphanumeric character
– : standard
D : Extended operating temperature version
A : High-speed version
PART NUMBERING
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
6
RAM size (bytes)
384
384
512
1024
1024
Remarks
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
One Time PROM version
One Time PROM version (blank)
Mask ROM version
One Time PROM version
One Time PROM version (blank)
EPROM version
Mask ROM version
Mask ROM version
Mask ROM version
One Time PROM version
One Time PROM version (blank)
Mask ROM version
One Time PROM version
One Time PROM version (blank)
Package
80P6N-A
80P6S-A
80P6N-A
80P6S-A
80P6N-A
80P6S-A
80D0
80P6N-A
80P6S-A
80P6N-A
80P6S-A
Product name
M38062M3-XXXFP
M38062M3-XXXGP
M38062M4-XXXFP
M38062M4-XXXGP
M38063M6-XXXFP
M38063E6-XXXFP
M38063E6FP
M38063M6-XXXGP
M38063E6-XXXGP
M38063E6GP
M38063E6FS
M38067M8-XXXFP
M38067M8-XXXGP
M38067MC-XXXFP
M38067EC-XXXFP
M38067ECFP
M38067MC-XXXGP
M38067EC-XXXGP
M38067ECGP
24576
(24446)
12288
(12158)
16384
(16254)
32768
(32638)
49152
(49022)
GROUP EXPANSION
Mitsubishi plans to expand the 3806 group as follows:
(1) Support for mask ROM, One Time PROM, and EPROM
versions
ROM/PROM capacity ................................ 12 K to 48 K bytes
RAM capacity.............................................. 384 to 1024 bytes
(2) Packages
80P6N-A............................. 0.8 mm-pitch plastic molded QFP
80P6S-A........................... 0.65 mm-pitch plastic molded QFP
80D0................ 0.8 mm-pitch ceramic LCC (EPROM version)
Memory Expansion Plan
M38062M3
M38062M4
M38063M6/E6
M38067MC/EC
M38067M8
Mass product
Mass product
Mass product
Mass product
Mass product
48K
ROM size (bytes)
32K
28K
24K
20K
16K
12K
8K
4K
192 256 384 512 640 768 896 1024
RAM size (bytes)
Currently supported products are listed below As of May 1996
Products under development : the development schedule and specification may be revised without notice.
(P) ROM size (bytes)
ROM size for User in ( )
7
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
GROUP EXPANSION
(EXTENDED OPERATING TEMPERATURE VERSION)
Mitsubishi plans to expand the 3806 group (extended operating
temperature version) as follows:
(1) Support for mask ROM version
ROM/PROM capacity ................................ 12 K to 48 K bytes
RAM capacity.............................................. 384 to 1024 bytes
(2) Packages
80P6N-A............................. 0.8 mm-pitch plastic molded QFP
Memory Expansion Plan
Currently supported products are listed below. As of May 1996
RAM size (bytes)
384
384
512
1024
1024
12288(12158)
16384(16254)
24576(24446)
32768(32638)
49152(49022)
Remarks
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
One Time PROM version
One Time PROM version (blank)
Package
80P6N-A
Product name
M38062M3DXXXFP
M38062M4DXXXFP
M38063M6DXXXFP
M38067M8DXXXFP
M38067MCDXXXFP
M38067ECDXXXFP
M38067ECDFP
(P) ROM size (bytes)
ROM size for User in ( )
M38062M3D
M38062M4D
M38063M6D
M38067ECD
M38067MCD
M38067M8D
Mass product
Mass product
Mass product
Mass product
Mass product
48K
ROM size (bytes)
32K
28K
24K
20K
16K
12K
8K
4K
192 256 384 512 640 768 896 1024
RAM size (bytes)
New product
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
8
GROUP EXPANSION
(HIGH-SPEED VERSION)
Mitsubishi plans to expand the 3806 group (high-speed version)
as follows:
(1) Support for mask ROM, One Time PROM, and EPROM
versions
ROM/PROM capacity ................................ 24 K to 48 K bytes
RAM capacity .............................................. 512 to 1024 bytes
(2) Packages
80P6N-A............................. 0.8 mm-pitch plastic molded QFP
80P6S-A........................... 0.65 mm-pitch plastic molded QFP
80P6D-A............................. 0.5 mm-pitch plastic molded QFP
80D0................ 0.8 mm-pitch ceramic LCC (EPROM version)
Memory Expansion Plan
Currently supported products are listed below.
RAM size (bytes)
512
1024
1024
24576
(24446)
Remarks
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
Mask ROM version
One Time PROM version
One Time PROM version (blank)
Mask ROM version
One Time PROM version
One Time PROM version (blank)
EPROM version
As of May 1996
Package
80P6N-A
80P6S-A
80P6D-A
80P6N-A
80P6S-A
80P6N-A
80P6S-A
80D0
Product name
M38063M6AXXXFP
M38063M6AXXXGP
M38063M6AXXXHP
M38067M8AXXXFP
M38067M8AXXXGP
M38067MCAXXXFP
M38067ECAXXXFP
M38067ECAFP
M38067MCAXXXGP
M38067ECAXXXGP
M38067ECAGP
M38067ECAFS
(P) ROM size (bytes)
ROM size for User in ( )
32768
(32638)
49152
(49022)
M38063M6A
M38067MCA/ECA
M38067M8A
New product
New product
New product
48K
ROM size (bytes)
32K
28K
24K
20K
16K
12K
8K
4K
192 256 384 512 640 768 896 1024
RAM size (bytes)
Products under development: the development schedule and specification may be revised without notice.
9
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
FUNCTIONAL DESCRIPTION
Central Processing Unit (CPU)
The 3806 group uses the standard 740 family instruction set. Re-
fer to the table of 740 family addressing modes and machine in-
structions or the SERIES 740 <Software> User’s Manual for de-
tails on the instruction set.
Machine-resident 740 family instructions are as follows:
The FST and SLW instruction cannot be used.
The STP, WIT, MUL, and DIV instruction can be used.
CPU mode register
The CPU mode register is allocated at address 003B16.
The CPU mode register contains the stack page selection bit.
Fig. 1 Structure of CPU mode register
CPU mode register
(
CPUM : address
003B
16
)
b7 b0
Stack page selection bit
0 : 0 page
1 : 1 page
Not used (return “0” when read)
Processor mode bits
b1 b0
0 0 : Single-chip mode
0 1 : Memory expansion mode
1 0 : Microprocessor mode
1 1 : Not available
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
10
Memory
Special function register (SFR) area
The Special Function Register area in the zero page contains con-
trol registers such as I/O ports and timers.
RAM
RAM is used for data storage and for stack area of subroutine
calls and interrupts.
ROM
The first 128 bytes and the last 2 bytes of ROM are reserved for
device testing and the rest is user area for storing programs.
Interrupt vector area
The interrupt vector area contains reset and interrupt vectors.
Zero page
The 256 bytes from addresses 000016 to 00FF16 are called the
zero page area. The internal RAM and the special function regis-
ters (SFR) are allocated to this area.
The zero page addressing mode can be used to specify memory
and register addresses in the zero page area. Access to this area
with only 2 bytes is possible in the zero page addressing mode.
Special page
The 256 bytes from addresses FF0016 to FFFF16 are called the
special page area. The special page addressing mode can be
used to specify memory addresses in the special page area. Ac-
cess to this area with only 2 bytes is possible in the special page
addressing mode.
Fig. 2 Memory map diagram
0100
16
0000
16
0040
16
0440
16
FF00
16
FFDC
16
FFFE
16
FFFF
16
192
256
384
512
640
768
896
1024 XXXX
16
00FF
16
013F
16
01BF
16
023F
16
02BF
16
033F
16
03BF
16
043F
16
4096
8192
12288
16384
20480
24576
28672
32768
36864
40960
45056
49152
53248
57344
61440
F000
16
E000
16
D000
16
C000
16
B000
16
A000
16
9000
16
8000
16
7000
16
6000
16
5000
16
4000
16
3000
16
2000
16
1000
16
F080
16
E080
16
D080
16
C080
16
B080
16
A080
16
9080
16
8080
16
7080
16
6080
16
5080
16
4080
16
3080
16
2080
16
1080
16
YYYY
16
ZZZZ
16
RAM
ROM
Reserved area
SFR area
Not used
Interrupt vector area
ROM area
Reserved ROM area
(128 bytes)
Zero page
Special page
RAM area
RAM capacity
(bytes) Address
XXXX
16
ROM capacity
(bytes) Address
YYYY
16
Reserved ROM area
Address
ZZZZ
16
11
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Fig. 3 Memory map of special function register (SFR)
0020
16
0021
16
0022
16
0023
16
0024
16
0025
16
0026
16
0027
16
0028
16
0029
16
002A
16
002B
16
002C
16
002D
16
002E
16
002F
16
0030
16
0031
16
0032
16
0033
16
0034
16
0035
16
0036
16
0037
16
0038
16
0039
16
003A
16
003B
16
003C
16
003D
16
003E
16
003F
16
0000
16
0001
16
0002
16
0003
16
0004
16
0005
16
0006
16
0007
16
0008
16
0009
16
000A
16
000B
16
000C
16
000D
16
000E
16
000F
16
0010
16
0011
16
0012
16
0013
16
0014
16
0015
16
0016
16
0017
16
0018
16
0019
16
001A
16
001B
16
001C
16
001D
16
001E
16
001F
16
Serial I/O2 register (SIO2)
Port P0 (P0)
Port P0 direction register (P0D)
Port P1 (P1)
Port P1 direction register (P1D)
Port P2 (P2)
Port P2 direction register (P2D)
Port P3 (P3)
Port P3 direction register (P3D)
Port P4 (P4)
Port P4 direction register (P4D)
Port P5 (P5)
Port P5 direction register (P5D)
Port P6 (P6)
Port P6 direction register (P6D)
Port P7 (P7)
Port P7 direction register (P7D)
Port P8 (P8)
Port P8 direction register (P8D)
Transmit/Receive buffer register (TB/RB)
Serial I/O1 status register (SIO1STS)
Serial I/O1 control register (SIO1CON)
UART control register (UARTCON)
Baud rate generator (BRG)
Serial I/O2 control register (SIO2CON)
Interrupt control register 2(ICON2)
A-D conversion register (AD)
Prescaler Y (PREY)
Timer Y (TY)
AD/DA control register (ADCON)
D-A1 conversion register (DA1)
D-A2 conversion register (DA2)
Interrupt edge selection register
(INTEDGE)
CPU mode register (CPUM)
Interrupt request register 1(IREQ1)
Interrupt request register 2(IREQ2)
Interrupt control register 1(ICON1)
Prescaler 12 (PRE12)
Timer 2 (T2)
Prescaler X (PREX)
Timer X (TX)
Timer 1 (T1)
Timer XY mode register (TM)
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
12
Pin
P00 – P07
P10 – P17
P20 – P27
P30 – P37
P40,P41
P42/INT0,
P43/INT1
P44/RXD,
P45/TXD,
P46/SCLK1,
_____
P47/SRDY1
P50
P51/INT2,
P52/INT3,
P53/INT4
P54/CNTR0,
P55/CNTR1
P56/DA1,
P57/DA2
P60/AN0
P67/AN7
P70/SIN2,
P71/SOUT2,
P72/SCLK2,
_____
P73/SRDY2
P74 – P77
P80 – P87
Name
Port P0
Port P1
Port P2
Port P3
Port P4
Port P5
Port P6
Port P7
Port P8
Input/Output
Input/output,
individual bits
Input/output,
individual bits
Input/output,
individual bits
Input/output,
individual bits
Input/output,
individual bits
Input/output,
individual bits
Input/output,
individual bits
Input/output,
individual bits
Input/output,
individual bits
I/O Format
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
N-channel open-drain output
CMOS compatible
input level
CMOS 3-state output
CMOS compatible
input level
Non-Port Function
Address low-order byte
output
Address high-order
byte output
Data bus I/O
Control signal I/O
External interrupt input
Serial I/O1 function I/O
External interrupt input
Timer X and Timer Y
function I/O
D-A conversion output
A-D conversion input
Serial I/O2 function I/O
Ref.No.
(1)
(2)
(3)
(4)
(5)
(6)
(1)
(2)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(1)
Related SFRs
CPU mode register
CPU mode register
CPU mode register
CPU mode register
Interrupt edge selection
register
Serial I/O1 control
register
UART control register
Interrupt edge selection
register
Timer XY mode register
AD/DA control register
Serial I/O2 control
register
Note 1: For details of the functions of ports P0 to P3 in modes other than single-chip mode, and how to use double-function ports as func-
tion I/O ports, refer to the applicable sections.
2: Make sure that the input level at each pin is either 0 V or VCC during execution of the STP instruction.
When an input level is at an intermediate potential, a current will flow from VCC to VSS through the input-stage gate.
I/O Ports
Direction registers
The 3806 group has 72 programmable I/O pins arranged in nine
I/O por ts (por ts P0 to P8). The I/O por ts have direction registers
which determine the input/output direction of each individual pin.
Each bit in a direction register corresponds to one pin, each pin
can be set to be input port or output port.
When “0” is written to the bit corresponding to a pin, that pin be-
comes an input pin. When “1” is written to that bit, that pin be-
comes an output pin.
If data is read from a pin which is set to output, the value of the
port output latch is read, not the value of the pin itself. Pins set to
input are floating. If a pin set to input is written to, only the port
output latch is written to and the pin remains floating.
