Key Features
Wide input, 8.3 -16 Vdc
Programmable output, 0.75 - 5.5 Vdc
Monotonic start up into pre-biased output
Under voltage protection
Short circuit protection
Remote sense
Remote On/Off
Design for Environment (DfE)
European Commission Directive 2002/95/EC
(RoHs) compliant
EDatasheet
DC/DC regulator
Input 8.3 - 16 V
Output 10 A
PMB 8518T P
The PMB series of SIL DC/DC regulators (POL) are in-
tended to be used as local distributed power sources in
distributed power architecture. The single in-line design
makes the PMB series suitable for applications where
boardspace is limited. The high efficiency and high reli-
ability of the PMB series makes them particularly suited
for the communications equipment of today and tomor-
row.
These products are manufactured using the most advanced
technologies and materials to comply with environmental
requirements. Designed to meet high reliability requirements
of systems manufacturers, the PMB responds to world-class
specifications.
Ericsson Power Modules is an ISO 9001/14001 certified
supplier.
Contents
Product Program ......................2
Mechanical Data ......................2
Connections .........................2
Absolute Maximum Ratings . . . . . . . . . . . . . 3
Input ...............................3
Product Qualification Specification . . . . . . . . 4
Safety Specification . . . . . . . . . . . . . . . . . . . 5
Adjusted to 1.0 Vout - Data . . . . . . . . . . . . . . 6
Adjusted to 1.2 Vout - Data . . . . . . . . . . . . . . 9
Adjusted to 1.5 Vout - Data . . . . . . . . . . . . . 12
Adjusted to 1.8 Vout - Data . . . . . . . . . . . . . 15
Adjusted to 2.5 Vout - Data . . . . . . . . . . . . . 18
Adjusted to 3.3 Vout - Data . . . . . . . . . . . . . 21
Adjusted to 5.0 Vout - Data . . . . . . . . . . . . . 24
EMC Specification . . . . . . . . . . . . . . . . . . . . 27
Operating Information . . . . . . . . . . . . . . . . . 28
Thermal Considerations . . . . . . . . . . . . . . . 30
Soldering Information . . . . . . . . . . . . . . . . . 31
Delivery Package Information . . . . . . . . . . . 31
Compatibility with RoHS requirements . . . . 31
Reliability ...........................31
Sales Offices and Contact Information . . . . 32
2 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Pin Designation Function
1-2 + Out Output Voltage
3 + S Remote sensing
4 + Out Output Voltage
5 GND Ground*
6 GND Ground*
7-8 + In Input Voltage
9 Vadj Output voltage adjust
10 RC Remote control
VI
VO/IO max PO max Ordering No. Comment
Output 1
8.3 - 16 V 0.75 - 5.50/10 A 50 W PMB 8518T P Released
8.3 - 16 V
1.0 V/10 A 10 W PMB 8118N P On request
1.2 V/10 A 12 W PMB 8118L P On request
1.5 V/10 A 15 W PMB 8118H P On request
1.8 V/10 A 18 W PMB 8118G P On request
2.5 V/10 A 25 W PMB 8219 P On request
3.3 V/10 A 33 W PMB 8310 P On request
5 V/10 A 50 W PMB 8511 P On request
Option Suffix Example
Negative Remote Control logic N PMB 8518T PN
8,80 [0.346]
7,40 [0.291]
51,80 [2.039]
48,26 [1.900]
Recommended footprint (customer board), no components within border.
Holes: Ø1,0 [0.04] through plated holes with Ø1,5 [0.06] pads on both sides.
Note 1: For other pin lengths, refer to Product program/Ordering information
1 2 3 4 5 6 7 8 9 10
Dimensions in mm [inch]
Tolerances (unless specified):
x,x +/-0,5 [0.02]
x,xx +/-0,25 [0.01]
E
7,0 [0.27]
8,5 [0.33] max
choke
35,56 [1.400]
48,26 [1.900]
2,54 [0.100] (7x) (1,27 [0.05])
13,20 [0.520]
50,8 [2.00]
pin length 3,60 [0.142]
(Note 1)
1
1
Connections
Mechanical Data
Weight
7.7g
Pins
Material: Copper alloy
Plating: Matte tin over nickel
Product Program
8,80 [0.346]
7,40 [0.291]
51,80 [2.039]
48,26 [1.900]
Recommended footprint (customer board), no components within border.
Holes: Ø1,0 [0.04] through plated holes with Ø1,5 [0.06] pads on both sides.
Note 1: For other pin lengths, refer to Product program/Ordering information
1 2 3 4 5 6 7 8 9 10
Dimensions in mm [inch]
Tolerances (unless specified):
x,x +/-0,5 [0.02]
x,xx +/-0,25 [0.01]
E
7,0 [0.27]
8,5 [0.33] max
choke
35,56 [1.400]
48,26 [1.900]
2,54 [0.100] (7x) (1,27 [0.05])
13,20 [0.520]
50,8 [2.00]
pin length 3,60 [0.142]
(Note 1)
1
1
8,80 [0.346]
7,40 [0.291]
51,80 [2.039]
48,26 [1.900]
Recommended footprint (customer board), no components within border.
Holes: Ø1,0 [0.04] through plated holes with Ø1,5 [0.06] pads on both sides.
Note 1: For other pin lengths, refer to Product program/Ordering information
1 2 3 4 5 6 7 8 9 10
Dimensions in mm [inch]
Tolerances (unless specified):
x,x +/-0,5 [0.02]
x,xx +/-0,25 [0.01]
E
7,0 [0.27]
8,5 [0.33] max
choke
35,56 [1.400]
48,26 [1.900]
2,54 [0.100] (7x) (1,27 [0.05])
13,20 [0.520]
50,8 [2.00]
pin length 3,60 [0.142]
(Note 1)
1
1
* Should be connected together through a ground plane.
3 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Absolute Maximum Ratings
Characteristics min typ max Unit
Tref Maximum Operating Temperature, see thermal considerations -45 +115 ˚C
TSStorage temperature -55 +125 ˚C
VIInput voltage -0.3 16 Vdc
Vtr Input voltage transient -0.3 40 Vdc
VRC Remote control voltage
Negative logic -0.3 16 Vdc
Positive logic -0.3 16 Vdc
Characteristics Conditions min typ max Unit
VIInput voltage range 8.3 12 16 V
Vloff Turn-off input voltage Iomax 7.8 V
VIon Turn-on input voltage Iomax 8.0 V
CIInput capacitance 30 µF
PIi
Input idling power
Io = 0 A, VI = 12 V
Vo = 1.00 V 340 405 mW
Vo = 1.20 V 370 445 mW
Vo = 1.50 V 420 505 mW
Vo = 1.80 V 480 575 mW
Vo = 2.50 V 630 755 mW
Vo = 3.30 V 800 960 mW
Vo = 5.00 V 1090 1410 mW
PRC Input stand-by power VI = 12 V, RC activated 40 mW
VIac Input ripple 1) 20 Hz ... 5 MHz
VI = 12 V, Io = 1.0 x Iomax
Vo = 1.00 V 100 mVp-p
Vo = 1.20 V 120 mVp-p
Vo = 1.50 V 160 mVp-p
Vo = 1.80 V 170 mVp-p
Vo = 2.50 V 200 mVp-p
Vo = 3.30 V 220 mVp-p
Vo = 5.00 V 275 mVp-p
Input
Stress in excess of Absolute Maximum Ratings may cause permanent damage. Absolute Maximum Ratings, sometimes referred to as no destruction limits, are
normally tested with one parameter at a time exceeding the limits of Output data or Electrical Characteristics. If exposed to stress above these limits, function
and performance may degrade in an unspecified manner.
Tref = -30 ... +90 ˚C, VI = 8.3...16 V unless otherwise specified
Typ values specified at: Tref = +25 ˚C, VInom, Iomax = 10 A
Fundamental Circuit Diagram
GND
GND
PWM
+IN +OUT
+SENSE
Vadj
controller
Ref
GND
Error
amplifier
RC RC
GND
Block
1) Measured with 4 x 4,7 µF ceramic capacitors.
4 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Characteristics
Random Vibration IEC 60068-2-64 Frequency
Acceleration density
5 ... 500 Hz
0.5 g2/Hz
Mechanical shock
(half sinus) IEC 60068-2-27 Peak acceleration
