NXP Semiconductors
Data Sheet: Technical Data
Document Number: IMX6SXIEC
Rev. 4, 11/2018
Package Information
Plastic Package
BGA 19 x 19 mm, 0.8 mm pitch
BGA 17 x 17 mm, 0.8 mm pitch
BGA 14 x 14 mm, 0.65 mm pitch
Ordering Information
See Table 1 on page 3
MCIMX6XxCxxxxxB
MCIMX6XxCxxxxxC
NXP Reserves the right to change the production detail specifications as may be
required to permit improvements in the design of its products
1 Introduction
The i.MX 6SoloX processors represent NXP
Semiconductor's latest achievement in integrated
multimedia-focused products offering high-performance
processing with a high degree of functional integration to
meet the demands of high-end, advanced industrial and
medical applications requiring graphically rich and
highly responsive user interfaces.
The i.MX 6SoloX processor features NXP’s advanced
implementation of the single Arm® Cortex®-A9 core,
which operates at speeds of up to 800 MHz, in addition
to the Arm Cortex-M4 core, which operates at speeds of
up to 227 MHz. This type of heterogeneous multicore
architecture provides greater levels of system
integration, smart low-power system awareness, and fast
real-time responsiveness. The i.MX 6SoloX includes a
GPU processor capable of supporting 2D and 3D
operations, a wide range of display and connectivity
options, and integrated power management. Each
processor provides a 32-bit
DDR3/DDR3L/LPDDR2-800 memory interface and a
number of other interfaces for connecting peripherals,
such as WLAN, Bluetooth™, GPS, displays, and camera
sensors.
i.MX 6SoloX Applications
Processors for Industrial
Products
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Ordering Information . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Architectural Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1 Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3 Modules List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.1 Special Signal Considerations. . . . . . . . . . . . . . . . 18
3.2 Recommended Connections for Unused Analog
Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4 Electrical Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 Chip-Level Conditions . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Power Supplies Requirements and Restrictions . . 32
4.3 Integrated LDO Voltage Regulator Parameters . . 33
4.4 PLL Electrical Characteristics . . . . . . . . . . . . . . . . 35
4.5 On-Chip Oscillators . . . . . . . . . . . . . . . . . . . . . . . . 36
4.6 I/O DC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 37
4.7 I/O AC Parameters . . . . . . . . . . . . . . . . . . . . . . . . 42
4.8 Output Buffer Impedance Parameters. . . . . . . . . . 45
4.9 System Modules Timing . . . . . . . . . . . . . . . . . . . . 48
4.10 Multi-mode DDR Controller (MMDC). . . . . . . . . . . 60
4.11 General-Purpose Media Interface (GPMI) Timing. 61
4.12 External Peripheral Interface Parameters . . . . . . . 69
4.13 A/D Converter . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5 Boot Mode Configuration . . . . . . . . . . . . . . . . . . . . . . . 116
5.1 Boot Mode Configuration Pins. . . . . . . . . . . . . . . 116
5.2 Boot Device Interface Allocation . . . . . . . . . . . . . 118
6 Package Information and Contact Assignments . . . . . . 126
6.1 i.MX 6SoloX Signal Availability by Package . . . . 126
6.2 Signals with Different States During Reset and After
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.3 19x19 mm Package Information . . . . . . . . . . . . . 129
6.4 17x17 mm Package Information . . . . . . . . . . . . . 148
6.5 14x14 mm Package Information . . . . . . . . . . . . . 183
7 Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
2NXP Semiconductors
Introduction
The i.MX 6SoloX processors are specifically useful for applications such as:
Entry-level infotainment
Telematics
Portable medical and health care
Smart appliances
Home energy management systems
Industrial control and automation
The features of the i.MX 6SoloX processors include:
Dual-core architecture with one Arm Cortex-A9 processor plus one Arm Cortex-M4 processor—
Dual-core architecture enables the device to run an open operating system like Linux on the
Cortex-A9 core and an RTOS like MQX™ or FreeRTOS™ on the Cortex-M4 core. The Cortex-M4
core is standard on all i.MX 6SoloX processors.
Multilevel memory system—The multilevel memory system of each processor is based on the L1
instruction and data caches, L2 cache, and internal and external memory. The processors support
many types of external memory devices, including DDR3, low voltage DDR3, LPDDR2, NOR
Flash, NAND Flash (MLC and SLC), OneNAND, Quad SPI, and managed NAND, including
eMMC up to rev 4.4/4.41/4.5.
Smart speed technology—Power management implemented throughout the IC that enables
multimedia features and peripherals to consume minimum power in both active and various low
power modes.
Dynamic voltage and frequency scaling—The processors improve the power efficiency of devices
by scaling the voltage and frequency to optimize performance.
Multimedia powerhouse—The multimedia performance of each processor is enhanced by a
multilevel cache system, NEON™ MPE (Media Processor Engine) co-processor, a programmable
smart DMA (SDMA) controller, and an asynchronous sample rate converter.
2x Gigabit Ethernet with AVB—2x 10/100/1000 Mbps Gigabit Ethernet controllers with support
for Audio Video Bridging (AVB) for reliable, high-quality, low-latency multimedia streaming.
Human-machine interface—Each processor provides a single integrated graphics processing unit
that supports an OpenGL ES 2.0 and OpenVG 1.1 3D and 2D graphics accelerator. In addition,
each processor provides up to two separate display interfaces (parallel display and LVDS display)
and a CMOS sensor interface (parallel).
Interface flexibility—Each processor supports connections to a variety of interfaces: High-speed
USB on-the-go with PHY, high-speed USB host with PHY, High-Speed Inter-Chip USB, multiple
expansion card ports (high-speed MMC/SDIO host and other), 2 Gigabit Ethernet controllers with
support for Ethernet AVB, PCIe-II, two 12-bit ADC modules with 4 dedicated single-ended inputs,
two CAN ports, ESAI audio interface, and a variety of other popular interfaces (such as UART, I2C,
and I2S serial audio).
Advanced security—The processors deliver hardware-enabled security features that enable secure
e-commerce, digital rights management (DRM), information encryption, secure boot, and secure
software downloads. The security features are discussed in detail in the i.MX 6SoloX Security
Reference Manual (IMX6XSRM).
Introduction
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 3
Integrated power management—The processors integrate linear regulators and internally generate
voltage levels for different domains. This significantly simplifies system power management
structure.
For a comprehensive list of the i.MX 6SoloX features, see Section 1.2, “Features”.
1.1 Ordering Information
Table 1 provides examples of orderable sample part numbers covered by this data sheet.
Table 1. Ordering Information
Part Number Options Mask
Set
Cortex-
A9
Speed1
Cortex-
M4
Speed
Qualification
Tier
Junction
Temperature
Range
Package
MCIMX6X1CVO08AB Features not
supported:
- 2D&3D GPU
- PCIe
- LVDS
- MLB
2N19K
or
3N19K
800
MHz
227
MHz
Industrial -40 to
+105°C
17x17NP (NP=No PCIe)
Package code “VO”
17mm x 17mm
0.8pitch Map BGA
MCIMX6X1CVO08AC Features not
supported:
- 2D&3D GPU
- PCIe
- LVDS
- MLB
4N19K 800
MHz
227
MHz
Industrial -40 to
+105°C
17x17NP (NP=No PCIe)
Package code “VO”
17mm x 17mm
0.8pitch Map BGA
MCIMX6X3CVO08AB Features not
supported:
- PCIe
- LVDS
- MLB
2N19K
or
3N19K
800
MHz
227
MHz
Industrial -40 to
+105°C
17x17NP (NP=No PCIe)
Package code “VO”
17mm x 17mm
0.8pitch Map BGA
MCIMX6X3CVO08AC Features not
supported:
- PCIe
- LVDS
- MLB
4N19K 800
MHz
227
MHz
Industrial -40 to
+105°C
17x17NP (NP=No PCIe)
Package code “VO”
17mm x 17mm
0.8pitch Map BGA
MCIMX6X1CVK08AB Features not
supported:
- 2D&3D GPU
- PCIe
- LVDS
- MLB
2N19K
or
3N19K
800
MHz
227
MHz
Industrial -40 to
+105°C
14x14NP (NP = No PCIe)
Package code “VK”
14mm x 14mm
0.65pitch Map BGA
MCIMX6X1CVK08AC Features not
supported:
- 2D&3D GPU
- PCIe
- LVDS
- MLB
4N19K 800
MHz
227
MHz
Industrial -40 to
+105°C
14x14NP (NP = No PCIe)
Package code “VK”
14mm x 14mm
0.65pitch Map BGA
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
4NXP Semiconductors
Introduction
Figure 1 describes the part number nomenclature so that the users can identify the characteristics of the
specific part number they have (for example, cores, frequency, temperature grade, fuse options, and silicon
revision). The primary characteristic which describes which data sheet applies to a specific part is the
temperature grade (junction) field.
The i.MX 6SoloX Automotive and Infotainment Applications Processors data sheet
(IMX6SXAEC) covers parts listed with an “A (Automotive temp)”
MCIMX6X3CVK08AB Features not
supported:
- PCIe
- LVDS
- MLB
2N19K
or
3N19K
800
MHz
227
MHz
Industrial -40 to
+105°C
14x14NP (NP = No PCIe)
Package code “VK”
14mm x 14mm
0.65pitch Map BGA
MCIMX6X3CVK08AC Features not
supported:
- PCIe
- LVDS
- MLB
4N19K 800
MHz
227
MHz
Industrial -40 to
+105°C
14x14NP (NP = No PCIe)
Package code “VK”
14mm x 14mm
0.65pitch Map BGA
MCIMX6X2CVN08AB Features not
supported:
- 2D&3D GPU
- LVDS
- MLB
2N19K
or
3N19K
800
MHz
227
MHz
Industrial -40 to
+105°C
17x17WP (WP=With PCIe)
Package code “VN”
17mm x 17mm
0.8pitch Map BGA
MCIMX6X2CVN08AC Features not
supported:
- 2D&3D GPU
- LVDS
- MLB
4N19K 800
MHz
227
MHz
Industrial -40 to
+105°C
17x17WP (WP=With PCIe)
Package code “VN”
17mm x 17mm
0.8pitch Map BGA
MCIMX6X3CVN08AB Features not
supported:
- LVDS
- MLB
2N19K
or
3N19K
800
MHz
227
MHz
Industrial -40 to
+105°C
17x17WP (WP=With PCIe)
Package code “VN”
17mm x 17mm
0.8pitch Map BGA
MCIMX6X3CVN08AC Features not
supported:
- LVDS
- MLB
4N19K 800
MHz
227
MHz
Industrial -40 to
+105°C
17x17WP (WP=With PCIe)
Package code “VN”
17mm x 17mm
0.8pitch Map BGA
MCIMX6X4CVM08AB Features not
supported:
- MLB
2N19K
or
3N19K
800
MHz
227
MHz
Industrial -40 to
+105°C
19x19
Package code “VM”
19mm x 19mm
0.8pitch Map BGA
MCIMX6X4CVM08AC Features not
supported:
- MLB
4N19K 800
MHz
227
MHz
Industrial -40 to
+105°C
19x19
Package code “VM”
19mm x 19mm
0.8pitch Map BGA
1If a 24 MHz input clock is used (required for USB), the maximum Cortex-A9 speed for 1 GHz speed grade is limited to 996 MHz
and the maximum Cortex-A9 speed for 800 MHz speed grade is limited to 792 MHz.
Table 1. Ordering Information (continued)
Part Number Options Mask
Set
Cortex-
A9
Speed1
Cortex-
M4
Speed
Qualification
Tier
Junction
Temperature
Range
Package
Introduction
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 5
The i.MX 6SoloX Applications Processors for Consumer Products data sheet (IMX6SXCEC)
covers parts listed with a “D (Commercial temp)” or “E (Extended Commercial temp)”
The i.MX 6SoloX Applications Processors for Industrial Products data sheet (IMX6SXIEC) covers
parts listed with “C (Industrial temp)”
Ensure to have the proper data sheet for specific part by verifying the temperature grade (junction) field
and matching it to the proper data sheet. If there will be any questions, visit see the web page
nxp.com/imx6series or contact a NXP representative for details.
Figure 1. Part Number Nomenclature—i.MX 6SoloX
1.2 Features
The i.MX 6SoloX processors are based on the Arm Cortex-A9 MPCore™ platform, which has the
following features:
Supports single Arm Cortex-A9 MPCore processor (with TrustZone)
The core configuration is symmetric, where each core includes:
32 KByte L1 Instruction Cache
32 KByte L1 Data Cache
Private Timer and Watchdog
Junction Temperature (Tj) +
Extended Commercial: -20 to + 105C E
Industrial: -40 to +105C C
Auto: -40 to + 125C A
ARM Cortex-A9 Frequency $$
800 MHz 08
1 GHz 10
Package Type ROHS
14x14NP: MAPBGA 14x14 0.65mm
NP = No PCIe VK
17x17NP: MAPBGA 17x17 0.8mm
NP = No PCIe VO
17x17WP: MAPBGA 17x17 0.8mm
W P = W ith PCIe VN
MAPBGA 19x19 0.8mm VM
Qualification Level MC
Prototype Samples PC
Mass Production MC
Special SC
i.MX 6 Family X
i.MX 6SoloX X
Silicon Revision1A
Rev 1.2 Production (Maskset 2N19K)
Rev 1.3 Production (Maskset 3N19K)
B
Rev 1.4 Production (Maskset 4N19K) C
Fusing %
Security Enabled A
MC IMX6 X@+VV $$ %A
1. See the nxp.com\imx6series Web page for latest information on the available silicon revision.
Part Differentiator @
Package GPU PCIe LVDS ADC MLB
Automotive
VM
YY Y 2x 4chY
4
Ext. Commercial/ Industrial YY Y 2x 4ch-
Ext. Commercial/ Industrial VN Y Y - 1x 2ch -
3Ext. Commercial/ Industrial VO Y - - 2x 4ch -
Ext. Commercial/ Industrial VK Y - - 2x 4ch -
Automotive
VN
-Y - 1x 2chY
2
Ext. Commercial/ Industrial -Y - 1x 2ch-
Automotive
VO
-- - 2x 4chY
1
Ext. Commercial/ Industrial -- - 2x 4ch-
Automotive
VK
-- - 2x 4chY
Ext. Commercial/ Industrial -- - 2x 4ch-
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
6NXP Semiconductors
Introduction
Cortex-A9 NEON MPE (Media Processing Engine) coprocessor
The Arm Cortex-A9 MPCore complex includes:
General Interrupt Controller (GIC) with 128 interrupt support
Global Timer
Snoop Control Unit (SCU)
256 KB unified I/D L2 cache:
Two Master AXI bus interfaces output of L2 cache
Frequency of the core (including NEON coprocessor and L1 cache), as per Table 9, “Operating
Ranges,” on page 25.
NEON MPE coprocessor
SIMD Media Processing Architecture
NEON register file with 32x64-bit general-purpose registers
NEON Integer execute pipeline (ALU, Shift, MAC)
NEON dual, single-precision floating point execute pipeline (FADD, FMUL)
NEON load/store and permute pipeline
32 double-precision VFPv3 floating point registers
The Arm Cortex-M4 platform:
Cortex-M4 CPU core
MPU (Memory Protection Unit)
FPU (Floating Point Unit)
16 KByte Instruction Cache
16 KByte Data Cache
64 KByte TCM (Tightly-Coupled Memory)
The SoC-level memory system consists of the following additional components:
Boot ROM, including HAB (96 KB)
Internal multimedia / shared, fast access RAM (OCRAM, 128 KB)
Internal RAM for state retention or general use (OCRAM_S, 16KB)
Secure/non-secure RAM (32 KB)
External memory interfaces: The i.MX 6SoloX processors support latest, high volume, cost
effective handheld DRAM, NOR, and NAND Flash memory standards.
16/32-bit LPDDR2-800, 16/32-bit DDR3-800 and DDR3L-800
16-bit NAND-Flash, including support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size,
BA-NAND, PBA-NAND, LBA-NAND, OneNAND and others. BCH ECC up to 62 bits. 16-bit
boot is supported from OneNAND. 8-bit boot is supported from other NAND types.
16/32-bit NOR Flash. All EIMv2 pins are muxed on other interfaces.
Introduction
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 7
Each i.MX 6SoloX processor enables the following interfaces to external devices (some of them are
muxed and not available simultaneously):
Displays—Total three interfaces available.
Two parallel 24-bit display ports, each up to 1080P at 60 Hz
LVDS serial port—One port up to 85 MP/sec (for example, WXGA at 60 Hz)
Camera sensors:
Two parallel camera ports (up to 24 bit and up to 133 MHz peak)
Expansion cards:
Four MMC/SD/SDIO card ports all supporting:
1-bit or 4-bit transfer mode specifications for SD and SDIO cards up to UHS-I SDR-104
mode (104 MB/s max)
1-bit, 4-bit, or 8-bit transfer mode specifications for MMC cards up to 200 MHz in HS200
mode (200 MB/s max)
•USB:
Two high speed (HS) USB 2.0 OTG (Up to 480 Mbps), with integrated HS USB Phy
One HS-IC USB (High-Speed Inter-Chip USB) host
Expansion PCI Express port (PCIe) v2.0 one lane
PCI Express (Gen 2.0) dual mode complex, supporting Root complex operations and Endpoint
operations. Uses x1 PHY configuration.
Miscellaneous IPs and interfaces:
Three SSIs and two SAIs supporting up to five I2S or AC97 ports
Enhanced Serial Audio Interface (ESAI)
Sony Philips Digital Interconnect Format (SPDIF), Rx and Tx
Audio MUX (AUDMUX)
Medium Quality Sound (MQS) module provides an opportunity for BOM cost reduction if
high-quality sound is not required
Six UARTs, up to 5.0 Mbps each:
Providing RS232 interface
Supporting 9-bit RS485 multidrop mode
One of the six UARTs (UART1) supports 8-wire while others support 4-wire. This is due to
the SoC IOMUX limitation, since all UART IPs are identical.
Five eCSPI (Enhanced CSPI)
Four I2C
Two Gigabit Ethernet Controllers (designed to be compatible with IEEE AVB standards and
IEEE Std 1588®), 10/100/1000 Mbps
Eight Pulse Width Modulators (PWM)
System JTAG Controller (SJC)
GPIO with interrupt capabilities
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
8NXP Semiconductors
Introduction
8x8 Key Pad Port (KPP)
Two Quad SPIs
Two Flexible Controller Area Network (FlexCAN), 1 Mbps each
Three Watchdog timers (WDOG)
Up to two 4-channel, 12-bit Analog to Digital Converters (ADC), VM, VO, VK packages
One 2-channel, 12-bit Analog to Digital Converter (ADC), VN package
The i.MX 6SoloX processors integrate advanced power management unit and controllers:
Provide PMU, including LDO supplies, for on-chip resources
Use Temperature Sensor for monitoring the die temperature
Support DVFS techniques for low power modes
Use software state retention and power gating for Arm Cortex-A9 CPU core, the Arm Cortex-M4
CPU core, and the Arm NEON MPE coprocessor.
Support various levels of system power modes
Use flexible clock gating control scheme
The i.MX 6SoloX processors use dedicated hardware accelerators to meet the targeted multimedia
performance. The use of hardware accelerators is a key factor in obtaining high performance at low power
consumption, while having the CPU core relatively free for performing other tasks.
The i.MX 6SoloX processors incorporate the following hardware accelerators:
GPU—2D (BitBlt) and 3D (OpenGL ES) Graphics Processing Unit
PXP—PiXel Processing Pipeline for imagine resize, rotation, overlay and CSC. Off loading key
pixel processing operations are required to support the LCD display applications.
ASRC—Asynchronous Sample Rate Converter
Security functions are enabled and accelerated by the following hardware:
Arm TrustZone including the TZ architecture (separation of interrupts, memory mapping, etc.)
SJC—System JTAG Controller. Protecting JTAG from debug port attacks by regulating or blocking
the access to the system debug features.
CAAM—Cryptographic Acceleration and Assurance Module, containing cryptographic and hash
engines, 32 KB secure RAM, and True and Pseudo Random Number Generator (NIST certified).
SNVS—Secure Non-Volatile Storage, including Secure Real Time Clock
CSU—Central Security Unit. Enhancement for the IC Identification Module (IIM). Will be
configured during boot and by eFUSEs and will determine the security level operation mode as
well as the TZ policy.
A-HAB—Advanced High Assurance Boot—HABv4 with the new embedded enhancements:
SHA-256, 2048-bit RSA key, version control mechanism, warm boot, CSU, and TZ initialization.
NOTE
The actual feature set depends on the part numbers as described in Table 1.
Functions, such as display and camera interfaces, connectivity interfaces,
video hardware acceleration, and 2D and 3D hardware graphics acceleration
may not be enabled for specific part numbers.
Architectural Overview
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 9
2 Architectural Overview
The following subsections provide an architectural overview of the i.MX 6SoloX processor system.
2.1 Block Diagram
Figure 2 shows the functional modules in the i.MX 6SoloX processor system.
Figure 2. i.MX 6SoloX System Block Diagram
NOTE
The numbers in brackets indicate number of module instances. For example,
PWM (8) indicates eight separate PWM peripherals.
Debug
DAP
TPIU
CTIs
SJC
Shared Peripherals
eCSPI (4)
SPDIF Tx/Rx
3(SSI )
UART
Internal Memory
OCRAM 144KB
ROM 96KB
External Memory
MMDC
EIM
SPBA
Clock & Reset
PLL (7)
CCM
GPC
SRC
XTAL OSC
32K OSC
AXI and AHB Switch Fabric
Timer/Control
WDOG (3)
GPT
EPIT (2)
Temp Monitor
Camera Interface
CSI (2)
Image Processing
Pixel Processing Pipeline
(PXP)
Graphics
3D&2D Graphics
Processing Unit
(GPU)
ARM Cortex A9
MPCore Platform
Cortex-A9 Core
I$ 32KB D$ 32KB
NEON PTM
SCU & Timer
L2 Cache 256KB
Security
CSU
Fuse Box
SNVS
(SRTC)
CAAM
(32KB RAM)
Power Management
LDOs
AP Peripherals
uSDHC (4)
AUDMUX
I2C (4)
PWM (8)
OCOTP
IOMUXC
KPP
GPIO
Ethernet (2)
USB OTG (2)
USB Host (HSIC)
CAN (2)
WLAN Modem IC Digital Audio PCIe Bus
CMOS Sensor
LCD Panel
Temper
Detection
NOR FLASH
(Quad SPI)
NOR FLASH
(Parallel)
USB OTG
(dev/host)
LP-DDR2
/ DDR3
Keypad
10/100/1000M
Ethernet x2
MLB/MOST
Network
JTAG
(IEEE1149.6)
Touch Panel
Control
Sensors
Battery Ctrl
Device
MMC/SD
SDXC
MMC/SD
eMMC
/eSD
Crystal &
Clock Source
GPMI & BCH
QSPI (2)
ARM Cortex M4
Platform
Cortex-M4 Core
I$ 16KB D$ 16KB
MPU FPU
TCM 64KB
NAND FLASH
Display Interface
LCDIF
LVDS (LDB)
Smart DMA
SDMA
Multi-CoreUnit
RDC MU
SEMAPHORE
CAN x2
MLB
PCIe
ESAI
1
() ASRC
UART(5)
eCSPI (1)
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
10 NXP Semiconductors
Modules List
3 Modules List
The i.MX 6SoloX processors contain a variety of digital and analog modules. Table 2 describes these
modules in alphabetical order.
Table 2. i.MX 6SoloX Modules List
Block Mnemonic Block Name Subsystem Brief Description
ADC1
ADC2
Analog to Digital
Converter
The ADC is a 12-bit general purpose analog to digital
converter.
ARM ARM Platform Arm The ARM Core Platform includes 1x Cortex-A9 and 1x
Cortex-M4 cores. It also includes associated sub-blocks,
such as the Level 2 Cache Controller, SCU (Snoop Control
Unit), GIC (General Interrupt Controller), private timers,
watchdog, and CoreSight debug modules.
ASRC Asynchronous Sample
Rate Converter
Multimedia
Peripherals
The Asynchronous Sample Rate Converter (ASRC)
converts the sampling rate of a signal associated to an
input clock into a signal associated to a different output
clock. The ASRC supports concurrent sample rate
conversion of up to 10 channels of about -120dB THD+N.
The sample rate conversion of each channel is associated
to a pair of incoming and outgoing sampling rates. The
ASRC supports up to three sampling rate pairs.
AUDMUX Digital Audio Mux Multimedia
Peripherals
The AUDMUX is a programmable interconnect for voice,
audio, and synchronous data routing between host serial
interfaces (for example, SSI1, SSI2, and SSI3) and
peripheral serial interfaces (audio and voice codecs). The
AUDMUX has seven ports with identical functionality and
programming models. A desired connectivity is achieved
by configuring two or more AUDMUX ports.
BCH Binary-BCH ECC
Processor
System Control
Peripherals
The BCH module provides up to 62-bit ECC for NAND
Flash controller (GPMI).