13
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Fig. 4 Port block diagram (single-chip mode) (1)
(1) Ports P0, P1, P2, P3, P40, P41, P50, P8
Direction register
Data bus Port latch
(2) Ports P42, P43, P51, P52, P53
Direction register
Data bus Port latch
Interrupt input
(3) Port P44
Direction register
Data bus Port latch
Serial I/O1 input
Serial I/O1 enable bit
Receive enable bit
(4) Port P45
Direction register
Data bus Port latch
Serial I/O1output
Serial I/O1 enable bit
Transmit enable bit
P45/TXD P-channel output disable bit
(5) Port P46
Direction register
Data bus Port latch
Serial I/O1 clock output
Serial I/O1 mode selection bit
Serial I/O1 enable bit
Serial I/O1 enable bit
Serial I/O1
synchronous clock selection bit
Serial I/O1
external
clock input
(6) Port P47
Direction register
Data bus Port latch
Serial I/O1 ready output
Serial I/O1 enable bit
SRDY1 output enable bit
Serial I/O1 mode selection bit
(7) Ports P54, P55
Direction register
Data bus Port latch
(8) Ports P56, P57
Direction register
Data bus Port latch
D-A conversion output
Pulse output mode
Timer output Counter input
Interrupt input DA1 output enable bit (P56)
DA2 output enable bit (P57)
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
14
Fig. 5 Port block diagram (single-chip mode) (2)
(14) Ports P74 – Port P77
Direction register
Data bus Port latch
(13) Port P73
Direction register
Data bus Port latch
Serial I/O2 ready output
SRDY2 output enable bit
Serial I/O2
synchronous clock selection bit
Direction register
Data bus Port latch
Serial I/O2 clock output
Serial I/O2 port selection bit
(12) Port P72
(9) Port P6
Direction register
Data bus Port latch
A-D conversion input
Analog input pin selection bit
(10) Port P70
Direction register
Data bus Port latch
Serial I/O2 input
(11) Port P71
Direction register
Data bus Port latch
Serial I/O2 output
Serial I/O2 port selection bit
Serial I/O2
transmit completion signal
Serial I/O2
external
clock input
15
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
INTERRUPTS
Interrupts occur by sixteen sources: seven external, eight internal,
and one software.
Interrupt control
Each interrupt is controlled by an interrupt request bit, an interrupt
enable bit, and the interrupt disable flag except for the software in-
terrupt set by the BRK instruction. An interrupt occurs if the corre-
sponding interrupt request and enable bits are “1” and the inter-
rupt disable flag is “0”.
Interrupt enable bits can be set or cleared by software.
Interrupt request bits can be cleared by software, but cannot be
set by software.
The BRK instruction cannot be disabled with any flag or bit. The I
(interrupt disable) flag disables all interrupts except the BRK in-
struction interrupt.
Interrupt operation
When an interrupt is received, the contents of the program counter
and processor status register are automatically stored into the
stack. The interrupt disable flag is set to inhibit other interrupts
from interfering.The corresponding interrupt request bit is cleared
and the interrupt jump destination address is read from the vector
table into the program counter.
Notes on use
When the active edge of an external interrupt (INT0 to INT4,
CNTR0, or CNTR1) is changed, the corresponding interrupt re-
quest bit may also be set. Therefore, please take following se-
quence;
(1) Disable the external interrupt which is selected.
(2) Change the active edge selection.
(3) Clear the interrupt request bit which is selected to “0”.
(4) Enable the external interr upt which is selected.
Interrupt Source
Reset (Note 2)
INT0
INT1
Serial I/O1
reception
Serial I/O1
transmission
Timer X
Timer Y
Timer 1
Timer 2
CNTR0
CNTR1
Serial I/O2
INT2
INT3
INT4
A-D converter
BRK instruction
Low
FFFC16
FFFA16
FFF816
FFF616
FFF416
FFF216
FFF016
FFEE16
FFEC16
FFEA16
FFE816
FFE616
FFE416
FFE216
FFE016
FFDE16
FFDC16
High
FFFD16
FFFB16
FFF916
FFF716
FFF516
FFF316
FFF116
FFEF16
FFED16
FFEB16
FFE916
FFE716
FFE516
FFE316
FFE116
FFDF16
FFDD16
Table 1. Interrupt vector addresses and priority
Priority
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
Interrupt Request
Generating Conditions
At reset
At detection of either rising or
falling edge of INT0 input
At detection of either rising or
falling edge of INT1 input
At completion of serial I/O1
data reception
At completion of serial I/O1
transfer shift or when
transmission buffer is empty
At timer X underflow
At timer Y underflow
At timer 1 underflow
At timer 2 underflow
At detection of either rising or
falling edge of CNTR0 input
At detection of either rising or
falling edge of CNTR1 input
At completion of serial I/O2
data transfer
At detection of either rising or
falling edge of INT2 input
At detection of either rising or
falling edge of INT3 input
At detection of either rising or
falling edge of INT4 input
At completion of A-D conversion
At BRK instruction execution
Remarks
Non-maskable
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Valid when serial I/O1 is selected
Valid when serial I/O1 is selected
STP release timer underflow
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Valid when serial I/O2 is selected
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
External interrupt
(active edge selectable)
Non-maskable software interrupt
Note 1: Vector addresses contain interrupt jump destination addresses.
2: Reset function in the same way as an interrupt with the highest prior ity.
Vector Addresses (Note 1)
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
16
Fig. 6 Interrupt control
Fig. 7 Structure of interrupt-related registers
Interrupt disable flag (I)
Interrupt request
Interrupt request bit
Interrupt enable bit
BRK instruction
Reset
b7 b0
b7 b0
b7 b0
b7 b0
b7 b0
Interrupt edge selection register
INT0 active edge selection bit
INT
1
active edge selection bit
Not used (returns “0” when read)
INT
2
active edge selection bit
INT
3
active edge selection bit
INT
4
active edge selection bit
Not used (returns “0” when read)
(INTEDGE : address 003A16)
Interrupt request register 1
INT0 interrupt request bit
INT
1
interrupt request bit
Serial I/O1 receive interrupt request bit
Serial I/O1 transmit interrupt request bit
Timer X interrupt request bit
Timer Y interrupt request bit
Timer 1 interrupt request bit
Timer 2 interrupt request bit
Interrupt control register 1
INT
0
interrupt enable bit
INT
1
interrupt enable bit
Serial I/O1 receive interrupt enable bit
Serial I/O1 transmit interrupt enable bit
Timer X interrupt enable bit
Timer Y interrupt enable bit
Timer 1 interrupt enable bit
Timer 2 interrupt enable bit
0 : No interrupt request issued
1 : Interrupt request issued
(IREQ1 : address 003C16)
(ICON1 : address 003E16)
Interrupt request register 2
CNTR0 interrupt request bit
CNTR
1
interrupt request bit
Serial I/O2 interrupt request bit
INT
2
interrupt request bit
INT
3
interrupt request bit
INT
4
interrupt request bit
AD converter interrupt request bit
Not used (returns “0” when read)
(IREQ2 : address 003D16)
Interrupt control register 2
CNTR
0
interrupt enable bit
CNTR
1
interrupt enable bit
Serial I/O2 interrupt enable bit
INT
2
interrupt enable bit
INT
3
interrupt enable bit
INT
4
interrupt enable bit
AD converter interrupt enable bit
Not used (returns “0” when read)
(Do not write “1” to this bit)
0 : Interrupts disabled
1 : Interrupts enabled
(ICON2 : address 003F16)
0 : Falling edge active
1 : Rising edge active
17
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Timers
The 3806 group has four timers: timer X, timer Y, timer 1, and
timer 2.
All timers are count down. When the timer reaches “0016”, an un-
derflow occurs at the next count pulse and the corresponding
timer latch is reloaded into the timer and the count is continued.
When a timer underflows, the interrupt request bit corresponding
to that timer is set to “1”.
The division ratio of each timer or prescaler is given by 1/(n + 1),
where n is the value in the corresponding timer or prescaler latch.
Timer 1 and Timer 2
The count source of prescaler 12 is the oscillation frequency di-
vided by 16. The output of prescaler 12 is counted by timer 1 and
timer 2, and a timer underflow sets the interrupt request bit.
Timer X and Timer Y
Timer X and Timer Y can each be selected in one of four operating
modes by setting the timer XY mode register.
Timer Mode
The timer counts f(XIN)/16 in timer mode.
Pulse Output Mode
Timer X (or timer Y) counts f(XIN)/16. Whenever the contents of
the timer reach “0016”, the signal output from the CNTR0 (or
CNTR1) pin is inverted. If the CNTR0 (or CNTR1) active edge
switch bit is “0”, output begins at “ H”.
If it is “1”, output starts at “L”. When using a timer in this mode, set
the corresponding port P54 ( or port P55) direction register to out-
put mode.
Event Counter Mode
Operation in event counter mode is the same as in timer mode,
except the timer counts signals input through the CNTR0 or
CNTR1 pin.
Pulse Width Measurement Mode
If the CNTR0 (or CNTR1) active edge selection bit is “0”, the timer
counts at the oscillation frequency divided by 16 while the CNTR0
(or CNTR1) pin is at “H”. If the CNTR0 (or CNTR1) active edge
switch bit is “1”, the count continues during the time that the
CNTR0 (or CNTR1) pin is at “L”.
In all of these modes, the count can be stopped by setting the
timer X (timer Y) count stop bit to “1”. Every time a timer
underflows, the corresponding interrupt request bit is set.
Fig. 8 Structure of timer XY register
Timer X count stop bit
0: Count start
1: Count stop
Timer XY mode register
(TM : address 0023
16)
Timer Y operating mode bit
0 0: Timer mode
0 1: Pulse output mode
1 0: Event counter mode
1 1: Pulse width measurement mode
CNTR
1
active edge switch bit
0: Interrupt at falling edge
Count at rising edge in event
counter mode
1: Interrupt at rising edge
Count at falling edge in event
counter mode
b7
CNTR
0
active edge switch bit
0: Interrupt at falling edge
Count at rising edge in event
counter mode
1: Interrupt at rising edge
Count at falling edge in event
counter mode
b0
Timer X operating mode bit
0 0: Timer mode
0 1: Pulse output mode
1 0: Event counter mode
1 1: Pulse width measurement mode
b1b0
b5b4
Timer Y count stop bit
0: Count start
1: Count stop
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
18
Fig. 9 Block diagram of timer X, timer Y, timer 1, and timer 2
Timer X latch (8)
Timer X (8)
Prescaler X latch (8)
Prescaler X (8)
Oscillator Divider
f(X
IN
)1/16
CNTR
0
active
edge switch bit
P5
4
/CNTR
0
pin
Port P5
4
direction register
“0”
“1”
Event
counter
mode Timer X count stop bit
CNTR
0
active
edge switch
bit
Port P5
4
latch
Pulse output
mode
Pulse width
measurement
mode
Timer mode
Pulse output
mode
“1”
“0”
Timer X latch write pulse
Pulse output mode
To timer X interrupt
request bit
To CNTR
0
interrupt
request bit
Data bus
Timer Y latch (8)
Timer Y (8)
Prescaler Y latch (8)
Prescaler Y (8)
CNTR
1
active
edge switch bit
P5
5
/CNTR
1
pin
Port P5
5
direction register
“0”
“1”
Event
counter
mode Timer Y count stop bit
CNTR
1
active
edge switch
bit
Port P5
5
latch
Pulse output
mode
Pulse width
measurement
mode
Timer mode
Pulse output
mode
“1”
“0”
Timer Y latch write pulse
Pulse output mode
To timer Y interrupt
request bit
To CNTR
1
interrupt
request bit
Data bus
Q
QR
Toggle flip- flop T
Q
QR
Toggle flip- flop T
Timer 2 latch (8) Timer 1 latch (8)
Prescaler
12 latch (8)
Prescaler 12 (8) Timer 2 (8)Timer 1 (8)
Data bus
To timer 2 interrupt
request bit
To timer 1 interrupt
request bit
19
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Serial I/O1
Serial I/O1 can be used as either clock synchronous or asynchro-
nous (UART) serial I/O. A dedicated timer is also provided for
baud rate generation.
Clock synchronous serial I/O mode
Clock synchronous serial I/O1 mode can be selected by setting
the mode selection bit of the serial I/O1 control register to “1”.
For clock synchronous serial I/O1, the transmitter and the receiver
must use the same clock. If an internal clock is used, transfer is
star ted by a write signal to the TB/RB (address 001816).
Fig. 10 Block diagram of clock synchronous serial I/O1
Fig. 11 Operation of clock synchronous serial I/O1 function
1/4
X
IN
1/4
F/F
P4
6
/S
CLK1
Serial I/O1 status register
Serial I/O1 control register
P4
7
/S
RDY1
P4
4
/R
X
D
P4
5
/T
X
D
f(X
IN
)
Receive buffer
Address 0018
16
Receive shift register
Receive buffer full flag (RBF)
Receive interrupt request (RI)
Clock control circuit
Shift clock
Serial I/O1 synchronous
clock selection bit
Frequency division ratio 1/(n+1)
Baud rate generator
Address 001C
16
BRG count source selection bit
Clock control circuit
Falling-edge detector
Transmit buffer
Data bus Address 0018
16
Shift clock Transmit shift completion flag (TSC)
Transmit buffer empty flag (TBE)
Transmit interrupt request (TI)
Transmit interrupt source selection bit
Address 0019
16
Data bus
Address 001A
16
Transmit shift register
D7
D7
D0D1D2D3D4D5D6
D0D1D2D3D4D5D6
RBF = 1
TSC = 1
TBE = 0 TBE = 1
TSC = 0
Transfer shift clock
(1/2 to 1/2048 of the internal
clock, or an external clock)
Serial output TxD
Serial input RxD
Write pulse to receive/transmit
buffer (address 0018
16
)
Overrun error (OE)
detection
Notes 1 : The transmit interrupt (TI) can be selected to occur either when the transmit buffer has emptied (TBE=1) or after the
transmit shift operation has ended (TSC=1), by setting the transmit interrupt source selection bit (TIC) of the serial I/O1
control register.
2 : If data is written to the transmit buffer when TSC=0, the transmit clock is generated continuously and serial data is
output continuously from the TxD pin.
3 : The receive interrupt (RI) is set when the receive buffer full flag (RBF) becomes “1” .
Receive enable signal SRDY1
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
20
Asynchronous serial I/O (UART) mode
Clock asynchronous serial I/O mode (UART) can be selected by
clearing the serial I/O mode selection bit of the serial I/O control
register to “0”.
Eight serial data transfer formats can be selected, and the transfer
formats used by a transmitter and receiver must be identical.
The transmit and receive shift registers each have a buffer, but the
two buffers have the same address in memory. Since the shift reg-
ister cannot be written to or read from directly, transmit data is
written to the transmit buffer, and receive data is read from the re-
ceive buffer.
The transmit buffer can also hold the next data to be transmitted,
and the receive buffer can hold a character while the next charac-
ter is being received.
