APT40GF120JRD
052-6256 Rev B 7-2002
MIN TYP MAX
4.5 5.5 6.5
2.9 3.4
3.5 4.1
0.5
5.0
±100
Characteristic / Test Conditions
Gate Threshold Voltage (VCE = VGE, IC = 700µA, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, IC = 50A, Tj = 25°C)
Collector-Emitter On Voltage (VGE = 15V, IC = 50A, Tj = 125°C)
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 25°C)
Collector Cut-off Current (VCE = VCES, VGE = 0V, Tj = 125°C)
Gate-Emitter Leakage Current (VGE = ±20V, VCE = 0V)
Symbol
VGE(TH)
VCE(ON)
ICES
IGES
MAXIMUM RATINGS All Ratings: TC = 25°C unless otherwise specified.
STATIC ELECTRICAL CHARACTERISTICS
UNIT
Volts
mA
nA
Symbol
VCES
VCGR
VGE
IC1
IC2
ICM
ILM
PD
TJ,TSTG
TL
Parameter
Collector-Emitter Voltage
Collector-Gate Voltage (RGE = 20K)
Gate-Emitter Voltage
Continuous Collector Current @ TC = 25°C
Continuous Collector Current @ TC = 60°C
Pulsed Collector Current 1 @ TC = 25°C
RBSOA Clamped Inductive Load Current @ Rg = 11 TC = 90°C
Total Power Dissipation
Operating and Storage Junction Temperature Range
Max. Lead Temp. for Soldering: 0.063" from Case for 10 Sec.
APT40GF120JRD
1200
1200
±20
60
40
150
100
390
-55 to 150
300
UNIT
Volts
Amps
Watts
°C
CAUTION: These Devices are Sensitive to Electrostatic Discharge. Proper Handling Procedures Should Be Followed.
APT Website - http://www.advancedpower.com
Fast IGBT
The Fast IGBT is a new generation of high voltage power IGBTs. Using
Non-Punch Through Technology the Fast IGBT offers superior ruggedness,
fast switching speed and low Collector-Emitter On voltage.
Low Tail Current Ultra Low Leakage Current
Low Forward Voltage Drop RBSOA and SCSOA Rated
High Freq. Switching to 20KHz
APT40GF120JRD
1200V 60A
SOT-227
GE
E
C
ISOTOP
®"UL Recognized"
G
C
E
APT40GF120JRD
052-6256 Rev B 7-2002
1Repetitive Rating: Pulse width limited by maximum junction temperature.
2IC = IC2, RGE = 25, L = 68µH, Tj = 25°C
3See MIL-STD-750 Method 3471
APT Reserves the right to change, without notice, the specifications and information contained herein.
DYNAMIC CHARACTERISTICS
Characteristic
Input Capacitance
Output Capacitance
Reverse Transfer Capacitance
Total Gate Charge 3
Gate-Emitter Charge
Gate-Collector (" Miller") Charge
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Fall Time
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Fall Time
Turn-on Switching Energy
Turn-off Switching Energy
Total Switching Losses
Turn-on Delay Time
Rise Time
Turn-off Delay Time
Fall Time
Total Switching Losses
Forward Transconductance
Test Conditions
Capacitance
VGE = 0V
VCE = 25V
f = 1 MHz
Gate Charge
VGE = 15V
VCC = 0.5VCES
IC = IC2
Resistive Switching (25°C)
VGE = 15V
VCC = 0.5VCES
IC = IC2
RG = 10
Inductive Switching (150°C)
VCLAMP(Peak) = 0.66VCES
VGE = 15V
IC = IC2
RG = 10
TJ = +150°C
Inductive Switching (25°C)
VCLAMP(Peak) = 0.66VCES
VGE = 15V
IC = IC2
RG = 10
TJ = +25°C
VCE = 20V, IC = IC2
MIN TYP MAX
3450 4200
330 470
230 350
325 490
35 40
195 300
47 94
178 360
320 480
190 380
45 90
102 210
440 880
102 210
6.4 13
5.6 12
12.0 25
46 100
115 230
390 790
100 210
10.8 22
8
UNIT
pF
nC
ns
ns
mJ
ns
mJ
S
THERMAL AND MECHANICAL CHARACTERISTICS
Symbol
Cies
Coes
Cres
Qg
Qge
Qgc
td(on)
tr
td(off)
tf
td(on)
tr
td(off)
tf
Eon
Eoff
Ets
td(on)
tr
td(off)
tf
Ets
gfe
UNIT
°C/W
oz
gm
lb•in
N•m
MIN TYP MAX