Duration
50 g
11 ms
Lead integrity IEC 60068-2-21 Ub Simultaneous bending All leads
Temperature cycling JESD22-A104-BG
Temperature
Number of cycles
-40 ... +125 ˚C
300
Accelerated damp heat JESD22-A101-B
Temperature
Humidity
Duration
Bias
+85 ˚C
85 % RH
1000 hours
max input voltage
Solderability
IEC 60068-2-54
(Aged according to JESD22-A101-
B, 240h no bias)
Solder immersion depth
Time for onset of wetting
Wetting force
2 mm
< 2.5 s
> 200 mN/m
Cold (in operation) IEC 60068-2-1 Temperature
Duration
-45 ˚C
72 h
High temperature storage JESD22-A103-BATemperature
Duration
+125 ˚C
1000 h
Product Qualification Specification
5 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Ericsson Power Modules DC/DC converters and DC/DC regulators
are designed in accordance with safety standards
IEC/EN/UL 60 950, Safety of Information Technology Equipment.
IEC/EN/UL60950 contains requirements to prevent injury or
damage due to the following hazards:
Electrical shock
Energy hazards
Fire
Mechanical and heat hazards
Radiation hazards
Chemical hazards
On-board DC-DC converters are defined as component power
supplies. As components they cannot fully comply with the
provisions of any Safety requirements without “Conditions of
Acceptability”. It is the responsibility of the installer to ensure that
the final product housing these components complies with the
requirements of all applicable Safety standards and Directives for
the final product.
Component power supplies for general use should comply with
the requirements in IEC60950, EN60950 and UL60950 “Safety of
information technology equipment”.
There are other more product related standards, e.g.
IEC61204-7 “Safety standard for power supplies",
IEEE802.3af “Ethernet LAN/MAN Data terminal equipment
power”, and ETS300132-2 “Power supply interface at the input
to telecommunications equipment; part 2: DC”, but all of these
standards are based on IEC/EN/UL60950 with regards to safety.
Ericsson Power Modules DC/DC converters and DC/DC regulators
are UL 60 950 recognized and certified in accordance with EN 60
950.
The flammability rating for all construction parts of the products
meets UL 94V-0.
The products should be installed in the end-use equipment, in
accordance with the requirements of the ultimate application.
Normally the output of the DC/DC converter is considered as SELV
(Safety Extra Low Voltage) and the input source must be isolated by
minimum Double or Reinforced Insulation from the primary circuit
(AC mains) in accordance with IEC/EN/UL 60 950.
Safety Specification
Isolated DC/DC converters.
The input voltage to the DC/DC regulator is SELV (Safety Extra Low
Voltage) and the output remains SELV under normal and abnormal
operating conditions.
It is recommended that a slow blow fuse with a rating
twice the maximum input current per selected product
be used at the input of each DC/DC regulator.
Non-isolated DC/DC regulators.
24 V dc systems.
The input voltage to the DC/DC converter is SELV (Safety Extra Low
Voltage) and the output remains SELV under normal and abnormal
operating conditions.
48 and 60 V dc systems.
If the input voltage to Ericsson Power Modules DC/DC converter
is 75 V dc or less, then the output remains SELV (Safety Extra Low
Voltage) under normal and abnormal operating conditions.
Single fault testing in the input power supply circuit should be
performed with the DC/DC converter connected to demonstrate
that the input voltage does not exceed 75 V dc.
If the input power source circuit is a DC power system, the source
may be treated as a TNV2 circuit and testing has demonstrated
compliance with SELV limits and isolation requirements equivalent
to Basic Insulation in accordance with IEC/EN/UL 60 950.
It is recommended that a fast blow fuse with a rating
twice the maximum input current per selected product
be used at the input of each DC/DC converter. If an input filter is
used in the circuit the fuse should be placed in front of the input
filter.
In the rare event of a component problem in the input filter or in the
DC/DC converter that imposes a short circuit on the input source,
this fuse will provide the following functions:
• Isolate the faulty DC/DC converter from the input power source
so as not to affect the operation of other parts of the system.
• Protect the distribution wiring from excessive current and power
loss thus preventing hazardous overheating.
The galvanic isolation is verified in an electric strength test. The test
voltage (VISO) between input and output is 1500 Vdc or 2250 Vdc for
60 seconds (refer to product specification). Leakage current is less
than 1µA at nominal input voltage.
General information.
6 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Characteristics Conditions
Output
Unit
min typ max
dVOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax -2 +2 % VO
dVOOutput voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO
dVOIdling voltage IO = 0 A -2 +2 % VO
dVOLine regulation VImin ... VImax, IOmax 2 mV
dVOLoad regulation 0.01...1.0 x IOmax, VInom 25 mV
ttr Load transient
recovery time Load step = 0.25-0.75-0.25 x IOmax,
dI/dt = 5 A/µs, CO = 2 x 150 µF,
VI = 12 V
40 µs
Vtr Load transient voltage ±100 mV
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.6 mV/°C
tsStart-up VI on to 0.9 x VOIO = IOmax, VInom 7 ms
trRamp-up, VI ... 0.9 x VOIO = IOmax, VInom 3 ms
tfFall time, VI to 0.1 x VOIO = IOmax, VInom 1 ms
tfFall time, VI to 0.1 x VOIO = 0 A, VInom 22 s
tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms
tRC RC start-up time 0.9 x VOIO = IOmax, VInom 7 ms
tRC RC fall time, 0.1 x VOIO = 0 A, VInom 24 s
IOOutput current 0 10 A
POmax Max output power 10 W
Ilim Current limiting threshold Tref < Trefmax 12 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 35 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VO = 1.00 V 83.8 %
ηEfficiency - 100% load IO = IOmax, VO = 1.00 V 78.4 82.5 %
PdPower Dissipation IO = IOmax, VO = 1.00 V 2.1 2.7 W
Fo Switching frequency IO = (0... 1) x IOmax 260 300 340 kHz
Isense Remote sense current 10 mA
IIStatic input current VI = 8.3 V IO = IOmax, VO = 1.00 V 1.5 A
MTBF Predicted reliability 5 million
hours
Tref = -30 ... +90 °C, VI = 8.3 ... 16 V unless otherwise specified. Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 10 A. Note: +Sense connected to +Out. Radj 41.42 k
Adjusted to 1.0 Vout - Data
7 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Start-Up
Start-up at IO = 10 A resistive load at Tref = +25 °C,
Vin = 12 V. Start enabled by connecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 1.0 Vout - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C