Fig. 12 Block diagram of UART serial I/O
f(X
IN
)
1/4
OE
PE FE
1/16
1/16
Data bus
Receive buffer
Address 0018
16
Receive shift register
Receive buffer full flag (RBF)
Receive interrupt request (RI)
Baud rate generator
Frequency division ratio 1/(n+1)
Address 001C
16
ST/SP/PA generator
Transmit buffer
Data bus
Transmit shift register
Address
001816
Transmit shift completion flag (TSC)
Transmit buffer empty flag (TBE)
Transmit interrupt request (TI)
Address
001916
STdetector
SP detector UART control register
Address 001B
16
Character length selection bit
Address 001A
16
BRG count source selection bit
Transmit interrupt source selection bit
Serial I/O1 synchronous clock selection bit
Clock control circuit
Character length selection bit
7 bits
8 bits
Serial I/O1 control register
P4
6
/S
CLK1
Serial I/O1 status register
P4
4
/R
X
D
P4
5
/T
X
D
21
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Fig. 13 Operation of UART serial I/O function
Serial I/O1 control register (SIO1CON) 001A16
The serial I/O control register consists of eight control bits for the
serial I/O function.
UART control register (UARTCON) 001B16
The UART control register consists of four control bits (bits 0 to 3)
which are valid when asynchronous serial I/O is selected and set
the data format of an data transfer. One bit in this register (bit 4) is
always valid and sets the output structure of the P45/TXD pin.
Serial I/O1 status register (SIO1STS) 001916
The read-only serial I/O1 status register consists of seven flags
(bits 0 to 6) which indicate the operating status of the serial I/O
function and various errors.
Three of the flags (bits 4 to 6) are valid only in UART mode.
The receive buffer full flag (bit 1) is cleared to “0” when the receive
buffer is read.
If there is an error, it is detected at the same time that data is
transferred from the receive shift register to the receive buffer, and
the receive buffer full flag is set. A write to the serial I/O status reg-
ister clears all the error flags OE, PE, FE, and SE (bit 3 to bit 6, re-
spectively). Writing “0” to the serial I/O enable bit SIOE (bit 7 of
the Serial I/O Control Register) also clears all the status flags, in-
cluding the error flags.
All bits of the serial I/O1 status register are initialized to “0” at re-
set, but if the transmit enable bit (bit 4) of the serial I/O control reg-
ister has been set to “1”, the transmit shift completion flag (bit 2)
and the transmit buffer empty flag (bit 0) become “1”.
Transmit buffer/Receive buffer register (TB/
RB) 001816
The transmit buffer and the receive buffer are located at the same
address. The transmit buffer is write-only and the receive buffer is
read-only. If a character bit length is 7 bits, the MSB of data stored
in the receive buffer is “0”.
Baud rate generator (BRG) 001C16
The baud rate generator determines the baud rate for serial trans-
fer.
The baud rate generator divides the frequency of the count source
by 1/(n + 1), where n is the value written to the baud rate genera-
tor.
TSC=0
TBE=1
RBF=0
TBE=0 TBE=0
RBF=1 RBF=1
ST
D
0
D
1
SP D
0
D
1
ST SP
TBE=1 TSC=1
ST
D
0
D
1
SP D
0
D
1
ST SP
Transmit or receive clock
Transmit buffer write
signal
Generated at 2nd bit in 2-stop-bit mode
1 start bit
7 or 8 data bit
1 or 0 parity bit
1 or 2 stop bit (s)
1: Error flag detection occurs at the same time that the RBF flag becomes "1" (at 1st stop bit, during reception).
2: The transmit interrupt (TI) can be selected to occur when either the TBE or TSC flag becomes "1", depending on the setting of the transmit interrupt
source selection bit (TIC) of the serial I/O control register.
3: The receive interrupt (RI) is set when the RBF flag becomes "1".
4: After data is written to the transmit buffer when TSC=1, 0.5 to 1.5 cycles of the data shift cycle is necessary until changing to TSC=0.
Notes
Serial output T
X
D
Serial input R
X
D
Receive buffer read
signal
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
22
Fig. 14 Structure of serial I/O control registers
b7
b7
Transmit buffer empty flag (TBE)
0: Buffer full
1: Buffer empty
Receive buffer full flag (RBF)
0: Buffer empty
1: Buffer full
Transmit shift completion flag (TSC)
0: Transmit shift in progress
1: Transmit shift completed
Overrun error flag (OE)
0: No error
1: Overrun error
Parity error flag (PE)
0: No error
1: Parity error
Framing error flag (FE)
0: No error
1: Framing error
Summing error flag (SE)
0: (OE) U (PE) U (FE)=0
1: (OE) U (PE) U (FE)=1
Not used (returns "1" when read)
Serial I/O1 status register
(SIO1STS : address 0019
16
) Serial I/O1 control register
(SIO1CON : address 001A
16
)
b0 b0
BRG count source selection bit (CSS)
0: f(X
IN
)
1: f(X
IN
)/4
Serial I/O1 synchronous clock selection bit (SCS)
0: BRG output divided by 4 when clock synchronous
serial I/O is selected, BRG output divided by 16
when UART is selected.
1: External clock input when clock synchronous serial
I/O is selected, external clock input divided by 16
when UART is selected.
S
RDY1
output enable bit (SRDY)
0: P4
7
pin operates as ordinaly I/O pin
1: P4
7
pin operates as S
RDY1
output pin
Transmit interrupt source selection bit (TIC)
0: Interrupt when transmit buffer has emptied
1: Interrupt when transmit shift operation is completed
Transmit enable bit (TE)
0: Transmit disabled
1: Transmit enabled
Receive enable bit (RE)
0: Receive disabled
1: Receive enabled
Serial I/O1 mode selection bit (SIOM)
0: Clock asynchronous (UART) serial I/O
1: Clock synchronous serial I/O
Serial I/O enable bit (SIOE)
0: Serial I/O disabled
(pins P4
4
to P4
7
operate as ordinary I/O pins)
1: Serial I/O enabled
(pins P4
4
to P4
7
operate as serial I/O pins)
b7
UART control register
(UARTCON : address 001B
16
)
Character length selection bit (CHAS)
0: 8 bits
1: 7 bits
Parity enable bit (PARE)
0: Parity checking disabled
1: Parity checking enabled
Parity selection bit (PARS)
0: Even parity
1: Odd parity
Stop bit length selection bit (STPS)
0: 1 stop bit
1: 2 stop bits
P4
5
/T
X
D P-channel output disable bit (POFF)
0: CMOS output (in output mode)
1: N-channel open drain output (in output mode)
Not used (return "1" when read)
b0
23
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Serial I/O2
The serial I/O2 function can be used only for clock synchronous
serial I/O.
For clock synchronous serial I/O the transmitter and the receiver
must use the same clock. If the internal clock is used, transfer is
started by a write signal to the serial I/O2 register.
Serial I/O2 control register (SIO2CON) 001D16
The serial I/O2 control register contains seven bits which control
various serial I/O functions.
Fig. 15 Structure of serial I/O2 control register
Fig. 16 Block diagram of serial I/O2 function
Serial I/O2 control register
(SIO2CON : address 001D
16
)
b7
Internal synchronous clock selection bits
0 0 0: f(X
IN
)/8
0 0 1: f(X
IN
)/16
0 1 0: f(X
IN
)/32
0 1 1: f(X
IN
)/64
1 1 0: f(X
IN
)/128
1 1 1: f(X
IN
)/256
Serial I/O2 port selection bit
0: I/O port
1: S
OUT2
,S
CLK2
signal output
S
RDY2
output enable bit
0: I/O port
1: S
RDY2
signal output
Transfer direction selection bit
0: LSB first
1: MSB first
Serial I/O2 synchronous clock selection bit
0: External clock
1: Internal clock
Not used (returns “0” when read)
b0
b2 b1 b0
X
IN
"1"
"0"
"0"
"1"
"0"
"1"
SRDY2
SCLK2
"0"
"1"
1/8
1/16
1/32
1/64
1/128
1/256
Data bus
Serial I/O2
interrupt request
Serial I/O2 port selection bit
Serial I/O counter 2 (3)
Serial I/O shift register 2 (8)
Synchronization circuit
Serial I/O2 port selection bit
Serial I/O2 synchronous
clock selection bit
SRDY2 output enable bit
External clock
Internal synchronous
clock selection bits
Divider
P73 latch
P7
3
/S
RDY2
P7
2
/S
CLK2
P7
1
/S
OUT2
P7
0
/S
IN2
P72 latch
P71 latch
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
24
Fig. 17 Timing of serial I/O2 function
D7D0D1D2D3D4D5D6
Transfer clock (Note 1)
Serial I/O2 output SOUT2
Serial I/O2 input SIN2
Receive enable signal SRDY2
Serial I/O2 register
write signal
(Note 2)
Serial I/O2 interrupt request bit set
1: When the internal clock is selected as the transfer clock, the divide ratio can be selected by setting bits 0 to 2 of the serial
I/O2 control register.
2: When the internal clock is selected as the transfer clock, the SOUT2 pin goes to high impedance after transfer completion.
Notes
25
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
A-D Converter
The functional blocks of the A-D converter are descr ibed below.
[A-D conversion register]
The A-D conversion register is a read-only register that stores the
result of an A-D conversion. When reading this register during an
A-D conversion, the previous conversion result is read.
[AD/DA control register]
The AD/DA control register controls the A-D conversion process.
Bits 0 to 2 select a specific analog input pin. Bit 3 signals the
completion of an A-D conversion. The value of this bit remains at
“0” during an A-D conversion, and changes to “1” when an A-D
conversion ends. Writing “0” to this bit star ts the A-D conversion.
Bits 6 and 7 are used to control the output of the D-A conver ter.
[Comparison voltage generator]
The comparison voltage generator divides the voltage between
AVSS and VREF into 256, and outputs the divided voltages.
[Channel selector]
The channel selector selects one of the ports P60/AN0 to P67/AN7,
and inputs the voltage to the comparator.
Fig.18 Structure of AD/DA control register
Fig. 19 Block diagram of A-D converter
[Comparator and Control circuit]
The comparator and control circuit compares an analog input volt-
age with the comparison voltage, then stores the result in the A-D
conversion register. When an A-D conversion is complete, the
control circuit sets the AD conversion completion bit and the AD
interrupt request bit to “1”.
Note that the comparator is constructed linked to a capacitor, so
set f(XIN) to 500 kHz or more during an A-D conversion.
AD/DA control register
(ADCON : address 0034
16
)
Analog input pin selection bits
0 0 0: P6
0
/AN
0
0 0 1: P6
1
/AN
1
0 1 0: P6
2
/AN
2
0 1 1: P6
3
/AN
3
1 0 0: P6
4
/AN
4
1 0 1: P6
5
/AN
5
1 1 0: P6
6
/AN
6
1 1 1: P6
7
/AN
7
AD conversion completion bit
0: Conversion in progress
1: Conversion completed
Not used (return "0" When read)
DA
1
output enable bit
0: DA
1
output disabled
1: DA
1
output enabled
DA
2
output enable bit
0: DA
2
output disabled
1: DA
2
output enabled
b7 b0
b2 b1 b0
Channel selector
A-D control circuit
A-D conversion register
Resistor ladder
VREF AVSS
Comparator
A-D interrupt request
b7 b0
3
8
P60/AN0
P61/AN1
P62/AN2
P63/AN3
P64/AN4
P65/AN5
P66/AN6
P67/AN7
Data bus
(Address 003516)
AD/DA control register
(Address 003416)
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
26
D-A Converter
The 3806 group has two internal D-A converters (DA1 and DA2)
with 8-bit resolutions.
The D-A converter is performed by setting the value in the D-A
conversion register. The result of D-A converter is output from the
DA1 or DA2 pin by setting the DA output enable bit to “1”.
When using the D-A conver ter, the corresponding port direction
register bit (DA1/P56 or DA2/P57) should be set to “0” (input sta-
tus).
The output analog voltage V is determined by the value n (base
10) in the D-A conversion register as follows:
V = VREF n/256 (n = 0 to 255)
Where VREF is the reference voltage.
At reset, the D-A conversion registers are cleared to “0016”, the DA
output enable bits are cleared to “0”, and the P56/DA1 and P57/
DA2 pins are set to input (high impedance).
The D-A output is not buffered, so connect an external buffer when
driving a low-impedance load.
Set VCC to 4.0 V or more when using the D-A converter.
Fig. 20 Block diagram of D-A converter
Fig. 21 Equivalent connection circuit of D-A converter
P56/DA1
D-A1 conversion register (8)
R-2R resistor ladder DA1 output enable bit
P57/DA2
D-A2 conversion register (8)
R-2R resistor ladder DA2 output enable bit
Data bus
AV
SS
V
REF
"0"
"1"
MSB
"0" "1"
R
2R
R
2R
R
2R
R
2R
R
2R
R
2R
R
2R 2R
LSB
2R
P5
6
/DA1
D-A1
conversion
register
DA
1
output enable bit
27
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Reset Circuit
______
To reset the microcomputer, the RESET pin should be held at an
______
“L level for 2 µs or more. Then the RESET pin is returned to an
“H” level (Note 1), reset is released. Internal operation does not
begin until after 8 to 13 XIN clock cycles are completed. After the
reset is completed, the program starts from the address contained
in address FFFD16 (high-order byte) and address FFFC16 (low-or-
der byte).
Make sure that the reset input voltage is less than 0.8 V for VCC of
4.0 V (Note 2).
Note 1. The power source voltage should be between the follow-
ing voltage.
Between 3.0 V and 5.5 V for standard version
Between 4.0 V and 5.5 V for extended operating tem-
perature version
Between 2.7 V and 5.5 V for high-speed version
Note 2. Reset input voltage is less than the following voltage.
0.6 V for VCC = 3.0 V
0.8 V for VCC = 4.0 V
0.54 V for VCC = 2.7 V
Fig. 23 Internal status of microcomputer after reset
Fig. 22 Example of reset circuit
4.0V
0.8V
0V
0V
V
CC
RESET
Power source
voltage
Reset input
voltage
V
SS
M51953AL 4
5
1
30.1 µ F
3806 group
Note.
: Undefined
: The initial values of CM
1
are determined by the level at the
CNV
SS
pin.
The contents of all other registers and RAM are undefined
after a reset, so they must be initialized by software.