0.32
0.66
40
1.03
29.2
10
1.1
Characteristic
Junction to Case (IGBT)
Junction to Case (FRED)
Junction to Ambient
Package Weight
Mounting Torque (Mounting = 8-32 or 4mm Machine and Terminals = 4mm Machine)
Symbol
RΘJC
RΘJA
WT
Torque
APT40GF120JRD
052-6256 Rev B 7-2002
C, CAPACITANCE (pF) IC, COLLECTOR CURRENT (AMPERES) IC, COLLECTOR CURRENT (AMPERES)
VGE, GATE-TO-EMITTER VOLTAGE (VOLTS) IC, COLLECTOR CURRENT (AMPERES) IC, COLLECTOR CURRENT (AMPERES)
TC =+25°C
TJ =+150°C
SINGLE PULSE
IC = IC2
TJ = +25°C
f = 1MHz
9V
10V
8V
Cies
Cres
11V
7V
11V
10V
8V
Note:
Duty Factor D = t1/t2
Peak TJ = PDM x ZθJC + TC
t1
t2
PDM
0.05
D=0.5
0.2
0.01
SINGLE PULSE
Coes
VGE=17, 15 & 13V
ZθJC, THERMAL IMPEDANCE (°C/W)
VGE=17, 15 & 13V
TC=-55°C
TC=+150°C
0.1
OPERATION
LIMITED
BY
VCE (SAT)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 1, Typical Output Characteristics (TJ = 25°C) Figure 2, Typical Output Characteristics (TJ = 150°C)
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS)
Figure 3, Typical Output Characteristics @ VGE = 15V Figure 4, Maximum Forward Safe Operating Area
VCE, COLLECTOR-TO-EMITTER VOLTAGE (VOLTS) Qg, TOTAL GATE CHARGE (nC)
Figure 5, Typical Capacitance vs Collector-To-Emitter Voltage Figure 6, Gate Charges vs Gate-To-Emitter Voltage
RECTANGULAR PULSE DURATION (SECONDS)
Figure 7, Maximum Effective Transient Thermal Impedance, Junction-To-Case vs Pulse Duration
VCE=240V
VCE=600V
0 4 8 12 16 20 0 4 8 12 16 20
02468 1 10 100 1200
.01 0.1 1.0 10 50 0 100 200 300 400 500
10-5 10-4 10-3 10-2 10-1 1.0 10
80
60
40
20
0
120
10
1
20
16
12
8
4
0
100µs
1ms
10ms
80
60
40
20
0
80
60
40
20
0
10,000
5,000
1,000
500
100
9V
TC=+25°C
250µsec. Pulse Test
VGE = 15V
.32
0.1
0.05
0.01
0.005
0.001
0.02
APT40GF120JRD
052-6256 Rev B 7-2002
VCC = 0.66 VCES
VGE = +15V
TJ = +25°C
IC = IC2
VCC = 0.66 VCES
VGE = +15V
TJ = +125°C
RG = 10
VCC = 0.66 VCES
VGE = +15V
RG = 10
IC1
0.5 IC2
IC2
IC1
Eon
Eoff
Eon
Eoff
0.5 IC2
IC2
-50 -25 0 25 50 75 100 125 150 25 50 75 100 125 150
-50 -25 0 25 50 75 100 125 150 0 20 40 60 80 100
-50 -25 0 25 50 75 100 125 150 0 10 20 30 40 50
0.1 1.0 10 100 1000
80
60
40
20
0
40
30
20
10
0
8
6
4
2
0
For Both:
Duty Cycle = 50%
TJ = +125°C
Tsink = +90°C
Gate drive as specified
Power dissapation = 110W
ILOAD = IRMS of fundamental
5.0
4.0
2.0
1.5
1.0
1.2
1.1
1
0.9
0.8
0.7
50
1
0.1
50
10
1
.1
IC, COLLECTOR CURRENT (AMPERES) TOTAL SWITCHING ENERGY LOSSES (mJ) BVCES, COLLECTOR-TO-EMITTER BREAKDOWN VCE(SAT), COLLECTOR-TO-EMITTER
VOLTAGE (NORMALIZED) SATURATION VOLTAGE (VOLTS)
SWITCHING ENERGY LOSSES (mJ) SWITCHING ENERGY LOSSES (mJ) IC, COLLECTOR CURRENT (AMPERES)
TJ, JUNCTION TEMPERATURE (°C) TC, CASE TEMPERATURE (°C)
Figure 8, Typical VCE(SAT) Voltage vs Junction Temperature Figure 9, Maximum Collector Current vs Case Temperature
TJ, JUNCTION TEMPERATURE (°C) RG, GATE RESISTANCE (OHMS)
Figure 10, Breakdown Voltage vs Junction Temperature Figure 11, Typical Switching Energy Losses vs Gate Resistance
TJ, JUNCTION TEMPERATURE (°C) IC, COLLECTOR CURRENT (AMPERES)
Figure 12, Typical Switching Energy Losses vs. Junction Temperature Figure 13, Typical Switching Energy Losses vs Collector Current
F, FREQUENCY (kHz)
Figure 14,Typical Load Current vs Frequency
APT40GF120JRD
052-6256 Rev B 7-2002
*DRIVER SAME TYPE AS D.U.T.