<">
<>
7
7
7
7

<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Output Current Derating at 12 V input
Available load current vs. ambient air temperature and
airflow at Vin = 12 V. See conditions on page 30.
      


<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BU$POW
Output voltage vs. load current.
Output Characteristics






<">
<7>
7
7
7
7
Turn Off
Turn-off at IO = 10 A resistive load at Tref = +25 °C,
Vin = 12 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 0,1 ms/div.
8 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Output Ripple Transient
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref = +25 °C, Vin = 12 V. dI/dt = 5 A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20 mV/div.) at Tref = +25 °C,
Vin = 12 V, IO = 10 A resistive load.
Band width = 5 MHz.
Time scale: 2 µs /div.
Adjusted to 1.0 Vout - Typical Characteristics
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
9 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Tref = -30 ... +90 °C, VI = 8.3 ...16 V unless otherwise specified. Input filter 4 x 4,7 µF, Output filter 2 x 150 µF
Typ values specified at: Tref = +25 °C and VInom, IOmax = 10 A. Note: +Sense connected to +Out. Radj 22.46 k
Adjusted to 1.2 Vout - Data
Characteristics Conditions
Output
Unit
min typ max
dVOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax -2 +2 % VO
dVOOutput voltage tolerance band 0.01...1.0 x IOmax, VInom -3 +3 % VO
dVOIdling voltage IO = 0 A -2 +2 % VO
dVOLine regulation VImin ... VImax, IOmax 2 mV
dVOLoad regulation 0.01...1.0 x IOmax, VInom 25 mV
ttr Load transient
recovery time Load step = 0.25-0.75-0.25 x IOmax,
dI/dt = 5 A/µs, CO = 2 x 150 µF,
VI = 12 V
40 µs
Vtr Load transient voltage ±100 mV
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.6 mV/°C
tsStart-up VI on to 0.9 x VOIO = IOmax, VInom 7 ms
trRamp-up, VI ... 0.9 x VOIO = IOmax, VInom 3 ms
tfFall time, VI to 0.1 x VOIO = IOmax, VInom 1 ms
tfFall time, VI to 0.1 x VOIO = 0 A, VInom 21 s
tRC RC shut-down time 0.1 x VOIO = IOmax, VInom 1 ms
tRC RC start-up time 0.9 x VOIO = IOmax, VInom 7 ms
tRC RC fall time, 0.1 x VO IO = 0 A, VInom 21 s
IOOutput current 0 10 A
POmax Max output power 12 W
Ilim Current limiting threshold Tref < Trefmax 12 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 35 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VO = 1.20 V 85.8 %
ηEfficiency - 100% load IO = IOmax, VO = 1.20 V 81.1 84.8 %
PdPower Dissipation IO = IOmax, VO = 1.20 V 2.1 2.8 W
Fo Switching frequency IO = (0... 1) x IOmax 260 300 340 kHz
Isense Remote sense current 10 mA
IIStatic input current VI = 8.3 V IO = IOmax, VO = 1.20 V 1.7 A
MTBF Predicted reliability 5 million
hours
10 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Output Characteristic
Start-Up
Output voltage vs. load current.
Start-up at IO = 10 A resistive load at Tref = +25 °C,
Vin = 12 V. Start enabled by connecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 1.2 Vout - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C