Register contents
(0001
16
) • • •
Timer 2
Port P0 direction register
Port P1 direction register
Port P2 direction register
Port P3 direction register
Port P4 direction register
Port P5 direction register
Port P6 direction register
Port P7 direction register
Port P8 direction register
Timer XY mode register
Serial I/O1 status register
Serial I/O1 control register
UART control register
Serial I/O2 control register
Timer 1
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
(21)
(22)
(23)
(24)
(25)
(26)
(27)
(28)
(29)
(30)
(31)
(32)
(0003
16
) • • •
(0005
16
) • • •
(0007
16
) • • •
(0009
16
) • • •
(000B
16
) • • •
(000D
16
) • • •
(000F
16
) • • •
(0011
16
) • • •
(0019
16
) • • •
(001A
16
) • • •
(001B
16
) • • •
(001D
16
) • • •
(0020
16
) • • •
(0021
16
) • • •
(0022
16
) • • •
(0023
16
) • • •
(0024
16
) • • •
(0025
16
) • • •
(0026
16
) • • •
(0027
16
) • • •
(0034
16
) • • •
(0036
16
) • • •
(0037
16
) • • •
(003A
16
) • • •
(003B
16
) • • •
(003C
16
) • • •
(003D
16
) • • •
(003E
16
) • • •
Address
Prescaler 12
Prescaler X
Timer X
Prescaler Y
Timer Y
AD/DA control register
D-A1 conversion register
D-A2 conversion register
Interrupt edge selection register
CPU mode register
Interrupt request register 1
Interrupt request register 2
Interrupt control register 1
Interrupt control register 2
Processor status register
Program counter
00
16
00
16
00
16
00
16
000000 0
00
16
00
16
00
16
000010 00
FF
16
FF
16
FF
16
FF
16
00
16
FF
16
01
16
FF
16
00
16
00
16
00
16
00
16
00
16
111000 00
100000 00
00
16
00
16
00
16
Contents of address FFFC
16
✕✕✕✕
1
(PS)
(PC
H
)
(PC
L
)
Contents of address FFFD
16
00
16
00
16
00
16
(003F
16
) • • •
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
28
Fig. 24 Timing of reset
RESET
Data
φ
Address
SYNC
X
IN
: 8 to 13 clock cycles
X
IN
???? ?FFFC FFFD AD
H
, AD
L
??? ??AD
L
AD
H
1: f(X
IN
) and f(φ) are in the relationship: f(X
IN
)=2
f(φ).
2: A question mark (?) indicates an undefined status that depends on the previous status.
Reset address from the vector table
Notes
?
?
RESET
OUT
(internal reset)
29
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Clock Generating Circuit
An oscillation circuit can be formed by connecting a resonator be-
tween XIN and XOUT. To supply a clock signal externally, input it to
the XIN pin and make the XOUT pin open.
Oscillation control
Stop Mode
If the STP instruction is executed, the internal clock φ stops at an
“H”. Timer 1 is set to “0116 and prescaler 12 is set to “FF16”.
Oscillator restarts when an external interrupt is received, but the
internal clock φ remains at an “H” until timer 1 underflow.
This allows time for the clock circuit oscillation to stabilize.
If oscillator is restarted by a reset, no wait time is generated, so
______
keep the RESET pin at an “L” level until oscillation has stabilized.
Wait Mode
If the WIT instruction is executed, the internal clock φ stops at an
“H” level, but the oscillator itself does not stop. The internal clock
restarts if a reset occurs or when an interrupt is received.
Since the oscillator does not stop, normal operation can be started
immediately after the clock is restarted.
To ensure that interr upts will be received to release the STP or
WIT state, interrupt enable bits must be set to “1” before the STP
or WIT instruction is executed.
When the STP status is released, prescaler 12 and timer 1 will
start counting and reset will not be released until timer 1
underflows, so set the timer 1 interrupt enable bit to “0” before the
STP instruction is executed.
Fig. 27 Block diagram of clock generating circuit
Fig. 26 External clock input circuit
Fig. 25 Ceramic resonator circuit
C
OUT
X
IN
X
OUT
C
IN
X
IN
X
OUT
Open
External oscillation
circuit Vss
Vcc
1/8
X
OUT
X
IN
R
SQ
STP instruction WIT
instruction R
SQ
R
S
QReset
STP instruction
Timer 1
ONW
control
Prescaler 12
1/2
φ output
Internal clock φ
Rd
Rf
ONW pin
Single-chip mode
Reset
Interrupt request
Interrupt disable
flag (I)
FF
16
01
16
Reset or STP instruction
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
30
Processor Modes
Single-chip mode, memory expansion mode, and microprocessor
mode can be selected by changing the contents of the processor
mode bits CM0 and CM1 (bits 0 and 1 of address 003B16). In
memory expansion mode and microprocessor mode, memory can
be expanded externally through ports P0 to P3. In these modes,
ports P0 to P3 lose their I/O port functions and become bus pins.
Fig. 28 Memory maps in various processor modes
Fig. 29 Structure of CPU mode register
Single-Chip Mode
Select this mode by resetting the microcomputer with CNVSS con-
nected to VSS.
Memory Expansion Mode
Select this mode by setting the processor mode bits to “01” in soft-
ware with CNVSS connected to VSS. This mode enables external
memory expansion while maintaining the validity of the internal
ROM. Internal ROM will take precedence over external memory if
addresses conflict.
Microprocessor Mode
Select this mode by resetting the microcomputer with CNVSS con-
nected to VCC, or by setting the processor mode bits to “10” in
software with CNVSS connected to VSS. In microprocessor mode,
the internal ROM is no longer valid and external memory must be
used.
Port Name
Port P0
Port P1
Port P2
Port P3
Function
Outputs low-order byte of address.
Outputs high-order byte of address.
Operates as I/O pins for data D7 to D0
(including instruction codes).
P30 and P31 function only as output pins
(except that the port latch cannot be read).
_____
P32 is the ONW input pin.
_________
P33 is the RESETOUT output pin. (Note)
P34 is the φ output pin.
P35 is the SYNC output pin.
___
P36 is the WR output pin, and P37 is the
___
RD output pin.
Note: If CNVSS is connected to VSS, the microcomputer goes to
single-chip mode after a reset, so this pin cannot be used
_________
as the RESETOUT output pin.
Ta ble 2. Functions of ports in memory expansion mode and
microprocessor mode
0000
16
0040
16
0008
16
0000
16
YYYY
16
FFFF
16
0008
16
0040
16
FFFF
16
Internal RAM
reserved area
Internal ROM
Memory expansion mode
The shaded areas are external memory areas.
SFR area
:
YYYY
16
is the start address of internal ROM.
SFR area
Microprocessor mode
Internal RAM
reserved area
0440
16
0440
16
b0
CPU mode register
(CPUM : address 003B
16
)
Processor mode bits
0 0 : Single-chip mode
0 1 : Memory expansion mode
1 0 : Microprocessor mode
1 1 : Not available
Stack page selection bit
0 : 0 page
1 : 1 page
b7
Not used (return “0” when read)
b1 b0
31
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Bus control with memory expansion
_____
The 3806 group has a built-in ONW function to facilitate access to
external memory and I/O devices in memory expansion mode or
microprocessor mode.
_____
If an “L” level signal is input to the ONW pin when the CPU is in a
read or write state, the corresponding read or write cycle is ex-
___
tended by one cycle of φ. During this extended period, the RD or
___
WR signal remains at “L”. This extension period is valid only for
writing to and reading from addresses 000016 to 000716 and
044016 to FFFF16 in microprocessor mode, 044016 to YYYY16 in
memory expansion mode, and only read and write cycles are ex-
tended.
_____
Fig. 30 ONW function timing
φ
Read cycle Write cycle
Dummy cycle Write cycle Read cycle Dummy cycle
AD
15
to AD
0
Period during which ONW input signal is received
During this period, the ONW signal must be fixed at either “H” or “L”. At all other times, the input level of the ONW
signal has no affect on operations.
The bus cycles is not extended for an address in the area 0008
16
to 043F
16,
regardless of whether the ONW signal
is received.
:
✽✽
ONW
WR
RD
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
32
NOTES ON PROGRAMMING
Processor Status Register
The contents of the processor status register (PS) after a reset are
undefined, except for the interrupt disable flag (I) which is “1”. Af-
ter a reset, initialize flags which affect program execution.
In par ticular, it is essential to initialize the index X mode (T) and
the decimal mode (D) flags because of their effect on calculations.
Interrupts
The contents of the interrupt request bits do not change immedi-
ately after they have been written. After writing to an interrupt re-
quest register, execute at least one instruction before executing a
BBC or BBS instruction.
Decimal Calculations
To calculate in decimal notation, set the decimal mode flag (D) to
“1”, then execute an ADC or SBC instruction. Only the ADC and
SBC instructions yield proper decimal results. After executing an
ADC or SBC instruction, execute at least one instruction before
executing a SEC, CLC, or CLD instruction.
In decimal mode, the values of the negative (N), overflow (V), and
zero (Z) flags are invalid.
The carry flag can be used to indicate whether a carry or borrow
has occurred. Initialize the carry flag before each calculation.
Clear the carry flag before an ADC and set the flag before an
SBC.
Timers
If a value n (between 0 and 255) is written to a timer latch, the fre-
quency division ratio is 1/(n + 1).
Multiplication and Division Instructions
The index X mode (T) and the decimal mode (D) flags do not af-
fect the MUL and DIV instruction.
The execution of these instructions does not change the contents
of the processor status register.
Ports
The contents of the port direction registers cannot be read.
The following cannot be used:
The data transfer instruction (LDA, etc.)
The operation instruction when the index X mode flag (T) is “1”
The addressing mode which uses the value of a direction regis-
ter as an index
The bit-test instruction (BBC or BBS, etc.) to a direction register
The read-modify-write instruction (ROR, CLB, or SEB, etc.) to a
direction register
Use instructions such as LDM and STA, etc., to set the por t direc-
tion registers.
Serial I/O
In clock synchronous serial I/O, if the receive side is using an ex-
_____
ternal clock and it is to output the SRDY1 signal, set the transmit
_____
enable bit, the receive enable bit, and the SRDY1 output enable bit
to “1”.
Serial I/O1 continues to output the final bit from the TXD pin after
transmission is completed. The SOUT2 pin from serial I/O2 goes to
high impedance after transmission is completed.
A-D Converter
The comparator uses internal capacitors whose charge will be lost
if the clock frequency is too low.
Make sure that f(XIN) is at least 500 kHz during an A-D conver-
____
sion. (If the ONW pin has been set to “L”, the A-D conversion will
take twice as long to match the longer bus cycle, and so f(XIN)
must be at least 1 MHz.)
Do not execute the STP or WIT instr uction during an A-D conver-
sion.
D-A Converter
The accuracy of the D-A converter becomes poor rapidly under
the VCC = 4.0 V or less condition.
Instruction Execution Time
The instruction execution time is obtained by multiplying the fre-
quency of the internal clock φ by the number of cycles needed to
execute an instruction.
The number of cycles required to execute an instruction is shown
in the list of machine instructions.
The frequency of the internal clock φ is half of the XIN frequency.
_____
When the ONW function is used in modes other than single-chip
mode, the frequency of the internal clock φ may be one fourth the
XIN frequency.
Memory Expansion Mode and Microproces-
sor Mode
Execute the LDM or STA instruction for writing to port P3 (address
000616) in memory expansion mode and microprocessor mode.
Set areas which can be read out and write to port P3 (address
000616) in a memory, using the read-modify-write instruction
(SEB, CLB).
33
MITSUBISHI MICROCOMPUTERS
3806 Group
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
DATA REQUIRED FOR MASK ORDERS
The following are necessary when ordering a mask ROM produc-
tion:
1. Mask ROM Order Confirmation Form
2. Mark Specification Form
3. Data to be written to ROM, in EPROM form (three identical
copies)
ROM PROGRAMMING METHOD
The built-in PROM of the blank One Time PROM version and built-
in EPROM version can be read or programmed with a general-
purpose PROM programmer using a special programming
adapter. Set the address of PROM programmer in the user ROM
area.
The PROM of the blank One Time PROM version is not tested or
screened in the assembly process and following processes. To en-
sure proper operation after programming, the procedure shown in
Figure 40 is recommended to verify programming.
Fig. 31 Programming and testing of One Time PROM version
Package
80P6N-A
80P6S-A
80D0
Name of Programming Adapter
PCA4738F-80A
PCA4738G-80A
PCA4738L-80A
Programming with PROM
programmer
Screening (Caution)
(150°C for 40 hours)
Verification with
PROM programmer
Functional check in
target device
The screening temperature is far higher
than the storage temperature. Never
expose to 150 °C exceeding 100 hours.
Caution :
34
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
ABSOLUTE MAXIMUM RATINGS
Power source voltage
Input voltage P0 0–P07, P1 0–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67, P70–P77, P80–P87,
VREF
Input voltage
______
RESET, XIN
Input voltage CNV SS
Output voltage P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67, P70–P77, P80–P87,
XOUT
Power dissipation
Operating temperature
Storage temperature
VCC
VI
VI
VI
VO
Pd
Topr
Tstg
Symbol Parameter Conditions Ratings
–0.3 to 7.0
–0.3 to VCC +0.3
–0.3 to VCC +0.3
–0.3 to 13
–0.3 to VCC +0.3
500
–20 to 85
–40 to 125
V
V
V
V
V
mW
°C
°C
Unit
Ta = 25 °C
All voltages are based on VSS.
Output transistors are cut off.
RECOMMENDED OPERATING CONDITIONS (Vcc=3.0 to 5.5v, Ta=-20 to 85°C,unless otherwise noted)
Note 1: The minimum power source voltage is [V] (f(XIN) = XMHz) on the condition of 2 MHz < f(XIN) < 8 MHz.
2: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an aver-
age value measured over 100 ms. The total peak current is the peak value of all the currents.
3: The peak output current is the peak current flowing in each port.
4: The average output current IOL(avg), IOH(avg) in an average value measured over 100 ms.