CAAM Cryptographic
accelerator and
assurance module
Security CAAM is a cryptographic accelerator and assurance
module. CAAM implements several encryption and
hashing functions, a run-time integrity checker, and a
Pseudo Random Number Generator (PRNG). The pseudo
random number generator is certified by Cryptographic
Algorithm Validation Program (CAVP) of National Institute
of Standards and Technology (NIST). Its DRBG validation
number is 94 and its SHS validation number is 1455.
CAAM also implements a Secure Memory mechanism. In
i.MX 6SoloX processors, the security memory provided is
32 KB.
CCM
GPC
SRC
Clock Control Module,
General Power Controller,
System Reset Controller
Clocks, Resets,
and Power Control
These modules are responsible for clock and reset
distribution in the system, and also for the system power
management.
CSI Parallel CSI Multimedia
Peripherals
The CSI IP provides parallel CSI standard camera
interface port. The CSI parallel data ports are up to 24 bits.
It is designed to support 24-bit RGB888/YUV444,
CCIR656 video interface, 8-bit YCbCr, YUV or RGB, and
8-bit/10-bit/26-bit Bayer data input.
Modules List
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 11
CSU Central Security Unit Security The Central Security Unit (CSU) is responsible for setting
comprehensive security policy within the i.MX 6SoloX
platform.
CTI Cross Trigger Interfaces Debug/Trace Cross Trigger Interfaces allows cross-triggering based on
inputs from masters attached to CTIs. The CTI module is
internal to the Cortex-A9 Core Platform.
DAP Debug Access Port System Control
Peripherals
The DAP provides real-time access for the debugger
without halting the core to:
System memory and peripheral registers
All debug configuration registers
The DAP also provides debugger access to JTAG scan
chains. The DAP module is internal to the Cortex-A9 Core
Platform.
DBGMON Debug Monitor Debug DBGMON is a real-time debug monitor to record last AXI
transaction before system reset.
eCSPI1
eCSPI2
eCSPI3
eCSPI4
eCSPI5
Configurable SPI Connectivity
Peripherals
Full-duplex enhanced Synchronous Serial Interface. It is
configurable to support Master/Slave modes, four chip
selects to support multiple peripherals.
EIM NOR-Flash /PSRAM
interface
Connectivity
Peripherals
The EIM NOR-FLASH / PSRAM provides:
Support 16-bit (in muxed IO mode only) PSRAM memories
(sync and async operating modes), at slow frequency
Support 16-bit (in muxed IO mode only) NOR-Flash
memories, at slow frequency
Multiple chip selects
ENET1
ENET2
Ethernet Controller Connectivity
Peripherals
The Ethernet Media Access Controller (MAC) is designed
to support 10/100/1000 Mbps Ethernet/IEEE 802.3
networks. An external transceiver interface and transceiver
function are required to complete the interface to the
media. The module has dedicated hardware to support the
IEEE 1588 standard. See the ENET chapter of the i.MX
6SoloX Applications Processor Reference Manual
(IMX6SXRM) for details.
EPIT1
EPIT2
Enhanced Periodic
Interrupt Timer
Timer Peripherals Each EPIT is a 32-bit “set and forget” timer that starts
counting after the EPIT is enabled by software. It is capable
of providing precise interrupts at regular intervals with
minimal processor intervention. It has a 12-bit prescaler for
division of input clock frequency to get the required time
setting for the interrupts to occur, and counter value can be
programmed on the fly.
Table 2. i.MX 6SoloX Modules List (continued)
Block Mnemonic Block Name Subsystem Brief Description
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
12 NXP Semiconductors
Modules List
ESAI Enhanced Serial Audio
Interface
Connectivity
Peripherals
The Enhanced Serial Audio Interface (ESAI) provides a
full-duplex serial port for serial communication with a
variety of serial devices, including industry-standard
codecs, SPDIF transceivers, and other processors.
The ESAI consists of independent transmitter and receiver
sections, each section with its own clock generator. All
serial transfers are synchronized to a clock. Additional
synchronization signals are used to delineate the word
frames. The normal mode of operation is used to transfer
data at a periodic rate, one word per period. The network
mode is also intended for periodic transfers; however, it
supports up to 32 words (time slots) per period. This mode
can be used to build time division multiplexed (TDM)
networks. In contrast, the on-demand mode is intended for
non-periodic transfers of data and to transfer data serially
at high speed when the data becomes available.
The ESAI has 12 pins for data and clocking connection to
external devices.
FLEXCAN1
FLEXCAN2
Flexible Controller Area
Network
Connectivity
Peripherals
The CAN protocol was primarily, but not only, designed to
be used as a vehicle serial data bus, meeting the specific
requirements of this field: real-time processing, reliable
operation in the Electromagnetic interference (EMI)
environment of a vehicle, cost-effectiveness and required
bandwidth. The FlexCAN module is a full implementation
of the CAN protocol specification, Version 2.0 B, which
supports both standard and extended message frames.
Fuse Box Electrical Fuse Array Security Electrical Fuse Array. Enables setup of boot modes,
security levels, security keys, and many other system
parameters.The fuses are accessible through
OCOTP_CTRL interface.
GC400T Graphics Engine Multimedia
Peripherals
The GC400T is a graphics engine with separate 2D and 3D
pipelines to provide both 2D and 3D acceleration. It
supports DirectFB and GAL APIs. It supports OpenGL
ES1.1/2.0 and OpenVG 1.1 APIs.
GIC Global Interrupt
Controller
Arm/Control The Global Interrupt Controller (GIC) collects interrupt
requests from all i.MX 6SoloX sources and routes them to
the Arm MPCore(s). Each interrupt can be configured as a
normal or a secure interrupt. Software Force Registers and
software Priority Masking are also supported. This IP is
part of the Arm Core complex.
GIS General Interrupt Service
module
Camera, Display,
& Graphics
GIS can be used to automate the flow of data from the
camera to the display.
GPIO1
GPIO2
GPIO3
GPIO4
GPIO5
GPIO6
GPIO7
General Purpose I/O
Modules
System Control
Peripherals
Used for general purpose input/output to external ICs.
Each GPIO module supports 32 bits of I/O.
Table 2. i.MX 6SoloX Modules List (continued)
Block Mnemonic Block Name Subsystem Brief Description
Modules List
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 13
GPMI General Purpose
Memory Interface
Connectivity
Peripherals
The GPMI module supports up to 8x NAND devices and
60-bit ECC encryption/decryption for NAND Flash
Controller (GPMI2). GPMI supports separate DMA
channels for each NAND device.
GPT General Purpose Timer Timer Peripherals Each GPT is a 32-bit “free-running” or “set and forget”
mode timer with programmable prescaler and compare
and capture register. A timer counter value can be
captured using an external event and can be configured to
trigger a capture event on either the leading or trailing
edges of an input pulse. When the timer is configured to
operate in “set and forget” mode, it is capable of providing
precise interrupts at regular intervals with minimal
processor intervention. The counter has output compare
logic to provide the status and interrupt at comparison.
This timer can be configured to run either with an external
clock or an internal clock.
I2C-1
I2C-2
I2C-3
I2C-4
I2C Interface Connectivity
Peripherals
I2C provide serial interface for external devices. Data rates
of up to 400 kbps are supported.
IOMUXC IOMUX Control System Control
Peripherals
This module enables flexible IO multiplexing. Each IO pad
has default and several alternate functions. The alternate
functions are software configurable.
KPP Key Pad Port Connectivity
Peripherals
KPP Supports 8x8 external key pad matrix. KPP features
are:
Open drain design
Glitch suppression circuit design
Multiple keys detection
Standby key press detection
LCDIF LCD Interface Multimedia
Peripherals
The LCDIF provides display data for external LCD panels
from simple text-only displays to WVGA, 16/18/24 bpp
color TFT panels. The LCDIF supports all of these different
interfaces by providing fully programmable functionality
and sharing register space, FIFOs, and ALU resources at
the same time. The LCDIF supports RGB (DOTCLK)
modes as well as system mode including both VSYNC and
WSYNC modes.
LVDS (LDB) LVDS Display Bridge Connectivity
Peripherals
LVDS Display Bridge is used to connect an external LVDS
display interface. LDB supports the following signals:
One clock pair
Four data pairs
MLB MediaLB Connectivity/
Multimedia
Peripherals
The MLB interface module provides a link to a MOST®
data network, using the standardized MediaLB protocol
(MOST25, MOST 50).
MMDC Multi-Mode DDR
Controller
Connectivity
Peripherals
DDR Controller supports 16/32-bit LPDDR2-800,
DDR3-800 and DDR3L-800.
Table 2. i.MX 6SoloX Modules List (continued)
Block Mnemonic Block Name Subsystem Brief Description
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
14 NXP Semiconductors
Modules List
MU Messaging Unit Interprocessor
Communication &
Synchronization
The MU module supports interprocessor communication
between the Cortex-A9 and Cortex-M4 cores.
OCOTP_CTRL OTP Controller Security The On-Chip OTP controller (OCOTP_CTRL) provides an
interface for reading, programming, and/or overriding
identification and control information stored in on-chip fuse
elements. The module supports electrically-programmable
(eFUSE) polyfuses. The OCOTP_CTRL also provides a
set of volatile software-accessible signals that can be used
for software control of hardware elements, not requiring
non-volatility. The OCOTP_CTRL provides the primary
user-visible mechanism for interfacing with on-chip fuse
elements. Among the uses for the fuses are unique chip
identifiers, mask revision numbers, cryptographic keys,
JTAG secure mode, boot characteristics, and various
control signals, requiring permanent non-volatility.
OCRAM On-Chip Memory
Controller
Data Path The On-Chip Memory controller (OCRAM) module is
designed as an interface between system’s AXI bus and
internal (on-chip) SRAM memory module.
OCRAM 128 KB Internal RAM Internal Memory Internal RAM, which is accessed through OCRAM memory
controller.
OCRAM_S 16KB Secure/nonsecure RAM Secured Internal
Memory
Secure/nonsecure internal RAM, interfaced through the
CAAM. OCRAM_S can be used by software for state
retention of the CPU and other hardware blocks.
OSC32KHz OSC32KHz Clocking Generates 32.768 KHz clock from external crystal.
PCIe PCI Express 2.0 Connectivity
Peripherals
The PCIe IP provides PCI Express Gen 2.0 functionality.
PMU Power-Management
functions
Data Path Integrated power management unit. Used to provide power
to various SoC domains.
PWM-1
PWM-2
PWM-3
PWM-4
PWM-5
PWM-6
PWM-7
PWM-8
Pulse Width Modulation Connectivity
Peripherals
The pulse-width modulator (PWM) has a 16-bit counter
and is optimized to generate sound from stored sample
audio images and it can also generate tones. It uses 16-bit
resolution and a 4x16 data FIFO to generate sound.
PXP PiXel Processing Pipeline Display
Peripherals
A high-performance pixel processor capable of 1
pixel/clock performance for combined operations, such as
color-space conversion, alpha blending, gamma-mapping,
and rotation. The PXP is enhanced with features
specifically for gray scale applications.
QSPI Quad Serial Peripheral
Interface
Connectivity
Peripherals
The Quad Serial Peripheral Interface (QuadSPI) block acts
as an interface to one or two external serial flash devices,
each with up to four bidirectional data lines.
ROM 96KB Boot ROM Internal Memory Supports secure and regular boot modes
Table 2. i.MX 6SoloX Modules List (continued)
Block Mnemonic Block Name Subsystem Brief Description
Modules List
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 15
RDC Resource Domain
Controller
Multicore
Isolation/Sharing
RDC module supports domain-based access control to
shared resources.
SEMA4 Semaphore Multicore/Isolation
/Sharing
Supports hardware-enforced semaphores.
SEMA42 Semaphore Multicore/Isolation
/Sharing
SEMA42 is similar to SEMA4 with the following key
differences:
SEMA42 increases the number of access domains from 2
to 15
SEMA42 does not have interrupt to indicate semaphore
release
RDC programming model supports the option to require
hardware semaphore for peripherals shared between
domains. Signaling between the SEMA42 and RDC binds
peripherals to semaphore gates within SEMA42.
SAI1
SAI2
The SAI module provides a synchronous audio interface
(SAI) that supports full duplex serial interfaces with frame
synchronization, such as I2S, AC97, TDM, and codec/DSP
interfaces.
SDMA Smart Direct Memory
Access
System Control
Peripherals
The SDMA is multi-channel flexible DMA engine. It helps in
maximizing system performance by off-loading the various
cores in dynamic data routing. It has the following features:
Powered by a 16-bit Instruction-Set micro-RISC engine
Multi-channel DMA supporting up to 32 time-division
multiplexed DMA channels
48 events with total flexibility to trigger any combination of
channels
Memory accesses including linear, FIFO, and 2D
addressing
Shared peripherals between ARM and SDMA
Very fast Context-Switching with 2-level priority based
preemptive multi-tasking
DMA units with auto-flush and prefetch capability
Flexible address management for DMA transfers
(increment, decrement, and no address changes on
source and destination address)
DMA ports can handle unit-directional and bi-directional
flows (copy mode)
Up to 8-word buffer for configurable burst transfers for
EMIv2.5
Support of byte-swapping and CRC calculations
Library of Scripts and API is available
Table 2. i.MX 6SoloX Modules List (continued)
Block Mnemonic Block Name Subsystem Brief Description
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
16 NXP Semiconductors
Modules List
SJC System JTAG Controller System Control
Peripherals
The SJC provides JTAG interface, which complies with
JTAG TAP standards, to internal logic. The i.MX 6SoloX
processors use JTAG port for production, testing, and
system debugging. In addition, the SJC provides BSR
(Boundary Scan Register) standard support, which
complies with IEEE1149.1 and IEEE1149.6 standards.
The JTAG port must be accessible during platform initial
laboratory bring-up, for manufacturing tests and
troubleshooting, as well as for software debugging by
authorized entities. The i.MX 6SoloX SJC incorporates
three security modes for protecting against unauthorized
accesses. Modes are selected through eFUSE
configuration.
SNVS Secure Non-Volatile
Storage
Security Secure Non-Volatile Storage, including Secure Real Time
Clock, Security State Machine, Master Key Control, and
Violation/Tamper Detection and reporting.
SPDIF Sony Philips Digital
Interconnect Format
Multimedia
Peripherals
A standard audio file transfer format, developed jointly by
the Sony and Phillips corporations. Has Transmitter and
Receiver functionality.
SSI1
SSI2
SSI3
I2S/SSI/AC97 Interface Connectivity
Peripherals
The SSI is a full-duplex synchronous interface, which is
used on the AP to provide connectivity with off-chip audio
peripherals. The SSI supports a wide variety of protocols
(SSI normal, SSI network, I2S, and AC-97), bit depths (up
to 24 bits per word), and clock / frame sync options.
The SSI has two pairs of 8x24 FIFOs and hardware
support for an external DMA controller in order to minimize
its impact on system performance. The second pair of
FIFOs provides hardware interleaving of a second audio
stream that reduces CPU overhead in use cases where
two time slots are being used simultaneously.
TEMPMON Temperature Monitor System Control
Peripherals
The Temperature sensor IP is used for detecting die
temperature. The temperature read out does not reflect
case or ambient temperature. It reflects the temperature in
proximity of the sensor location on the die. Temperature
distribution may not be uniformly distributed, therefore the
read out value may not be the reflection of the temperature
value of the entire die.
TZASC Trust-Zone Address
Space Controller
Security The TZASC (TZC-380 by Arm) provides security address
region control functions required for intended application. It
is used on the path to the DRAM controller.
UART1
UART2
UART3
UART4
UART5
UART6
UART Interface Connectivity
Peripherals
Each of the UARTv2 modules support the following serial
data transmit/receive protocols and configurations:
7- or 8-bit data words, 1 or 2 stop bits, programmable
parity (even, odd or none)
Programmable baud rates up to 5 Mbps.
32-byte FIFO on Tx and 32 half-word FIFO on Rx
supporting auto-baud
Option to operate as 8-pins full UART, DCE, or DTE
UART1/6 support 8-pin, UART2/3/4/5 support 4-pin
Table 2. i.MX 6SoloX Modules List (continued)
Block Mnemonic Block Name Subsystem Brief Description
Modules List
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 17
uSDHC1
uSDHC2
uSDHC3
uSDHC4
SD/MMC and SDXC
Enhanced Multi-Media
Card / Secure Digital Host
Controller
Connectivity
Peripherals
i.MX 6SoloX specific SoC characteristics:
All four MMC/SD/SDIO controller IPs are identical and are
based on the uSDHC IP. They are:
Fully compliant with MMC command/response sets and
Physical Layer as defined in the Multimedia Card
System Specification, v4.5/4.2/4.3/4.4/4.41/ including
high-capacity (size > 2 GB) cards HC MMC.
Fully compliant with SD command/response sets and
Physical Layer as defined in the SD Memory Card
Specifications, v3.0 including high-capacity SDHC
cards up to 32 GB.
Fully compliant with SDIO command/response sets and
interrupt/read-wait mode as defined in the SDIO Card
Specification, Part E1, v3.0.
Conforms to the SD Host Controller Standard
Specification version 3.0.
All four ports support:
1-bit or 4-bit transfer mode specifications for SD and
SDIO cards up to UHS-I SDR104 mode (104 MB/s max)
1-bit, 4-bit, or 8-bit transfer mode specifications for MMC
cards up to 52 MHz in both SDR and DDR modes (104
MB/s max)
All ports can work with 1.8 V and 3.3 V cards. Each port
is placed on a separate power domain.
USB Universal Serial Bus 2.0 Connectivity
Peripherals
USBOH3 contains:
Two high-speed OTG 2.0 modules with integrated HS
USB PHYs
One high-speed Host module connected to HSIC USB
port
WDOG1
WDOG3
Watch Dog Timer Peripherals The Watch Dog Timer supports two comparison points
during each counting period. Each of the comparison
points is configurable to evoke an interrupt to the Arm core,
and a second point evokes an external event on the WDOG
line.
WDOG2
(TZ)
Watch Dog (TrustZone) Timer Peripherals The TrustZone Watchdog (TZ WDOG) timer module
protects against TrustZone starvation by providing a
method of escaping normal mode and forcing a switch to
the TZ mode. TZ starvation is a situation where the normal
OS prevents switching to the TZ mode. Such situation is
undesirable as it can compromise the system’s security.
Once the TZ WDOG module is activated, it must be
serviced by TZ software on a periodic basis. If servicing
does not take place, the timer times out. Upon a time-out,
the TZ WDOG asserts a TZ mapped interrupt that forces
switching to the TZ mode. If it is still not served, the TZ
WDOG asserts a security violation signal to the CSU. The
TZ WDOG module cannot be programmed or deactivated
by a normal mode software.
XTALOSC Crystal Oscillator
Interface
Clocks, Resets,
and Power Control
The XTALOSC module connects to an external crystal to
provide system clocks.
Table 2. i.MX 6SoloX Modules List (continued)
Block Mnemonic Block Name Subsystem Brief Description
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
18 NXP Semiconductors
Modules List
3.1 Special Signal Considerations
Table 3 lists special signal considerations for the i.MX 6SoloX processors. The signal names are listed in
alphabetical order.
The package contact assignments can be found in Section 6, “Package Information and Contact
Assignments.” Signal descriptions are provided in the i.MX 6SoloX Applications Processor Reference
Manual (IMX6SXRM).
Table 3. Special Signal Considerations
Signal Name Remarks
CCM_CLK1_P/
CCM_CLK1_N
CCM_CLK2
Two general purpose differential high speed clock Input/outputs are provided.
Any or both of them could be used:
To feed external reference clock to the PLLs and further to the modules inside SoC, for example
as alternate reference clock for PCIe, Video/Audio interfaces, etc.
To output internal SoC clock to be used outside the SoC as either reference clock or as a
functional clock for peripherals
See the i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM) for details on the
respective clock trees.
The clock inputs/outputs are LVDS differential pairs compatible with TIA/EIA-644 standard, the
frequency range supported is 0...600 MHz.
Alternatively one may use single ended signal to drive CLKx_P input. In this case corresponding
CLKx_N input should be tied to the constant voltage level equal 1/2 of the input signal swing.
Termination should be provided in case of high frequency signals.
See LVDS pad electrical specification for further details.
After initialization, the CLKx inputs/outputs could be disabled (if not used). If unused any or both of
the CLKx_N/P pairs may be left unconnected.
RTC_XTALI/RTC_XTALO If the user needs to configure RTC_XTALI and RTC_XTALO as an RTC oscillator, a 32.768 kHz
crystal (100 kΩ ESR, 10 pF load), should be connected between RTC_XTALI and RTC_XTALO.
Keep in mind the capacitors implemented on either side of the crystal are about twice the crystal
load capacitor. To hit the exact oscillation frequency, the board capacitors need to be reduced to
account for board and chip parasitics. The integrated oscillation amplifier is self biasing, but
relatively weak. Care must be taken to limit parasitic leakage from RTC_XTALI and RTC_XTALO
to either power or ground (>100 MΩ). This will debias the amplifier and cause a reduction of startup
margin. Typically RTC_XTALI and RTC_XTALO should bias to approximately 0.5 V.
If it is desired to feed an external low frequency clock into RTC_XTALI the RTC_XTALO pin should
be left unconnected or driven with a complimentary signal. The logic level of this forcing clock
should not exceed VDD_SNVS_CAP level and the frequency should be <100 kHz under typical
conditions.
When a high accuracy real time clock is not required, the system can use an internal low frequency
ring oscillator. It is recommended to connect RTC_XTALI to GND and leave RTC_XTALO
unconnected.
XTALI/XTALO A 24.0 MHz crystal should be connected between XTALI and XTALO. NXP BSP (board support
package) software requires 24 MHz on XTALI/XTALO. For details on crystal selection, see the
“i.MX 6SoloX Design Checklist” chapter of the Hardware Development Guide for i.MX 6SoloX
Applications Processors (IMX6SXHDG), as well as the engineering bulletin i.MX 6 Series Crystal
Drive (24 MHz) (EB830).
The crystal can be eliminated if an external 24 MHz oscillator is available in the system. In this
case, XTALI must be directly driven by the external oscillator and XTALO is left unconnected.
If this clock is used as a reference for USB and PCIe, then there are strict frequency tolerance and
jitter requirements. See OSC24M chapter and relevant interface specifications chapters for details.
Modules List
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 19
DRAM_VREF When using DDR_VREF with DDR I/O, the nominal reference voltage must be half of the
NVCC_DRAM supply. The user must tie DDR_VREF to a precision external resistor divider. Use a
1kΩ0.5% resistor to GND and a 1 kΩ0.5% resistor to NVCC_DRAM. Shunt the resistor from
DRAM_VREF to ground with a closely mounted 0.1 μF capacitor.
To reduce supply current, a pair of 1.5 kΩ0.1% resistors can be used. Using resistors with
recommended tolerances ensures the ± 2% DDR_VREF tolerance (per the DDR3 specification) is
maintained when four DDR3 ICs plus the i.MX 6SoloX are drawing current on the resistor divider.
ZQPAD DRAM calibration resistor 240 Ω1% used as reference during DRAM output buffer driver
calibration should be connected between this pad and GND.
NVCC_LVDS On the 19 x 19 package, this ball can be shorted to VDD_HIGH_CAP on the circuit board. On the
17 x 17 and 14 x 14 packages, NVCC_LVDS is internally connected to VDD_HIGH_CAP.
GPANAIO Analog output for NXP use only. This output must always be left unconnected.
JTAG_nnnn The JTAG interface is summarized in Table 4. Use of external resistors is unnecessary. However,
if external resistors are used, the user must ensure that the on-chip pull-up/down configuration is
followed. For example, do not use an external pull down on an input that has on-chip pull-up.
JTAG_TDO is configured with a keeper circuit such that the floating condition is eliminated if an
external pull resistor is not present. An external pull resistor on JTAG_TDO is detrimental and
should be avoided.
JTAG_MOD is referenced as SJC_MOD in the i.MX 6SoloX Applications Processor Reference
Manual (IMX6SXRM). Both names refer to the same signal. JTAG_MOD must be externally
connected to GND for normal operation. Termination to GND through an external pull-down resistor
(such as 1 kΩ) is allowed. JTAG_MOD set to high configures the JTAG interface to mode compliant
with IEEE1149.1 standard. JTAG_MOD set to low configures the JTAG interface for common
software debug adding all the system TAPs to the chain.
NC These signals are No Connect (NC) and should be left unconnected by the user.
POR_B This cold reset negative logic input resets all modules and logic in the IC.
ONOFF ONOFF can be configured in debounce, off to on time, and max timeout configurations. The
debounce and off to on time configurations supports 0, 50, 100 and 500 msecs. Debounce is used
to generate the power off interrupt. While in the ON state, if ONOFF button is pressed longer than
the debounce time, the power off interrupt is generated. Off to on time supports the time it takes to
request power on after a configured button press time has been reached. While in the OFF state,
if ONOFF button is pressed longer than the off to on time, the state will transition from OFF to ON.
Max timeout configuration supports 5, 10, 15 secs and disable. Max timeout configuration supports
the time it takes to request power down after ONOFF button has been pressed for the defined time.
TEST_MODE TEST_MODE is for NXP factory use. The user must tie this pin directly to GND.
PCIE_REXT The impedance calibration process requires connection of reference resistor 200 Ω1% precision
resistor on PCIE_REXT pad to ground.