[A]
[V]
7
7
7
7

<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Output Current Derating at 12 V input
Available load current vs. ambient air temperature and
airflow at Vin = 12 V. See conditions on page 30.
Turn Off
Turn-off at IO = 10 A resistive load at Tref = +25 °C,
Vin = 12 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
11 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Output Ripple Transient
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref = +25 °C, Vin = 12 V. dI/dt = 5 A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20 mV/div.) at Tref = +25 °C,
Vin = 12 V, IO = 10 A resistive load.
Band width = 5 MHz.
Time scale: 2 µs/div.
Adjusted to 1.2 Vout - Typical Characteristics
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
12 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Tref = -30 ... +90 °C, VI = 8.3 ...16 V unless otherwise specified. Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 10 A. Note: +Sense connected to +Out. Radj 13.05 k
Adjusted to 1.5 Vout - Data
Characteristics Conditions
Output
Unit
min typ max
dVOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax -2 +2 % VO
dVOOutput voltage tolerance band 0.01...1.0 x IOmax, VInom -3 +3 % VO
dVOIdling voltage IO = 0 A -2 +2 % VO
dVOLine regulation VImin ... VImax, IOmax 2 mV
dVOLoad regulation IO = 0.01...IOmax, VInom 25 mV
ttr Load transient
recovery time Load step = 0.25-0.75-0.25 x IOmax,
dI/dt = 5 A/µs, CO = 2 x 150 µF,
VI = 12 V
40 µs
Vtr Load transient voltage ±100 mV
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.6 mV/°C
tsStart-up VI on to 0.9 x VOIO = IOmax, VInom 7 ms
trRamp-up, VI ... 0.9 x VOIO = IOmax, VInom 3 ms
tfFall time, VI to 0.1 x VOIO = IOmax, VInom 1 ms
tfFall time, VI to 0.1 x VOIO = 0 A, VInom 20 s
tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms
tRC RC start-up time 0.9 x VOIO = IOmax, VInom 7 ms
tRC RC fall time, 0.1 x VO IO = 0 A, VInom 20 s
IOOutput current 0 10 A
POmax Max output power 15 W
Ilim Current limiting threshold Tref < Trefmax 12 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 35 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VO = 1.50 V 87.8 %
ηEfficiency - 100% load IO = IOmax, VO = 1.50 V 83.8 87.1 %
PdPower Dissipation IO = IOmax, VO = 1.50 V 2.2 2.9 W
Fo Switching frequency IO = (0... 1) x IOmax 260 300 340 kHz
Isense Remote sense current 10 mA
IIStatic input current VI = 8.3 V IO = IOmax, VO = 1.50 V 2.1 A
MTBF Predicted reliability 5 million
hours
13 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Output Characteristic
Start-Up
Output voltage vs. load current.






<">
<7>
7
7
7
7
Start-up at IO = 10 A resistive load at Tref = +25 °C,
Vin = 12 V. Start enabled by connecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 1.5 Vout - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C







<">
<>
7
7
7
7

<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Output Current Derating at 12 V input
Available load current vs. ambient air temperature and
airflow at Vin = 12 V. See conditions on page 30.
      


<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BU$POW
Turn Off
Turn-off at IO = 10 A resistive load at Tref = +25 °C,
Vin = 12 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
14 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Output Ripple Transient
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref =+25 °C, Vin = 12 V. dI/dt = 5 A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20 mV/div.) at Tref = +25 °C,
Vin = 12 V, IO = 10 A resistive load.
Band width = 5 MHz.
Time scale: 2 µs/div.
Adjusted to 1.5 Vout - Typical Characteristics
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
15 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Tref = –30…+90 °C, VI = 8.3 ...16 V unless otherwise specified. Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 10 A. Note: +Sense connected to +Out. Radj 9.024 k
Adjusted to 1.8 Vout - Data
Characteristics Conditions
Output
Unit
min typ max
dVOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax -2 +2 % VO
dVOOutput voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO
dVOIdling voltage IO = 0 A -2 +2 % VO
dVOLine regulation VImin ... VImax, IOmax 2 mV
dVOLoad regulation 0.01...1.0 x IOmax, VInom 25 mV
ttr Load transient
recovery time Load step = 0.25-0.75-0.25 x IOmax,
dI/dt = 5 A/µs, CO = 2 x 150 µF,
VI = 12 V
40 µs
Vtr Load transient voltage ±100 mV
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.6 mV/°C
tsStart-up VI on to 0.9 x VOIO = IOmax, VInom 7 ms
trRamp-up, VI ... 0.9 x VOIO = IOmax, VInom 3 ms
tfFall time, VI to 0.1 x VOIO = IOmax, VInom 1 ms
tfFall time, VI to 0.1 x VOIO = 0 A, VInom 18 s
tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms
tRC RC start-up time 0.9 x VO IO = IOmax, VInom 7 ms
tRC RC fall time, 0.1 x VOIO = 0 A, VInom 18 s
IOOutput current 0 10 A
POmax Max output power 18 W
Ilim Current limiting threshold Tref < Trefmax 12 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 35 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VO = 1.80 V 89.1 %
ηEfficiency - 100% load IO = IOmax, VO = 1.80 V 85.7 88.7 %
PdPower Dissipation IO = IOmax, VO = 1.80 V 2.3 3.0 W
Fo Switching frequency IO = (0... 1) x IOmax 260 300 340 kHz
Isense Remote sense current 10 mA
IIStatic input current VI = 8.3 V IO = IOmax, VO = 1.80 V 2.5 A
MTBF Predicted reliability 5 million
hours
16 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Efficiency
Output Current Derating at 12 V input
Adjusted to 1.8 Vout - Typical Characteristics
Output Characteristic
Start-Up
Output voltage vs. load current.
Efficiency vs. load current and input voltage at Tref = +25 °C







[A]
[% ]
7
7
7
7






<">
<7>
7
7
7
7
Start-up at IO = 10 A resistive load at Tref = +25 °C,
Vin = 12 V. Start enabled by connecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
Available load current vs. ambient air temperature and
airflow at Vin = 12 V. See conditions on page 30.
Power Dissipation