5.5
5.5
VCC
VCC
VCC
VCC
VCC
0.2 VCC
0.2 VCC
0.16 V
CC
0.2 VCC
–80
–80
80
80
–40
–40
40
40
–10
10
–5
5
8
6 V
CC
–16
Power source voltage (f(XIN) < 2 MHz) (Note 1)
Power source voltage (f(XIN) = 8 MHz) (Note 1)
Power source voltage
Analog reference voltage (when A-D converter is used)
Analog reference voltage (when D-A converter is used)
Analog power source voltage
Analog input voltage AN0–AN7
“H” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87
“H” input voltage
______
RESET, XIN, CNVSS
“L” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87
“L” input voltage
______
RESET
“L” input voltage XIN
“L” input voltage CNVSS
“H” total peak output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
, P8
0
–P8
7
(Note 2)
“H” total peak output current P40–P47,P50–P57, P60–P67 (Note 2)
“L” total peak output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
, P8
0
–P8
7
(Note 2)
“L” total peak output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 2)
“H” total average output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
, P8
0
–P8
7
(Note 2)
“H” total average output current P40–P47,P50–P57, P60–P67 (Note 2)
“L” total average output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
, P8
0
–P8
7
(Note 2)
“L” total average output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 2)
“H” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P80–P87 (Note 3)
“L” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87 (Note 3)
“H” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P80–P87 (Note 4)
“L” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87 (Note 4)
Internal clock oscillation frequency (VCC = 4.0 to 5.5 V)
Internal clock oscillation frequency (VCC = 3.0 to 4.0 V)
VCC
VSS
VREF
AVSS
VIA
VIH
VIH
VIL
VIL
VIL
VIL
ΣIOH(peak)
ΣIOH(peak)
ΣIOL(peak)
ΣIOL(peak)
ΣIOH(avg)
ΣIOH(avg)
ΣIOL(avg)
ΣIOL(avg)
IOH(peak)
IOL(peak)
IOH(avg)
IOL(avg)
f(XIN)
Symbol Parameter Limits
Min.
V
V
V
V
V
V
V
V
V
V
V
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
MHz
Unit
3.0
4.0
2.0
3.0
AVSS
0.8 VCC
0.8 VCC
0
0
0
0
5.0
5.0
0
0
Typ. Max.
X+16
6
MITSUBISHI MICROCOMPUTERS
3806 Group
35
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
When STP instruction
is executed with clock
stopped, output
transistors isolated.
Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through VREF pin.
2.0
1.0
5.0
5.0
–5.0
–5.0
5.5
13
8
2.0
1
10
“H” output voltage P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
, P5
0
–P5
7
,
P6
0
–P6
7
, P8
0
–P8
7
(Note 1)
“L” output voltage P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
,P5
0
–P5
7
,
P6
0
–P6
7
, P7
0
–P7
7
, P8
0
–P8
7
Hysteresis CNTR
0
, CNTR
1
, INT
0
–INT
4
Hysteresis R
X
D, S
CLK1
, S
IN2
, S
CLK2
Hysteresis
______
RESET
“H” input current P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
, P5
0
–P5
7
,
P6
0
–P6
7
, P7
0
–P7
7
, P8
0
–P8
7
“H” input current
______
RESET, CNV
SS
“H” input current X
IN
“L” input current P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
, P5
0
–P5
7
,
P6
0
–P6
7
, P7
0
–P7
7
, P8
0
–P8
7
“L” input current
______
RESET, CNV
SS
“L” input current X
IN
RAM hold voltage
Symbol Parameter Limits
Min.
V
Unit
(VCC = 3.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
ELECTRICAL CHARACTERISTICS
V
CC
–2.0
V
CC
–1.0
0.4
0.5
0.5
4
–4
6.4
4
0.8
1.5
1
0.2
0.1
Typ. Max.
IOH = –10 mA
VCC = 4.0 to 5.5 V
IOH = –1.0 mA
VCC = 3.0 to 5.5 V
IOL = 10 mA
VCC = 4.0 to 5.5 V
IOL = 1.0 mA
VCC = 3.0 to 5.5 V
VI = VCC
VI = VCC
VI = VCC
VI = VSS
VI = VSS
VI = VSS
When clock stopped
f(XIN) = 8 MHz, VCC = 5 V
f(XIN) = 5 MHz, VCC = 5 V
f(XIN) = 2 MHz, VCC = 3 V
Ta = 25 °C
(Note 2)
Ta = 85 °C
(Note 2)
2.0
Test conditions
VT+ – VT–
VT+ – VT–
VT+ – VT–
IIH
IIH
IIH
IIL
IIL
IIL
VRAM
VOH
VOL
ICC
V
V
V
V
µA
µA
µA
µA
µA
µA
V
mA
µA
Power source current
When WIT instruction is executed with
f(Xin) = 8MHz,Vcc=5V
When WIT instruction is executed with
f(Xin) = 5MHz,Vcc=5V
When WIT instruction is executed
with f(Xin) = 2MHz,Vcc=3V
8
±2.5
50
200
5.0
Limits
Min. Bits
LSB
tC(φ)
k
µA
µA
Typ. Max.
±1
35
150
0.5
A-D CONVERTER CHARACTERISTICS
Note: When D-A conversion registers (addresses 003616 and 003716) contain “0016”.
Resolution
Absolute accuracy (excluding quantization error)
Conversion time
Ladder resistor
Reference power source input current (Note)
A-D port input current
tCONV
RLADDER
IVREF
II(AD)
Symbol Parameter Unit
VREF = 5.0 V 50
Test conditions
(VCC = 3.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, Ta = –20 to 85 °C, unless otherwise noted)
MITSUBISHI MICROCOMPUTERS
3806 Group
36
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(VCC = 3.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 3.0 V to VCC, Ta = –20 to 85 °C, unless otherwise noted)
Note: Using one D-A converter, with the value in the D-A conversion register of the other D-A converter being “0016”, and excluding cur-
rents flowing through the A-D resistance ladder.
8
1.0
2.5
3
4
3.2
Resolution
Absolute accuracy V
CC
= 4.0 to 5.5 V
V
CC
= 3.0 to 4.0 V
Setting time
Output resistor
Reference power source input current (Note)
tsu
RO
IVREF
Symbol Parameter Limits
Min. Bits
%
µs
k
mA
Unit
1
Typ. Max.
Test conditions
2.5
D-A CONVERTER CHARACTERISTICS
MITSUBISHI MICROCOMPUTERS
3806 Group
37
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Note: When bit 6 of address 001A16 is “1”. Divide this value by four when bit 6 of address 001A16 is “0”.
Reset input “L” pulse width
External clock input cycle time
External clock input “H” pulse width
External clock input “L” pulse width
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
INT0 to INT4 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT4 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O2 clock input cycle time
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O2 clock input “H” pulse width
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O2 clock input “L” pulse width
Serial I/O1 input set up time
Serial I/O2 input set up time
Serial I/O1 input hold time
Serial I/O2 input hold time
_____
tw(RESET)
tc(XIN)
twH(XIN)
twL(XIN)
tc(CNTR)
twH(CNTR)
twH(INT)
twL(CNTR)
twL(INT)
tc(SCLK1)
tc(SCLK2)
twH(SCLK1)
twH(SCLK2)
twL(SCLK1)
twL(SCLK2)
t
su(R
X
D–S
CLK1
)
t
su(S
IN2
–S
CLK2
)
t
h(S
CLK1
–R
X
D)
t
h(S
CLK2
–S
IN2
)
Symbol Parameter Limits
Min. µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
TIMING REQUIREMENTS 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
2
125
50
50
200
80
80
80
80
800
1000
370
400
370
400
220
200
100
200
Typ. Max.
Reset input “L” pulse width
External clock input cycle time
External clock input “H” pulse width
External clock input “L” pulse width
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
INT0 to INT4 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT4 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O2 clock input cycle time
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O2 clock input “H” pulse width
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O2 clock input “L” pulse width
Serial I/O1 input set up time
Serial I/O2 input set up time
Serial I/O1 input hold time
Serial I/O2 input hold time
_____
tw(RESET)
tc(XIN)
twH(XIN)
twL(XIN)
tc(CNTR)
twH(CNTR)
twH(INT)
twL(CNTR)
twL(INT)
tc(SCLK1)
tc(SCLK2)
twH(SCLK1)
twH(SCLK2)
twL(SCLK1)
twL(SCLK2)
t
su(R
X
D–S
CLK1
)
t
su(S
IN2
–S
CLK2
)
t
h(S
CLK1
–R
X
D)
t
h(S
CLK2
–S
IN2
)
Symbol Parameter Limits
Min. µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
TIMING REQUIREMENTS 2 (VCC = 3.0 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
2
500/
(3 V
CC
–8)
200/
(3 V
CC
–8)
200/
(3 V
CC
–8)
500
230
230
230
230
2000
2000
950
950
950
950
400
400
200
300
Typ. Max.
Note : When bit 6 of address 001A16 is “1”. Divide this value by four when bit 6 of address 001A16 is “0”.
MITSUBISHI MICROCOMPUTERS
3806 Group
38
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Serial I/O1 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O1 output valid time (Note 1)
Serial I/O1 clock output rising time
Serial I/O1 clock output falling time
Serial I/O2 clock output “H” pulse width
Serial I/O2 clock output “L” pulse width
Serial I/O2 output delay time
Serial I/O2 output valid time
Serial I/O2 clock output falling time
CMOS output rising time (Note 2)
CMOS output falling time (Note 2)
140
30
30
200
40
30
30
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
SWITCHING CHARACTERISTICS 1 (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
t
c(S
CLK1
)
/2–30
t
c(S
CLK1
)
/2–30
–30
t
c(S
CLK2
)
/2–160
t
c(S
CLK2
)
/2–160
0
10
10
Typ. Max.
twH(SCLK1)
twL(SCLK1)
t
d(S
CLK1
–T
X
D)
t
v(S
CLK1
–T
X
D)
tr(SCLK1)
tf(SCLK1)
twH(SCLK2)
twL(SCLK2)
t
d(S
CLK2
–S
OUT2
)
t
v(S
CLK2
–S
OUT2
)
tf(SCLK2)
tr(CMOS)
tf(CMOS)
Test conditions
Fig. 32
Fig. 33
Fig. 32
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: Pins XOUT and P70–P77 are excluded.
Serial I/O1 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O1 output valid time (Note 1)
Serial I/O1 clock output rising time
Serial I/O1 clock output falling time
Serial I/O2 clock output “H” pulse width
Serial I/O2 clock output “L” pulse width
Serial I/O2 output delay time
Serial I/O2 output valid time
Serial I/O2 clock output falling time
CMOS output rising time (Note 2)
CMOS output falling time (Note 2)
350
50
50
400
50
50
50
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
SWITCHING CHARACTERISTICS 2 (VCC = 3.0 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
t
c(S
CLK1
)
/2–50
t
c(S
CLK1
)
/2–50
–30
t
c(S
CLK2
)
/2–240
t
c(S
CLK2
)
/2–240
0
20
20
Typ. Max.
twH(SCLK1)
twL(SCLK1)
t
d(S
CLK1
–T
X
D)
t
v(S
CLK1
–T
X
D)
tr(SCLK1)
tf(SCLK1)
twH(SCLK2)
twL(SCLK2)
t
d(S
CLK2
–S
OUT2
)
t
v(S
CLK2
–S
OUT2
)
tf(SCLK2)
tr(CMOS)
tf(CMOS)
Test conditions
Fig. 32
Fig. 33
Fig. 32
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: Pins XOUT and P70–P77 are excluded.
MITSUBISHI MICROCOMPUTERS
3806 Group
39
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
_____
Before φ ONW input set up time
_____
After φ ONW input hold time
Before φ data bus set up time
After φ data bus hold time
___ _____
Before RD ONW input set up time
___
_____
Before WR ONW input set up time
___ _____
After RD ONW input hold time
___
_____
After WR ONW input hold time
___
Before RD data bus set up time
___
After RD data bus hold time
____
tsu(ONW–φ)
____
th(φ–ONW)
tsu(DB–φ)
th(φ–DB)
____
__
tsu
(ONW–RD)
_______
tsu
(ONW–WR)
__
____
th(RD–ONW)
___ ____
th(WR–ONW)
__
tsu(DB–RD)
__
th(RD–DB)
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
Unit
–20
–20
60
0
–20
–20
65
0
Typ. Max.
φ clock cycle time
φ clock “H” pulse width
φ clock “L” pulse width
After φ AD15–AD8 delay time
After φ AD15–AD8 valid time
After φ AD7–AD0 delay time
After φ AD7–AD0 valid time
SYNC delay time
SYNC valid time
___
___
RD and WR delay time
___
___
RD and WR valid time
After φ data bus delay time
After φ data bus valid time
___
___
RD pulse width, WR pulse width
___
___
RD pulse width, WR pulse width
(When one-wait is valid)
___
After AD15–AD8 RD delay time
___
After AD15–AD8 WR delay time
___
After AD7–AD0 RD delay time
___
After AD7–AD0 WR delay time
___
After RD AD15–AD8 valid time
___
After WR AD15–AD8 valid time
___
After RD AD7–AD0 valid time
___
After WR AD7–AD0 valid time
___
After WR data bus delay time
___
After WR data bus valid time
_________
RESETOUT output delay time (Note 1)
_________
RESETOUT output valid time (Note 1)
40
45
20
10
70
65
200
200
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
tc(XIN)–10
tc(XIN)–10
6
6
3
15
tc(XIN)–10
3tc(XIN)–10
tc(XIN)–35
tc(XIN)–40
0
0
10
0
2tc(XIN)
20
10
25
10
20
10
10
5
20
t
c(X
IN
)
–15
t
c(X
IN
)
–20
5
5
15
Typ. Max.
tc(φ)
twH(φ)
twL(φ)
td(φ–AH)
tv(φ–AH)
td(φ–AL)
tv(φ–AL)
td(φ–SYNC)
tv(φ–SYNC)
___
td(φ–WR)
___
tv(φ–WR)
td(φ–DB)
tv(φ–DB)
__
twL(RD)
___
twL(WR)
__
td(AH–RD)
___
td(AH–WR)
__
td(AL–RD)
___
td(AL–WR)
__
tv(RD–AH)
___
tv(WR–AH)
__
tv(RD–AL)
___
tv(WR–AL)
___
td(WR–DB)
___
tv(WR–DB)
___
_____
t
d
(RESET–RESET
OUT
)
_____
tv(φ–RESET)
Test conditions
Note 1:
__________
The RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles after
______
the RESET input goes “H”.