Table 4. JTAG Controller Interface Summary
JTAG I/O Type On-chip Termination
JTAG_TCK Input 47 kΩ pull-up
JTAG_TMS Input 47 kΩ pull-up
JTAG_TDI Input 47 kΩ pull-up
Table 3. Special Signal Considerations (continued)
Signal Name Remarks
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
20 NXP Semiconductors
Electrical Characteristics
3.2 Recommended Connections for Unused Analog Interfaces
The recommended connections for unused analog interfaces can be found in the section, “Unused analog
interfaces,” of the Hardware Development Guide for i.MX 6SoloX Applications Processors
(IMX6SXHDG).
4 Electrical Characteristics
This section provides the device and module-level electrical characteristics for the i.MX 6SoloX
processors.
4.1 Chip-Level Conditions
This section provides the device-level electrical characteristics for the IC. See Table 5 for a quick reference
to the individual tables and sections.
JTAG_TDO 3-state output Keeper
JTAG_TRSTB Input 47 kΩ pull-up
JTAG_MOD Input 100 kΩ pull-up
Table 5. i.MX 6SoloX Chip-Level Conditions
For these characteristics, … Topic appears …
Absolute Maximum Ratings on page 21
Thermal Resistance on page 23
Operating Ranges on page 25
External Clock Sources on page 28
Maximum Supply Currents on page 29
Low Power Mode Supply Currents on page 30
USB PHY Current Consumption on page 31
PCIe 2.0 Power Consumption on page 32
Table 4. JTAG Controller Interface Summary (continued)
JTAG I/O Type On-chip Termination
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 21
4.1.1 Absolute Maximum Ratings
CAUTION
Stresses beyond those listed under Table 6 may cause permanent damage to
the device. These are stress ratings only. Functional operation of the device
at these or any other conditions beyond those indicated under
“recommended operating conditions” is not implied. Exposure to
absolute-maximum-rated conditions for extended periods may affect device
reliability.
Table 6 shows the absolute maximum operating ratings.
Table 6. Absolute Maximum Ratings
Parameter Description Symbol1Min Max Unit
Core Supplies Input Voltage (LDO Enabled) VDDSOC_IN
VDDARM_IN
-0.3 1.6 V
Core Supplies Input Voltage (LDO Bypass) VDDSOC_IN
VDDARM_IN
-0.3 1.4 V
VDD_HIGH_IN Supply voltage (LDO
Enabled)
VDD_HIGH_IN -0.3 3.7 V
VDD_HIGH_IN Supply voltage (LDO
Bypass)
VDD_HIGH_IN -0.3 2.85 V
Core Supplies Output Voltage (LDO
Enabled)
VDD_ARM_CAP
VDD_SOC_CAP
-0.3 1.4 V
VDD_HIGH_CAP LDO Output Supply
voltage
VDD_HIGH_CAP -0.3 2.6 V
Supply Input Voltage to Secure Non-Volatile
Storage and Real Time Clock
VDD_SNVS_IN -0.3 3.6 V
USB VBUS Supply USB_OTG_VBUS 5.6 V
Input voltage on USB signals (non-VBUS) USB_OTG_DP,
USB_OTG_DN,
USB_H1_DP,
USB_H1_DN,
USB_OTG_CHD_B
-0.3 3.63 V
Supply for the USB HSIC interface NVCC_USB_H 2.85 V
IO Supply for DDR Interface NVCC_DRAM -0.4 1.9752V
Supply for DDR pre-drivers NVCC_DRAM_2P5 -0.3 2.85 V
IO Supply for RGMII Interface NVCC_RGMII -0.5 3.7 V
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
22 NXP Semiconductors
Electrical Characteristics
4.1.2 Thermal Resistance
NOTE
Per JEDEC JESD51-2, the intent of thermal resistance measurements is
solely for a thermal performance comparison of one package to another in a
standardized environment. This methodology is not meant to and will not
predict the performance of a package in an application-specific
environment.
IO Supply for GPIO Type Pins NVCC_CSI
NVCC_ENET
NVCC_HIGH
NVCC_KEY
NVCC_GPIO
NVCC_LCD
NVCC_LOW
NVCC_NAND
NVCC_QSPI
NVCC_SD
NVCC_JTAG
-0.5 3.7 V
IO Supply for LVDS NVCC_LVDS -0.3 2.85 V
IO Supply for MLB Supplies denoted as GPIO supplies -0.3 2.9 V
VP Supplies for PCIe PCIE_VP -0.3 1.4 V
VPH Supplies for PCIe PCIE_VPH -0.3 2.85 V
Supply for PCIe PHY PCIE_VPTX -0.3 1.4 V
Supply for ADC 3P3V VDDA_ADC_3P3 3.7 V
3.3V Supply for analog circuitry VDD_AFE_3P3 3.7 V
Input/Output Voltage Range (non-DDR
pins)
Vin/Vout -0.5 OVDD+0.33V
Input/Output Voltage Range (DDR pins) Vin/Vout -0.5 OVDD3+0.42V
ESD damage Immunity: Human Body
Model (HBM)
Vesd_HBM 2000 V
ESD damage Immunity: Charge Device
Model (CDM)
Vesd_CDM 500 V
Storage Temperature Range TSTORAGE -40 150 °C
1Not all of the supplies shown exist on all packages. See the package ball maps for details on which supplies are used on each
package.
2The absolute maximum voltage includes an allowance for 400 mV of overshoot on the IO pins. Per JEDEC standards, the
allowed signal overshoot must be de-rated if NVCC_DRAM exceeds 1.575V.
3OVDD is the I/O supply voltage.
Table 6. Absolute Maximum Ratings (continued)
Parameter Description Symbol1Min Max Unit
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 23
4.1.2.1 19x19 mm (VM) Package Thermal Resistance
Table 7 displays the 19x19 mm (VM) package thermal resistance data.
Table 7. 19x19 mm (VM) Package Thermal Resistance Data
Rating Test Conditions Symbol Value Unit Notes
Junction to Ambient Natural
Convection
Single-layer board (1s) RθJA 40.6 oC/W 1,2
1Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
2Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
Junction to Ambient Natural
Convection
Four-layer board (2s2p) RθJA 28.0 oC/W 1,2,3
3Per JEDEC JESD51-6 with the board horizontal.
Junction to Ambient (@ 200
ft/min)
Single layer board (1s) RθJMA 32.1 oC/W 1,3
Junction to Ambient (@ 200
ft/min)
Four layer board (2s2p) RθJMA 23.0 oC/W 1,3
Junction to Board RθJB 17.9 oC/W 4
4Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on
the top surface of the board near the package.
Junction to Case RθJC 7.8 oC/W 5
5Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method
1012.1).
Junction to Package Top Natural Convection ΨJT 2oC/W 6
6Thermal characterization parameter indicating the temperature difference between package top and the junction temperature
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
Junction to Package Bottom Natural Convection ΨJB 7.5 oC/W 7
7Thermal characterization parameter indicating the temperature difference between package bottom center and the junction
temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JB.
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
24 NXP Semiconductors
Electrical Characteristics
4.1.2.2 17x17 mm NP (VO) and 17x17 mm WP (VN) Package Thermal Resistance
Table 8 displays the 17x17 mm NP (VO) and 17x17 mm WP (VN) package thermal resistance data.
Table 8. 17x17 mm NP (VO) and 17x17 mm WP (VN) Thermal Resistance Data
Rating Test Conditions Symbol Value Unit Notes
Junction to Ambient Natural
Convection
Single-layer board (1s) RθJA 44.4 oC/W 1,2
1Junction temperature is a function of die size, on-chip power dissipation, package thermal resistance, mounting site (board)
temperature, ambient temperature, air flow, power dissipation of other components on the board, and board thermal resistance.
2Per SEMI G38-87 and JEDEC JESD51-2 with the single layer board horizontal.
Junction to Ambient Natural
Convection
Four-layer board (2s2p) RθJA 27.4 oC/W 1,2,3
3Per JEDEC JESD51-6 with the board horizontal.
Junction to Ambient (@ 200
ft/min)
Single layer board (1s) RθJMA 35.2 oC/W 1,3
Junction to Ambient (@ 200
ft/min)
Four layer board (2s2p) RθJMA 22.5 oC/W 1,3
Junction to Board RθJB 13.2 oC/W 4
4Thermal resistance between the die and the printed circuit board per JEDEC JESD51-8. Board temperature is measured on
the top surface of the board near the package.
Junction to Case RθJC 8.4 oC/W 5
5Thermal resistance between the die and the case top surface as measured by the cold plate method (MIL SPEC-883 Method
1012.1).
Junction to Package Top Natural Convection ΨJT 2oC/W 6
6Thermal characterization parameter indicating the temperature difference between package top and the junction temperature
per JEDEC JESD51-2. When Greek letters are not available, the thermal characterization parameter is written as Psi-JT.
Junction to Package Bottom Natural Convection ΨJB 8.6 oC/W 7
7Thermal characterization parameter indicating the temperature difference between package bottom center and the junction
temperature per JEDEC JESD51-12. When Greek letters are not available, the thermal characterization parameter is written
as Psi-JB.
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 25
4.1.3 Operating Ranges
Table 9 provides the operating ranges of the i.MX 6SoloX processors. For details on the chip's power
structure, see the “Power Management Unit (PMU)” chapter of the i.MX 6SoloX Applications Processor
Reference Manual (IMX6SXRM).
NOTE
Applying the maximum power supply voltage results in maximum power
consumption and heat generation. NXP recommends a voltage set point =
(Vmin + the supply tolerance). This results in an optimized power/speed
ratio.
Table 9. Operating Ranges
Parameter
Description Symbol Operating
Conditions Min Typ Max1Unit Notes
Power Supply Operating Ranges
Run Mode:
LDO enabled
VDD_ARM_IN A9 core at
792 MHz
1.275 1.5 V VDDARM_IN must be 125mV higher
than the LDO Output Set Point
(VDD_ARM_CAP) for correct supply
voltage regulation.
A9 core at
396 MHz
1.175 1.5 V
A9 core at
198 MHz
1.075 1.5 V
VDD_ARM_CAP A9 core at
792 MHz
1.15 1.3 V Output voltage must be set to the
following rule:
VDD_ARM_CAP – VDD_SOC_CAP <
+50 mV
A9 core at
396 MHz
1.05 1.3 V
A9 core at
198 MHz
0.95 1.3 V
VDD_SOC_IN 1.275 1.5 V VDDSOC_IN must be 125 mV higher
than the LDO Output Set Point
(VDD_SOC_CAP) for correct supply
voltage regulation.
VDD_SOC_CAP 1.15 1.3 V Output voltage must be set to the
following rule:
VDD_ARM_CAP – VDD_SOC_CAP <
+50 mV
Run Mode:
LDO
bypassed
VDD_ARM_IN A9 core at
792 MHz
1.15 1.3 V
A9 core at
396 MHz
1.05 1.3 V
A9 core at
198 MHz
0.95 1.3 V
VDD_SOC_IN 1.15 1.3 V
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
26 NXP Semiconductors
Electrical Characteristics
Standby/DSM
Mode
VDD_ARM_IN 0.9 1.3 V See Table 13 and Table 14.
VDD_SOC_IN 1.05 1.3 V
VDD_HIGH
internal
regulator
VDD_HIGH_IN 2.8 3.6 V Must match the range of voltages that
the rechargeable backup battery
supports.
Backup
battery supply
range
VDD_SNVS_IN 2.4 3.6 V Could be combined with VDD_HIGH_IN
if the system does not require real time
and other data on off state.
USB supply
voltages
USB_OTG1_VBUS/
USB_OTG2_VBUS
—4.45.5V
DDR I/O
supply
NVCC_DRAM LPDDR2 1.14 1.2 1.3 V
DDR3L 1.283 1.35 1.45 V
DDR3 1.425 1.5 1.575 V
HSIC I/O
supply
NVCC_USB_H 1.2 V
operation
1.15 1.2 1.3 V IOMUXC_SW_PAD_CTL_PAD_USB_H
_DATA[DDR_SEL] = ‘10’
IOMUXC_SW_PAD_CTL_PAD_USB_H
_STROBE[DDR_SEL] = ‘10’
NVCC_USB_H should be grounded
through a 10k resistor if the HSIC pins
are not used.
1.5 V
operation
1.425 1.5 1.575 V IOMUXC_SW_PAD_CTL_PAD_USB_H
_DATA[DDR_SEL] = ‘11’
IOMUXC_SW_PAD_CTL_PAD_USB_H
_STROBE[DDR_SEL] = ‘11’
NVCC_USB_H should be grounded
through a 10k resistor if the HSIC pins
are not used.
1.8 V
operation
1.62 1.8 1.98 V
2.5 V
operation
2.25 2.5 2.75 V
RGMII I/O
supply
NVCC_RGMII1
NVCC_RGMII2
1.5 V mode 1.43 1.5 1.58 V
1.8 V mode 1.7 1.8 1.9 V
2.5 V mode 2.25 2.5 2.625 V
3.3 V mode 3.0 3.15/3.3 3.6 V
Table 9. Operating Ranges (continued)
Parameter
Description Symbol Operating
Conditions Min Typ Max1Unit Notes
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 27
Table 10 shows on-chip LDO regulators that can supply on-chip loads.
GPIO
supplies
NVCC_CSI
NVCC_ENET
NVCC_GPIO
NVCC_HIGH
NVCC_KEY
NVCC_LCD1
NVCC_LOW
NVCC_NAND
NVCC_QSPI
NVCC_SD1
NVCC_SD2
NVCC_SD4
NVCC_JTAG
1.65 1.8
2.8
3.15
3.6 V All digital I/O supplies (NVCC_xxxx)
must be powered (unless otherwise
specified in this data sheet) under
normal conditions whether the
associated I/O pins are in use or not and
the associated IO pins need to have a
pull-up or pull-down resistor applied to
limit any floating gate current.
NVCC_LVDS
NVCC_DRAM_2P5
2.25 2.5 2.75 V
PCIe supplies PCIE_VP 1.023 1.1 1.21 V
PCIE_VPH 2.325 2.5 2.75 V
PCIE_VPTX 1.023 1.1 1.21 V
A/D converter
supply
VDDA_ADC_3P3 3 3.15 3.6 V VDDA_ADC_3P3 must be powered even
if the ADC is not used. VDDA_ADC_3P3
should not be powered when the other
SoC supplies (except VDD_SNVS_IN)
are off.
Temperature Operating Ranges
Junction
temperature
TJIndustrial –40 105 °C See the application note, i.MX 6SoloX
Product Lifetime Usage Estimates
(AN5062) for information on product
lifetime (power-on years) for this
processor.
1Applying the maximum voltage results in maximum power consumption and heat generation. NXP recommends a voltage set
point = (Vmin + the supply tolerance). This results in an optimized power/speed ratio.
Table 10. On-Chip LDOs1 and their On-Chip Loads
1On-chip LDOs are designed to supply i.MX6 loads and must not be used to supply external loads.
Voltage Source Load Comment
VDD_HIGH_CAP NVCC_LVDS Board-level connection to VDD_HIGH_CAP
NVCC_DRAM_2P5
PCIE_VPH
Table 9. Operating Ranges (continued)
Parameter
Description Symbol Operating
Conditions Min Typ Max1Unit Notes
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
28 NXP Semiconductors
Electrical Characteristics
4.1.4 External Clock Sources
Each i.MX 6SoloX processor has two external input system clocks: a low frequency (RTC_XTALI) and a
high frequency (XTALI).
The RTC_XTALI is used for low-frequency functions. It supplies the clock for wake-up circuit,
power-down real time clock operation, and slow system and watch-dog counters. The clock input can be
connected to either external oscillator or a crystal using an internal oscillator amplifier. Additionally, there
is an internal ring oscillator, which can be used instead of the RTC_XTALI if accuracy is not important.
The system clock input XTALI is used to generate the main system clock. It supplies the PLLs and other
peripherals. The system clock input can be connected to either external oscillator or a crystal using an
internal oscillator amplifier.
CAUTION
The internal RTC oscillator does not provide an accurate frequency and is
affected by process, voltage, and temperature variations. NXP strongly
recommends using an external crystal as the RTC_XTALI reference. If the
internal oscillator is used, careful consideration must be given to the timing
implications on all of the SoC modules dependent on this clock.
Table 11 shows the interface frequency requirements.
The typical values shown in Table 11 are required for use with NXP BSPs to ensure precise time
keeping and USB operation. For RTC_XTALI operation, two clock sources are available.
On-chip 40 kHz ring oscillator—this clock source has the following characteristics:
Approximately 25 µA more Idd than crystal oscillator
Approximately ±50% tolerance
No external component required
Starts up quicker than 32 kHz crystal oscillator
External crystal oscillator with on-chip support circuit:
At power up, ring oscillator is utilized. After crystal oscillator is stable, the clock circuit
switches over to the crystal oscillator automatically.
Higher accuracy than ring oscillator
Table 11. External Input Clock Frequency
Parameter Description Symbol Min Typ Max Unit
RTC_XTALI Oscillator1,2
1External oscillator or a crystal with internal oscillator amplifier.
2The required frequency stability of this clock source is application dependent. For recommendations, see the Hardware
Development Guide for i.MX 6SoloX Applications Processors (IMX6XHDG).
fckil 32.7683/32.0
3Recommended nominal frequency 32.768 kHz.
—kHz
XTALI Oscillator2,4
4External oscillator or a fundamental frequency crystal with internal oscillator amplifier.
fxtal —24MHz
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 29
If no external crystal is present, then the ring oscillator is utilized
The decision of choosing a clock source should be taken based on real-time clock use and precision
timeout.
4.1.5 Maximum Supply Currents
The data shown in Table 12 represent a use case designed specifically to show the maximum current
consumption possible. All cores are running at the defined maximum frequency and are limited to L1
cache accesses only to ensure no pipeline stalls. Although a valid condition, it would have a very limited
practical use case, if at all, and be limited to an extremely low duty cycle unless the intention was to
specifically show the worst case power consumption.
Table 12. Maximum Supply Currents
Power Line Conditions Max Current Unit
VDD_ARM_IN 996 MHz Arm clock based on
Power Virus operation
1100 mA
VDD_SOC_IN 996 MHz Arm clock 1260 mA
VDD_HIGH_IN 1251mA
VDD_SNVS_IN 4002μA
USB_OTG1_VBUS/USB_OTG2_VBUS (LDO_USB) —50
3mA
VDDA_ADC_3P3 1.5 mA
Primary Interface (IO) Supplies
NVCC_DRAM (See Note4)—
NVCC_DRAM_2P5 Use Maximum IO equation 5
NVCC_ENET N=10 Use Maximum IO equation 5
NVCC_LCD1 N=29 Use Maximum IO equation 5
NVCC_GPIO N=14 Use Maximum IO equation 5
NVCC_CSI N=12 Use Maximum IO equation 5
NVCC_QSPI N=16 Use Maximum IO equation 5
NVCC_JTAG N=6 Use Maximum IO equation 5
NVCC_RGMII1 N=12 Use Maximum IO equation 5
NVCC_RGMII2 N=12 Use Maximum IO equation 5
NVCC_SD1 N=6 Use Maximum IO equation 5
NVCC_SD2 N=6 Use Maximum IO equation 5
NVCC_SD4 N=11 Use Maximum IO equation 5
NVCC_NAND N=16 Use Maximum IO equation 5
NVCC_KEY N=10 Use Maximum IO equation 5
NVCC_LOW N=10 Use Maximum IO equation 5
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
30 NXP Semiconductors
Electrical Characteristics
4.1.6 Low Power Mode Supply Currents
Table 13 and Table 14 show the current core consumption (not including I/O) of i.MX 6SoloX processors
in selected low power modes.
NVCC_HIGH N=10 Use Maximum IO equation 5
NVCC_USB_H N=2 Use Maximum IO equation 5
1The actual maximum current drawn from VDD_HIGH_IN will be as shown plus any additional current drawn from the
VDD_HIGH_CAP outputs, depending upon actual application configuration (for example, NVCC_LVDS).
2Under normal operating conditions, the maximum current on VDD_SNVS_IN is shown Table 12. The maximum
VDD_SNVS_IN current may be higher depending on specific operating configurations, such as BOOT_MODE[1:0] not equal
to 00, or use of the Tamper feature. During initial power on, VDD_SNVS_IN can draw up to 1 mA if the supply is capable of
sourcing that current. If less than 1 mA is available, the VDD_SNVS_CAP charge time will increase.
3This is the maximum current per active USB physical interface.
4The DRAM power consumption is dependent on several factors such as external signal termination. DRAM power calculators
are typically available from memory vendors which take into account factors such as signal termination.
See the i.MX 6SoloX Power Consumption Measurement Application Note (AN5050) for examples of DRAM power
consumption during specific use case scenarios.
5General equation for estimated, maximum power consumption of an IO power supply:
Imax = N x C x V x (0.5 x F)
Where:
N—Number of IO pins supplied by the power line
C—Equivalent external capacitive load
V—IO voltage
(0.5 xF)—Data change rate. Up to 0.5 of the clock rate (F)
In this equation, Imax is in Amps, C in Farads, V in Volts, and F in Hertz.
Table 13. Low Power Mode Current and Power Consumption (LDO Bypass Mode)
Mode Test Conditions Supply Typical1Units
System Idle See the Power Modes table in the Clock and Power Management
chapter of the i.MX 6SoloX Applications Processor Reference
Manual (IMX6SXRM) for the definition of this mode.
VDDARM_IN (1.15 V) 7.469 mA
VDDSOC_IN (1.15 V) 8.436
VDDHIGH_IN (3.3 V) 3.376
Total 29.430 mW
Low Power Idle See the Power Modes table in the Clock and Power Management
chapter of the i.MX 6SoloX Applications Processor Reference
Manual (IMX6SXRM) for the definition of this mode.
SOC LDO must be bypassed.
Bandgap is disabled.
VDDARM_IN (1.15 V) 0.001 mA
VDDSOC_IN (1.15 V) 2.337
VDDHIGH_IN (3.3 V) 0.404
Total 4.022 mW
Table 12. Maximum Supply Currents (continued)
Power Line Conditions Max Current Unit
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 31
4.1.7 USB PHY Current Consumption
4.1.7.1 Power Down Mode
In power down mode, everything is powered down, including the USB_VBUS valid detectors in typical
condition. Table 15 shows the USB interface current consumption in power down mode.
NOTE
The currents on the VDD_HIGH_CAP and VDD_USB_CAP were
identified to be the voltage divider circuits in the USB-specific level shifters.
Suspend/
Deep Sleep
mode
(DSM)
See the Power Modes table in the Clock and Power Management
chapter of the i.MX 6SoloX Applications Processor Reference
Manual (IMX6SXRM) for the definition of this mode.
VDD_ARM_IN (0.9 V) 0.001 mA
VDD_SOC_IN (1.05 V) 1.005
VDDHIGH_IN (3.3 V) 0.034
Total 2.067 mW
SNVS SNVS power domain powered.
All other power domains are off.
VDD_SNVS_IN (2.8 V) 41 μA
Total 0.115 mW
1Typical process material in fab.
Table 14. Low Power Mode Current and Power Consumption (LDO Enabled Mode)
Mode Test Conditions Supply Typical1
1Typical process material in fab.
Units
Low Power Idle See the Power Modes table in the Clock and Power Management
chapter of the i.MX 6SoloX Applications Processor Reference
Manual (IMX6SXRM) for the definition of this mode.
SOC LDO is enabled.
Bandgap is enabled.
VDDARM_IN (1.3V) 0.008 mA
VDDSOC_IN (1.3V) 2.343
VDDHIGH_IN (3.3V) 3.376
Total 14.196 mW
Suspend/
Deep Sleep
mode
(DSM
See the Power Modes table in the Clock and Power Management
chapter of the i.MX 6SoloX Applications Processor Reference
Manual (IMX6SXRM) for the definition of this mode.
VDDARM_IN (1.3V) 0.033 mA
VDDSOC_IN (1.3V) 1.3
VDDHIGH_IN (3.3V) 0.034
Total 2.231 mW
Table 15. USB PHY Current Consumption in Power Down Mode
VDD_USB_CAP (3.0 V) VDD_HIGH_CAP (2.5 V) NVCC_PLL (1.1 V)
Current 5.1 μA 1.7 μA <0.5 μA
Table 13. Low Power Mode Current and Power Consumption (LDO Bypass Mode) (continued)
Mode Test Conditions Supply Typical1Units
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
32 NXP Semiconductors
Electrical Characteristics
4.1.8 PCIe 2.0 Power Consumption
Table 16 provides PCIe PHY currents under certain transmit operating modes.
4.2 Power Supplies Requirements and Restrictions
The system design must comply with power-up sequence, power-down sequence, and steady state
guidelines as described in this section to guarantee the reliable operation of the device. Any deviation
from these sequences may result in the following situations:
Excessive current during power-up phase
Prevention of the device from booting
Irreversible damage to the processor (worst-case scenario)
4.2.1 Power-Up Sequence
The restrictions that follow must be observed:
VDD_SNVS_IN supply must be turned on before any other power supply or be connected
(shorted) with VDD_HIGH_IN supply.
If a coin cell is used to power VDD_SNVS_IN, then ensure that it is connected before any other
supply is switched on.