<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref=+25 °C
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Turn Off
Turn-off at IO = 10 A resistive load at Tref = +25 °C,
Vin = 12 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
17 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Output Ripple
Adjusted to 1.8 Vout - Typical Characteristics
Transient
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref = +25 °C, Vin = 12 V. dI/dt = 5 A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20 mV/div.) at Tref = +25 °C,
Vin = 12 V, IO = 10 A resistive load.
Band width = 5 MHz.
Time scale: 2 µs/div.
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
18 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Tref = -30 ... +90 °C, VI = 8.3 ...16 V unless otherwise specified. Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 10 A. Note: +Sense connected to +Out. Radj 5.009 k
Adjusted to 2.5 Vout - Data
Characteristics Conditions
Output
Unit
min typ max
dVOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax -2 +2 % VO
dVOOutput voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO
dVOIdling voltage IO = 0 A -2 +2 % VO
dVOLine regulation VImin ... VImax, IOmax 6 mV
dVOLoad regulation 0.01...1.0 x IOmax, VInom 25 mV
ttr Load transient
recovery time Load step = 0.25-0.75-0.25 x IOmax,
dI/dt = 5 A/µs, CO = 2 x 150 µF,
VI = 12 V
40 µs
Vtr Load transient voltage ±150 mV
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.6 mV/°C
tsStart-up VI on to 0.9 x VOIO = IOmax, VInom 7 ms
trRamp-up, VI ... 0.9 x VOIO = IOmax, VInom 3 ms
tfFall time, VI to 0.1 x VOIO = IOmax, VInom 1 ms
tfFall time, VI to 0.1 x VOIO = 0 A, VInom 16 s
tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms
tRC RC start-up time 0.9 x VOIO = IOmax, VInom 7 ms
tRC RC fall time, 0.1 x VO IO = 0 A, VInom 16 s
IOOutput current 0 10 A
POmax Max output power 25 W
Ilim Current limiting threshold Tref < Trefmax 12 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 35 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VO = 2.50 V 90.9 %
ηEfficiency - 100% load IO = IOmax, VO = 2.50 V 88.4 91.0 %
PdPower Dissipation IO = IOmax, VO = 2.50 V 2.5 3.3 W
Fo Switching frequency IO = (0... 1) x IOmax 260 300 340 kHz
Isense Remote sense current 10 mA
IIStatic input current VI = 8.3 V IO = IOmax, VO = 2.50 V 3.3 A
MTBF Predicted reliability 5 million
hours
19 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Output Characteristic
Start-Up
Output voltage vs. load current.






[A]
[V]
7
7
7
7
Start-up at IO = 10 A resistive load at Tref = +25 °C,
Vin = 12 V. Start enabled by connecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 2.5 Vout - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C







<">
<>
7
7
7
7

[A]
[W]
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Output Current Derating at 12 V input
Available load current vs. ambient air temperature and
airflow at Vin = 12 V. See conditions on page 30.
      


<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BU$POW
Turn Off
Turn-off at IO = 10 A resistive load at Tref = +25 °C,
Vin = 12 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
20 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Output Ripple Transient
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref = +25 °C, Vin = 12 V. dI/dt = 5 A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20 mV/div.) at Tref = +25 °C,
Vin = 12 V, IO = 10 A resistive load.
Band width = 5 MHz.
Time scale: 2 µs / div.
Adjusted to 2.5 Vout - Typical Characteristics
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
21 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Tref = -30 ... +90 °C, VI = 8.3 ... 16 V unless otherwise specified. Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Typ values specified at: Tref = +25 °C and VInom. IOmax = 10 A. Note: +Sense connected to +Out. Radj 3.122 k
Adjusted to 3.3 Vout - Data
Characteristics Conditions
Output
Unit
min typ max
dVOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax -2 +2 % VO
dVOOutput voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO
dVOIdling voltage IO = 0 A -2 +2 % VO
dVOLine regulation VImin ... VImax, IOmax 6 mV
dVOLoad regulation 0.01...1.0 x IOmax, VInom 25 mV
ttr Load transient
recovery time Load step = 0.25-0.75-0.25 x IOmax,
dI/dt = 5 A/µs, CO = 2 x 150 µF,
VI = 12 V
40 µs
Vtr Load transient voltage ±150 mV
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.6 mV/°C
tsStart-up VI on to 0.9 x VOIO = IOmax, VInom 7 ms
trRamp-up, VI ... 0.9 x VOIO = IOmax, VInom 3 ms
tfFall time, VI to 0.1 x VOIO = IOmax, VInom 1 ms
tfFall time, VI to 0.1 x VOIO = 0 A, VInom 17 s
tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms
tRC RC start-up time 0.9 x VO IO = IOmax, VInom 7 ms
tRC RC fall time, 0.1 x VOIO = 0 A, VInom 17 s
IOOutput current 0 10 A
POmax Max output power 33 W
Ilim Current limiting threshold Tref < Trefmax 12 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 35 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VO = 3.30 V 92.3 %
ηEfficiency - 100% load IO = IOmax, VO = 3.30 V 90.3 92.6 %
PdPower Dissipation IO = IOmax, VO = 3.30 V 2.6 3.5 W
Fo Switching frequency IO = (0... 1) x IOmax 260 300 340 kHz
Isense Remote sense current 10 mA
IIStatic input current VI = 8.3 V IO = IOmax, VO = 3.30 V 4.3 A
MTBF Predicted reliability 5 million
hours
22 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Output Current Derating at 12 V input Output Characteristic
Start-Up
Output voltage vs. load current.
Available load current vs. ambient air temperature and
airflow at Vin = 12 V. See conditions on page 30.






<">
<7>
7
7
7
7
Start-up at IO = 10 A resistive load at Tref = +25 °C,
Vin = 12 V. Start enabled by connecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 3.3 Vout - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C