Fig. 32
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
TIMING REQUIREMENTS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
SWITCHING CHARACTERISTICS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
MITSUBISHI MICROCOMPUTERS
3806 Group
40
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
_____
Before φ ONW input set up time
_____
After φ ONW input hold time
Before φ data bus set up time
After φ data bus hold time
___ _____
Before RD ONW input set up time
___
_____
Before WR ONW input set up time
___ _____
After RD ONW input hold time
___
_____
After WR ONW input hold time
___
Before RD data bus set up time
___
After RD data bus hold time
____
tsu(ONW–φ)
____
th(φ–ONW)
tsu(DB–φ)
th(φ–DB)
____
__
tsu
(ONW–RD)
_______
tsu
(ONW–WR)
__
____
th(RD–ONW)
___ ____
th(WR–ONW)
__
tsu(DB–RD)
__
th(RD–DB)
Symbol Parameter Limits
Min. ns
ns
ns
ns
Unit
–20
–20
180
0
–20
–20
185
0
Typ. Max.
φ clock cycle time
φ clock “H” pulse width
φ clock “L” pulse width
After φ AD15–AD8 delay time
After φ AD15–AD8 valid time
After φ AD7–AD0 delay time
After φ AD7–AD0 valid time
SYNC delay time
SYNC valid time
___
___
RD and WR delay time
___
___
RD and WR valid time
After φ data bus delay time
After φ data bus valid time
___
___
RD pulse width, WR pulse width
___
___
RD pulse width, WR pulse width
(when one-wait is valid)
___
After AD15–AD8 RD delay time
___
After AD15–AD8 WR delay time
___
After AD7–AD0 RD delay time
___
After AD7–AD0 WR delay time
___
After RD AD15–AD8 valid time
___
After WR AD15–AD8 valid time
___
After RD AD7–AD0 valid time
___
After WR AD7–AD0 valid time
___
After WR data bus delay time
___
After WR data bus valid time
_________
RESETOUT output delay time (Note 1)
_________
RESETOUT output valid time (Note 1)
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
tc(XIN)–20
tc(XIN)–20
10
10
3
15
tc(XIN)–20
3tc(XIN)–20
tc(XIN)–145
tc(XIN)–145
5
5
10
0
2tc(XIN)
15 150
150
200
195
300
300
25
15
15
40
20
15
7
10
10
Typ. Max.
tc(φ)
twH(φ)
twL(φ)
td(φ–AH)
tv(φ–AH)
td(φ–AL)
tv(φ–AL)
td(φ–SYNC)
tv(φ–SYNC)
___
td(φ–WR)
___
tv(φ–WR)
td(φ–DB)
tv(φ–DB)
__
twL(RD)
___
twL(WR)
__
td(AH–RD)
___
td(AH–WR)
__
td(AL–RD)
___
td(AL–WR)
__
tv(RD–AH)
___
tv(WR–AH)
__
tv(RD–AL)
___
tv(WR–AL)
___
td(WR–DB)
___
tv(WR–DB)
___
_____
t
d
(RESET–RESET
OUT
)
_____
tv(φ–RESET)
Test conditions
Fig. 32
Note1:
__________
The RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles after
______
the RESET input goes “H”.
TIMING REQUIREMENTS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
(VCC = 3.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
SWITCHING CHARACTERISTICS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
(VCC = 3.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
ns
ns
ns
ns
ns
MITSUBISHI MICROCOMPUTERS
3806 Group
41
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Power source voltage
Input voltage P0 0–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67, P70–P77, P80–P87,
VREF
Input voltage
______
RESET, XIN
Input voltage CNV SS
Output voltage P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67, P70–P77, P80–P87,
XOUT
Power dissipation
Operating temperature
Storage temperature
VCC
VI
VI
VI
VO
Pd
Topr
Tstg
Symbol Parameter Conditions Ratings
–0.3 to 7.0
–0.3 to VCC +0.3
–0.3 to VCC +0.3
–0.3 to 13
–0.3 to VCC +0.3
500
–40 to 85
–65 to 150
V
V
V
V
V
mW
°C
°C
Unit
Ta = 25 °C
All voltage are based on VSS.
Output transistors are cut off.
Note 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an aver-
age value measured over 100 ms. The total peak current is the peak value of all the currents.
2: The peak output current is the peak current flowing in each port.
3: The average output current IOL(avg), IOH(avg) in an average value measured over 100 ms.
5.5
VCC
VCC
VCC
VCC
VCC
0.2 VCC
0.2 VCC
0.16 V
CC
–80
–80
80
80
–40
–40
40
40
–10
10
–5
5
8
Power source voltage
Power source voltage
Analog reference voltage (when A-D converter is used)
Analog reference voltage (when D-A converter is used)
Analog power source voltage
Analog input voltage AN0–AN7
“H” input voltage P00–P07, P1 0–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87
“H” input voltage
______
RESET, XIN, CNVSS
“L” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87
“L” input voltage
______
RESET, CNVSS
“L” input voltage XIN
“H” total peak output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
, P8
0
–P8
7
(Note 1)
“H” total peak output current P40–P47,P50–P57, P60–P67 (Note 1)
“L” total peak output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
, P8
0
–P8
7
(Note 1)
“L” total peak output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 1)
“H” total average output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
, P8
0
–P8
7
(Note 1)
“H” total average output current P40–P47,P50–P57, P60–P67 (Note 1)
“L” total average output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
, P8
0
–P8
7
(Note 1)
“L” total average output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 1)
“H” peak output current P00–P07, P1 0–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P80–P87 (Note 2)
“L” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87 (Note 2)
“H” average output current P00–P07, P1 0–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P80–P87 (Note 3)
“L” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87 (Note 3)
Internal clock oscillation frequency
VCC
VSS
VREF
AVSS
VIA
VIH
VIH
VIL
VIL
VIL
ΣIOH(peak)
ΣIOH(peak)
ΣIOL(peak)
ΣIOL(peak)
ΣIOH(avg)
ΣIOH(avg)
ΣIOL(avg)
ΣIOL(avg)
IOH(peak)
IOL(peak)
IOH(avg)
IOL(avg)
f(XIN)
Symbol Parameter Limits
Min. V
V
V
V
V
V
V
V
V
V
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
MHz
Unit
(VCC = 4.0 to 5.5 V, Ta = –40 to 85 °C, unless otherwise noted)
4.0
2.0
4.0
AVSS
0.8 VCC
0.8 VCC
0
0
0
5.0
0
0
Typ. Max.
ABSOLUTE MAXIMUM RATINGS (Extended operating temperature version)
RECOMMENDED OPERATING CONDITIONS (Extended operating temperature version)
R
S
p
R
S
p
MITSUBISHI MICROCOMPUTERS
3806 Group
42
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(Extended operating temperature version)
When STP instruction
is executed with clock
stopped, output
transistors isolated.
Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through VREF pin.
2.0
5.0
5.0
–5.0
–5.0
5.5
13
8
1
10
“H” output voltage P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
, P5
0
–P5
7
,
P6
0
–P6
7
, P8
0
–P8
7
(Note 1)
“L” output voltage P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
,P5
0
–P5
7
,
P6
0
–P6
7
, P7
0
–P7
7
, P8
0
–P8
7
Hysteresis CNTR
0
, CNTR
1
, INT
0
–INT
4
Hysteresis R
X
D, S
CLK1
, S
IN2
, S
CLK2
Hysteresis
______
RESET
“H” input current P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
, P5
0
–P5
7
,
P6
0
–P6
7
, P7
0
–P7
7
, P8
0
–P8
7
“H” input current
______
RESET, CNV
SS
“H” input current X
IN
“L” input current P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
, P5
0
–P5
7
,
P6
0
–P6
7
, P7
0
–P7
7
, P8
0
–P8
7
“L” input current
______
RESET, CNV
SS
“L” input current X
IN
RAM hold voltage
Symbol Parameter Limits
Min. Unit
(VCC = 4.0 to 5.5 V,
VSS = 0 V,
Ta = –40 to 85 °C, unless otherwise noted)
VCC–2.0
0.4
0.5
0.5
4
–4
6.4
4
1.5
1
0.1
Typ. Max.
IOH = –10 mA
IOL = 10 mA
VI = VCC
VI = VCC
VI = VCC
VI = VSS
VI = VSS
VI = VSS
When clock stopped
f(XIN) = 8 MHz
f(XIN) = 5 MHz
When WIT instruction is executed
with f(XIN) = 8 MHz
When WIT instruction is executed
with f(XIN) = 5 MHz Ta = 25 °C
(Note 2)
Ta = 85 °C
(Note 2)
2.0
Test conditions
Note: When D-A conversion registers (addresses 003616 and 003716) contain “0016”.
8
±2.5
50
200
5.0
Resolution
Absolute accuracy (excluding quantization error)
Conversion time
Ladder resistor
Reference power source input current (Note)
A-D port input current
tCONV
RLADDER
IVREF
II(AD)
Symbol Parameter Limits
Min. Bits
LSB
tC(φ)
k
µA
µA
Unit
50
Typ. Max.
VREF = 5.0 V
Test conditions
±1
35
150
0.5
A-D CONVERTER CHARACTERISTICS(Extended operating temperature version)
VT+ – VT–
VT+ – VT–
VT+ – VT–
IIH
IIH
IIH
IIL
IIL
IIL
VRAM
VOH
VOL
ICC
V
V
V
V
V
µA
µA
µA
µA
µA
µA
V
Power source current
mA
µA
(VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, Ta = –40 to 85 °C, unless otherwise noted)
ELECTRICAL CHARACTERISTICS
MITSUBISHI MICROCOMPUTERS
3806 Group
43
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Note: Using one D-A conver ter, with the value in the D-A conversion register of the other D-A conver ter being “0016”, and excluding cur-
rents flowing through the A-D resistance ladder.
8
1.0
3
4
3.2
Resolution
Absolute accuracy
Setting time
Output resistor
Reference power source input current (Note)
tsu
RO
IVREF
Symbol Parameter Limits
Min. Bits
%
µs
k
mA
Unit
(VCC = 4.0 to 5.5 V, VSS = AVSS = 0 V, VREF = 3.0 V to VCC, Ta = –40 to 85 °C, unless otherwise noted)
1
Typ. Max.
Test conditions
2.5
D-A CONVERTER CHARACTERISTICS (Extended operating temperature version)
MITSUBISHI MICROCOMPUTERS
3806 Group
44
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMING REQUIREMENTS (Extended operating temperature version)
Note: When bit 6 of address 001A16 is “1”. Divide this value by four when bit 6 of address 001A16 is “0”.
Reset input “L” pulse width
External clock input cycle time
External clock input “H” pulse width
External clock input “L” pulse width
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
INT0 to INT4 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT4 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O2 clock input cycle time
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O2 clock input “H” pulse width
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O2 clock input “L” pulse width
Serial I/O1 input set up time
Serial I/O2 input set up time
Serial I/O1 input hold time
Serial I/O2 input hold time
_____
tw(RESET)
tc(XIN)
twH(XIN)
twL(XIN)
tc(CNTR)
twH(CNTR)
twH(INT)
twL(CNTR)
twL(INT)
tc(SCLK1)
tc(SCLK2)
twH(SCLK1)
twH(SCLK2)
twL(SCLK1)
twL(SCLK2)
t
su(R
X
D–S
CLK1
)
t
su(S
IN2
–S
CLK2
)
t
h(S
CLK1
–R
X
D)
t
h(S
CLK2
–S
IN2
)
Symbol Parameter Limits
Min. µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
2
125
50
50
200
80
80
80
80
800
1000
370
400
370
400
220
200
100
200
Typ. Max.
Serial I/O1 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O1 output valid time (Note 1)
Serial I/O1 clock output rise time
Serial I/O1 clock output fall time
Serial I/O2 clock output “H” pulse width
Serial I/O2 clock output “L” pulse width
Serial I/O2 output delay time
Serial I/O2 output valid time
Serial I/O2 clock output fall time
CMOS output rise time (Note 2)
CMOS output fall time (Note 2)
140
30
30
200
40
30
30
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
t
c(S
CLK1
)
/2–30
t
c(S
CLK1
)
/2–30
–30
t
c(S
CLK2
)
/2–160
t
c(S
CLK2
)
/2–160
0
10
10
Typ. Max.
twH(SCLK1)
twL(SCLK1)
t
d(S
CLK1
–T
X
D)
t
v(S
CLK1
–T
X
D)
tr(SCLK1)
tf(SCLK1)
twH(SCLK2)
twL(SCLK2)
t
d(S
CLK2
–S
OUT2
)
t
v(S
CLK2
–S
OUT2
)
tf(SCLK2)
tr(CMOS)
tf(CMOS)
Test conditions
Fig. 32
Fig. 33
Fig. 32
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: Pins XOUT pin and P70–P77 are excluded.
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)
SWITCHING CHARACTERISTICS
(Extended operating temperature version)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)
MITSUBISHI MICROCOMPUTERS
3806 Group
45
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMING REQUIREMENTS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
(Extended operating temperature version) (VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –40 to 85 °C, unless otherwise noted)
_____
Before φ ONW input set up time
_____
After φ ONW input hold time
Before φ data bus set up time
After φ data bus hold time
___ _____
Before RD ONW input set up time
___
_____
Before WR ONW input set up time
___ _____
After RD ONW input hold time
___
_____
After WR ONW input hold time
___
Before RD data bus set up time
___
After RD data bus hold time
____
tsu(ONW–φ)
____
th(φ–ONW)
tsu(DB–φ)
th(φ–DB)
____
__
tsu
(ONW–RD)
_______
tsu
(ONW–WR)
__
____
th(RD–ONW)
___ ____
th(WR–ONW)
__
tsu(DB–RD)
__
th(RD–DB)
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
Unit
–20
–20
60
0
–20
–20
65
0
Typ. Max.