When the SRC_POR_B signal is used to control the processor POR, then SRC_POR_B must be
immediately asserted at power-up and remain asserted until the VDD_ARM_CAP and
VDD_SOC_CAP supplies are stable. VDD_ARM_IN and VDD_SOC_IN may be applied in either
order with no restrictions.
NOTE
Ensure there is no back voltage (leakage) from any supply on the board
towards the 3.3 V supply (for example, from the external components that
use both the 1.8 V and 3.3 V supplies).
NOTE
USB_OTG1_VBUS and USB_OTG2_VBUS are not part of the power
supply sequence and may be powered at any time.
Table 16. PCIe PHY Current Drain
Mode Test Conditions Supply Max Current Unit
P0: Normal Operation 5G Operations PCIE_VPH (2.5 V) 21 mA
2.5G Operations PCIE_VPH (2.5 V) 20
P0s: Low Recovery Time
Latency, Power Saving State
5G Operations PCIE_VPH (2.5 V) 18 mA
2.5G Operations PCIE_VPH (2.5 V) 18
P1: Longer Recovery Time
Latency, Lower Power State
PCIE_VPH (2.5 V) 12 mA
Power Down PCIE_VPH (2.5 V) 0.36 mA
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 33
4.2.2 Power-Down Sequence
There are no special restrictions for the i.MX 6SoloX IC.
4.2.3 Power Supplies Usage
All I/O pins must not be externally driven while the I/O power supply for the pin (NVCC_xxx) is OFF.
This can cause internal latch-up and malfunctions due to reverse current flows. For information about I/O
power supply of each pin, see “Power Rail” columns in pin list tables of Section 6, “Package Information
and Contact Assignments.”
4.3 Integrated LDO Voltage Regulator Parameters
Various internal supplies can be powered ON from internal LDO voltage regulators. All the supply pins
named *_CAP must be connected to external capacitors. The onboard LDOs are intended for internal use
only and must not be used to power any external circuitry. See the i.MX 6SoloX Applications Processor
Reference Manual (IMX6SXRM) for details on the power tree scheme.
NOTE
The *_CAP signals must not be powered externally. These signals are
intended for internal LDO operation only.
4.3.1 Digital Regulators (LDO_ARM, LDO_SOC, LDO_PCIE)
There are three digital LDO regulators (“Digital”, because of the logic loads that they drive, not because
of their construction). The advantages of the regulators are to reduce the input supply variation because of
their input supply ripple rejection and their on-die trimming. This translates into more stable voltage for
the on-chip logic.
These regulators have two basic modes:
Power Gate. The regulation FET is switched fully off limiting the current draw from the supply.
The analog part of the regulator is powered down here limiting the power consumption.
Analog regulation mode. The regulation FET is controlled such that the output voltage of the
regulator equals the programmed target voltage. The target voltage is fully programmable in 25 mV
steps.
For additional information, see the i.MX 6SoloX Applications Processor Reference Manual
(IMX6SXRM).
4.3.2 Regulators for Analog Modules
4.3.2.1 LDO_1P1
The LDO_1P1 regulator implements a programmable linear-regulator function from VDD_HIGH_IN (see
Table 9 for minimum and maximum input requirements). Typical Programming Operating Range is 1.0 V
to 1.2 V with the nominal default setting as 1.1 V. The LDO_1P1 supplies the USB Phy, LVDS Phy, and
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
34 NXP Semiconductors
Electrical Characteristics
PLLs. A programmable brown-out detector is included in the regulator that can be used by the system to
determine when the load capability of the regulator is being exceeded to take the necessary steps.
Active-pull-down can also be enabled for systems requiring this feature.
For information on external capacitor requirements for this regulator, see the Hardware Development
Guide for i.MX 6SoloX Applications Processors (IMX6XHDG).
For additional information, see the i.MX 6SoloX Applications Processor Reference Manual
(IMX6SXRM).
4.3.2.2 LDO_2P5
The LDO_2P5 module implements a programmable linear-regulator function from VDD_HIGH_IN (see
Table 9 for minimum and maximum input requirements). Typical Programming Operating Range is
2.25 V to 2.75 V with the nominal default setting as 2.5 V. LDO_2P5 supplies the DDR IOs, USB Phy,
LVDS Phy, E-fuse module, and PLLs. A programmable brown-out detector is included in the regulator that
can be used by the system to determine when the load capability of the regulator is being exceeded, to take
the necessary steps. Active-pull-down can also be enabled for systems requiring this feature. An alternate
self-biased low-precision weak-regulator is included that can be enabled for applications needing to keep
the output voltage alive during low-power modes where the main regulator driver and its associated global
bandgap reference module are disabled. The output of the weak-regulator is not programmable and is a
function of the input supply as well as the load current. Typically, with a 3 V input supply the
weak-regulator output is 2.525 V and its output impedance is approximately 40 Ω.
For information on external capacitor requirements for this regulator, see the Hardware Development
Guide for i.MX 6SoloX Applications Processors (IMX6XHDG).
For additional information, see the i.MX 6SoloX Applications Processor Reference Manual
(IMX6SXRM).
4.3.2.3 LDO_USB
The LDO_USB module implements a programmable linear-regulator function from the
USB_OTG1_VBUS and USB_OTG2_VBUS voltages (4.4 V–5.5 V) to produce a nominal 3.0 V output
voltage. A programmable brown-out detector is included in the regulator that can be used by the system to
determine when the load capability of the regulator is being exceeded, to take the necessary steps. This
regulator has a built in power-mux that allows the user to select to run the regulator from either
USB_VBUS supply, when both are present. If only one of the USB_VBUS voltages is present, then, the
regulator automatically selects this supply. Current limit is also included to help the system meet in-rush
current targets.
For information on external capacitor requirements for this regulator, see the Hardware Development
Guide for i.MX 6SoloX Applications Processors (IMX6XHDG).
For additional information, see the i.MX 6SoloX Applications Processor Reference Manual
(IMX6SXRM).
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 35
4.4 PLL Electrical Characteristics
4.4.1 Audio/Video PLL Electrical Parameters
4.4.2 528 MHz PLL
4.4.3 Ethernet PLL
4.4.4 480 MHz PLL
Table 17. Audio/Video PLL Electrical Parameters
Parameter Value
Clock output range 650 MHz ~1.3 GHz
Reference clock 24 MHz
Lock time <11250 reference cycles
Table 18. 528 MHz PLL Electrical Parameters
Parameter Value
Clock output range 528 MHz PLL output
Reference clock 24 MHz
Lock time <11250 reference cycles
Table 19. Ethernet PLL Electrical Parameters
Parameter Value
Clock output range 500 MHz
Reference clock 24 MHz
Lock time <11250 reference cycles
Table 20. 480 MHz PLL Electrical Parameters
Parameter Value
Clock output range 480 MHz PLL output
Reference clock 24 MHz
Lock time <383 reference cycles
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
36 NXP Semiconductors
Electrical Characteristics
4.4.5 Arm PLL
4.5 On-Chip Oscillators
4.5.1 OSC24M
This block implements an amplifier that when combined with a suitable quartz crystal and external load
capacitors implements an oscillator. The oscillator is powered from NVCC_PLL.
The system crystal oscillator consists of a Pierce-type structure running off the digital supply. A straight
forward biased-inverter implementation is used.
4.5.2 OSC32K
This block implements an amplifier that when combined with a suitable quartz crystal and external load
capacitors implements a low power oscillator. It also implements a power mux such that it can be powered
from either a ~3 V backup battery (VDD_SNVS_IN) or VDD_HIGH_IN such as the oscillator consumes
power from VDD_HIGH_IN when that supply is available and transitions to the back up battery when
VDD_HIGH_IN is lost.
Additionally, if the clock monitor determines that the OSC32K is not present, then the source of the 32 kHz
clock will automatically switch to the internal ring oscillator.
CAUTION
The internal RTC oscillator does not provide an accurate frequency and is
affected by process, voltage, and temperature variations. NXP strongly
recommends using an external crystal as the RTC_XTALI reference. If the
internal oscillator is used, careful consideration must be given to the timing
implications on all of the SoC modules dependent on this clock.
The OSC32K runs from VDD_SNVS_CAP supply, which comes from the VDD_HIGH_IN/
VDD_SNVS_IN.
Table 21. Arm PLL Electrical Parameters
Parameter Value
Clock output range 650 MHz ~ 1.3 GHz
Reference clock 24 MHz
Lock time <2250 reference cycles
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 37
4.6 I/O DC Parameters
This section includes the DC parameters of the following I/O types:
General Purpose I/O (GPIO)
Double Data Rate I/O (DDR) for LPDDR2 and DDR3 modes
•LVDS I/O
NOTE
The term ‘OVDD’ in this section refers to the associated supply rail of an
input or output.
Figure 3. Circuit for Parameters Voh and Vol for I/O Cells
Table 22. OSC32K Main Characteristics
Characteristics Min Typ Max Comments
Fosc 32.768 KHz This frequency is nominal and determined mainly by the crystal selected.
32.0 K would work as well.
Current consumption 4 μA—The 4 μA is the consumption of the oscillator alone (OSC32K). Total supply
consumption will depend on what the digital portion of the RTC consumes.
The ring oscillator consumes 1 μA when ring oscillator is inactive, 20 μA
when the ring oscillator is running. Another 1.5 μA is drawn from
VDD_SNVS_IN in the power_detect block. So, the total current is 6.5 μA
on VDD_SNVS_IN when the ring oscillator is not running.
Bias resistor 14 MΩ This the integrated bias resistor that sets the amplifier into a high gain
state. Any leakage through the ESD network, external board leakage, or
even a scope probe that is significant relative to this value will debias the
amp. The debiasing will result in low gain, and will impact the circuit's ability
to start up and maintain oscillations.
Crystal Properties
Cload 10 pF Usually crystals can be purchased tuned for different Cloads. This Cload
value is typically 1/2 of the capacitances realized on the PCB on either side
of the quartz. A higher Cload will decrease oscillation margin, but
increases current oscillating through the crystal.
ESR — 50 kΩ 100 kΩEquivalent series resistance of the crystal. Choosing a crystal with a higher
value will decrease the oscillating margin.
0
or
1
Predriver
pdat
ovdd
pad
nmos (Rpd)
ovss
Voh min
Vol max
pmos (Rpu)
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
38 NXP Semiconductors
Electrical Characteristics
4.6.1 XTALI and RTC_XTALI (Clock Inputs) DC Parameters
Table 23 shows the DC parameters for the clock inputs.
4.6.2 Single Voltage General Purpose I/O (GPIO) DC Parameters
Table 24 shows DC parameters for GPIO pads. The parameters in Table 24 are guaranteed per the
operating ranges in Table 9, unless otherwise noted.
Table 23. XTALI and RTC_XTALI DC Parameters
Parameter Symbol Test Conditions Min Typ Max Unit
XTALI high-level DC input voltage Vih 0.8 x NVCC_PLL NVCC_PLL V
XTALI low-level DC input voltage Vil 0 0.2V V
RTC_XTALI high-level DC input voltage Vih 0.8 1.11
1This voltage specification must not be exceeded and, as such, is an absolute maximum specification.
NOTE
The Vil and Vih specifications only apply when an external clock source is
used. If a crystal is used, Vil and Vih do not apply.
V
RTC_XTALI low-level DC input voltage Vil 0 0.2 V
Input Capacitance CIN Simulated data 5 pF
Startup current IXTALI_STARTUP Power-on startup for
0.15msec with a driven
24 MHz clock at 1.1V.
This current draw is
present even if an
external clock source
directly drives XTALI
——600uA
DC input current IXTALI_DC ——2.5uA
Table 24. Single Voltage GPIO DC Parameters
Parameter Symbol Test Conditions Min Max Units
High-level output voltage1VOH Ioh= -0.1mA (DSE=001,010)
Ioh= -1mA
(DSE=011,100,101,110,111)
OVDD-0.15 V
Low-level output voltage1VOL Iol= 0.1mA (DSE=001,010)
Iol= 1mA
(DSE=011,100,101,110,111)
–0.15V
High-Level input voltage1,2 VIH 0.7*OVDD OVDD V
Low-Level input voltage1,2 VIL 0 0.3*OVDD V
Input Hysteresis (OVDD= 1.8V) VHYS_Low VDD OVDD=1.8 V 250 mV
Input Hysteresis (OVDD=3.3V) VHYS_High VDD OVDD=3.3 V 250 mV
Schmitt trigger VT+ 2,3 VTH+ 0.5*OVDD mV
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 39
4.6.3 Dual Voltage GPIO I/O DC Parameters
Table 25 shows DC parameters for GPIO pads. The parameters in Table 25 are guaranteed per the
operating ranges in Table 9, unless otherwise noted.
Schmitt trigger VT- 2,3 VTH- 0.5*OVDD mV
Pull-up resistor (22_kΩ PU) RPU_22K Vin=0V 212 uA
Pull-up resistor (22_kΩ PU) RPU_22K Vin=OVDD 1 uA
Pull-up resistor (47_kΩ PU) RPU_47K Vin=0V 100 uA
Pull-up resistor (47_kΩ PU) RPU_47K Vin=OVDD 1 uA
Pull-up resistor (100_kΩ PU) RPU_100K Vin=0V 48 uA
Pull-up resistor (100_kΩ PU) RPU_100K Vin=OVDD 1 uA
Pull-down resistor (100_kΩ PD) RPD_100K Vin=OVDD 48 uA
Pull-down resistor (100_kΩ PD) RPD_100K Vin=0V 1 uA
Input current (no PU/PD) IIN VI = 0, VI = OVDD -1 1 uA
Keeper Circuit Resistance R_Keeper VI =0.3*OVDD, VI = 0.7* OVDD 105 175 kΩ
1Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V,
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must
be controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other
methods. Non-compliance to this specification may affect device reliability or cause permanent damage to the device.
2To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC
level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.
3Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.
Table 25. Dual Voltage GPIO I/O DC Parameters
Parameter Symbol Test Conditions Min Max Unit
High-level output voltage1Voh Ioh = -0.1 mA (DSE2 = 001, 010)
Ioh = -1 mA
(DSE = 011, 100, 101, 110, 111)
OVDD 0.15 V
Low-level output voltage1Vol Iol = 0.1 mA (DSE = 001, 010)
Iol = 1mA
(DSE = 011, 100, 101, 110, 111)
—0.15V
High-Level DC input voltage 1,3 Vih 0.7 ×OVDD OVDD V
Low-Level DC input voltage1,3 Vil 0 0.3 ×OVDD V
Input Hysteresis Vhys OVDD = 1.8 V
OVDD = 3.3 V
0.25 V
Schmitt trigger VT+ 3,4 VT+ 0.5 ×OVDD V
Schmitt trigger VT– 3,4 VT– 0.5 ×OVDD V
Table 24. Single Voltage GPIO DC Parameters (continued)
Parameter Symbol Test Conditions Min Max Units
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
40 NXP Semiconductors
Electrical Characteristics
4.6.4 DDR I/O DC Parameters
The DDR I/O pads support LPDDR2 and DDR3/DDR3L operational modes.
4.6.4.1 LPDDR2 Mode I/O DC Parameters
For details on supported DDR memory configurations, see Section 4.10, “Multi-mode DDR Controller
(MMDC).
Input current (no pull-up/down) Iin Vin = OVDD or 0 -1.25 1.25 μA
Input current (22 kΩ pull-up) Iin Vin = 0 V
Vin = OVDD
—212
1μA
Input current (47 kΩ pull-up) Iin Vin = 0 V
Vin = OVDD
—100
1μA
Input current (100 kΩ pull-up) Iin Vin = 0 V
Vin= OVDD
—48
1μA
Input current (100 kΩ pull-down) Iin Vin = 0 V
Vin = OVDD
—1
48 μA
Keeper circuit resistance Rkeep Vin = 0.3 x OVDD
Vin = 0.7 x OVDD
105 205 kΩ
1Overshoot and undershoot conditions (transitions above OVDD and below GND) on switching pads must be held below 0.6 V,
and the duration of the overshoot/undershoot must not exceed 10% of the system clock cycle. Overshoot/ undershoot must be
controlled through printed circuit board layout, transmission line impedance matching, signal line termination, or other methods.
Non-compliance to this specification may affect device reliability or cause permanent damage to the device.
2DSE is the Drive Strength Field setting in the associated IOMUX control register.
3To maintain a valid level, the transition edge of the input must sustain a constant slew rate (monotonic) from the current DC
level through to the target DC level, Vil or Vih. Monotonic input transition time is from 0.1 ns to 1 s.
4Hysteresis of 250 mV is guaranteed over all operating conditions when hysteresis is enabled.
Table 26. LPDDR2 I/O DC Electrical Parameters1
Parameters Symbol Test Conditions Min Max Unit
High-level output voltage VOH Ioh= -0.1mA 0.9*OVDD V
Low-level output voltage VOL Iol= 0.1mA 0.1*OVDD V
Input Reference Voltage Vref 0.49*OVDD 0.51*OVDD V
DC High-Level input voltage Vih_DC Vref+0.13 OVDD V
DC Low-Level input voltage Vil_DC OVSS Vref-0.13 V
Differential Input Logic High Vih_diff 0.26 Note2
Differential Input Logic Low Vil_diff Note3-0.26
Pull-up/Pull-down Impedance Mismatch Mmpupd -15 15 %
240 Ω unit calibration resolution Rres 10 Ω
Table 25. Dual Voltage GPIO I/O DC Parameters (continued)
Parameter Symbol Test Conditions Min Max Unit
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 41
4.6.4.2 DDR3/DDR3L Mode I/O DC Parameters
For details on supported DDR memory configurations, see Section 4.10, “Multi-mode DDR Controller
(MMDC). The parameters in Table 27 are guaranteed per the operating ranges in Table 9, unless otherwise
noted.
Keeper Circuit Resistance Rkeep 110 175 kΩ
Input current (no pull-up/down) Iin VI = 0, VI = OVDD -2.5 2.5 μA
1Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.
2The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as
the limitations for overshoot and undershoot.
3The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as
the limitations for overshoot and undershoot.
Table 27. DDR3/DDR3L I/O DC Electrical Characteristics
Parameters Symbol Test Conditions Min Max Unit
High-level output voltage VOH Ioh= -0.1mA
Voh (for DSE=001)
0.8*OVDD1
1OVDD – I/O power supply (1.425 V–1.575 V for DDR3 and 1.283 V–1.45 V for DDR3L)
—V
Low-level output voltage VOL Iol= 0.1mA
Vol (for DSE=001)
0.2*OVDD V
High-level output voltage VOH Ioh= -1mA
Voh (for all except DSE=001)
0.8*OVDD V
Low-level output voltage VOL Iol= 1mA
Vol (for all except DSE=001)
0.2*OVDD V
Input Reference Voltage Vref 0.49*ovdd 0.51*ovdd V
DC High-Level input voltage Vih_DC Vref2+0.1
2Vref – DDR3/DDR3L external reference voltage
OVDD V
DC Low-Level input voltage Vil_DC OVSS Vref-0.1 V
Differential Input Logic High Vih_diff 0.2 See Note3
3The single-ended signals need to be within the respective limits (Vih(dc) max, Vil(dc) min) for single-ended signals as well as
the limitations for overshoot and undershoot.
V
Differential Input Logic Low Vil_diff See Note -0.2 V
Termination Voltage Vtt Vtt tracking OVDD/2 0.49*OVDD 0.51*OVDD V
Pull-up/Pull-down Impedance Mismatch Mmpupd -10 10 %
240 Ω unit calibration resolution Rres 10 Ω
Keeper Circuit Resistance Rkeep 105 165 kΩ
Input current (no pull-up/down) Iin VI = 0,VI = OVDD -2.9 2.9 μA
Table 26. LPDDR2 I/O DC Electrical Parameters1 (continued)
Parameters Symbol Test Conditions Min Max Unit
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
42 NXP Semiconductors
Electrical Characteristics
4.6.5 LVDS I/O DC Parameters
The LVDS interface complies with TIA/EIA 644-A standard. See TIA/EIA STANDARD 644-A,
“Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details.
Table 28 shows the Low Voltage Differential Signaling (LVDS) I/O DC parameters.
4.7 I/O AC Parameters
This section includes the AC parameters of the following I/O types:
General Purpose I/O (GPIO)
Double Data Rate I/O (DDR) for LPDDR2 and DDR3/DDR3L modes
•LVDS I/O
The GPIO and DDR I/O load circuit and output transition time waveforms are shown in Figure 4 and
Figure 5.
Figure 4. Load Circuit for Output
Figure 5. Output Transition Time Waveform
4.7.1 General Purpose I/O AC Parameters
The I/O AC parameters for GPIO in slow and fast modes are presented in the Table 29 and Table 30,
respectively. Note that the fast or slow I/O behavior is determined by the appropriate control bits in the
IOMUXC control registers.
Table 28. LVDS I/O DC Characteristics
Parameter Symbol Test Conditions Min Typ Max Unit
Output Differential Voltage VOD Rload-100 Ω Diff 250 350 450 mV
Output High Voltage VOH IOH = 0 mA 1.25 1.375 1.6 V
Output Low Voltage VOL IOL = 0 mA 0.9 1.025 1.25 V
Offset Voltage VOS 1.125 1.2 1.375 V
Test Point
From Output
Under Test
CL
CL includes package, probe and fixture capacitance
0V
OVDD
20%
80% 80%
20%
tr tf
Output (at pad)
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 43
4.7.2 DDR I/O AC Parameters
For details on supported DDR memory configurations, see Section 4.10, “Multi-mode DDR Controller
(MMDC).
Table 31 shows the AC parameters for DDR I/O operating in LPDDR2 mode.
Table 29. General Purpose I/O AC Parameters 1.8 V Mode
Parameter Symbol Test Condition Min Typ Max Unit
Output Pad Transition Times, rise/fall
(Max Drive, DSE=111)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 2.72/2.79
1.51/1.54
ns
Output Pad Transition Times, rise/fall
(High Drive, DSE=101)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 3.20/3.36
1.96/2.07
Output Pad Transition Times, rise/fall
(Medium Drive, DSE=100)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 3.64/3.88
2.27/2.53
Output Pad Transition Times, rise/fall
(Low Drive. DSE=011)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 4.32/4.50
3.16/3.17
Input Transition Times1
1Hysteresis mode is recommended for inputs with transition times greater than 25 ns.
trm 25 ns
Table 30. General Purpose I/O AC Parameters 3.3 V Mode
Parameter Symbol Test Condition Min Typ Max Unit
Output Pad Transition Times, rise/fall
(Max Drive, DSE=101)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 1.70/1.79
1.06/1.15
ns
Output Pad Transition Times, rise/fall
(High Drive, DSE=011)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 2.35/2.43
1.74/1.77
Output Pad Transition Times, rise/fall
(Medium Drive, DSE=010)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 3.13/3.29
2.46/2.60
Output Pad Transition Times, rise/fall
(Low Drive, DSE=001)
tr, tf 15 pF Cload, slow slew rate
15 pF Cload, fast slew rate —— 5.14/5.57
4.77/5.15
Input Transition Times1
1Hysteresis mode is recommended for inputs with transition times greater than 25 ns.
trm 25 ns
Table 31. DDR I/O LPDDR2 Mode AC Parameters1
Parameter Symbol Test Condition Min Max Unit
AC input logic high Vih(ac) Vref + 0.22 OVDD V
AC input logic low Vil(ac) 0 Vref - 0.22 V
AC differential input high voltage2Vidh(ac) 0.44 V
AC differential input low voltage Vidl(ac) 0.44 V
Input AC differential cross point voltage3Vix(ac) Relative to Vref -0.12 0.12 V
Over/undershoot peak Vpeak 0.35 V
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
44 NXP Semiconductors
Electrical Characteristics
Table 32 shows the AC parameters for DDR I/O operating in DDR3/DDR3L mode.
Over/undershoot area (above OVDD
or below OVSS)
Varea 400 MHz 0.3 V-ns
Single output slew rate, measured between
Vol(ac) and Voh(ac)
tsr
50 Ω to Vref.
5 pF load.
Drive impedance = 40 Ω ± 30%
1.5 3.5
V/ns
50 Ω to Vref.
5pF load.
Drive impedance = 60 Ω ± 30%
12.5
Skew between pad rise/fall asymmetry + skew
caused by SSN
tSKD clk = 400 MHz 0.1 ns
1Note that the JEDEC LPDDR2 specification (JESD209_2B) supersedes any specification in this document.
2Vid(ac) specifies the input differential voltage | Vtr - Vcp | required for switching, where Vtr is the “true” input signal and Vcp is
the “complementary” input signal. The Minimum value is equal to Vih(ac) - Vil(ac).
3The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac)
indicates the voltage at which differential input signal must cross.
Table 32. DDR I/O DDR3/DDR3L Mode AC Parameters1
1Note that the JEDEC JESD79_3C specification supersedes any specification in this document.
Parameter Symbol Test Condition Min Typ Max Unit
AC input logic high Vih(ac) Vref + 0.175 OVDD V
AC input logic low Vil(ac) 0 Vref - 0.175 V
AC differential input voltage2
2Vid(ac) specifies the input differential voltage | Vtr-Vcp | required for switching, where Vtr is the “true” input signal and Vcp is
the “complementary” input signal. The Minimum value is equal to Vih(ac) - Vil(ac).