<">
<>
7
7
7
7

<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
      


<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BU$POW
Turn Off
Turn-off at IO = 10 A resistive load at Tref = +25 °C,
Vin = 12 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (1 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
23 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Output Ripple Transient
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref = +25 °C, Vin = 12 V. dI/dt = 5 A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20 mV/div.) at Tref = +25 °C, Vin = 12 V,
IO = 10 A resistive load.
Band width = 5 MHz.
Time scale: 2 µs/div.
Adjusted to 3.3 Vout - Typical Characteristics
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
24 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Tref = -30 ... +90 °C, VI = 8.3 ... 16 V unless otherwise specified. Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
Typ values specified at: Tref = +25 °C and VInom . IOmax = 10 A. Note: +Sense connected to +Out. Radj 1.472 k
Adjusted to 5.0 Vout - Data
Characteristics Conditions
Output
Unit
min typ max
dVOi Output voltage adjusted setting Tref = +25 °C, VInom, IOmax -2 +2 % VO
dVOOutput voltage tolerance band IO = 0.01...1.0 x IOmax -3 +3 % VO
dVOIdling voltage IO = 0 A -2 +2 % VO
dVOLine regulation VImin ... VImax, IOmax 12 mV
dVOLoad regulation 0.01...1.0 x IOmax, VInom 25 mV
ttr Load transient
recovery time Load step = 0.25-0.75-0.25 x IOmax,
dI/dt = 5 A/µs, CO = 2 x 150 µF,
VI = 12 V
40 µs
Vtr Load transient voltage ±150 mV
Tcoeff Temperature coefficient Tref = -30 ... +90 °C, IOmax -0.6 mV/°C
tsStart-up VI on to 0.9 x VOIO = IOmax, VInom 7 ms
trRamp-up, VI ... 0.9 x VOIO = IOmax, VInom 3 ms
tfFall time, VI to 0.1 x VOIO = IOmax, VInom 1 ms
tfFall time, VI to 0.1 x VOIO = 0 A, VInom 16 s
tRC RC shut-down time 0.1 x VO IO = IOmax, VInom 1 ms
tRC RC start-up time 0.9 x VO IO = IOmax, VInom 7 ms
tRC RC fall time, 0.1 x VO IO = 0 A, VInom 15 s
IOOutput current 0 10 A
POmax Max output power 50 W
Ilim Current limiting threshold Tref < Trefmax 12 A
VOac Output ripple 20 Hz ... 5 MHz, IOmax 35 mVp-p
ηEfficiency - 50% load IO = 0.5 x IOmax, VO = 5.00 V 93.8 %
ηEfficiency - 100% load IO = IOmaxA, VO = 5.00 V 90.9 94.4 %
PdPower Dissipation IO = IOmax, VO = 5.00 V 3.0 5.0 W
Fo Switching frequency IO = (0... 1) x IOmax 260 300 340 kHz
Isense Remote sense current 10 mA
IIStatic input current VI = 8.3 V IO = IOmax, VO = 5.00 V 6.4 A
MTBF Predicted reliability 5 Million
hours
25 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Output Current Derating at 12 V input Output Characteristic
Start-Up
Output voltage vs. load current.
Available load current vs. ambient air temperature and
airflow at Vin = 12 V. See conditions on page 30.






<">
<7>
7
7
7
7
Start-up at IO = 10 A resistive load at Tref = +25 °C,
Vin = 12 V. Start enabled by connecting Vin.
Top trace: output voltage (2 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
Efficiency Power Dissipation
Adjusted to 5.0 Vout - Typical Characteristics
Efficiency vs. load current and input voltage at Tref = +25 °C







<">
<>
7
7
7
7

<">
<8>
7
7
7
7
Dissipated power vs. load current and input voltage at
Tref = +25 °C
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
      