φ clock cycle time
φ clock “H” pulse width
φ clock “L” pulse width
After φ AD15–AD8 delay time
After φ AD15–AD8 valid time
After φ AD7–AD0 delay time
After φ AD7–AD0 valid time
SYNC delay time
SYNC valid time
___
___
RD and WR delay time
___
___
RD and WR valid time
After φ data bus delay time
After φ data bus valid time
___
___
RD pulse width, WR pulse width
___
___
RD pulse width, WR pulse width
(When one-wait is valid)
___
After AD15–AD8 RD delay time
___
After AD15–AD8 WR delay time
___
After AD7–AD0 RD delay time
___
After AD7–AD0 WR delay time
___
After RD AD15–AD8 valid time
___
After WR AD15–AD8 valid time
___
After RD AD7–AD0 valid time
___
After WR AD7–AD0 valid time
___
After WR data bus delay time
___
After WR data bus valid time
_________
RESETOUT output delay time (Note 1)
_________
RESETOUT output valid time (Note 1)
40
45
20
10
70
65
200
200
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
tc(XIN)–10
tc(XIN)–10
6
6
3
15
tc(XIN)–10
3tc(XIN)–10
tc(XIN)–35
tc(XIN)–40
0
0
10
0
2tc(XIN)
20
10
25
10
20
10
10
5
20
t
c(X
IN
)
–15
t
c(X
IN
)
–20
5
5
15
Typ. Max.
tc(φ)
twH(φ)
twL(φ)
td(φ–AH)
tv(φ–AH)
td(φ–AL)
tv(φ–AL)
td(φ–SYNC)
tv(φ–SYNC)
___
td(φ–WR)
___
tv(φ–WR)
td(φ–DB)
tv(φ–DB)
__
twL(RD)
__
twL(WR)
__
td(AH–RD)
___
td(AH–WR)
__
td(AL–RD)
___
td(AL–WR)
__
tv(RD–AH)
___
tv(WR–AH)
__
tv(RD–AL)
___
tv(WR–AL)
___
td(WR–DB)
___
tv(WR–DB)
___
_____
t
d
(RESET–RESET
OUT
)
_____
tv(φ–RESET)
Test conditions
Note 1:
_________
The RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles after
______
the RESET input goes “H”.
Fig. 32
(Extended operating temperature version)
SWITCHING CHARACTERISTICS IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
MITSUBISHI MICROCOMPUTERS
3806 Group
46
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Power source voltage
Input voltage P0 0–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67, P70–P77, P80–P87,
VREF, XIN
Input voltage
______
RESET
Input voltage CNV SS
Output voltage P00–P07, P10–P17, P20–P27,
P30–P37, P40–P47, P50–P57,
P60–P67, P70–P77, P80–P87,
XOUT
Power dissipation
Operating temperature
Storage temperature
ABSOLUTE MAXIMUM RATINGS (High-speed version)
VCC
VI
VI
VI
VO
Pd
Topr
Tstg
Symbol Parameter Conditions Ratings
–0.3 to 7.0
–0.3 to VCC +0.3
–0.3 to 7.0
–0.3 to 7.0
–0.3 to 13
–0.3 to VCC +0.3
500
–20 to 85
–40 to 125
V
V
V
V
V
mW
°C
°C
Unit
Ta = 25 °C
All voltages are based on VSS.
Output transistors are cut off.
Mask ROM version
PROM version
(VCC = 2.7 to 5.5 V, Ta = –20 to 85 °C, unless otherwise noted)
RECOMMENDED OPERATING CONDITIONS (High-speed version)
5.5
5.5
VCC
VCC
VCC
VCC
0.2 VCC
0.16 V
CC
–80
–80
80
80
–40
–40
40
40
–10
10
–5
5
10
4.5V
CC
–8
Power source voltage (f(XIN) < 4.15 MHz)
Power source voltage (f(XIN) = 10 MHz)
Power source voltage
Analog reference voltage (when A-D conver ter is used)
Analog reference voltage (when D-A converter is used)
Analog power source voltage
Analog input voltage AN0–AN7
“H” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
______
P50–P57, P60–P67, P70–P77, P80–P87, RESET, XIN,
CNVSS
“L” input voltage P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
______
P5
0
–P5
7
, P6
0
–P6
7
, P7
0
–P7
7
, P8
0
–P8
7
,
RESET, CNV
SS
“L” input voltage XIN
“H” total peak output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
, P8
0
–P8
7
(Note 1)
“H” total peak output current P40–P47,P50–P57, P60–P67 (Note 1)
“L” total peak output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
, P8
0
–P8
7
(Note 1)
“L” total peak output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 1)
“H” total average output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
, P8
0
–P8
7
(Note 1)
“H” total average output current P40–P47,P50–P57, P60–P67 (Note 1)
“L” total average output current
P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
, P3
0
–P3
7
, P8
0
–P8
7
(Note 1)
“L” total average output current P40–P47,P50–P57, P60–P67, P70–P77 (Note 1)
“H” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P80–P87 (Note 2)
“L” peak output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87 (Note 2)
“H” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P80–P87 (Note 3)
“L” average output current P00–P07, P10–P17, P20–P27, P30–P37, P40–P47,
P50–P57, P60–P67, P70–P77, P80–P87 (Note 3)
Internal clock oscillation frequency (4.0 V < VCC < 5.5 V)
Internal clock oscillation frequency (2.7 V < VCC < 4.0 V)
VCC
VSS
VREF
AVSS
VIA
VIH
VIL
VIL
ΣIOH(peak)
ΣIOH(peak)
ΣIOL(peak)
ΣIOL(peak)
ΣIOH(avg)
ΣIOH(avg)
ΣIOL(avg)
ΣIOL(avg)
IOH(peak)
IOL(peak)
IOH(avg)
IOL(avg)
f(XIN)
Symbol Parameter Limits
Min.
V
V
V
V
V
V
V
V
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
mA
MHz
Unit
2.7
4.0
2.0
2.7
AVSS
0.8 VCC
0
0
5.0
5.0
0
0
Typ. Max.
Note 1: The total output current is the sum of all the currents flowing through all the applicable ports. The total average current is an aver-
age value measured over 100 ms. The total peak current is the peak value of all the currents.
2: The peak output current is the peak current flowing in each port.
3: The average output current IOL(avg), IOH(avg) in an average value measured over 100 ms.
MITSUBISHI MICROCOMPUTERS
3806 Group
47
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
When STP instruction
is executed with clock
stopped, output
transistors isolated.
Note 1: P45 is measured when the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: With output transistors isolated and A-D converter having completed conversion, and not including current flowing through VREF pin.
2.0
1.0
5.0
5.0
–5.0
5.5
16
2
1
10
“H” output voltage P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
, P5
0
–P5
7
,
P6
0
–P6
7
, P8
0
–P8
7
(Note 1)
“L” output voltage P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
,P5
0
–P5
7
,
P6
0
–P6
7
, P7
0
–P7
7
, P8
0
–P8
7
Hysteresis CNTR
0
, CNTR
1
, INT
0
–INT
4
Hysteresis R
X
D, S
CLK1
, S
IN2
, S
CLK2
Hysteresis
______
RESET
“H” input current P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
, P5
0
–P5
7
,
P6
0
–P6
7
, P7
0
–P7
7
, P8
0
–P8
7
“H” input current
______
RESET, CNV
SS
“H” input current X
IN
“L” input current P0
0
–P0
7
, P1
0
–P1
7
, P2
0
–P2
7
,
P3
0
–P3
7
, P4
0
–P4
7
, P5
0
–P5
7
,
P6
0
–P6
7
, P7
0
–P7
7
, P8
0
–P8
7,
______
RESET, CNV
SS
“L” input current X
IN
RAM hold voltage
Symbol Parameter Limits
Min.
V
Unit
(VCC = 2.7 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
ELECTRICAL CHARACTERISTICS (High-speed version)
V
CC
–2.0
V
CC
–1.0
0.4
0.5
0.5
4
–4
8
1.3
2
0.3
0.1
Typ. Max.
IOH = –10 mA
VCC = 4.0 to 5.5 V
IOH = –1.0 mA
VCC = 2.7 to 5.5 V
IOL = 10 mA
VCC = 4.0 to 5.5 V
IOL = 1.0 mA
VCC = 2.7 to 5.5 V
VI = VCC
VI = VCC
VI = VCC
VI = VSS
VI = VSS
With clock stopped
f(XIN) = 10 MHz, VCC = 5 V
f(XIN) = 4 MHz, VCC = 2.7 V
When WIT instruction is executed
with f(XIN) = 10 MHz, VCC = 5 V
When WIT instruction is executed
with f(XIN) = 4 MHz, VCC = 2.7 V
Ta = 25 °C
(Note 2)
Ta = 85 °C
(Note 2)
2.0
Test conditions
A-D CONVERTER CHARACTERISTICS (High-speed version)
VT+ – VT–
VT+ – VT–
VT+ – VT–
IIH
IIH
IIH
IIL
IIL
VRAM
VOH
VOL
ICC
V
V
V
V
µA
µA
µA
µA
µA
V
Power source current
Note: When D-A conversion registers (addresses 003616 and 003716) contain “0016”.
8
±2.5
50
200
5.0
Resolution
Absolute accuracy (excluding quantization error)
Conversion time
Ladder resistor
Reference power source input current (Note)
A-D port input current
tCONV
RLADDER
IVREF
II(AD)
Symbol Parameter Limits
Min. Bits
LSB
tC(φ)
k
µA
µA
Unit
(VCC = 2.7 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.0 V to VCC, Ta = –20 to 85 °C, unless otherwise noted)
50
Typ. Max.
VREF = 5.0 V
Test conditions
±1
35
150
0.5
mA
µA
MITSUBISHI MICROCOMPUTERS
3806 Group
48
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(VCC = 2.7 to 5.5 V, VSS = AVSS = 0 V, VREF = 2.7 V to V CC, Ta = –20 to 85 °C, unless otherwise noted)
D-A CONVERTER CHARACTERISTICS (High-speed version)
Note: Using one D-A conver ter, with the value in the D-A conversion register of the other D-A conver ter being “0016”, and excluding cur-
rents flowing through the A-D resistance ladder.
8
1.0
2.5
3
4
3.2
Resolution
Absolute accuracy V
CC
= 4.0 to 5.5 V
V
CC
= 2.7 to 5.5 V
Setting time
Output resistor
Reference power source input current (Note)
tsu
RO
IVREF
Symbol Parameter Limits
Min. Bits
%
µs
k
mA
Unit
1
Typ. Max.
Test conditions
2.5
MITSUBISHI MICROCOMPUTERS
3806 Group
49
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Note: When f(XIN) = 8 MHz and bit 6 of address 001A 16 is “1”. Divide this value by four when f(XIN) = 8 MHz and bit 6 of address 001A16 is “0”.
Reset input “L” pulse width
External clock input cycle time
External clock input “H” pulse width
External clock input “L” pulse width
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
INT0 to INT4 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT4 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O2 clock input cycle time
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O2 clock input “H” pulse width
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O2 clock input “L” pulse width
Serial I/O1 input set up time
Serial I/O2 input set up time
Serial I/O1 input hold time
Serial I/O2 input hold time
_____
tw(RESET)
tc(XIN)
twH(XIN)
twL(XIN)
tc(CNTR)
twH(CNTR)
twH(INT)
twL(CNTR)
twL(INT)
tc(SCLK1)
tc(SCLK2)
twH(SCLK1)
twH(SCLK2)
twL(SCLK1)
twL(SCLK2)
t
su(R
X
D–S
CLK1
)
t
su(S
IN2
–S
CLK2
)
t
h(S
CLK1
–R
X
D)
t
h(S
CLK2
–S
IN2
)
Symbol Parameter Limits
Min. µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
TIMING REQUIREMENTS 1 (High-speed version)
2
100
40
40
200
80
80
80
80
800
1000
370
400
370
400
220
200
100
200
Typ. Max.
Reset input “L” pulse width
External clock input cycle time
External clock input “H” pulse width
External clock input “L” pulse width
CNTR0, CNTR1 input cycle time
CNTR0, CNTR1 input “H” pulse width
INT0 to INT4 input “H” pulse width
CNTR0, CNTR1 input “L” pulse width
INT0 to INT4 input “L” pulse width
Serial I/O1 clock input cycle time (Note)
Serial I/O2 clock input cycle time
Serial I/O1 clock input “H” pulse width (Note)
Serial I/O2 clock input “H” pulse width
Serial I/O1 clock input “L” pulse width (Note)
Serial I/O2 clock input “L” pulse width
Serial I/O1 input set up time
Serial I/O2 input set up time
Serial I/O1 input hold time
Serial I/O2 input hold time
_____
tw(RESET)
tc(XIN)
twH(XIN)
twL(XIN)
tc(CNTR)
twH(CNTR)
twH(INT)
twL(CNTR)
twL(INT)
tc(SCLK1)
tc(SCLK2)
twH(SCLK1)
twH(SCLK2)
twL(SCLK1)
twL(SCLK2)
t
su(R
X
D–S
CLK1
)
t
su(S
IN2
–S
CLK2
)
t
h(S
CLK1
–R
X
D)
t
h(S
CLK2
–S
IN2
)
Symbol Parameter Limits
Min. µs
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
VCC = 2.7 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
2
1000/
(4.5 V
CC
–8)
400/
(4.5 V
CC
–8)
400/
(4.5 V
CC
–8)
500
230
230
230
230
2000
2000
950
950
950
950
400
400
200
300
Typ. Max.
Note: When f(XIN) = 2 MHz and bit 6 of address 001A 16 is “1”. Divide this value by four when f(XIN) = 2 MHz and bit 6 of address 001A16 is “0”.
TIMING REQUIREMENTS 2 (High-speed version)
MITSUBISHI MICROCOMPUTERS
3806 Group
50
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
Serial I/O1 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O1 output valid time (Note 1)
Serial I/O1 clock output rising time
Serial I/O1 clock output falling time
Serial I/O2 clock output “H” pulse width
Serial I/O2 clock output “L” pulse width
Serial I/O2 output delay time
Serial I/O2 output valid time
Serial I/O2 clock output falling time
CMOS output rising time (Note 2)
CMOS output falling time (Note 2)
140
30
30
200
30
30
30
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
SWITCHING CHARACTERISTICS 1 (High-speed version)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
t
c(S
CLK1
)
/2–30
t
c(S
CLK1
)
/2–30
–30
t
c(S
CLK2
)
/2–160
t
c(S
CLK2
)
/2–160
0
10
10
Typ. Max.
twH(SCLK1)
twL(SCLK1)
t
d(S
CLK1
–T
X
D)
t
v(S
CLK1
–T
X
D)
tr(SCLK1)
tf(SCLK1)
twH(SCLK2)
twL(SCLK2)
t
d(S
CLK2
–S
OUT2
)
t
v(S
CLK2
–S
OUT2
)
tf(SCLK2)
tr(CMOS)
tf(CMOS)
Test conditions
Fig. 32
Fig. 33
Fig. 32
Note1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: XOUT pin is excluded.