Vid(ac) 0.35 V
Input AC differential cross point voltage3,4
3The typical value of Vix(ac) is expected to be about 0.5 x OVDD. and Vix(ac) is expected to track variation of OVDD. Vix(ac)
indicates the voltage at which differential input signal must cross.
4Extended range for Vix is only allowed for the clock and when the single-ended clock input signals CK and CK# are:
Monotonic with a single-ended swing VSEL/VSEH of at least VDD/2 ±250 mV, and
The differential slew rate of CK - CK# is larger than 3 V/ns
Vix(ac) Relative to Vref Vref - 0.15 Vref + 0.15 V
Over/undershoot peak Vpeak 0.4 V
Over/undershoot area (above OVDD
or below OVSS)
Varea 400 MHz 0.5 V-ns
Single output slew rate, measured between
Vol(ac) and Voh(ac)
tsr Driver impedance = 34 Ω2.5 5 V/ns
Skew between pad rise/fall asymmetry + skew
caused by SSN
tSKD clk = 400 MHz ——
0.1 ns
Table 31. DDR I/O LPDDR2 Mode AC Parameters1 (continued)
Parameter Symbol Test Condition Min Max Unit
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 45
4.7.3 LVDS I/O AC Parameters
The differential output transition time waveform is shown in Figure 6.
Figure 6. Differential LVDS Driver Transition Time Waveform
Table 33 shows the AC parameters for LVDS I/O.
4.8 Output Buffer Impedance Parameters
This section defines the I/O impedance parameters of the i.MX 6SoloX processors for the following I/O
types:
Dual Voltage General Purpose I/O (DVGPIO)
Single Voltage General Purpose I/O (GPIO)
Double Data Rate I/O (DDR) for LPDDR2, and DDR3/DDR3L modes
•LVDS I/O
NOTE
GPIO and DDR I/O output driver impedance is measured with “long”
transmission line of impedance Ztl attached to I/O pad and incident wave
launched into transmission line. Rpu/Rpd and Ztl form a voltage divider that
defines specific voltage of incident wave relative to OVDD. Output driver
impedance is calculated from this voltage divider (see Figure 7).
Table 33. I/O AC Parameters of LVDS Pad
Parameter Symbol Test Condition Min Typ Max Unit
Differential pulse skew1
1tSKD = | tPHLD -t
PLHD |, is the magnitude difference in differential propagation delay time between the positive going edge and
the negative going edge of the same channel.
tSKD
Rload = 100 Ω,
Cload = 2 pF
0.25
nsTransition Low to High Time2
2Measurement levels are 20-80% from output voltage.
tTLH ——0.5
Transition High to Low Time2tTHL ——0.5
Operating Frequency f 600 800 MHz
Offset voltage imbalance Vos 150 mV
padp
padn
VDIFF
0V (Differential)
VDIFF = {padp} - {padn}
tTLH
20%
80%
20%
80%
tTHL
VOH
VOL
0V
0V
0V
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
46 NXP Semiconductors
Electrical Characteristics
Figure 7. Impedance Matching Load for Measurement
4.8.1 Dual Voltage GPIO Output Buffer Impedance
Table 34 shows the GPIO output buffer impedance (OVDD 1.8 V).
Table 34. DVGPIO Output Buffer Average Impedance (OVDD 1.8 V)
Parameter Symbol Drive Strength (DSE)
Typical Typical
Unit
ADD_DS=1 ADD_DS=0
Output Driver
Impedance Rdrv
000
001
010
011
100
101
110
111
Hi-Z
262
134
88
62
51
43
37
Hi-Z
235
117
78
52
43
36
31
Ω
ipp_do
Cload = 1p
Ztl Ω, L = 20 inches
predriver
PMOS (Rpu)
NMOS (Rpd)
pad
OVDD
OVSS
t,(ns)
U,(V)
OVDD
t,(ns)
0
VDD
Vin (do)
Vout (pad)
U,(V)
Vref
Rpu =
Vovdd Vref1
Vref1
× Ztl
Rpd = × Ztl
Vref2
Vovdd Vref2
Vref1 Vref2
0
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 47
Table 35 shows the GPIO output buffer impedance (OVDD 3.3 V).
4.8.2 Single Voltage GPIO Output Buffer Impedance
Table 36 shows the GPIO output buffer impedance (OVDD 1.8 V).
Table 37 shows the GPIO output buffer impedance (OVDD 3.3 V).
4.8.3 DDR I/O Output Buffer Impedance
For details on supported DDR memory configurations, see Section 4.10, “Multi-mode DDR Controller
(MMDC).
Table 35. DVGPIO Output Buffer Average Impedance (OVDD 3.3 V)
Parameter Symbol Drive Strength (DSE) Typical Unit
Output Driver
Impedance Rdrv
000
001
010
011
100
101
110
111
Hi-Z
247
126
84
57
47
40
34
Ω
Table 36. GPIO Output Buffer Average Impedance (OVDD 1.8 V)
Parameter Symbol Drive Strength (DSE) Typ Value Unit
Output Driver
Impedance Rdrv
001
010
011
100
101
110
111
260
130
88
65
52
43
37
Ω
Table 37. GPIO Output Buffer Average Impedance (OVDD 3.3 V)
Parameter Symbol Drive Strength (DSE) Typ Value Unit
Output Driver
Impedance Rdrv
001
010
011
100
101
110
111
157
78
53
39
32
26
23
Ω
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
48 NXP Semiconductors
Electrical Characteristics
Table 38 shows DDR I/O output buffer impedance of i.MX 6SoloX processors.
Note:
1. Output driver impedance is controlled across PVTs using ZQ calibration procedure.
2. Calibration is done against 240 Ω external reference resistor.
3. Output driver impedance deviation (calibration accuracy) is ±5% (max/min impedance) across PVTs.
4.8.4 USB HSIC I/O Output Buffer Impedance
Table 39 shows the USB HSIC I/O (USB_H_DATA and USB_H_STROBE) output buffer impedance.
4.8.5 LVDS I/O Output Buffer Impedance
The LVDS interface complies with TIA/EIA 644-A standard. See, TIA/EIA STANDARD 644-A,
“Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits” for details.
4.9 System Modules Timing
This section contains the timing and electrical parameters for the modules in each i.MX 6SoloX processor.
Table 38. DDR I/O Output Buffer Impedance
Parameter Symbol Test Conditions DSE
(Drive Strength)
Typical
Unit
NVCC_DRAM=1.5 V
(DDR3)
DDR_SEL=11
NVCC_DRAM=1.2 V
(LPDDR2)
DDR_SEL=10
Output Driver
Impedance Rdrv
000
001
010
011
100
101
110
111
Hi-Z
240
120
80
60
48
40
34
Hi-Z
240
120
80
60
48
40
34
Ω
Table 39. USB HSIC I/O Output Buffer Impedance
Parameter Symbol
Drive
Strength
(DSE)
Typical
Unit
NVCC_USB_H=1.2V
DDR_SEL=10
NVCC_USB_H=1.5V
DDR_SEL=11
NVCC_USB_H=1.8V
DDR_SEL=11
NVCC_USB_H=2.5V
DDR_SEL=11
Output
Driver
Impedance
Rdrv
000
001
010
011
100
101
110
111
Hi-Z
240
120
80
60
48
40
34
Hi-Z
240
120
80
60
48
40
34
Hi-Z
247
113
73
55
43
36
30
Hi-Z
287
121
76
57
45
37
31
Ω
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 49
4.9.1 Reset Timing Parameters
Figure 8 shows the reset timing and Table 40 lists the timing parameters.
Figure 8. Reset Timing Diagram
4.9.2 WDOG Reset Timing Parameters
Figure 9 shows the WDOG reset timing and Table 41 lists the timing parameters.
Figure 9. WDOGn_B Timing Diagram
NOTE
RTC_XTALI is approximately 32 kHz. RTC_XTALI cycle is one period or
approximately 30 μs.
NOTE
WDOG1_B output signals (for each one of the Watchdog modules) do not
have dedicated pins, but are muxed out through the IOMUX. See the IOMUX
manual for detailed information.
4.9.3 External Interface Module (EIM)
The following subsections provide information on the EIM. Maximum operating frequency for EIM data
transfer is 104 MHz. Two system clocks are used with the EIM:
ACLK_EIM_SLOW_CLK_ROOT is used to clock the EIM module.
The maximum frequency for CLK_EIM_SLOW_CLK_ROOT is 132 MHz.
Table 40. Reset Timing Parameters
ID Parameter Min Max Unit
CC1 Duration of POR_B to be qualified as valid. 1 RTC_XTALI cycle
Table 41. WDOGn_B Timing Parameters
ID Parameter Min Max Unit
CC3 Duration of WDOGn_B Assertion 1 RTC_XTALI cycle
WDOGn_B
CC3
(Output)
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
50 NXP Semiconductors
Electrical Characteristics
ACLK_EXSC is also used when the EIM is in synchronous mode.
The maximum frequency for ACLK_EXSC is 132 MHz.
Timing parameters in this section that are given as a function of register settings.
4.9.3.1 EIM Interface Pads Allocation
EIM supports 32-bit, 16-bit and 8-bit devices operating in address/data separate or multiplexed modes.
Table 42 provides EIM interface pads allocation in different modes.
Table 42. EIM Internal Module Multiplexing1
1For more information on configuration ports mentioned in this table, see the i.MX 6SoloX Applications Processor Reference
Manual (IMX6SXRM).
Setup
Non Multiplexed Address/Data Mode Multiplexed
Address/Data mode
8 Bit 16 Bit 32 Bit 16 Bit 32 Bit
MUM = 0,
DSZ = 100
MUM = 0,
DSZ = 101
MUM = 0,
DSZ = 110
MUM = 0,
DSZ = 111
MUM = 0,
DSZ = 001
MUM = 0,
DSZ = 010
MUM = 0,
DSZ = 011
MUM = 1,
DSZ = 001
MUM = 1,
DSZ = 011
EIM_ADDR
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_AD
[15:00]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_ADDR
[25:16]
EIM_DATA
[09:00]
EIM_DATA
[07:00],
EIM_EB0_B
EIM_DATA
[07:00]
———EIM_DATA
[07:00]
—EIM_DATA
[07:00]
EIM_AD
[07:00]
EIM_AD
[07:00]
EIM_DATA
[15:08],
EIM_EB1_B
—EIM_DATA
[15:08]
——EIM_DATA
[15:08]
—EIM_DATA
[15:08]
EIM_AD
[15:08]
EIM_AD
[15:08]
EIM_DATA
[23:16],
EIM_EB2_B
——EIM_DATA
[23:16]
——EIM_DATA
[23:16]
EIM_DATA
[23:16]
—EIM_DATA
[07:00]
EIM_DATA
[31:24],
EIM_EB3_B
———EIM_DATA
[31:24]
EIM_DATA
[31:24]
EIM_DATA
[31:24]
—EIM_DATA
[15:08]
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 51
4.9.3.2 General EIM Timing-Synchronous Mode
Figure 10, Figure 11, and Table 43 specify the timings related to the EIM module. All EIM output control
signals may be asserted and deasserted by an internal clock synchronized to the EIM_BCLK rising edge
according to corresponding assertion/negation control fields.
,
Figure 10. EIM Outputs Timing Diagram
Figure 11. EIM Inputs Timing Diagram
WE4
EIM_ADDRxx
EIM_CSx_B
EIM_WE_B
EIM_OE_B
EIM_BCLK
EIM_EBx_B
EIM_LBA_B
Output Data
...
WE5
WE6 WE7
WE8 WE9
WE10 WE11
WE12 WE13
WE14 WE15
WE16 WE17
WE3
WE2
WE1
Input Data
EIM_WAIT_B
EIM_BCLK
WE19
WE18
WE21
WE20
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
52 NXP Semiconductors
Electrical Characteristics
4.9.3.3 Examples of EIM Synchronous Accesses
Table 43. EIM Bus Timing Parameters 1
ID Parameter
BCD = 0 BCD = 1 BCD = 2 BCD = 3
Min Max Min Max Min Max Min Max
WE1 EIM_BCLK Cycle
time2
t 2 x t 3 x t 4 x t
WE2 EIM_BCLK Low
Level Width
0.4 x t 0.8 x t 1.2 x t 1.6 x t
WE3 EIM_BCLK High
Level Width
0.4 x t 0.8 x t 1.2 x t 1.6 x t
WE4 Clock rise to
address valid3
-0.5 x t -
1.25
-0.5 x t + 1.75 -t - 1.25 -t + 1.75 -1.5 x t -
1.25
-1.5 x t
+1.75
-2 x t -
1.25
-2 x t + 1.75
WE5 Clock rise to
address invalid
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25 t + 1.75 1.5 x t -
1.25
1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75
WE6 Clock rise to
EIM_CSx_B valid
-0.5 x t -
1.25
-0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -
1.25
-1.5 x t
+1.75
-2 x t -
1.25
-2 x t + 1.75
WE7 Clock rise to
EIM_CSx_B invalid
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25 t + 1.75 1.5 x t -
1.25
1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75
WE8 Clock rise to
EIM_WE_B Valid
-0.5 x t -
1.25
-0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -
1.25
-1.5 x t
+1.75
-2 x t -
1.25
-2 x t + 1.75
WE9 Clock rise to
EIM_WE_B Invalid
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25 t + 1.75 1.5 x t -
1.25
1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75
WE10 Clock rise to
EIM_OE_B Valid
-0.5 x t -
1.25
-0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -
1.25
-1.5 x t
+1.75
-2 x t -
1.25
-2 x t + 1.75
WE11 Clock rise to
EIM_OE_B Invalid
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25 t + 1.75 1.5 x t -
1.25
1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75
WE12 Clock rise to
EIM_EBx_B Valid
-0.5 x t -
1.25
-0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -
1.25
-1.5 x t
+1.75
-2 x t -
1.25
-2 x t + 1.75
WE13 Clock rise to
EIM_EBx_B Invalid
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25 t + 1.75 1.5 x t -
1.25
1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75
WE14 Clock rise to
EIM_LBA_B Valid
-0.5 x t -
1.25
-0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -
1.25
-1.5 x t
+1.75
-2 x t -
1.25
-2 x t + 1.75
WE15 Clock rise to
EIM_LBA_B Invalid
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25 t + 1.75 1.5 x t -
1.25
1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75
WE16 Clock rise to Output
Data Valid
-0.5 x t -
1.25
-0.5 x t + 1.75 -t - 1.25 - t + 1.75 -1.5 x t -
1.25
-1.5 x t
+1.75
-2 x t -
1.25
-2 x t + 1.75
WE17 Clock rise to Output
Data Invalid
0.5 x t - 1.25 0.5 x t + 1.75 t - 1.25 t + 1.75 1.5 x t -
1.25
1.5 x t +1.75 2 x t - 1.25 2 x t + 1.75
WE18 Input Data setup
time to Clock rise
2 4————
WE19 Input Data hold time
from Clock rise
2 2————
WE20 EIM_WAIT_B setup
time to Clock rise
2 4————
WE21 EIM_WAIT_B hold
time from Clock rise
2 2————
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 53
Figure 12 to Figure 15 provide few examples of basic EIM accesses to external memory devices with the
timing parameters mentioned previously for specific control parameters settings.
Figure 12. Synchronous Memory Read Access, WSC=1
1t is the maximum EIM logic (ACLK_EXSC) cycle time. The maximum allowed axi_clk frequency depends on the fixed/non-fixed
latency configuration, whereas the maximum allowed EIM_BCLK frequency is:
—Fixed latency for both read and write is 104 MHz.
—Variable latency for read only is 104 MHz.
—Variable latency for write only is 52 MHz.
In variable latency configuration for write, if BCD = 0 & WBCDD = 1 or BCD = 1, axi_clk must be 104 MHz.Write BCD = 1 and
104 MHz ACLK_EXSC, will result in a EIM_BCLK of 52 MHz. When the clock branch to EIM is decreased to 104 MHz, other
buses are impacted which are clocked from this source. See the CCM chapter of the ii.MX 6SoloX Applications Processor
Reference Manual (IMX6SXRM) for a detailed clock tree description.
2EIM_BCLK parameters are being measured from the 50% point, that is, high is defined as 50% of signal value and low is
defined as 50% as signal value.
3For signal measurements, “High” is defined as 80% of signal value and “Low” is defined as 20% of signal value.
Last Valid Address Address v1
D(v1)
EIM_BCLK
EIM_ADDRxx
EIM_DATAxx
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
WE4 WE5
WE6 WE7
WE10 WE11
WE13
WE12
WE14
WE15
WE18
WE19
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
54 NXP Semiconductors
Electrical Characteristics
Figure 13. Synchronous Memory, Write Access, WSC=1, WBEA=0 and WADVN=0
Figure 14. Muxed Address/Data (A/D) Mode, Synchronous Write Access,
WSC=6, ADVA=0, ADVN=1, and ADH=1
NOTE
In 32-bit muxed address/data (A/D) mode the 16 MSBs are driven on the
data bus.
Last Valid Address Address V1
D(V1)
EIM_BCLK
EIM_ADDRxx
EIM_DATAxx
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
WE4 WE5
WE6 WE7
WE8 WE9
WE12
WE13
WE14
WE15
WE16 WE17
EIM_BCLK
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Address V1 Write Data
WE4
WE16
WE6
WE7
WE9
WE8
WE10
WE11
WE14 WE15
WE17
WE5
Last Valid Address
EIM_ADDRxx/
EIM_ADxx
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 55
Figure 15. 16-Bit Muxed A/D Mode, Synchronous Read Access, WSC=7, RADVN=1, ADH=1, OEA=0
4.9.3.4 General EIM Timing-Asynchronous Mode
Figure 16 through Figure 21, and Table 44 help you determine timing parameters relative to the chip
select (CS) state for asynchronous and DTACK EIM accesses with corresponding EIM bit fields and the
timing parameters mentioned above.
Asynchronous read and write access length in cycles may vary from what is shown in Figure 16 through
Figure 19 as RWSC, OEN and CSN is configured differently. See the ii.MX 6SoloX Applications
Processor Reference Manual (IMX6SXRM) for the EIM programming model.
Figure 16. Asynchronous Memory Read Access (RWSC = 5)
Last
EIM_BCLK
EIM_ADDRxx/
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Address V1 Data
Valid Address
EIM_ADxx
WE5
WE6
WE7
WE14 WE15
WE10
WE11
WE12 WE13
WE18
WE19
WE4
Last Valid Address Address V1
D(V1)
EIM_ADDRxx/
EIM_DATAxx[7:0]
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Next Address
WE39
WE35
WE37
WE32
WE36
WE38
WE43
WE40
WE31
WE44
INT_CLK
start of
access
end of
access
MAXDI
MAXCSO
MAXCO
EIM_ADxx
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
56 NXP Semiconductors
Electrical Characteristics
Figure 17. Asynchronous A/D Muxed Read Access (RWSC = 5)
Figure 18. Asynchronous Memory Write Access
Addr. V1 D(V1)
EIM_ADDRxx/
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
WE39
WE35A
WE37
WE36
WE38
WE40A
WE31
WE44
INT_CLK
start of
access
end of
access
MAXDI
MAXCSO
MAXCO
WE32A
EIM_ADxx
Last Valid Address Address V1
D(V1)
EIM_ADDRxx
EIM_DATAxx
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Next Address
WE31
WE39
WE33
WE45
WE32
WE40
WE34
WE46
WE42
WE41
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 57
Figure 19. Asynchronous A/D Muxed Write Access
Figure 20. DTACK Mode Read Access (DAP=0)
EIM_WE_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
WE33
WE45
WE34
WE46
Addr. V1 D(V1)
EIM_ADDRxx/
WE31
WE42
WE41A
WE32A
EIM_DATAxx
EIM_LBA_B
WE39
WE40A
Last Valid Address Address V1
D(V1)
EIM_ADDRxx
EIM_DATAxx[7:0]
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Next Address
WE39
WE35
WE37
WE32
WE36
WE38
WE43
WE40
WE31
WE44
EIM_DTACK_B
WE47
WE48
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
58 NXP Semiconductors
Electrical Characteristics
Figure 21. DTACK Mode Write Access (DAP=0)
Table 44. EIM Asynchronous Timing Parameters Relative to Chip Select1,2
Ref No. Parameter Determination by Synchronous
measured parameters Min Max Unit
WE31 EIM_CSx_B valid to Address
Valid
WE4-WE6-CSA×t-3.5-CSA×t3.5-CSA×tns
WE32 Address Invalid to EIM_CSx_B
Invalid
WE7-WE5-CSN×t-3.5-CSN×t3.5-CSN×tns
WE32A
(muxed
A/D)
EIM_CSx_B valid to Address
Invalid
t+WE4-WE7+
(ADVN+ADVA+1-CSA)×t
t-3.5+(ADVN+A
DVA+1-CSA)×t
t + 3.5+(ADVN+ADVA+
1-CSA)×t
ns
WE33 EIM_CSx_B Valid to EIM_WE_B
Valid
WE8-WE6+(WEA-WCSA)×t-3.5+(WEA-WCS
A)×t
3.5+(WEA-WCSA)×tns
WE34 EIM_WE_B Invalid to
EIM_CSx_B Invalid
WE7-WE9+(WEN-WCSN)×t -3.5+(WEN-WCS
N)×t
3.5+(WEN-WCSN)×tns
WE35 EIM_CSx_B Valid to EIM_OE_B
Valid
WE10- WE6+(OEA-RCSA)×t -3.5+(OEA-RCS
A)×t
3.5+(OEA-RCSA)×tns
WE35A
(muxed
A/D)
EIM_CSx_B Valid to EIM_OE_B
Valid
WE10-WE6+(OEA+RADVN+R
ADVA+ADH+1-RCSA)×t
-3.5+(OEA+RAD
VN+RADVA+ADH
+1-RCSA)×t
3.5+(OEA+RADVN+RA
DVA+ADH+1-RCSA)×t
ns
WE36 EIM_OE_B Invalid to
EIM_CSx_B Invalid
WE7-WE11+(OEN-RCSN)×t -3.5+(OEN-RCS
N)×t
3.5+(OEN-RCSN)×tns
WE37 EIM_CSx_B Valid to EIM_EBx_B
Valid (Read access)
WE12-WE6+(RBEA-RCSA)×t -3.5+(RBEA- RC
SA)×t
3.5+(RBEA - RCSA)×tns
WE38 EIM_EBx_B Invalid to
EIM_CSx_B Invalid (Read
access)
WE7-WE13+(RBEN-RCSN)×t-3.5+
(RBEN-RCSN)×t
3.5+(RBEN-RCSN)×tns
Last Valid Address Address V1
D(V1)
EIM_ADDRxx
EIM_DATAxx
EIM_WE_B
EIM_LBA_B
EIM_OE_B
EIM_EBx_B
EIM_CSx_B
Next Address
WE31
WE39
WE33
WE45
WE32
WE40
WE34
WE46
WE42
WE41
EIM_DTACK_B
WE48
WE47
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 59
WE39 EIM_CSx_B Valid to
EIM_LBA_B Valid
WE14-WE6+(ADVA-CSA)×t-3.5+
(ADVA-CSA)×t
3.5+(ADVA-CSA)×tns
WE40 EIM_LBA_B Invalid to
EIM_CSx_B Invalid (ADVL is
asserted)
WE7-WE15-CSN×t-3.5-CSN×t3.5-CSN×tns
WE40A
(muxed
A/D)
EIM_CSx_B Valid to
EIM_LBA_B Invalid
WE14-WE6+(ADVN+ADVA+1-
CSA)×t
-3.5+(ADVN+AD
VA+1-CSA)×t
3.5+(ADVN+ADVA
+1-CSA)×t
ns
WE41 EIM_CSx_B Valid to Output Data
Valid
WE16-WE6-WCSA×t-3.5-WCSA×t3.5-WCSA×tns
WE41A
(muxed
A/D)
EIM_CSx_B Valid to Output Data
Valid
WE16-WE6+(WADVN+WADVA
+ADH+1-WCSA)×t
-3.5+(WADVN+
WADVA
+ADH+1-WCSA)
×t
3.5+(WADVN+WADVA
+ADH+1-WCSA)×t
ns
WE42 Output Data Invalid to
EIM_CSx_B Invalid
WE17-WE7-CSN×t-3.5-CSN×t3.5-CSN×tns
MAXCO Output maximum delay from
internal driving
EIM_ADDRxx/control flip-flops to
chip outputs.
10 10 ns
MAXCSO Output maximum delay from
internal chip selects driving
flip-flops to EIM_CSx_B out.