<«$>
<">
NTMGN
NTMGN
NTMGN
NTMGN
NTMGN
/BU$POW
Turn Off
Turn-off at IO = 10 A resistive load at Tref = +25 °C,
Vin = 12 V. Turn-off enabled by disconnecting Vin.
Top trace: output voltage (2 V/div.).
Bottom trace: input voltage (10 V/div.).
Time scale: 2 ms/div.
26 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Output Ripple Transient
Output voltage response to load current step-change
(2.5-7.5-2.5 A) at Tref =+25 °C, Vin = 12 V. dI/dt = 5 A/µs
Top trace: output voltage (ac) (100 mV/div.).
Bottom trace: load current (dc) (10 A/div.)
Time scale: 0.1 ms/div.
Output voltage ripple (20 mV/div.) at Tref = +25 °C,
Vin = 12 V, IO = 10 A resistive load.
Band width = 5 MHz.
Time scale: 2 µs/div.
Adjusted to 5.0 Vout - Typical Characteristics
General conditions: Input filter 4 x 4.7 µF, Output filter 2 x 150 µF
27 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
EMC Specification
The conducted EMI measurement was performed using a
regulator placed directly on the test bench. The fundamental
switching frequency for PMB 8000 is 300 kHz. The measure-
ment below has been performed with Vin = 12 V, Vout = 5 V
and max load. Input filter 4 x 4.7 µF and output filter 2 x 150
µF was used during the measurement.
1SJOUFE$JSDVU#PBSE
&.$3FDJWFS $PNQVUFS
DN
DN
%$
1PXFS
4PVSDF
3FTJTUJWF
-PBE
¬'
1PXFS
3FHVMBUPS
Layout Recommendation
-10
0
20
40
60
80
100
Level [dBµA]
150k
300k
500k
1M
2M
3M
5M
7M
10M
30M
Frequency [Hz]
MES EPM_PMB10A_1_pre PK
PMB 8518.
Conducted EMI Input terminal value (typ)
#/$
$POOFDUPS
UP4DPQF
7PVU
4FOTF
5SJN
(/%
-PBE
-PX&431PMZNFS
$BQBDJUPS
$POEVDUPSGSPN7PVUUPDBQBDJUPSTNN<JO>
YM
Output ripple and noise test setup
Output ripple and noise
The circuit below has been used for the ripple and noise
measurements on the PMB 8000 Series DC/DC regulators.
The radiated EMI performance of the DC/DC regulator will
be optimised by including a ground plane in the PCB area
under the DC/DC regulator. This approach will return switch-
ing noise to ground as directly as possible, with improve-
ments to both emissions and susceptibility.
According to MIL-std.
28 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Vout (V) Radj (kohm) Vtrim (V)
0.75 Open Open
1.0 41.42 0.684
1.2 22.46 0.670
1.5 13.05 0.650
1.8 9.024 0.630
2.5 5.009 0.583
3.3 3.122 0.530
5.00 1.472 0.417
5.50 1.212 0.383
Circuit configuration for output voltage adjust
Increase
+Out
GND
Vadj Load
Radj
Sense
*ODSFBTF
0VU
(/%
7BEK -PBE
4FOTF
Operating Information
Remote Control (RC)
Standard Version with "positive logic".
RC Regulator
condition min typ max Unit
Low level
referenced to GND OFF -0.3 0.3 V
Open ON 1.7 16 V
The RC pin may be used to turn on or turn off the regulator
using a suitable open collector function.
Turn off is achieved by connecting the RC pin to ground.
The regulator will run in normal operation when the RC pin is
left open.
RC
+IN
Module
+IN
GND
Input Voltage
The input voltage range 8.3…16 Vdc makes the PMB 8000
easy to use in intermediate bus applications when pow-
ered by a non-regulated bus converter or a regulated bus
converter. For output voltage trims over 5.25 Vout the input
voltage must be reduced to a maximum of 14 V in order to
maintain specified data.
RC Regulator
condition min typ max Unit
High level
referenced to GND OFF 1.7 16 V
Open ON
The RC pin may be used to turn on or turn off the regulator
using a suitable open collector function.
Turn off is achieved by connecting the RC pin to the input
voltage. The regulator will run in normal operation when the
RC pin is left open.
RC
Vi
Module
Vi
GND
Option "negative logic"
Output Voltage Adjust (Vadj)
All PMB 8000 Series DC/DC regulators have an Output
Voltage adjust pin (Vadj). This pin can be used to adjust the
output voltage above output voltage initial setting (0.75 V).
When increasing the output voltage the maximum power
rating of the converter remains the same, and the output
current capability will therefore decrease correspondingly.
To increase the output voltage a resistor or a voltage signal
should be connected/applied between Vadj pin and GND,
pin 5. The resistor/voltage signal value for some standard
output trims are given below, for other voltage set points
use the formulas to calculate the correct resistor or voltage
signal. For output voltages of 5.25 V and higher the input
voltage is restricted to maximum 14 Vin.
Formula 1: Radj = (10 500 / (Vout – 0.7525)) – 1000 (ohm)
Formula 2: Vtrim = (0.7 – 0.0667 x (Vout – 0.7525)) (V)
Turn off input voltage
The PMB 8000 Series DC/DC regulators monitor the input
voltage and will turn on and turn off at predetermined levels.
The minimum hysteresis between turn on and turn off input
voltage is 0.2 V where the turn on input voltage is the high-
est.
29 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
All PMB 8000 Series DC/DC regulators have a positive re-
mote sense pin that can be used to compensate for moder-
ate amounts of resistance in the distribution system and al-
low for voltage regulation at the load or other selected point.
The remote sense line will carry very little current and does
not need a large cross sectional area. However, the sense
line on the PCB should be located close to a ground trace or
ground plane. The remote sense circuitry will compensate for
up to 10 % voltage drop between the sense voltage and the
voltage at the output pins from VOnom. If the remote sense is
not needed the sense pin should be left open or connected
to the positive output.
Remote Sense
Current Limit Protection
The PMB 8000 Series DC/DC regulators include current
limiting circuitry that allows them to withstand continuous
overloads or short circuit conditions on the output. The out-
put voltage will decrease towards zero for output currents in
excess of max output current (Iomax). When the current limit
is reached the regulator will go into hiccup mode. The cur-
rent limit is temperature dependent, i.e. the limit decrease
at higher operating temperature, the regulator is guaranteed
to start at IOmax x 1.25 @ Tref 115°C. The regulator will
resume normal operation after removal of the overload. The
load distribution system should be designed to carry the
maximum output short circuit current specified.
Over Temperature Protection (OTP)
The PMB 8000 Series DC/DC regulators are protected from
thermal overload by an internal over temperature shutdown
circuit. When the PCB temperature near the IC circuit reach-
es 130 °C the converter will shut down immediately. The
regulator will make continuous attempts to start up (non-
latching mode) and resume normal operation automatically
when the temperature has dropped below the temperature
threshold.
Input And Output Impedance
The impedance of both the power source and the load will
interact with the impedance of the DC/DC regulator. It is
most important to have a low characteristic impedance,
both at the input and output, as the regulators have a low
energy storage capability. Use capacitors across the input if
the source inductance is greater than 4.7 µH. Suitable input
capacitors are 22 µF - 220 µF low ESR ceramics.
Minimum Required External Capacitors
Required Input Filter
External input capacitors are required to increase the life-
time of the internal capacitors. Low ESR ceramics should be
used, the minimum input capacitance is stated below.
PMB 8518T P 1 x 4.7 µF
Optional Input Filter
To minimize input ripple and to ensure even better stability
more capacitors can be added, see table below.
Consider the max output power in a given application and
choose sufficient capacitors to obtain desired ripple level.
Make sure that the extra capacitors are placed near the input
pins.The table below is just an example since the board
layout also has effect on the result.
Required output filter
External output capacitance is also required to reduce the
output ripple and to obtain specified load step response. It
is recommended to use low ESR polymer capacitors or low
ESR ceramic capacitors.
Minimum requirement:
PMB 8518T P 2 x 150 µF (low ESR polymer type).
This is the output filter used in the verification and a require-
ment to meet the specification.
Output power
Desired input ripple (mVp-p)
150 250 500
0-20 W 2 x 4.7 µF ----- -----
20-40 W 5 x 4.7 µF 2 x 4.7 µF -----
40-50 W 8 x 4.7 µF 4 x 4.7 µF 2 x 4.7 µF
Note: All output characteristics in the datasheet are measured with 4*4.7µF at the input pins.
Maximum Capacitive Load
When powering loads with significant dynamic current
requirements, the voltage regulation at the load can be
improved by addition of decoupling capacitance at the load.
The most effective technique is to locate low ESR ceramic
capacitors as close to the load as possible, using several
capacitors to lower the total ESR. These ceramic capacitors
will handle short duration high-frequency components
of dynamic load changes. In addition, higher values of
capacitors (electrolytic capacitors) should be used to handle
the mid-frequency components. It is equally important
to use good design practice when configuring the DC
distribution system.
Low resistance and low inductance PCB layouts and
cabling should be used. Remember that when using remote
sensing, all resistance (including the ESR), inductance and
capacitance of the distribution system is within the feedback
loop of the regulator. This can affect on the regulators
compensation and the resulting stability and dynamic
response performance.
Very low ESR and high capacitance must be used with
care. A “rule of thumb” is that the total capacitance must
never exceed typically 500-700µF if only low ESR (< 2 m)
ceramic capacitors are used. If more capacitance is needed,
a combination of low ESR type and electrolytic capacitors
should be used, otherwise the stability will be affected.
Operating Information
30 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Thermal Considerations
General
The PMB 8000 Series DC/DC regulators are designed
to operate in a variety of thermal environments, however
sufficient cooling should be provided to help ensure reliable
operation. Heat is removed by conduction, convection and
radiation to the surrounding environment. Increased airflow
enhances the heat transfer via convection.
Proper cooling can be verified by measuring the
temperature at the reference point (Tref).
1
Tref
The PMB 8000 thermal testing is performed with the
product mounted on an FR4 board 254 x 254 mm with 8x 254 mm with 8254 mm with 8
layers of 35 µm copper. Airflow is perpendicular to the Tref
side.
25 mm [1 in.]
airflow
Test board
choke
Calculation of ambient temperature
By using the thermal resistance the maximum allowed
ambient temperature can be calculated.
1. The powerloss is calculated by using the formula
((1/η) - 1) × output power = power losses.
η = efficiency of converter. E.g 88% = 0.88
2. Find the value of the thermal resistance for each product
in the diagram by using the airflow speed at the output
section of the converter. Take the thermal resistance x
powerloss to get the temperature increase.
3. Max allowed calculated ambient temperature is: Max
Tref of DC/DC regulator – temperature increase.
B. 3.19 W × 12.2 °C/W = 38.9 °C
C. 115 °C - 38.9 °C = max ambient temperature is 76.1 °C
The real temperature will be dependent on several factors,
like PCB size and type, direction of airflow, air turbulence
etc. It is recommended to verify the temperature by testing.
A. (( ) - 1) × 50 W = 3.19 W
1
0.94
E.g 5 V output at 1 m/s, full load, 12 V in:
Thermal resistance vs. airspeed measured at the regulator.
      