V
CC
= 0.66 V
CES
E
ts
= E
on
+ E
off
V
CE
(on)
t
d
(off)
t
d
(on) t
f
t
r
1
Figure 15, Switching Loss Test Circuit and Waveforms
Figure 16, Resistive Switching Time Test Circuit and Waveforms
2
V
CC
R
G
R
L
=
.5 VCES
I
C2
10%
90%
V
GE
(on)V
CE
(off)
V
GE
(off)
2
1
From
Gate Drive
Circuitry
D.U.T.
B
I
C
I
C
90%
10%
90%
10%
10%
90%
E
off
t
f
t
d
(off)
t
d
(on)
t
r
E
on
I
C
V
CLAMP
100uH
V
CHARGE
A
A
B
D.U.T.
DRIVER*
V
C
A
R
G
V
C
V
C
D.U.T.
V
CE
(SAT)
t=2us
Symbol
VF
Characteristic / Test Conditions
IF = 60A
Maximum Forward Voltage IF = 120A
IF = 60A, TJ = 150°C
UNIT
Volts
MIN TYP MAX
2.5
2.7
2.0
MAXIMUM RATINGS (FRED) All Ratings: TC = 25°C unless otherwise specified.
Symbol
IFAV
IFRMS
IFSM
UNIT
Amps
Characteristic
Maximum Average Forward Current (TC = 100°C, Duty Cycle = 0.5)
RMS Forward Current
Non-Repetive Forward Surge Current (TJ = 45°C, 8.3 ms)
STATIC ELECTRICAL CHARACTERISTICS (FRED)
60
115
540
APT40GF120JRD
APT40GF120JRD
052-6256 Rev B 7-2002
PEARSON 411
CURRENT
TRANSFORMER
0.5 IRRM
di
F
/dt Adjust
D.U.T.
+15v
-15v
0v
Vr
4
3
1
2
5
5
0.75 IRRM
trr/Qrr
Waveform
Zero
6
1
2
3
4
6
di
F
/dt - Current Slew Rate, Rate of Forward
Current Change Through Zero Crossing.
I
F
- Forward Conduction Current
I
RRM
- Peak Reverse Recovery Current.
trr - Reverse Recovery Time Measured from Point of I
F
Qrr - Area Under the Curve Defined by I
RRM
and trr.
diM/dt - Maximum Rate of Current Change During the Trailing Portion of trr.
Current Falling Through Zero to a Tangent Line
{
diM/dt
}
Extrapolated Through Zero Defined by 0.75 and 0.50 I
RRM
.