10 10 ns
MAXDI EIM_DATAxx MAXIMUM delay
from chip input data to its internal
flip-flop
5—5ns
WE43 Input Data Valid to EIM_CSx_B
Invalid
MAXCO-MAXCSO+MAXDI MAXCO-MAXCS
O+MAXDI
—ns
WE44 EIM_CSx_B Invalid to Input Data
Invalid
00ns
WE45 EIM_CSx_B Valid to EIM_EBx_B
Valid (Write access)
WE12-WE6+(WBEA-WCSA)×t -3.5+(WBEA-WC
SA)×t
3.5+(WBEA-WCSA)×tns
WE46 EIM_EBx_B Invalid to
EIM_CSx_B Invalid (Write
access)
WE7-WE13+(WBEN-WCSN)×t -3.5+(WBEN-WC
SN)×t
3.5+(WBEN-WCSN)×tns
MAXDTI Maximum delay from
EIM_DTACK_B input to its
internal flip-flop + 2 cycles for
synchronization
10 10 ns
WE47 EIM_DTACK_B Active to
EIM_CSx_B Invalid
MAXCO-MAXCSO+MAXDTI MAXCO-MAXCS
O+MAXDTI
—ns
WE48 EIM_CSx_B Invalid to
EIM_DTACK_B invalid
00ns
1For more information on configuration parameters mentioned in this table, see the i.MX 6SoloX Applications Processor
Reference Manual (IMX6SXRM).
Table 44. EIM Asynchronous Timing Parameters Relative to Chip Select1,2 (continued)
Ref No. Parameter Determination by Synchronous
measured parameters Min Max Unit
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
60 NXP Semiconductors
Electrical Characteristics
4.10 Multi-mode DDR Controller (MMDC)
The Multi-mode DDR Controller is a dedicated interface to DDR3/DDR3L/LPDDR2 SDRAM.
4.10.1 MMDC Compatibility with JEDEC-Compliant SDRAMs
The i.MX 6SoloX MMDC supports the following memory types:
LPDDR2 SDRAM compliant to JESD209-2B LPDDR2 JEDEC standard release June, 2009
DDR3 SDRAM compliant to JESD79-3D DDR3 JEDEC standard release April, 2008
MMDC operation with the standards stated above is contingent upon the board DDR design adherence to
the DDR design and layout requirements stated in the Hardware Development Guide for i.MX 6SoloX
Application Processors (IMX6SXHDG).
4.10.2 MMDC Supported DDR3/LPDDR2 Configurations
The table below shows the supported DDR3/LPDDR2 configurations:
2In this table:
t means clock period from axi_clk frequency.
CSA means register setting for WCSA when in write operations or RCSA when in read operations.
CSN means register setting for WCSN when in write operations or RCSN when in read operations.
ADVN means register setting for WADVN when in write operations or RADVN when in read operations.
ADVA means register setting for WADVA when in write operations or RADVA when in read operations.
Table 45. i.MX 6SoloX Supported DDR3/LPDDR2 Configurations
Parameter Min Max Unit
LPDDR2
JEDEC LPDDR2 Device Speed Grade1
1Higher speed grade memories are supported as long as they are backward compatible with the speed grade shown.
LPDDR2-800
JEDEC LPDDR2 Device Bus Width x16 x32 Bits
JEDEC LPDDR2 Device Count2
2Supported configurations are one 32-bit DDR memory or two 16-bit DDR memories.
1 2 Devices
DDR3/DDR3L
JEDEC DDR3/DDR3L Device Speed Grade3
3Higher speed grade memories are supported as long as they are backward compatible with the speed grade shown.
DDR3-800
JEDEC DDR3/DDR3L Device Bus Width x16 x32 Bits
JEDEC DDR3/DDR3L Device Count4
4Supported configurations are one 32-bit DDR memory or two 16-bit DDR memories.
1 2 Devices
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 61
4.11 General-Purpose Media Interface (GPMI) Timing
The i.MX 6SoloX GPMI controller is a flexible interface NAND Flash controller with 8-bit data width, up
to 200 MB/s I/O speed and individual chip select.
It supports Asynchronous timing mode, Source Synchronous timing mode and Samsung Toggle timing
mode separately described in the following subsections.
4.11.1 Asynchronous Mode AC Timing (ONFI 1.0 Compatible)
Asynchronous mode AC timings are provided as multiplications of the clock cycle and fixed delay. The
maximum I/O speed of GPMI in asynchronous mode is about 50 MB/s. Figure 22 through Figure 25
depicts the relative timing between GPMI signals at the module level for different operations under
asynchronous mode. Table 46 describes the timing parameters (NF1–NF17) that are shown in the figures.
Figure 22. Command Latch Cycle Timing Diagram
Figure 23. Address Latch Cycle Timing Diagram
Command
.!.$?#,%
.!.$?#%?"
.!.$?7%?"
.!.$?!,%
.!.$?$!4!XX
NF8 NF9
NF7
NF6
NF5
NF2
NF1
NF3 NF4
Address
NF10
NF11
NF9NF8
NF7
NF6
NF5
NF1
NF3
.!.$?#,%
.!.$?#%?"
.!.$?7%?"
.!.$?!,%
NAND_DATAxx
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
62 NXP Semiconductors
Electrical Characteristics
Figure 24. Write Data Latch Cycle Timing Diagram
Figure 25. Read Data Latch Cycle Timing Diagram (Non-EDO Mode)
Figure 26. Read Data Latch Cycle Timing Diagram (EDO Mode)
Table 46. Asynchronous Mode Timing Parameters1
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min Max
NF1 NAND_CLE setup time tCLS (AS + DS) ×T - 0.12 [see 2,3]ns
NF2 NAND_CLE hold time tCLH DH ×T - 0.72 [see 2]ns
NF3 NAND_CE0_B setup time tCS (AS + DS + 1) ×T [see 3,2]ns
NF4 NAND_CE0_B hold time tCH (DH+1) ×T - 1 [see 2]ns
NF5 NAND_WE_B pulse width tWP DS ×T [see 2]ns
NF6 NAND_ALE setup time tALS (AS + DS) ×T - 0.49 [see 3,2]ns
NF7 NAND_ALE hold time tALH (DH ×T - 0.42 [see 2]ns
Data to NF
NF10
NF11
NF7
NF6
NF5
NF1
NF3
.!.$?#,%
.!.$?#%?"
.!.$?7%?"
.!.$?!,%
.!.$?$!4!XX
NF9
NF8
Data from NF
NF14
NF15
NF17
NF16
NF12
NF13
.!.$?#,%
.!.$?#%?"
.!.$?2%?"
.!.$?2%!$9?"
.!.$?$!4!XX
Data from NF
NF14
NF15
NF17
NF16
NF12
NF13
.!.$?#,%
.!.$?#%?"
.!.$?2%?"
.!.$?2%!$9?"
NAND_DATAxx
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 63
In EDO mode (Figure 25), NF16/NF17 are different from the definition in non-EDO mode (Figure 24).
They are called tREA/tRHOH (RE# access time/RE# HIGH to output hold). The typical value for them
are 16 ns (max for tREA)/15 ns (min for tRHOH) at 50 MB/s EDO mode. In EDO mode, GPMI will
sample NAND_DATAxx at rising edge of delayed NAND_RE_B provided by an internal DPLL. The delay
value can be controlled by GPMI_CTRL1.RDN_DELAY (see the GPMI chapter of the i.MX 6SoloX
Applications Processor Reference Manual (IMX6SXRM)). The typical value of this control register is 0x8
at 50 MT/s EDO mode. But if the board delay is big enough and cannot be ignored, the delay value should
be made larger to compensate the board delay.
NF8 Data setup time tDS DS ×T - 0.26 [see 2]ns
NF9 Data hold time tDH DH ×T - 1.37 [see 2]ns
NF10 Write cycle time tWC (DS + DH) ×T [see 2]ns
NF11 NAND_WE_B hold time tWH DH ×T [see 2]ns
NF12 Ready to NAND_RE_B low tRR4(AS + 2) ×T [see 3,2]—ns
NF13 NAND_RE_B pulse width tRP DS ×T [see 2]ns
NF14 READ cycle time tRC (DS + DH) ×T [see 2]ns
NF15 NAND_RE_B high hold time tREH DH ×T [see 2]ns
NF16 Data setup on read tDSR (DS ×T -0.67)/18.38 [see 5,6]ns
NF17 Data hold on read tDHR 0.82/11.83 [see 5,6]—ns
1GPMI’s Async Mode output timing can be controlled by the module’s internal registers
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.
2 AS minimum value can be 0, while DS/DH minimum value is 1.
3T = GPMI clock period -0.075ns (half of maximum p-p jitter).
4NF12 is guaranteed by the design.
5Non-EDO mode.
6EDO mode, GPMI clock 100 MHz
(AS=DS=DH=1, GPMI_CTL1 [RDN_DELAY] = 8, GPMI_CTL1 [HALF_PERIOD] = 0).
Table 46. Asynchronous Mode Timing Parameters1 (continued)
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min Max
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
64 NXP Semiconductors
Electrical Characteristics
4.11.2 Source Synchronous Mode AC Timing (ONFI 2.x Compatible)
Figure 27 to Figure 29 show the write and read timing of Source Synchronous Mode.
Figure 27. Source Synchronous Mode Command and Address Timing Diagram
NF18
NF25 NF26
NF25 NF26
NF20
NF21
NF20
NF23
NF24
NF19
NF22
NF21
CMD ADD
.!.$?#%?"
NAND_CLE
NAND_ALE
NAND_WE/RE_B
NAND_CLK
NAND_DQS
NAND_DQS
Output enable
NAND_DATA[7:0]
NAND_DATA[7:0]
Output enable
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 65
Figure 28. Source Synchronous Mode Data Write Timing Diagram
Figure 29. Source Synchronous Mode Data Read Timing Diagram
NF23
NF18
NF25
NF26
NF27
NF25
NF26
NF28 NF28
NF29 NF29
NF23 NF24
NF24
NF19
NF27
NF22
.!.$?#%?"
.!.$?#,%
.!.$?!,%
NAND_WE/RE_B
.!.$?#,+
.!.$?$13
.!.$?$13
Output enable
.!.$?$1;=
.!.$?$1;=
Output enable
NF23
NF18
NF25
NF26
NF25
NF26
NF23 NF24
NF24
NF19
NF22
NF25
NF26
.!.$?#%?"
.!.$?#,%
NAND_ALE
.!.$?7%2%
.!.$?#,+
.!.$?$13
.!.$?$13
/UTPUTENABLE
.!.$?$!4!;=
.!.$?$!4!;=
/UTPUTENABLE
NF25
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
66 NXP Semiconductors
Electrical Characteristics
Figure 30. NAND_DQS/NAND_DQ Read Valid Window
For DDR Source sync mode, Figure 30 shows the timing diagram of NAND_DQS/NAND_DATAxx read
valid window. The typical value of tDQSQ is 0.85ns (max) and 1ns (max) for tQHS at 200MB/s. GPMI
will sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which
can be provided by an internal DPLL. The delay value can be controlled by GPMI register
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6SoloX
Applications Processor Reference Manual (IMX6SXRM)). Generally, the typical delay value of this
register is equal to 0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough
and cannot be ignored, the delay value should be made larger to compensate the board delay.
Table 47. Source Synchronous Mode Timing Parameters1
1GPMI’s source synchronous mode output timing can be controlled by the module’s internal registers
GPMI_TIMING2_CE_DELAY, GPMI_TIMING_PREAMBLE_DELAY, GPMI_TIMING2_POST_DELAY. This AC timing depends
on these registers settings. In the table, CE_DELAY/PRE_DELAY/POST_DELAY represents each of these settings.
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min Max
NF18 NAND_CE0_B access time tCE CE_DELAY ×T - 0.79 [see 2]
2T = tCK(GPMI clock period) -0.075ns (half of maximum p-p jitter).
ns
NF19 NAND_CE0_B hold time tCH 0.5 ×tCK - 0.63 [see 2]ns
NF20 Command/address NAND_DATAxx setup time tCAS 0.5 ×tCK - 0.05 ns
NF21 Command/address NAND_DATAxx hold time tCAH 0.5 ×tCK - 1.23 ns
NF22 clock period tCK ns
NF23 preamble delay tPRE PRE_DELAY ×T - 0.29 [see 2]ns
NF24 postamble delay tPOST POST_DELAY ×T - 0.78 [see 2]ns
NF25 NAND_CLE and NAND_ALE setup time tCALS 0.5 ×tCK - 0.86 ns
NF26 NAND_CLE and NAND_ALE hold time tCALH 0.5 ×tCK - 0.37 ns
NF27 NAND_CLK to first NAND_DQS latching transition tDQSS T - 0.41 [see 2]ns
NF28 Data write setup 0.25 ×tCK - 0.35
NF29 Data write hold 0.25 ×tCK - 0.85
NF30 NAND_DQS/NAND_DQ read setup skew 2.06
NF31 NAND_DQS/NAND_DQ read hold skew 1.95
D0 D1 D2 D3
.!.$?$13
.!.$?$!4!;=
NF30
NF31
NF30
NF31
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 67
4.11.3 Samsung Toggle Mode AC Timing
4.11.3.1 Command and Address Timing
NOTE
Samsung Toggle Mode command and address timing is the same as ONFI
1.0 compatible Async mode AC timing. See Section 4.11.1, “Asynchronous
Mode AC Timing (ONFI 1.0 Compatible),” for details.
4.11.3.2 Read and Write Timing
Figure 31. Samsung Toggle Mode Data Write Timing
.!.$?$!4!;=
DEV?CLK
.!.$?#%X?"
.!.$?#,%
.!.$?!,%
.!.$?7%?"
.!.$?2%?"
.!.$?$13
T#+
.& .&
T#+
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
68 NXP Semiconductors
Electrical Characteristics
Figure 32. Samsung Toggle Mode Data Read Timing
Table 48. Samsung Toggle Mode Timing Parameters1
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min Max
NF1 NAND_CLE setup time tCLS (AS + DS) ×T - 0.12 [see 2,3]—
NF2 NAND_CLE hold time tCLH DH ×T - 0.72 [see 2]—
NF3 NAND_CE0_B setup time tCS (AS + DS) ×T - 0.58 [see 3,2]—
NF4 NAND_CE0_B hold time tCH DH ×T - 1 [see 2]—
NF5 NAND_WE_B pulse width tWP DS ×T [see 2]—
NF6 NAND_ALE setup time tALS (AS + DS) ×T - 0.49 [see 3,2]—
NF7 NAND_ALE hold time tALH DH ×T - 0.42 [see 2]—
NF8 Command/address NAND_DATAxx setup time tCAS DS ×T - 0.26 [see 2]—
NF9 Command/address NAND_DATAxx hold time tCAH DH ×T - 1.37 [see 2]—
NF18 NAND_CEx_B access time tCE CE_DELAY ×T [see 4,2]—ns
NF22 clock period tCK ns
NF23 preamble delay tPRE PRE_DELAY ×T [see 5,2]—ns
NF24 postamble delay tPOST POST_DELAY ×T +0.43 [see 2]— ns
DEV?CLK
.!.$?#%X?"
.!.$?#,%
.!.$?!,%
.!.$?7%?"
.!.$?2%?"
.!.$?$13
.!.$?$!4!;=
.&
T#+
T#+
.&
T#+
T#+
.& T#+
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 69
For DDR Toggle mode, Figure 30 shows the timing diagram of NAND_DQS/NAND_DATAxx read valid
window. The typical value of tDQSQ is 1.4 ns (max) and 1.4 ns (max) for tQHS at 133 MB/s. GPMI will
sample NAND_DATA[7:0] at both rising and falling edge of an delayed NAND_DQS signal, which is
provided by an internal DPLL. The delay value of this register can be controlled by GPMI register
GPMI_READ_DDR_DLL_CTRL.SLV_DLY_TARGET (see the GPMI chapter of the i.MX 6SoloX
Applications Processor Reference Manual (IMX6SXRM)). Generally, the typical delay value is equal to
0x7 which means 1/4 clock cycle delay expected. But if the board delay is big enough and cannot be
ignored, the delay value should be made larger to compensate the board delay.
4.12 External Peripheral Interface Parameters
The following subsections provide information on external peripheral interfaces.
4.12.1 AUDMUX Timing Parameters
The AUDMUX provides a programmable interconnect logic for voice, audio, and data routing between
internal serial interfaces (SSIs) and external serial interfaces (audio and voice codecs). The AC timing of
AUDMUX external pins is governed by the SSI module. For more information, see the respective SSI
electrical specifications found within this document.
4.12.2 CMOS Sensor Interface (CSI) Timing Parameters
The CSI enables the chip to connect directly to external CMOS image sensors, which are classified as
dumb or smart as follows:
Dumb sensors only support traditional sensor timing (vertical sync (VSYNC) and horizontal sync
(HSYNC)) and output-only Bayer and statistics data.
NF28 Data write setup tDS60.25 ×tCK - 0.32 ns
NF29 Data write hold tDH60.25 ×tCK - 0.79 ns
NF30 NAND_DQS/NAND_DQ read setup skew tDQSQ7—3.18
NF31 NAND_DQS/NAND_DQ read hold skew tQHS7—3.27
1The GPMI toggle mode output timing can be controlled by the module’s internal registers
HW_GPMI_TIMING0_ADDRESS_SETUP, HW_GPMI_TIMING0_DATA_SETUP, and HW_GPMI_TIMING0_DATA_HOLD.
This AC timing depends on these registers settings. In the table, AS/DS/DH represents each of these settings.
2 AS minimum value can be 0, while DS/DH minimum value is 1.
3T = tCK (GPMI clock period) -0.075ns (half of maximum p-p jitter).
4CE_DELAY represents HW_GPMI_TIMING2[CE_DELAY]. NF18 is guaranteed by the design. Read/Write operation is started
with enough time of ALE/CLE assertion to low level.
5PRE_DELAY+1) (AS+DS)
6Shown in Figure 31.
7Shown in Figure 32.
Table 48. Samsung Toggle Mode Timing Parameters1 (continued)
ID Parameter Symbol
Timing
T = GPMI Clock Cycle Unit
Min Max
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
70 NXP Semiconductors
Electrical Characteristics
Smart sensors support CCIR656 video decoder formats and perform additional processing of the
image (for example, image compression, image pre-filtering, and various data output formats).
The following subsections describe the CSI timing in gated and ungated clock modes.
4.12.2.1 Gated Clock Mode Timing
Figure 33 and Figure 34 shows the gated clock mode timings for CSI, and Table 49 describes the timing
parameters (P1–P7) shown in the figures. A frame starts with a rising/falling edge on CSI_VSYNC
(VSYNC), then CSI_HSYNC (HSYNC) is asserted and holds for the entire line. The pixel clock,
CSI_PIXCLK (PIXCLK), is valid as long as HSYNC is asserted.
Figure 33. CSI Gated Clock Mode—Sensor Data at Falling Edge, Latch Data at Rising Edge
Figure 34. CSI Gated Clock Mode—Sensor Data at Rising Edge, Latch Data at Falling Edge
CSI_PIXCLK
CSI_VSYNC
CSI_DATA[15:00]
P5
P1
P3 P4
CSI_HSYNC
P2 P6
P7
CSI_PIXCLK
CSI_VSYNC
CSI_DATA[15:00]
P6
P1
P3 P4
CSI_HSYNC
P2 P5
P7
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 71
4.12.2.2 Ungated Clock Mode Timing
Figure 35 shows the ungated clock mode timings of CSI, and Table 50 describes the timing parameters
(P1–P6) that are shown in the figure. In ungated mode the CSI_VSYNC and CSI_PIXCLK signals are
used, and the CSI_HSYNC signal is ignored.
Figure 35. CSI Ungated Clock Mode—Sensor Data at Falling Edge, Latch Data at Rising Edge
Table 49. CSI Gated Clock Mode Timing Parameters
ID Parameter Symbol Min Max Units
P1 CSI_VSYNC to CSI_HSYNC time tV2H 33.5 ns
P2 CSI_HSYNC setup time tHsu 1 ns
P3 CSI DATA setup time tDsu 1 ns
P4 CSI DATA hold time tDh 1 ns
P5 CSI pixel clock high time tCLKh 3.75 ns
P6 CSI pixel clock low time tCLKl 3.75 ns
P7 CSI pixel clock frequency fCLK 133 MHz
Table 50. CSI Ungated Clock Mode Timing Parameters
ID Parameter Symbol Min Max Units
P1 CSI_VSYNC to pixel clock time tVSYNC 33.5 ns
P2 CSI DATA setup time tDsu 1 ns
P3 CSI DATA hold time tDh 1 ns
P4 CSI pixel clock high time tCLKh 3.75 ns
P5 CSI pixel clock low time tCLKl 3.75 ns
P6 CSI pixel clock frequency fCLK 133 MHz
CSI_PIXCLK
CSI_VSYNC
CSI_DATA[15:00]
P4
P1
P2 P3
P5
P6
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
72 NXP Semiconductors
Electrical Characteristics
4.12.3 ECSPI Timing Parameters
This section describes the timing parameters of the ECSPI blocks. The ECSPI have separate timing
parameters for master and slave modes.
4.12.3.1 ECSPI Master Mode Timing
Figure 36 depicts the timing of ECSPI in master mode. Table 51 lists the ECSPI master mode timing
characteristics.
Figure 36. ECSPI Master Mode Timing Diagram
NOTE
ECSPIx_MOSI is always driven (not tri-stated) between actual data
transmissions. This limits the ECSPI to be connected between a single
master and a single slave.
Table 51. ECSPI Master Mode Timing Parameters
ID Parameter Symbol Min Max Unit
CS1 ECSPIx_SCLK Cycle Time–Read
ECSPIx_SCLK Cycle Time–Write
tclk 43
15
—ns
CS2 ECSPIx_SCLK High or Low Time–Read
ECSPIx_SCLK High or Low Time–Write
tSW 21.5
7
—ns
CS3 ECSPIx_SCLK Rise or Fall1tRISE/FALL ——ns
CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period ns
CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS Half ECSPIx_SCLK period - 4 ns
CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS Half ECSPIx_SCLK period - 2 ns
CS7 ECSPIx_MOSI Propagation Delay (CLOAD =20pF) t
PDmosi -1 1 ns
CS8 ECSPIx_MISO Setup Time tSmiso 14 ns
CS7
CS2
CS2
CS4
CS6 CS5
CS8 CS9
ECSPIx_SCLK
ECSPIx_SS_B
ECSPIx_MOSI
ECSPIx_MISO
ECSPIx_RDY_B
CS10
CS3
CS3
CS1
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 73
4.12.3.2 ECSPI Slave Mode Timing
Figure 37 depicts the timing of ECSPI in slave mode. Table 52 lists the ECSPI slave mode timing
characteristics.
Figure 37. ECSPI Slave Mode Timing Diagram
NOTE
ECSPIx_MISO is always driven (not tri-stated) between actual data
transmissions. This limits the ECSPI to be connected between a single
master and a single slave.
CS9 ECSPIx_MISO Hold Time tHmiso 0—ns
CS10 RDY to ECSPIx_SS_B Time2tSDRY 5—ns
1See specific I/O AC parameters Section 4.7, “I/O AC Parameters.”
2SPI_RDY is sampled internally by ipg_clk and is asynchronous to all other CSPI signals.
Table 52. ECSPI Slave Mode Timing Parameters
ID Parameter Symbol Min Max Unit
CS1 ECSPIx_SCLK Cycle Time–Read
ECSPI_SCLK Cycle Time–Write
tclk 15
43
—ns
CS2 ECSPIx_SCLK High or Low Time–Read
ECSPIx_SCLK High or Low Time–Write
tSW 7
21.5
—ns
CS4 ECSPIx_SS_B pulse width tCSLH Half ECSPIx_SCLK period ns
CS5 ECSPIx_SS_B Lead Time (CS setup time) tSCS 5—ns
CS6 ECSPIx_SS_B Lag Time (CS hold time) tHCS 5—ns
CS7 ECSPIx_MOSI Setup Time tSmosi 4—ns
CS8 ECSPIx_MOSI Hold Time tHmosi 4—ns
CS9 ECSPIx_MISO Propagation Delay (CLOAD =20pF) t
PDmiso 419ns
Table 51. ECSPI Master Mode Timing Parameters (continued)
ID Parameter Symbol Min Max Unit
CS1
CS7 CS8
CS2
CS2
CS4
CS6 CS5
CS9
ECSPIx_SCLK
ECSPIx_SS_B
ECSPIx_MISO
ECSPIx_MOSI
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
74 NXP Semiconductors
Electrical Characteristics
4.12.4 Enhanced Serial Audio Interface (ESAI) Timing Parameters
The ESAI consists of independent transmitter and receiver sections, each section with its own clock
generator. Table 53 shows the interface timing values. The number field in the table refers to timing
signals found in Figure 38 and Figure 39.