<NT>
<«$8>
7JO7PVU
7JO7PVU
7JO7PVU
The PMB 8000 series regulator can accept up to 5 mF of
capacitive load on the output at full load. This gives <500
µF/A of IO. When using that large capacitance it is important
to consider the selection of output capacitors; the resulting
behavior is a combination of the amount of capacitance and
ESR.
A combination of low ESR and output capacitance
exceeding 5 mF for PMB 8518 can cause the regulator into
over current protection mode (hick-up) due to high start up
current. The output filter must therefore be designed without
exceeding the above stated capacitance levels if the ESR is
lower then 30-40 m.
Parallel Operation
The PMB 8000 Series DC/DC regulators can be connected
in parallel with a common input. Paralleling is accomplished
by connecting the output voltage pins directly and using
a load sharing device on the input. Layout considerations
should be made to avoid load imbalance. For more details
on paralleling, please consult your local applications sup-
port.
(max 115 °C)
31 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
The PMB 8000 series DC/DC regulators are intended for
manual or wave soldering. The plastic body of the pin
connectors resists soldering heat for limited time up to
260°C. When hand soldering, care should be taken to avoid
direct contact between the hot soldering iron tip and the
pins for more than a few seconds in order to avoid melting
of the plastic.
Delivery Package Information
The PMB 8000 series regulators are delivered in antistatic
trays with Jedec standard outer dimensions. Tray capacity
25 pcs. Each box contains 4 full trays and one empty that
functions as a lid.
Compatibility with RoHS requirements
The products are compatible with the relevant clauses
and requirements of the RoHS directive 2002/95/EC and
have a maximum concentration value of 0.1% by weight
in homogeneous materials for lead, mercury, hexavalent
chromium, PBB and PBDE and of 0.01% by weight in
homogeneous materials for cadmium.
Exemptions in the RoHS directive utilized in Ericsson Power
Modules products include:
• Lead in high melting temperature type solder (used toLead in high melting temperature type solder (used to
solder the die in semiconductor packages)
• Lead in glass of electronics components and in electronicLead in glass of electronics components and in electronic
ceramic parts (e.g. fill material in chip resistors)
• Lead as an alloying element in copper alloy containingLead as an alloying element in copper alloy containing
up to 4% lead by weight (used in connection pins made of
Brass)
Reliability
The Mean Time Between Failure (MTBF) of the PMB 8000
series DC/DC regulator family is calculated to be greater
than 5 million hours at full output power and a reference
temperature of +40 °C using TelCordia SR 332.
Soldering Information
32 EN/LZT 146 065 R2A © Ericsson Power Modules, April 2007
PMB 8518T P Datasheet
Sales Offices and Contact Information
Company Headquarters
Ericsson Power Modules AB
LM Ericssons väg 30
SE-126 25 Stockholm
Sweden
Phone: +46-8-568-69620
Fax: +46-8-568-69599
China
Ericsson Simtek Electronics Co.
33 Fuhua Road
Jiading District
Shanghai 201 818
China
Phone: +86-21-5990-3258
Fax: +86-21-5990-0188
North and South America
Ericsson Inc. Power Modules
6300 Legacy Dr.
Plano, TX 75024
USA
Phone: +1-972-583-5254
+1-972-583-6910
Fax: +1-972-583-7839
Hong Kong (Asia Pacific)
Ericsson Ltd.
12/F. Devon House
979 King’s Road
Quarry Bay
Hong Kong
Phone: +852-2590-2453
Fax: +852-2590-7152
Italy, Spain (Mediterranean)
Ericsson Power Modules AB
Via Cadorna 71
20090 Vimodrone (MI)
Italy
Phone: +39-02-265-946-07
Fax: +39-02-265-946-69
All other countries
Contact Company Headquarters
or visit our website:
www.ericsson.com/powermodules
Information given in this data sheet is believed to be accurate and reliable.
No responsibility is assumed for the consequences of its use nor for any infringement
of patents or other rights of third parties which may result from its use.
No license is granted by implication or otherwise under any patent or patent rights of
Ericsson Power Modules. These products are sold only according to
Ericsson Power Modules’ general conditions of sale, unless otherwise confirmed in
writing. Specifications subject to change without notice.
Germany, Austria
Ericsson Power Modules AB
Mühlhauser Weg 18
85737 Ismaning
Germany
Phone: +49-89-9500-6905
Fax: +49-89-9500-6911
Japan
Ericsson Power Modules AB
Kimura Daini Building, 3 FL.
3-29-7 Minami-Oomachi, Shinagawa-ka
Tokyo 140-0013
Japan
Phone: +81-3-5733-5107
Fax: +81-3-5753-5162