6
Figure 17, Diode Reverse Recovery Test Circuit and Waveforms
Figure 18, Diode Reverse Recovery Waveform and Definitions
Qrr = 1/2
(
trr . I
RRM
)
30µH
MIN TYP MAX
70 85
70
130
170
170
18 30
29 40
630
1820
12
12
900
600
UNIT
ns
Amps
nC
Volts
A/µs
Characteristic
Reverse Recovery Time, IF = 1.0A, diF/dt = -15A/µs, VR = 30V, TJ = 25°C
Reverse Recovery Time TJ = 25°C
IF = 60A, diF/dt = -480A/µs, VR = 650V TJ = 100°C
Forward Recovery Time TJ = 25°C
IF = 60A, diF/dt = 480A/µs, VR = 650V TJ = 100°C
Reverse Recovery Current TJ = 25°C
IF = 60A, diF/dt = -480A/µs, VR = 650V TJ = 100°C
Recovery Charge TJ = 25°C
IF = 60A, diF/dt = -480A/µs, VR = 650V TJ = 100°C
Forward Recovery Voltage TJ = 25°C
IF = 60A, diF/dt = 480A/µs, VR = 650V TJ = 100°C
Rate of Fall of Recovery Current TJ = 25°C
IF = 60A, diF/dt = -480A/µs, VR =650V TJ = 100°C
DYNAMIC CHARACTERISTICS (FRED)
Symbol
trr1
trr2
trr3
tfr1
tfr2
IRRM1
IRRM2
Qrr1
Qrr2
Vfr1
Vfr2
dIM/dt
APT40GF120JRD
052-6256 Rev B 7-2002
VF, ANODE-TO-CATHODE VOLTAGE (VOLTS) diF/dt, CURRENT SLEW RATE (AMPERES/µSEC)
Figure 2, Forward Voltage Drop vs Forward Current Figure 3, Reverse Recovery Charge vs Current Slew Rate
diF/dt, CURRENT SLEW RATE (AMPERES/µSEC) TJ, JUNCTION TEMPERATURE (°C)
Figure 4, Reverse Recovery Current vs Current Slew Rate Figure 5, Dynamic Parameters vs Junction Temperature
diF/dt, CURRENT SLEW RATE (AMPERES/µSEC) diF/dt, CURRENT SLEW RATE (AMPERES/µSEC)
Figure 6, Reverse Recovery Time vs Current Slew Rate Figure 7, Forward Recovery Voltage/Time vs Current Slew Rate
VR, REVERSE VOLTAGE (VOLTS)
Figure 8, Junction Capacitance vs Reverse Voltage
CJ, JUNCTION CAPACITANCE trr, REVERSE RECOVERY TIME IRRM, REVERSE RECOVERY CURRENT IF, FORWARD CURRENT
(pico-FARADS) (nano-SECONDS) (AMPERES) (AMPERES)
tfr, FORWARD RECOVERY TIME Kf, DYNAMIC PARAMETERS Qrr, REVERSE RECOVERY CHARGE
(nano-SECONDS) (NORMALIZED) (nano-COULOMBS)
Vfr, FORWARD RECOVERY VOLTAGE
(VOLTS)
200
160
120
80
40
0
60
45
30
15
0
300
240
180
120
60
0
2000
1000
500
100
50
TJ= 100°C
VR=650V
TJ = 100°C
TJ = 150°C
TJ = 25°C
TJ = -55°C
trr IRRM
Qrr
Qrr
trr
120A
60A
30A
120A
60A
30A
120A
30A
60A
tfr
0 1 2 3 4 5 10 50 100 500 1000
0 200 400 600 800 1000 -50 -25 0 25 50 75 100 125 150
0 200 400 600 800 1000 0 200 400 600 800 1000
0.01 0.05 0.1 0.5 1 5 10 50 100 200
5000
4000
3000
2000
1000
0
2.0
1.6
1.2
0.8
0.4
0.0
1500
1250
1000
750
500
250
0
Vfr
30
25
20
15
10
5
0
TJ=100°C
VR=650V
IF=60A
TJ=100°C
VR=650V
TJ= 100°C
VR=650V
APT40GF120JRD
052-6256 Rev B 7-2002
APT's devices are covered by one or more of the following U.S.patents: 4,895,810 5,045,903 5,089,434 5,182,234 5,019,522 5,262,336
5,256,583 4,748,103 5,283,202 5,231,474 5,434,095 5,528,058
SOT-227 (ISOTOP®) Package Outline
31.5 (1.240)
31.7 (1.248)
Dimensions in Millimeters and (Inches)
7.8 (.307)
8.2 (.322)
30.1 (1.185)
30.3 (1.193)
38.0 (1.496)
38.2 (1.504)
14.9 (.587)
15.1 (.594)
11.8 (.463)
12.2 (.480)
8.9 (.350)
9.6 (.378)
Hex Nut M4
(4 places)
0.75 (.030)
0.85 (.033) 12.6 (.496)
12.8 (.504)
25.2 (0.992)
25.4 (1.000)
1.95 (.077)
2.14 (.084)
* Emitter/Anode Collector/Cathode
Gate
*
r = 4.0 (.157)
(2 places) 4.0 (.157)
4.2 (.165)
(2 places)
W=4.1 (.161)
W=4.3 (.169)
H=4.8 (.187)
H=4.9 (.193)
(4 places)
3.3 (.129)
3.6 (.143)
* Emitter/Anode
Emitter/Anode terminals are
shorted internally. Current
handling capability is equal
for either Emitter/Anode terminal.