Table 53. Enhanced Serial Audio Interface (ESAI) Timing
No. Characteristics1,2 Symbol Expression2Min Max Condition3Unit
62 Clock cycle4tSSICC 4 × Tc
4 × Tc
30.0
30.0
i ck
i ck
ns
63 Clock high period:
For internal clock
For external clock
2 × Tc 9.0
2 × Tc
6
15
ns
64 Clock low period:
For internal clock
For external clock
2 × Tc 9.0
2 × Tc
6
15
ns
65 ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) high
17.0
7.0
x ck
i ck a
ns
66 ESAI_RX_CLK rising edge to ESAI_RX_FS out (bl) low
17.0
7.0
x ck
i ck a
ns
67 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr)
high5
19.0
9.0
x ck
i ck a
ns
68 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wr) low5
19.0
9.0
x ck
i ck a
ns
69 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wl) high
16.0
6.0
x ck
i ck a
ns
70 ESAI_RX_CLK rising edge to ESAI_RX_FS out (wl) low
17.0
7.0
x ck
i ck a
ns
71 Data in setup time before ESAI_RX_CLK (SCK in
synchronous mode) falling edge
12.0
19.0
x ck
i ck
ns
72 Data in hold time after ESAI_RX_CLK falling edge
3.5
9.0
x ck
i ck
ns
73 ESAI_RX_FS input (bl, wr) high before ESAI_RX_CLK
falling edge5
2.0
12.0
x ck
i ck a
ns
74 ESAI_RX_FS input (wl) high before ESAI_RX_CLK
falling edge
2.0
12.0
x ck
i ck a
ns
75 ESAI_RX_FS input hold time after ESAI_RX_CLK falling
edge
2.5
8.5
x ck
i ck a
ns
78 ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) high
18.0
8.0
x ck
i ck
ns
79 ESAI_TX_CLK rising edge to ESAI_TX_FS out (bl) low
20.0
10.0
x ck
i ck
ns
80 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr)
high5
20.0
10.0
x ck
i ck
ns
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 75
81 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wr) low5
22.0
12.0
x ck
i ck
ns
82 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) high
19.0
9.0
x ck
i ck
ns
83 ESAI_TX_CLK rising edge to ESAI_TX_FS out (wl) low
20.0
10.0
x ck
i ck
ns
84 ESAI_TX_CLK rising edge to data out enable from high
impedance
22.0
17.0
x ck
i ck
ns
86 ESAI_TX_CLK rising edge to data out valid
18.0
13.0
x ck
i ck
ns
87 ESAI_TX_CLK rising edge to data out high impedance 67
21.0
16.0
x ck
i ck
ns
89 ESAI_TX_FS input (bl, wr) setup time before
ESAI_TX_CLK falling edge5
2.0
18.0
x ck
i ck
ns
90 ESAI_TX_FS input (wl) setup time before ESAI_TX_CLK
falling edge
2.0
18.0
x ck
i ck
ns
91 ESAI_TX_FS input hold time after ESAI_TX_CLK falling
edge
4.0
5.0
x ck
i ck
ns
95 ESAI_RX_HF_CLK/ESAI_TX_HF_CLK clock cycle 2 x TC15 ns
96 ESAI_TX_HF_CLK input rising edge to ESAI_TX_CLK
output
——18.0ns
97 ESAI_RX_HF_CLK input rising edge to ESAI_RX_CLK
output
——18.0ns
1i ck = internal clock
x ck = external clock
i ck a = internal clock, asynchronous mode
(asynchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are two different clocks)
i ck s = internal clock, synchronous mode
(synchronous implies that ESAI_TX_CLK and ESAI_RX_CLK are the same clock)
2bl = bit length
wl = word length
wr = word length relative
3ESAI_TX_CLK(SCKT pin) = transmit clock
ESAI_RX_CLK(SCKR pin) = receive clock
ESAI_TX_FS(FST pin) = transmit frame sync
ESAI_RX_FS(FSR pin) = receive frame sync
ESAI_TX_HF_CLK(HCKT pin) = transmit high frequency clock
ESAI_RX_HF_CLK(HCKR pin) = receive high frequency clock
4For the internal clock, the external clock cycle is defined by Icyc and the ESAI control register.
5The word-relative frame sync signal waveform relative to the clock operates in the same manner as the bit-length frame sync
signal waveform, but it spreads from one serial clock before the first bit clock (like the bit length frame sync signal), until the
second-to-last bit clock of the first word in the frame.
6Periodically sampled and not 100% tested.
Table 53. Enhanced Serial Audio Interface (ESAI) Timing (continued)
No. Characteristics1,2 Symbol Expression2Min Max Condition3Unit
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
76 NXP Semiconductors
Electrical Characteristics
Figure 38. ESAI Transmitter Timing
ESAI_TX_CLK
(Input/Output)
ESAI_TX_FS
(Bit)
Out
ESAI_TX_FS
(Word)
Out
Data Out
ESAI_TX_FS
(Bit) In
ESAI_TX_FS
(Word) In
62
64
78 79
82 83
87
8686
84
91
89
90 91
63
Last BitFirst Bit
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 77
Figure 39. ESAI Receiver Timing
ESAI_RX_CLK
(Input/Output)
ESAI_RX_FS
(Bit)
Out
ESAI_RX_FS
(Word)
Out
Data In
ESAI_RX_FS
(Bit)
In
ESAI_RX_FS
(Word)
In
62
64
65
69 70
72
71
75
73
74 75
63
66
First Bit Last Bit
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
78 NXP Semiconductors
Electrical Characteristics
4.12.5 Ultra High Speed SD/SDIO/MMC Host Interface (uSDHC)
AC Timing
This section describes the electrical information of the uSDHC, which includes SD/eMMC4.3 (Single
Data Rate) timing, eMMC4.4/4.41 (Dual Date Rate) timing and SDR104/50(SD3.0) timing.
4.12.5.1 SD/eMMC4.3 (Single Data Rate) AC Timing
Figure 40 depicts the timing of SD/eMMC4.3, and Table 54 lists the SD/eMMC4.3 timing characteristics.
Figure 40. SD/eMMC4.3 Timing
Table 54. SD/eMMC4.3 Interface Timing Specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency (Low Speed) fPP10 400 kHz
Clock Frequency (SD/SDIO Full Speed/High Speed) fPP20 25/50 MHz
Clock Frequency (MMC Full Speed/High Speed) fPP30 20/52 MHz
Clock Frequency (Identification Mode) fOD 100 400 kHz
SD2 Clock Low Time tWL 7—ns
SD3 Clock High Time tWH 7—ns
SD4 Clock Rise Time tTLH —3ns
SD5 Clock Fall Time tTHL —3ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)
SD6 uSDHC Output Delay tOD -6.6 3.6 ns
SD1
SD3
SD5
SD4
SD7
SDx_CLK
SD2
SD8
SD6
Output from uSDHC to card
Input from card to uSDHC
SDx_DATA[7:0]
SDx_DATA[7:0]
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 79
4.12.5.2 eMMC4.4/4.41 (Dual Data Rate) AC Timing
Figure 41 depicts the timing of eMMC4.4/4.41. Table 55 lists the eMMC4.4/4.41 timing characteristics.
Be aware that only DATA is sampled on both edges of the clock (not applicable to CMD).
Figure 41. eMMC4.4/4.41 Timing
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)
SD7 uSDHC Input Setup Time tISU 2.5 ns
SD8 uSDHC Input Hold Time4tIH 1.5 ns
1In low speed mode, card clock must be lower than 400 kHz, voltage ranges from 2.7 to 3.6 V.
2In normal (full) speed mode for SD/SDIO card, clock frequency can be any value between 025 MHz. In high-speed mode,
clock frequency can be any value between 050 MHz.
3In normal (full) speed mode for MMC card, clock frequency can be any value between 020 MHz. In high-speed mode, clock
frequency can be any value between 052 MHz.
4To satisfy hold timing, the delay difference between clock input and cmd/data input must not exceed 2 ns.
Table 55. eMMC4.4/4.41 Interface Timing Specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency (eMMC4.4/4.41 DDR) fPP 052MHz
SD1 Clock Frequency (SD3.0 DDR) fPP 050MHz
uSDHC Output / Card Inputs SD_CMD, SDx_DATAx (Reference to CLK)
SD2 uSDHC Output Delay tOD 2.8 6.8 ns
uSDHC Input / Card Outputs SD_CMD, SDx_DATAx (Reference to CLK)
SD3 uSDHC Input Setup Time tISU 1.7 ns
SD4 uSDHC Input Hold Time tIH 1.5 ns
Table 54. SD/eMMC4.3 Interface Timing Specification (continued)
ID Parameter Symbols Min Max Unit
SD1
SD2
SD3
Output from eSDHCv3 to card
Input from card to eSDHCv3
SDx_DATA[7:0]
SDx_CLK
SD4
SD2
......
......
SDx_DATA[7:0]
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
80 NXP Semiconductors
Electrical Characteristics
4.12.5.3 SDR50/SDR104 AC Timing
Figure 42 depicts the timing of SDR50/SDR104, and Table 56 lists the SDR50/SDR104 timing
characteristics.
Figure 42. SDR50/SDR104 Timing
4.12.5.4 HS200 Mode Timing
Figure 43 depicts the timing of HS200 mode, and Table 57 lists the HS200 timing characteristics.
Table 56. SDR50/SDR104 Interface Timing Specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency Period tCLK 4.8 ns
SD2 Clock Low Time tCL 0.46 × tCLK 0.54 × tCLK ns
SD3 Clock High Time tCH 0.46 × tCLK 0.54 × tCLK ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)
SD4 uSDHC Output Delay tOD –3 1 ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)
SD5 uSDHC Output Delay tOD –1.6 0.74 ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR50 (Reference to CLK)
SD6 uSDHC Input Setup Time tISU 2.5 ns
SD7 uSDHC Input Hold Time tIH 1.5 ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in SDR104 (Reference to CLK)1
1Data window in SDR100 mode is variable.
SD8 Card Output Data Window tODW 0.5 × tCLK ns
Output from uSDHC to card
SCK
SD4
SD3
SD5
SD8
SD7
SD6
SD1
SD2
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 81
Figure 43. HS200 Mode Timing
4.12.5.5 Bus Operation Condition for 3.3 V and 1.8 V Signaling
Signaling level of SD/eMMC4.3 and eMMC4.4/4.41 modes is 3.3 V. Signaling level of SDR104/SDR50
mode is 1.8 V. The DC parameters for the NVCC_SD1, NVCC_SD2, and NVCC_SD4 supplies are
identical to those shown in Table 24, “Single Voltage GPIO DC Parameters”. The DC parameters for the
NVCC_LOW/NVCC_HIGH are identical to those shown in Table 25, “Dual Voltage GPIO I/O DC
Parameters”.
4.12.6 Ethernet Controller (ENET) AC Electrical Specifications
The following timing specs are defined at the chip I/O pin and must be translated appropriately to arrive
at timing specs/constraints for the physical interface.
Table 57. HS200 Interface Timing Specification
ID Parameter Symbols Min Max Unit
Card Input Clock
SD1 Clock Frequency Period tCLK 5.0 ns
SD2 Clock Low Time tCL 0.46 x tCLK 0.54 x tCLK ns
SD3 Clock High Time tCH 0.46 x tCLK 0.54 x tCLK ns
uSDHC Output/Card Inputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)
SD5 uSDHC Output Delay tOD –1.6 0.74 ns
uSDHC Input/Card Outputs SD_CMD, SDx_DATAx in HS200 (Reference to CLK)1
1HS200 is for 8 bits while SDR104 is for 4 bits.
SD8 Card Output Data Window tODW 0.5 x tCLK —ns
SCK
8-bit output from uSDHC to eMMC
8-bit input from eMMC to uSDHC
SD8
SD4/SD5
SD2 SD3
SD1
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
82 NXP Semiconductors
Electrical Characteristics
4.12.6.1 ENET MII Mode Timing
This subsection describes MII receive, transmit, asynchronous inputs, and serial management signal
timings.
4.12.6.1.1 MII Receive Signal Timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN,
ENET_RX_ER, and ENET_RX_CLK)
The receiver functions correctly up to an ENET_RX_CLK maximum frequency of 25 MHz + 1%. There
is no minimum frequency requirement.
Figure 44 shows MII receive signal timings. Table 58 describes the timing parameters (M1–M4) shown in
the figure.
Figure 44. MII Receive Signal Timing Diagram
1 ENET_RX_EN, ENET_RX_CLK, and ENET0_RXD0 have the same timing in 10 Mbps 7-wire interface mode.
4.12.6.1.2 MII Transmit Signal Timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER, and ENET_TX_CLK)
The transmitter functions correctly up to an ENET_TX_CLK maximum frequency of 25 MHz + 1%.
There is no minimum frequency requirement.
Table 58. MII Receive Signal Timing
ID Characteristic1Min Max Unit
M1 ENET_RX_DATA3,2,1,0, ENET_RX_EN, ENET_RX_ER to
ENET_RX_CLK setup
5— ns
M2 ENET_RX_CLK to ENET_RX_DATA3,2,1,0, ENET_RX_EN,
ENET_RX_ER hold
5— ns
M3 ENET_RX_CLK pulse width high 35% 65% ENET_RX_CLK period
M4 ENET_RX_CLK pulse width low 35% 65% ENET_RX_CLK period
ENET_RX_CLK (input)
ENET_RX_DATA3,2,1,0
M3
M4
M1 M2
ENET_RX_ER
ENET_RX_EN
(inputs)
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 83
Figure 45 shows MII transmit signal timings. Table 59 describes the timing parameters (M5–M8) shown
in the figure.
Figure 45. MII Transmit Signal Timing Diagram
1 ENET_TX_EN, ENET_TX_CLK, and ENET0_TXD0 have the same timing in 10-Mbps 7-wire interface mode.
4.12.6.1.3 MII Asynchronous Inputs Signal Timing (ENET_CRS and ENET_COL)
Figure 46 shows MII asynchronous input timings. Table 60 describes the timing parameter (M9) shown in
the figure.
Figure 46. MII Async Inputs Timing Diagram
1 ENET_COL has the same timing in 10-Mbit 7-wire interface mode.
Table 59. MII Transmit Signal Timing
ID Characteristic1Min Max Unit
M5 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER invalid
5— ns
M6 ENET_TX_CLK to ENET_TX_DATA3,2,1,0, ENET_TX_EN,
ENET_TX_ER valid
—20 ns
M7 ENET_TX_CLK pulse width high 35% 65% ENET_TX_CLK period
M8 ENET_TX_CLK pulse width low 35% 65% ENET_TX_CLK period
Table 60. MII Asynchronous Inputs Signal Timing
ID Characteristic Min Max Unit
M91ENET_CRS to ENET_COL minimum pulse width 1.5 ENET_TX_CLK period
ENET_TX_CLK (input)
ENET_TX_DATA3,2,1,0
M7
M8
M5
M6
ENET_TX_ER
ENET_TX_EN
(outputs)
ENET_CRS, ENET_COL
M9
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
84 NXP Semiconductors
Electrical Characteristics
4.12.6.1.4 MII Serial Management Channel Timing (ENET_MDIO and ENET_MDC)
The MDC frequency is designed to be equal to or less than 2.5 MHz to be compatible with the IEEE 802.3
MII specification. However the ENET can function correctly with a maximum MDC frequency of
15 MHz.
Figure 47 shows MII asynchronous input timings. Table 61 describes the timing parameters (M10–M15)
shown in the figure.
Figure 47. MII Serial Management Channel Timing Diagram
4.12.6.2 RMII Mode Timing
In RMII mode, ENET_CLK is used as the REF_CLK, which is a 50 MHz ± 50 ppm continuous reference
clock. ENET_RX_EN is used as the ENET_RX_EN in RMII. Other signals under RMII mode include
ENET_TX_EN, ENET_TX_DATA[1:0], ENET_RX_DATA[1:0] and ENET_RX_ER.
Table 61. MII Serial Management Channel Timing
ID Characteristic Min Max Unit
M10 ENET_MDC falling edge to ENET_MDIO output invalid (minimum
propagation delay)
0— ns
M11 ENET_MDC falling edge to ENET_MDIO output valid
(maximum propagation delay)
—5 ns
M12 ENET_MDIO (input) to ENET_MDC rising edge setup 18 ns
M13 ENET_MDIO (input) to ENET_MDC rising edge hold 0 ns
M14 ENET_MDC pulse width high 40% 60% ENET_MDC period
M15 ENET_MDC pulse width low 40% 60% ENET_MDC period
ENET_MDC (output)
ENET_MDIO (output)
M14
M15
M10
M11
M12 M13
ENET_MDIO (input)
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 85
Figure 48 shows RMII mode timings. Table 62 describes the timing parameters (M16–M21) shown in the
figure.
Figure 48. RMII Mode Signal Timing Diagram
4.12.6.3 Signal Switching Specifications
The following timing specifications meet the requirements for RGMII interfaces for a range of transceiver
devices.
Table 62. RMII Signal Timing
ID Characteristic Min Max Unit
M16 ENET_CLK pulse width high 35% 65% ENET_CLK period
M17 ENET_CLK pulse width low 35% 65% ENET_CLK period
M18 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA invalid 4 ns
M19 ENET_CLK to ENET0_TXD[1:0], ENET_TX_DATA valid 13 ns
M20 ENET_RX_DATAD[1:0], ENET_RX_EN(ENET_RX_EN), ENET_RX_ER to
ENET_CLK setup
2— ns
M21 ENET_CLK to ENET_RX_DATAD[1:0], ENET_RX_EN, ENET_RX_ER hold 2 ns
Table 63. RGMII Signal Switching Specifications 1
Symbol Description Min Max Unit
Tcyc2Clock cycle duration 7.2 8.8 ns
TskewT3Data to clock output skew at transmitter -500 500 ps
ENET_CLK (input)
ENET_TX_EN
M16
M17
M18
M19
M20 M21
ENET_RX_DATA[1:0]
ENET_TX_DATA (output)
ENET_RX_ER
ENET_RX_EN (input)
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
86 NXP Semiconductors
Electrical Characteristics
Figure 49. RGMII Transmit Signal Timing Diagram Original
TskewR4Data to clock input skew at receiver 1 2.6 ns
Duty_G5Duty cycle for Gigabit 45 55 %
Duty_T6Duty cycle for 10/100T 40 60 %
Tr/Tf Rise/fall time (20–80%) 0.75 ns
1For all signals, the maximum load is as follows:
CL = 5 pF at 1.8 V
CL = 10 pF at 2.5 V
See Figure 4 for the test circuit.
2For 10 Mbps and 100 Mbps, Tcyc will scale to 400 ns ±40 ns and 40 ns ±4 ns respectively.
3For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional
trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value
is unspecified.
4For all versions of RGMII prior to 2.0; This implies that PC board design will require clocks to be routed such that an additional
trace delay of greater than 1.5 ns and less than 2.0 ns will be added to the associated clock signal. For 10/100, the Max value
is unspecified.
5Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long
as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned
between.
6Duty cycle may be stretched/shrunk during speed changes or while transitioning to a received packet's clock domain as long
as minimum duty cycle is not violated and stretching occurs for no more than three Tcyc of the lowest speed transitioned
between.
Table 63. RGMII Signal Switching Specifications 1 (continued)
Symbol Description Min Max Unit
2'-))?48#ATTRANSMITTER
2'-))?48$NNTO
2'-))?48?#4,
2'-))?48#ATRECEIVER
4SKEW4
48%. 48%22
4SKEW2
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 87
Figure 50. RGMII Receive Signal Timing Diagram Original
Figure 51. RGMII Receive Signal Timing Diagram with Internal Delay
4.12.7 Flexible Controller Area Network (FLEXCAN) AC Electrical
Specifications
The Flexible Controller Area Network (FlexCAN) module is a communication controller implementing
the CAN protocol according to the CAN 2.0B protocol specification. The processor has two CAN modules
available for systems design. Tx and Rx ports for both modules are multiplexed with other I/O pins. See
the IOMUXC chapter of the i.MX 6SoloX Applications Processor Reference Manual (IMX6SXRM) to see
which pins expose Tx and Rx pins; these ports are named CAN_TX and CAN_RX, respectively.
2'-))?28#ATTRANSMITTER
2'-))?28$NNTO
2'-))?28?#4,
2'-))?28#ATRECEIVER
4SKEW4
28$6 28%22
4SKEW2
2'-))?28#SOURCEOFDATA
2'-))?28$NNTO
2'-))?28?#4,
2'-))?28#ATRECEIVER
)NTERNALDELAY
4SETUP4 4HOLD4
4SETUP2 4HOLD2
28$6 28%22
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
88 NXP Semiconductors
Electrical Characteristics
4.12.8 I2C Module Timing Parameters
This section describes the timing parameters of the I2C module. Figure 52 depicts the timing of I2C
module, and Table 64 lists the I2C module timing characteristics.
Figure 52. I2C Bus Timing
Table 64. I2C Module Timing Parameters
ID Parameter
Standard Mode Fast Mode
Unit
Min Max Min Max
IC1 I2Cx_SCL cycle time 10 2.5 µs
IC2 Hold time (repeated) START condition 4.0 0.6 µs
IC3 Set-up time for STOP condition 4.0 0.6 µs
IC4 Data hold time 01
1A device must internally provide a hold time of at least 300 ns for I2Cx_SDA signal to bridge the undefined region of the falling
edge of I2Cx_SCL.
3.452
2The maximum hold time has only to be met if the device does not stretch the LOW period (ID no IC5) of the I2Cx_SCL signal.
010.92µs
IC5 HIGH Period of I2Cx_SCL Clock 4.0 0.6 µs
IC6 LOW Period of the I2Cx_SCL Clock 4.7 1.3 µs
IC7 Set-up time for a repeated START condition 4.7 0.6 µs
IC8 Data set-up time 250 1003
3A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement of Set-up time (ID No IC7)
of 250 ns must be met. This automatically is the case if the device does not stretch the LOW period of the I2Cx_SCL signal.
If such a device does stretch the LOW period of the I2Cx_SCL signal, it must output the next data bit to the I2Cx_SDA line
max_rise_time (IC9) + data_setup_time (IC7) = 1000 + 250 = 1250 ns (according to the Standard-mode I2C-bus specification)
before the I2Cx_SCL line is released.
—ns
IC9 Bus free time between a STOP and START condition 4.7 1.3 µs
IC10 Rise time of both I2Cx_SDA and I2Cx_SCL signals 1000 20 + 0.1Cb4
4Cb = total capacitance of one bus line in pF.
300 ns
IC11 Fall time of both I2Cx_SDA and I2Cx_SCL signals 300 20 + 0.1Cb4300 ns
IC12 Capacitive load for each bus line (Cb) 400 400 pF
IC10 IC11 IC9
IC2 IC8 IC4 IC7 IC3
IC6
IC10
IC5
IC11 START STOP START
START
I2Cx_SDA
I2Cx_SCL
IC1
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 89
4.12.9 LCD Controller (LCDIF) Timing Parameters
Figure 53 shows the LCDIF timing and Table 65 lists the timing parameters.
Figure 53. LCD Timing
4.12.9.1 LCDIF Display Interface Signal Mapping
Table 65. LCD Timing Parameters
ID Parameter Symbol Min Max Unit
L1 LCD pixel clock frequency tCLK(LCD) - 150 MHz
L2 LCD pixel clock high (falling edge capture) tCLKH(LCD) 3 - ns
L3 LCD pixel clock low (rising edge capture) tCLKL(LCD) 3 - ns
L4 LCD pixel clock high to data valid (falling edge capture) td(CLKH-DV) -1 1 ns
L5 LCD pixel clock low to data valid (rising edge capture) td(CLKL-DV) -1 1 ns
L6 LCD pixel clock high to control signals valid (falling edge capture) td(CLKH-CTRLV) -1 1 ns
L7 LCD pixel clock low to control signals valid (rising edge capture) td(CLKL-CTRLV) -1 1 ns
Table 66. LCDIF Display Interface Signal Mapping
Pin Name 8-bit DOTCLK
LCD IF
16-bit DOTCLK
LCD IF
18-bit DOTCLK
LCD IF
24-bit DOTCLK
LCD IF
8-bit DVI
LCD IF
LCD_RS CCIR_CLK
LCD_CS
LCD_WR_RWn
LCD_RD_E
LCD_VSYNC* (two
options)
LCD_VSYNC LCD_VSYNC LCD_VSYNC LCD_VSYNC
LCD_HSYNC LCD_HSYNC LCD_HSYNC LCD_HSYNC LCD_HSYNC
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
90 NXP Semiconductors
Electrical Characteristics
LCD_DOTCLK LCD_DOTCLK LCD_DOTCLK LCD_DOTCLK LCD_DOTCLK
LCD_ENABLE LCD_ENABLE LCD_ENABLE LCD_ENABLE LCD_ENABLE
LCD_D23 R[7]
LCD_D22 R[6]
LCD_D21 R[5]
LCD_D20 R[4]
LCD_D19 R[3]
LCD_D18 R[2]
LCD_D17 R[5] R[1]
LCD_D16 R[4] R[0]
LCD_D15 / VSYNC* R[4] R[3] G[7]
LCD_D14 / HSYNC** R[3] R[2] G[6]
LCD_D13 /
LCD_DOTCLK**
R[2] R[1] G[5]
LCD_D12 / ENABLE** R[1] R[0] G[4]
LCD_D11 R[0] G[5] G[3]
LCD_D10 G[5] G[4] G[2]
LCD_D9 G[4] G[3] G[1]
LCD_D8 G[3] G[2] G[0]
LCD_D7 R[2] G[2] G[1] B[7] Y/C[7]
LCD_D6 R[1] G[1] G[0] B[6] Y/C[6]
LCD_D5 R[0] G[0] B[5] B[5] Y/C[5]
LCD_D4 G[2] B[4] B[4] B[4] Y/C[4]
LCD_D3 G[1] B[3] B[3] B[3] Y/C[3]
LCD_D2 G[0] B[2] B[2] B[2] Y/C[2]
LCD_D1 B[1] B[1] B[1] B[1] Y/C[1]
LCD_D0 B[0] B[0] B[0] B[0] Y/C[0]
LCD_RESET LCD_RESET LCD_RESET LCD_RESET LCD_RESET
LCD_BUSY /
LCD_VSYNC
LCD_BUSY (OR
optional
LCD_VSYNC)
LCD_BUSY (OR
optional
LCD_VSYNC)
LCD_BUSY (OR
optional
LCD_VSYNC)
LCD_BUSY (OR
optional
LCD_VSYNC)
Table 66. LCDIF Display Interface Signal Mapping (continued)
Pin Name 8-bit DOTCLK
LCD IF
16-bit DOTCLK
LCD IF
18-bit DOTCLK
LCD IF
24-bit DOTCLK
LCD IF
8-bit DVI
LCD IF
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 91
4.12.10 LVDS Display Bridge (LDB) Module Parameters
The LVDS interface complies with TIA/EIA 644-A standard. For more details, see TIA/EIA STANDARD
644-A, “Electrical Characteristics of Low Voltage Differential Signaling (LVDS) Interface Circuits”.