Serial I/O1 clock output “H” pulse width
Serial I/O1 clock output “L” pulse width
Serial I/O1 output delay time (Note 1)
Serial I/O1 output valid time (Note 1)
Serial I/O1 clock output rising time
Serial I/O1 clock output falling time
Serial I/O2 clock output “H” pulse width
Serial I/O2 clock output “L” pulse width
Serial I/O2 output delay time
Serial I/O2 output valid time
Serial I/O2 clock output falling time
CMOS output rising time (Note 2)
CMOS output falling time (Note 2)
350
50
50
400
50
50
50
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
SWITCHING CHARACTERISTICS 2 (High-speed version)
(VCC = 2.7 to 4.0 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
t
c(S
CLK1
)
/2–50
t
c(S
CLK1
)
/2–50
–30
t
c(S
CLK2
)
/2–240
t
c(S
CLK2
)
/2–240
0
20
20
Typ. Max.
twH(SCLK1)
twL(SCLK1)
t
d(S
CLK1
–T
X
D)
t
v(S
CLK1
–T
X
D)
tr(SCLK1)
tf(SCLK1)
twH(SCLK2)
twL(SCLK2)
t
d(S
CLK2
–S
OUT2
)
t
v(S
CLK2
–S
OUT2
)
tf(SCLK2)
tr(CMOS)
tf(CMOS)
Test conditions
Fig. 32
Fig. 33
Fig. 32
Note 1: When the P45/TXD P-channel output disable bit of the UART control register (bit 4 of address 001B16) is “0”.
2: XOUT pin is excluded.
MITSUBISHI MICROCOMPUTERS
3806 Group
51
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
_____
Before φ ONW input set up time
_____
After φ ONW input hold time
Before φ data bus set up time
After φ data bus hold time
___ _____
Before RD ONW input set up time
___
_____
Before WR ONW input set up time
___ _____
After RD ONW input hold time
___
_____
After WR ONW input hold time
___
Before RD data bus set up time
___
After RD data bus hold time
____
tsu(ONW–φ)
____
th(φ–ONW)
tsu(DB–φ)
th(φ–DB)
____
__
tsu
(ONW–RD)
_______
tsu
(ONW–WR)
__
____
th(RD–ONW)
___ ____
th(WR–ONW)
__
tsu(DB–RD)
__
th(RD–DB)
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
Unit
–20
–20
50
0
–20
–20
50
0
Typ. Max.
φ clock cycle time
φ clock “H” pulse width
φ clock “L” pulse width
After φ AD15–AD8 delay time
After φ AD15–AD8 valid time
After φ AD7–AD0 delay time
After φ AD7–AD0 valid time
SYNC delay time
SYNC valid time
After φ data bus delay time
After φ data bus valid time
___
___
RD pulse width, WR pulse width
___
___
RD pulse width, WR pulse width
(when one-wait is valid)
___
After AD15–AD8 RD delay time
___
After AD15–AD8 WR delay time
___
After AD7–AD0 RD delay time
___
After AD7–AD0 WR delay time
___
After RD AD15–AD8 valid time
___
After WR AD15–AD8 valid time
___
After RD AD7–AD0 valid time
___
After WR AD7–AD0 valid time
___
After WR data bus delay time
___
After WR data bus valid time
_________
RESETOUT output delay time (Note 1)
_________
RESETOUT output valid time (Note 1)
35
40
30
30
200
100
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
tc(XIN)–10
tc(XIN)–10
2
2
10
tc(XIN)–10
3tc(XIN)–10
tc(XIN)–35
tc(XIN)–40
2
2
10
0
2tc(XIN)
16
5
20
5
16
5
15
t
c(X
IN
)
–16
t
c(X
IN
)
–20
5
5
15
Typ. Max.
tc(φ)
twH(φ)
twL(φ)
td(φ–AH)
tv(φ–AH)
td(φ–AL)
tv(φ–AL)
td(φ–SYNC)
tv(φ–SYNC)
td(φ–DB)
tv(φ–DB)
__
twL(RD)
___
twL(WR)
__
td(AH–RD)
___
td(AH–WR)
__
td(AL–RD)
___
td(AL–WR)
__
tv(RD–AH)
___
tv(WR–AH)
__
tv(RD–AL)
___
tv(WR–AL)
___
td(WR–DB)
___
tv(WR–DB)
___
_____
t
d
(RESET–RESET
OUT
)
_____
tv(φ–RESET)
Test conditions
Note 1:
_________
The RESETOUT output goes “H” in sync with the fall of the φ clock that is anywhere between about 8 cycle and 13 cycles after
______
the RESET input goes “H”.
Fig. 32
TIMING REQUIREMENTS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE (High-speed version)
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
SWITCHING CHARACTERISTICS 1 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
(VCC = 4.0 to 5.5 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
25
25
(High-speed version)
MITSUBISHI MICROCOMPUTERS
3806 Group
52
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
_____
Before φ ONW input set up time
_____
After φ ONW input hold time
Before φ data bus set up time
After φ data bus hold time
___ _____
Before RD ONW input set up time
___
_____
Before WR ONW input set up time
___ _____
After RD ONW input hold time
___
_____
After WR ONW input hold time
___
Before RD data bus set up time
___
After RD data bus hold time
____
tsu(ONW–φ)
____
th(φ–ONW)
tsu(DB–φ)
th(φ–DB)
____
__
tsu
(ONW–RD)
_______
tsu
(ONW–WR)
__
____
th(RD–ONW)
___ ____
th(WR–ONW)
__
tsu(DB–RD)
__
th(RD–DB)
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
Unit
–20
–20
120
0
–20
–20
120
0
Typ. Max.
φ clock cycle time
φ clock “H” pulse width
φ clock “L” pulse width
AD15–AD8 delay time
AD15–AD8 valid time
AD7–AD0 delay time
AD7–AD0 valid time
SYNC delay time
SYNC valid time
Data bus delay time
Data bus valid time
___
___
RD pulse width, WR pulse width
___
___
RD pulse width, WR pulse width
(when one-wait is valid)
___
After AD15–AD8 RD delay time
___
After AD15–AD8 WR delay time
___
After AD7–AD0 RD delay time
___
After AD7–AD0 WR delay time
___
After RD AD15–AD8 valid time
___
After WR AD15–AD8 valid time
___
After RD AD7–AD0 valid time
___
After WR AD7–AD0 valid time
___
After WR data bus delay time
___
After WR data bus valid time
_________
RESETOUT output delay time (Note 1)
_________
RESETOUT output valid time (Note 1)
100
100
80
80
300
150
Symbol Parameter Limits
Min. ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
ns
Unit
tc(XIN)–20
tc(XIN)–20
5
5
10
tc(X
IN
)–20
3tc(X
IN
)–20
tc(X
IN
)–100
tc(XIN)–100
5
5
10
0
2tc(XIN)
40
10
50
10
40
10
30
t
c(X
IN
)
–40
t
c(X
IN
)
–50
10
10
30
Typ. Max.
tc(φ)
twH(φ)
twL(φ)
td(φ–AH)
tv(φ–AH)
td(φ–AL)
tv(φ–AL)
td(φ–SYNC)
tv(φ–SYNC)
td(φ–DB)
tv(φ–DB)
__
twL(RD)
___
twL(WR)
__
td(AH–RD)
___
td(AH–WR)
__
td(AL–RD)
___
td(AL–WR)
__
tv(RD–AH)
___
tv(WR–AH)
__
tv(RD–AL)
___
tv(WR–AL)
___
td(WR–DB)
___
tv(WR–DB)
___
_____
t
d
(RESET–RESET
OUT
)
_____
tv(φ–RESET)
Test conditions
Note 1:
_________
The RESETOUT output goes “H” in sync with the rise of the φ clock that is anywhere between about 8 cycle and 13 cycles after
______
the RESET input goes “H”.
Fig. 32
TIMING REQUIREMENTS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
SWITCHING CHARACTERISTICS 2 IN MEMORY EXPANSION MODE AND MICROPROCESSOR MODE
(High-Speed V ersion) (VCC = 2.7 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
60
60
Fig. 32 Circuit for measuring output switching
characteristics (1)
Fig. 33 Circuit for measuring output switching
characteristics (2)
Measurement output pin
100pF
CMOS output
100pF
N-channel open-drain output
1k
Measurement output pin
(High-speed version) (VCC = 2.7 V, VSS = 0 V, Ta = –20 to 85 °C, unless otherwise noted)
MITSUBISHI MICROCOMPUTERS
3806 Group
53
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
TIMING DIAGLAM
(1) Timing Diagram
0.2 V
CC
t
WL(INT)
0.8 V
CC
t
WH(INT)
0.2 V
CC
0.2 V
CC
0.8 V
CC
0.8 V
CC
0.2 V
CC
t
WL(X
IN
)
0.8 V
CC
t
WH(X
IN)
t
C(X
IN
)
X
IN
0.2 V
CC
0.8 V
CC
t
W(RESET)
RESET
t
f
t
r
0.2 V
CC
t
WL(CNTR)
0.8 V
CC
t
WH(CNTR)
t
C(CNTR)
t
d(S
CLK1
-T
X
D)
,t
d(S
CLK2-
S
OUT2
)
t
v(S
CLK1
-T
X
D),
t
v(S
CLK2-
S
OUT2
)
t
C(S
CLK1
),
t
C(S
CLK2
)
t
WL(S
CLK1
),
t
WL(S
CLK2
)
t
WH(S
CLK1
),
t
WH(S
CLK2
)
th
(S
CLK1-
R
X
D),
t
h
(S
CLK2-
S
IN2
)
t
su(R
X
D
-
S
CLK1
),
t
su(S
IN2-
S
CLK2
)
T
X
D
S
OUT2
R
X
D
S
IN2
S
CLK1
S
CLK2
INT
0–
INT
4
CNTR
0
, CNTR
1
MITSUBISHI MICROCOMPUTERS
3806 Group
54
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(2)Timing Diagram in Memory Expansion Mode and Microprocessor Mode (a)
(3)Timing Diagram in Microprocessor Mode
tWL(φ)
tWH(φ)
tC(φ)
φ
td(φ-AH)
td(φ-AL)
td(φ-SYNC)
tv(φ-AH)
tv(φ-AL)
tv(φ-SYNC)
td(φ-WR) tv(φ-WR)
tSU(ONW-φ)th(φ-ONW)
tSU(DB-φ)th(φ-DB)
td(φ-DB) tv(φ-DB)
td(RESET- RESETOUT)
AD
15
–AD
8
AD
7
–AD
0
SYNC
RD,WR
ONW
DB
0
–DB
7
DB
0
–DB
7
RESET
φ
RESET
OUT
tv(φ- RESETOUT)
0.5 VCC
0.8 VCC
0.2 VCC
(At CPU reading)
(At CPU writing)
0.5 VCC
0.5 VCC
0.8 VCC
0.2 VCC
0.8 VCC
0.2 VCC
0.5 VCC
0.5 VCC
0.5 VCC
0.5 VCC
0.5 VCC
MITSUBISHI MICROCOMPUTERS
3806 Group
55
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
(4) Timing Diagram in Memory Expansion Mode and Microprocessor Mode (b)
0.5 V
CC
RD,WR
0.5 V
CC
AD15–AD8
t
d(AH-WR)
t
v(WR-AH)
0.5 V
CC
AD7–AD0
t
d(AL-WR)
t
v(WR-AL)
0.8 V
CC
0.2 V
CC
DB
0
–DB
7
0.5 V
CC
RD
t
SU(DB-RD)
t
h(RD-DB)
0.5 V
CC
DB
0
–DB
7
0.5 V
CC
WR
t
d(WR-DB)
t
v(WR-DB)
t
h(WR-ONW)
ONW
t
su(ONW-WR)
t
v(RD-AH)
t
d(AH-RD)
t
d(AL-RD)
t
v(RD-AL)
t
h(RD-ONW)
t
su(ONW-RD)
t
WL(RD)
t
WL(WR)
(At CPU reading)
(At CPU writing)
t
WL(RD)
t
WL(WR)
0.8 V
CC
0.2 V
CC
MITSUBISHI MICROCOMPUTERS
3806 Group
© 1996 MITSUBISHI ELECTRIC CORP.
H-DF047-C KI-9609
New publication, effective Sep. 1996.
Specifications subject to change without notice.
Notes regarding these materials
These materials are intended as a reference to assist our customers in the selection of the Mitsubishi semiconductor product best suited to the customer’s application; they do not convey any license under any
intellectual property rights, or any other rights, belonging to Mitsubishi Electric Corporation or a third party.
Mitsubishi Electric Corporation assumes no responsibility for any damage, or infringement of any third-party’s rights, originating in the use of any product data, diagrams, charts or circuit application examples
contained in these materials.
All information contained in these materials, including product data, diagrams and charts, represent information on products at the time of publication of these materials, and are subject to change by Mitsubishi
Electric Corporation without notice due to product improvements or other reasons. It is therefore recommended that customers contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor
product distributor for the latest product information before purchasing a product listed herein.
Mitsubishi Electric Corporation semiconductors are not designed or manufactured for use in a device or system that is used under circumstances in which human life is potentially at stake. Please contact
Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor when considering the use of a product contained herein for any specific purposes, such as apparatus or systems for
transportation, vehicular, medical, aerospace, nuclear, or undersea repeater use.
The prior written approval of Mitsubishi Electric Corporation is necessary to reprint or reproduce in whole or in part these materials.
If these products or technologies are subject to the Japanese export control restrictions, they must be exported under a license from the Japanese government and cannot be imported into a country other than the
approved destination.
Any diversion or reexport contrary to the export control laws and regulations of Japan and/or the country of destination is prohibited.
Please contact Mitsubishi Electric Corporation or an authorized Mitsubishi Semiconductor product distributor for further details on these materials or the products contained therein.
Keep safety first in your circuit designs!
Mitsubishi Electric Corporation puts the maximum effort into making semiconductor products better and more reliable, but there is always the possibility that trouble may occur with them. Trouble with
semiconductors may lead to personal injury, fire or property damage. Remember to give due consideration to safety when making your circuit designs, with appropriate measures such as (i) placement of
substitutive, auxiliary circuits, (ii) use of non-flammable material or (iii) prevention against any malfunction or mishap.
SINGLE-CHIP 8-BIT CMOS MICROCOMPUTER
MITSUBISHI MICROCOMPUTERS
3806 Group
Rev. Rev.
No. date
1.0 First Edition 971128
REVISION DESCRIPTION LIST 3806GROUP DATA SHEET
(1/1)
Revision Description