4.12.11 PCIe PHY Parameters
The PCIe interface complies with PCIe specification Gen2 x1 lane and supports the PCI Express 1.1/2.0
standard.
4.12.11.1 PCIE_REXT Reference Resistor Connection
The impedance calibration process requires connection of reference resistor 200 Ω. 1% precision resistor
on PCIE_REXT pads to ground. It is used for termination impedance calibration.
4.12.12 Pulse Width Modulator (PWM) Timing Parameters
This section describes the electrical information of the PWM. The PWM can be programmed to select one
of three clock signals as its source frequency. The selected clock signal is passed through a prescaler before
being input to the counter. The output is available at the pulse-width modulator output (PWMx_OUT)
external pin.
Figure 54 depicts the timing of the PWM, and Table 68 lists the PWM timing parameters.
Figure 54. PWM Timing
Table 67. LVDS Display Bridge (LDB) Electrical Specification
Parameter Symbol Test Condition Min Max Units
Differential Voltage Output Voltage VOD 100 Ω Differential load 250 450 mV
Output Voltage High Voh 100 Ω differential load (0 V Diff—Output High Voltage static) 1.25 1.6 V
Output Voltage Low Vol 100 Ω differential load (0 V Diff—Output Low Voltage static) 0.9 1.25 V
Offset Static Voltage VOS Two 49.9 Ω resistors in series between N-P terminal, with
output in either Zero or One state, the voltage measured
between the 2 resistors.
1.15 1.375 V
VOS Differential VOSDIFF Difference in VOS between a One and a Zero state -50 50 mV
Output short circuited to GND ISA ISB With the output common shorted to GND -24 24 mA
VT Full Load Test VTLoad 100 Ω Differential load with a 3.74 kΩ load between GND and
IO Supply Voltage
247 454 mV
07-N?/54
0 0
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
92 NXP Semiconductors
Electrical Characteristics
4.12.13 QUAD SPI (QSPI) Timing Parameters
Measurement conditions are with 35 pF load on SCK and SIO pins and input slew rate of 1 V/ns.
4.12.13.1 SDR Mode
Figure 55. QuadSPI Input/Read Timing (SDR mode with internal sampling)
Figure 56. QuadSPI Input/Read Timing (SDR mode with loopback DQS sampling)
Table 68. PWM Output Timing Parameters
ID Parameter Min Max Unit
PWM Module Clock Frequency 0 ipg_clk MHz
P1 PWM output pulse width high 15 ns
P2 PWM output pulse width low 15 ns
Table 69. QuadSPI Input/Read Timing (SDR mode with internal sampling)
Symbol Parameter
Value
Unit
Min Max
Tis Setup time for incoming data 8.67 ns
Tih Hold time requirement for incoming data 0 ns
1 2 3 4 5 6 7
Tis Tih
QSPI1x_SCLK
QSPI1x_DATA[0:3]
o
Tis Tih
QSPI1x_DATA[0:3]
QS P I1x_DQS
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 93
NOTE
For internal sampling, the timing values assumes using sample point 0,
that is QuadSPIx_SMPR[SDRSMP] = 0.
For loopback DQS sampling, the data strobe is output to the DQS pad
together with the serial clock. The data strobe is looped back from DQS
pad and used to sample input data.
Figure 57. QuadSPI Output/Write Timing (SDR mode)
NOTE
Tcss and Tcsh are configured by the QuadSPIx_FLSHCR register, the
default values of 3 are shown on the timing. Please refer to Reference
Manual for further details.
Table 70. QuadSPI Input/Read Timing (SDR mode with loopback DQS sampling)
Symbol Parameter
Value
Unit
Min Max
Tis Setup time for incoming data 1 ns
Tih Hold time requirement for incoming data 1 ns
Table 71. QuadSPI Output/Write Timing (SDR mode)
Symbol Parameter
Value
Unit
Min Max
Tov Output Data Valid 3.2 ns
Toh Output Data Hold 0 ns
Tck SCK clock period 12.5 ns
Tcss Chip select output setup time 3 SCK cycle(s)
Tcsh Chip select output hold time 3 SCK cycle(s)
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
94 NXP Semiconductors
Electrical Characteristics
4.12.13.2 DDR Mode
Figure 58. QuadSPI Input/Read Timing (DDR mode with internal sampling)
Figure 59. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling)
NOTE
For internal sampling, the timing values assumes sample point 0, that is
QuadSPIx_SMPR[DDRSMP] = 0.
For loopback DQS sampling, the data strobe is output to the DQS pad
together with the serial clock. The data strobe is looped back from the
DQS pad and used to sample input data.
Table 72. QuadSPI Input/Read Timing (DDR mode with internal sampling)
Symbol Parameter
Value
Unit
Min Max
Tis Setup time for incoming data 8.67 ns
Tih Hold time requirement for incoming data 0 ns
Table 73. QuadSPI Input/Read Timing (DDR mode with loopback DQS sampling)
Symbol Parameter
Value
Unit
Min Max
Tis Setup time for incoming data 1 ns
Tih Hold time requirement for incoming data 1 ns
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 95
Figure 60. QuadSPI Output/Write Timing (DDR mode)
NOTE
Tcss and Tcsh are configured by the QuadSPIx_FLSHCR register, the
default register values of 3 are shown on the timing. Please refer to
Reference Manual for further details.
4.12.14 SAI/I2S Switching Specifications
This sections provides the AC timings for the SAI in master (clocks driven) and slave (clocks input) modes.
All timings are given for non-inverted serial clock polarity (SAI_TCR[TSCKP] = 0, SAI_RCR[RSCKP]
= 0) and non-inverted frame sync (SAI_TCR[TFSI] = 0, SAI_RCR[RFSI] = 0). If the polarity of the clock
and/or the frame sync have been inverted, all the timings remain valid by inverting the clock signal
(SAI_BCLK) and/or the frame sync (SAI_FS) shown in the figures below.
Table 74. QuadSPI Output/Write Timing (DDR mode)
Symbol Parameter
Value
Unit
Min Max
Tov Output Data Valid 2 ns
Toh Output Data Hold 1 ns
Tck SCK clock period 22 ns
Tcss Chip select output setup time 3 SCK cycle(s)
Tcsh Chip select output hold time 3 SCK cycle(s)
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
96 NXP Semiconductors
Electrical Characteristics
Figure 61. SAI Timing—Master Modes
Table 75. Master Mode SAI Timing
Num Characteristic Min Max Unit
S1 SAI_MCLK cycle time 20 ns
S2 SAI_MCLK pulse width high/low 40% 60% MCLK period
S3 SAI_BCLK cycle time 2 x S1 ns
S4 SAI_BCLK pulse width high/low 40% 60% BCLK period
S5 SAI_BCLK to SAI_FS output valid 15 ns
S6 SAI_BCLK to SAI_FS output invalid 0 ns
S7 SAI_BCLK to SAI_TXD valid 15 ns
S8 SAI_BCLK to SAI_TXD invalid 0 ns
S9 SAI_RXD/SAI_FS input setup before SAI_BCLK 15 ns
S10 SAI_RXD/SAI_FS input hold after SAI_BCLK 0 ns
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 97
Figure 62. SAI Timing—Slave Modes
4.12.15 SCAN JTAG Controller (SJC) Timing Parameters
Figure 63 depicts the SJC test clock input timing. Figure 64 depicts the SJC boundary scan timing.
Figure 65 depicts the SJC test access port. Signal parameters are listed in Table 77.
Figure 63. Test Clock Input Timing Diagram
Table 76. Slave Mode SAI Timing
Num Characteristic Min Max Unit
S11 SAI_BCLK cycle time (input) 20 ns
S12 SAI_BCLK pulse width high/low (input) 40% 60% BCLK period
S13 SAI_FS input setup before SAI_BCLK 10 ns
S14 SAI_FA input hold after SAI_BCLK 2 ns
S15 SAI_BCLK to SAI_TXD/SAI_FS output valid 20 ns
S16 SAI_BCLK to SAI_TXD/SAI_FS output invalid 0 ns
S17 SAI_RXD setup before SAI_BCLK 10 ns
S18 SAI_RXD hold after SAI_BCLK 2 ns
S19 I2S_TX_FX input assertion to I2S_TXD output valid1
1Applies to first bit in each frame and only if the TCR4[FSE] bit is clear
—25 ns
JTAG_TCK
(Input) VM VM
VIH
VIL
SJ1
SJ2 SJ2
SJ3
SJ3
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
98 NXP Semiconductors
Electrical Characteristics
Figure 64. Boundary Scan (JTAG) Timing Diagram
Figure 65. Test Access Port Timing Diagram
JTAG_TCK
(Input)
Data
Inputs
Data
Outputs
Data
Outputs
Data
Outputs
VIH
VIL
Input Data Valid
Output Data Valid
Output Data Valid
SJ4 SJ5
SJ6
SJ7
SJ6
JTAG_TCK
(Input)
JTAG_TDI
(Input)
JTAG_TDO
(Output)
JTAG_TDO
(Output)
JTAG_TDO
(Output)
VIH
VIL
Input Data Valid
Output Data Valid
Output Data Valid
JTAG_TMS
SJ8 SJ9
SJ10
SJ11
SJ10
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 99
Figure 66. JTAG_TRST_B Timing Diagram
4.12.16 SPDIF Timing Parameters
The Sony/Philips Digital Interconnect Format (SPDIF) data is sent using the bi-phase marking code. When
encoding, the SPDIF data signal is modulated by a clock that is twice the bit rate of the data signal.
Table 78 and Figure 67 and Figure 68 show SPDIF timing parameters for the Sony/Philips Digital
Interconnect Format (SPDIF), including the timing of the modulating Rx clock (SPDIF_SR_CLK) for
SPDIF in Rx mode and the timing of the modulating Tx clock (SPDIF_ST_CLK) for SPDIF in Tx mode.
Table 77. JTAG Timing
ID Parameter1,2
All Frequencies
Unit
Min Max
SJ0 JTAG_TCK frequency of operation 1/(3•TDC)1
1TDC = target frequency of SJC
0.001 22 MHz
SJ1 JTAG_TCK cycle time in crystal mode 45 ns
SJ2 JTAG_TCK clock pulse width measured at VM2
2VM = mid-point voltage
22.5 ns
SJ3 JTAG_TCK rise and fall times 3 ns
SJ4 Boundary scan input data set-up time 5 ns
SJ5 Boundary scan input data hold time 24 ns
SJ6 JTAG_TCK low to output data valid 40 ns
SJ7 JTAG_TCK low to output high impedance 40 ns
SJ8 JTAG_TMS, JTAG_TDI data set-up time 5 ns
SJ9 JTAG_TMS, JTAG_TDI data hold time 25 ns
SJ10 JTAG_TCK low to JTAG_TDO data valid 44 ns
SJ11 JTAG_TCK low to JTAG_TDO high impedance 44 ns
SJ12 JTAG_TRST_B assert time 100 ns
SJ13 JTAG_TRST_B set-up time to JTAG_TCK low 40 ns
JTAG_TCK
(Input)
JTAG_TRST_B
(Input)
SJ13
SJ12
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
100 NXP Semiconductors
Electrical Characteristics
Figure 67. SPDIF_SR_CLK Timing Diagram
Figure 68. SPDIF_ST_CLK Timing Diagram
Table 78. SPDIF Timing Parameters
Characteristics Symbol
Timing Parameter Range
Unit
Min Max
SPDIF_IN Skew: asynchronous inputs, no specs apply 0.7 ns
SPDIF_OUT output (Load = 50pf)
Skew
Transition rising
Transition falling
1.5
24.2
31.3
ns
SPDIF_OUT1 output (Load = 30pf)
Skew
Transition rising
Transition falling
1.5
13.6
18.0
ns
Modulating Rx clock (SPDIF_SR_CLK) period srckp 40.0 ns
SPDIF_SR_CLK high period srckph 16.0 ns
SPDIF_SR_CLK low period srckpl 16.0 ns
Modulating Tx clock (SPDIF_ST_CLK) period stclkp 40.0 ns
SPDIF_ST_CLK high period stclkph 16.0 ns
SPDIF_ST_CLK low period stclkpl 16.0 ns
SPDIF_SR_CLK
(Output)
VMVM
srckp
srckph
srckpl
SPDIF_ST_CLK
(Input)
VMVM
stclkp
stclkph
stclkpl
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 101
4.12.17 SSI Timing Parameters
This section describes the timing parameters of the SSI module. The connectivity of the serial
synchronous interfaces are summarized in Table 79.
NOTE
The terms WL and BL used in the timing diagrams and tables refer to Word
Length (WL) and Bit Length (BL).
4.12.17.1 SSI Transmitter Timing with Internal Clock
Figure 69 depicts the SSI transmitter internal clock timing and Table 80 lists the timing parameters for
the SSI transmitter internal clock.
.
Figure 69. SSI Transmitter Internal Clock Timing Diagram
Table 79. AUDMUX Port Allocation
Port Signal Nomenclature Type and Access
AUDMUX port 1 SSI 1 Internal
AUDMUX port 2 SSI 2 Internal
AUDMUX port 3 AUD3 External— LCD or SD4 through IOMUXC
AUDMUX port 4 AUD4 External— ENET or NAND through IOMUXC
AUDMUX port 5 AUD5 External— KPP or SD1 through IOMUXC
AUDMUX port 6 AUD6 External— SD2 or CSI through IOMUXC
AUDMUX port 7 SSI 3 Internal
SS19
SS1
SS2 SS4
SS3
SS5
SS6 SS8
SS10 SS12
SS14
SS18
SS15
SS17
SS16
SS43
SS42
Note: AUDx_RXD input in synchronous mode only
AUDx_TXC
(Output)
AUDx_TXFS (wl)
(Output)
AUDx_TXFS (bl)
(Output)
AUDx_RXD
(Input)
AUDx_TXD
(Output)
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
102 NXP Semiconductors
Electrical Characteristics
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
AUDx_TXC/AUDx_RXC and/or the frame sync
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
The terms, WL and BL, refer to Word Length (WL) and Bit Length(BL).
For internal Frame Sync operation using external clock, the frame sync
timing is same as that of transmit data (for example, during AC97 mode
of operation).
Table 80. SSI Transmitter Timing with Internal Clock
ID Parameter Min Max Unit
Internal Clock Operation
SS1 AUDx_TXC/AUDxRXC clock period 81.4 ns
SS2 AUDx_TXC/AUDxRXC clock high period 36.0 ns
SS4 AUDx_TXC/AUDxRXC clock low period 36.0 ns
SS6 AUDx_TXC high to AUDx_TXFS (bl) high 15.0 ns
SS8 AUDx_TXC high to AUDx_TXFS (bl) low 15.0 ns
SS10 AUDx_TXC high to AUDx_TXFS (wl) high 15.0 ns
SS12 AUDx_TXC high to AUDx_TXFS (wl) low 15.0 ns
SS14 AUDx_TXC/AUDxRXC Internal AUDx_TXFS rise time 6.0 ns
SS15 AUDx_TXC/AUDxRXC Internal AUDx_TXFS fall time 6.0 ns
SS16 AUDx_TXC high to AUDx_TXD valid from high impedance 15.0 ns
SS17 AUDx_TXC high to AUDx_TXD high/low 15.0 ns
SS18 AUDx_TXC high to AUDx_TXD high impedance 15.0 ns
Synchronous Internal Clock Operation
SS42 AUDx_RXD setup before AUDx_TXC falling 10.0 ns
SS43 AUDx_RXD hold after AUDx_TXC falling 0.0 ns
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 103
4.12.17.2 SSI Receiver Timing with Internal Clock
Figure 70 depicts the SSI receiver internal clock timing and Table 81 lists the timing parameters for the
receiver timing with the internal clock.
Figure 70. SSI Receiver Internal Clock Timing Diagram
Table 81. SSI Receiver Timing with Internal Clock
ID Parameter Min Max Unit
Internal Clock Operation
SS1 AUDx_TXC/AUDx_RXC clock period 81.4 ns
SS2 AUDx_TXC/AUDx_RXC clock high period 36.0 ns
SS3 AUDx_TXC/AUDx_RXC clock rise time 6.0 ns
SS4 AUDx_TXC/AUDx_RXC clock low period 36.0 ns
SS5 AUDx_TXC/AUDx_RXC clock fall time 6.0 ns
SS7 AUDx_RXC high to AUDx_TXFS (bl) high 15.0 ns
SS9 AUDx_RXC high to AUDx_TXFS (bl) low 15.0 ns
SS11 AUDx_RXC high to AUDx_TXFS (wl) high 15.0 ns
SS13 AUDx_RXC high to AUDx_TXFS (wl) low 15.0 ns
SS20 AUDx_RXD setup time before AUDx_RXC low 10.0 ns
SS21 AUDx_RXD hold time after AUDx_RXC low 0.0 ns
SS50
SS48
SS1
SS4SS2
SS51
SS20
SS21
SS49
SS7 SS9
SS11 SS13
SS47
SS3
SS5
AUDx_TXC
(Output)
AUDx_TXFS (bl)
(Output)
AUDx_TXFS (wl)
(Output)
AUDx_RXD
(Input)
AUDx_RXC
(Output)
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
104 NXP Semiconductors
Electrical Characteristics
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
AUDx_TXC/AUDx_RXC and/or the frame sync
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
The terms, WL and BL, refer to Word Length (WL) and Bit Length(BL).
For internal Frame Sync operation using external clock, the frame sync
timing is same as that of transmit data (for example, during AC97 mode
of operation).
Oversampling Clock Operation
SS47 Oversampling clock period 15.04 ns
SS48 Oversampling clock high period 6.0 ns
SS49 Oversampling clock rise time 3.0 ns
SS50 Oversampling clock low period 6.0 ns
SS51 Oversampling clock fall time 3.0 ns
Table 81. SSI Receiver Timing with Internal Clock (continued)
ID Parameter Min Max Unit
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 105
4.12.17.3 SSI Transmitter Timing with External Clock
Figure 71 depicts the SSI transmitter external clock timing and Table 82 lists the timing parameters for
the transmitter timing with the external clock.
Figure 71. SSI Transmitter External Clock Timing Diagram
Table 82. SSI Transmitter Timing with External Clock
ID Parameter Min Max Unit
External Clock Operation
SS22 AUDx_TXC/AUDx_RXC clock period 81.4 ns
SS23 AUDx_TXC/AUDx_RXC clock high period 36.0 ns
SS24 AUDx_TXC/AUDx_RXC clock rise time 6.0 ns
SS25 AUDx_TXC/AUDx_RXC clock low period 36.0 ns
SS26 AUDx_TXC/AUDx_RXC clock fall time 6.0 ns
SS27 AUDx_TXC high to AUDx_TXFS (bl) high -10.0 15.0 ns
SS29 AUDx_TXC high to AUDx_TXFS (bl) low 10.0 ns
SS31 AUDx_TXC high to AUDx_TXFS (wl) high -10.0 15.0 ns
SS33 AUDx_TXC high to AUDx_TXFS (wl) low 10.0 ns
SS37 AUDx_TXC high to AUDx_TXD valid from high impedance 15.0 ns
SS38 AUDx_TXC high to AUDx_TXD high/low 15.0 ns
SS39 AUDx_TXC high to AUDx_TXD high impedance 15.0 ns
SS45
SS33
SS24
SS26
SS25
SS23
SS31
SS29
SS27
SS22
SS44
SS39
SS38
SS37
SS46
AUDx_TXC
(Input)
AUDx_TXFS (bl)
(Input)
AUDx_TXFS (wl)
(Input)
AUDx_TXD
(Output)
AUDx_RXD
(Input)
Note: AUDx_RXD Input in Synchronous mode only
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
106 NXP Semiconductors
Electrical Characteristics
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
AUDx_TXC/AUDx_RXC and/or the frame sync
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
The terms WL and BL refer to Word Length (WL) and Bit Length (BL).
For internal Frame Sync operation using external clock, the frame sync
timing is same as that of transmit data (for example, during AC97 mode
of operation).
4.12.17.4 SSI Receiver Timing with External Clock
Figure 72 depicts the SSI receiver external clock timing and Table 83 lists the timing parameters for the
receiver timing with the external clock.
Figure 72. SSI Receiver External Clock Timing Diagram
Synchronous External Clock Operation
SS44 AUDx_RXD setup before AUDx_TXC falling 10.0 ns
SS45 AUDx_RXD hold after AUDx_TXC falling 2.0 ns
SS46 AUDx_RXD rise/fall time 6.0 ns
Table 82. SSI Transmitter Timing with External Clock (continued)
ID Parameter Min Max Unit
SS24
SS34
SS35
SS30
SS28
SS26
SS25
SS23
SS40
SS22
SS32
SS36
SS41
AUDx_TXC
(Input)
AUDx_TXFS (bl)
(Input)
AUDx_TXFS (wl)
(Input)
AUDx_RXD
(Input)
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 107
NOTE
All the timings for the SSI are given for a non-inverted serial clock
polarity (TSCKP/RSCKP = 0) and a non-inverted frame sync
(TFSI/RFSI = 0). If the polarity of the clock and/or the frame sync have
been inverted, all the timing remains valid by inverting the clock signal
AUDx_TXC/AUDx_RXC and/or the frame sync
AUDx_TXFS/AUDx_RXFS shown in the tables and in the figures.
All timings are on Audiomux Pads when SSI is being used for data
transfer.
The terms WL and BL refer to Word Length (WL) and Bit Length(BL).
For internal Frame Sync operation using external clock, the frame sync
timing is same as that of transmit data (for example, during AC97 mode
of operation).
4.12.18 UART I/O Configuration and Timing Parameters
4.12.18.1 UART RS-232 Serial Mode Timing
The following sections describe the electrical information of the UART module in the RS-232 mode.
Table 83. SSI Receiver Timing with External Clock
ID Parameter Min Max Unit
External Clock Operation
SS22 AUDx_TXC/AUDx_RXC clock period 81.4 ns
SS23 AUDx_TXC/AUDx_RXC clock high period 36 ns
SS24 AUDx_TXC/AUDx_RXC clock rise time 6.0 ns
SS25 AUDx_TXC/AUDx_RXC clock low period 36 ns
SS26 AUDx_TXC/AUDx_RXC clock fall time 6.0 ns
SS28 AUDx_RXC high to AUDx_TXFS (bl) high -10 15.0 ns
SS30 AUDx_RXC high to AUDx_TXFS (bl) low 10 ns
SS32 AUDx_RXC high to AUDx_TXFS (wl) high -10 15.0 ns
SS34 AUDx_RXC high to AUDx_TXFS (wl) low 10 ns
SS35 AUDx_TXC/AUDx_RXC External AUDx_TXFS rise time 6.0 ns
SS36 AUDx_TXC/AUDx_RXC External AUDx_TXFS fall time 6.0 ns
SS40 AUDx_RXD setup time before AUDx_RXC low 10 ns
SS41 AUDx_RXD hold time after AUDx_RXC low 2 ns
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
108 NXP Semiconductors
Electrical Characteristics
4.12.18.1.1 UART Transmitter
Figure 73 depicts the transmit timing of UART in the RS-232 serial mode, with 8 data bit/1 stop bit
format. Table 84 lists the UART RS-232 serial mode transmit timing characteristics.
Figure 73. UART RS-232 Serial Mode Transmit Timing Diagram
4.12.18.1.2 UART Receiver
Figure 74 depicts the RS-232 serial mode receive timing with 8 data bit/1 stop bit format. Table 85 lists
serial mode receive timing characteristics.
Figure 74. UART RS-232 Serial Mode Receive Timing Diagram
Table 84. RS-232 Serial Mode Transmit Timing Parameters
ID Parameter Symbol Min Max Unit
UA1 Transmit Bit Time tTbit 1/Fbaud_rate1 - Tref_clk2
1Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
2Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).
1/Fbaud_rate + Tref_clk
Table 85. RS-232 Serial Mode Receive Timing Parameters
ID Parameter Symbol Min Max Unit
UA2 Receive Bit Time1
1The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not
exceed 3/(16 x Fbaud_rate).
tRbit 1/Fbaud_rate2 - 1/(16
x Fbaud_rate)
2Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
1/Fbaud_rate +
1/(16 x Fbaud_rate)
Start
Bit Bit 1 Bit 2Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
UARTx_TX_DATA
(output) Bit 3 STOP
BIT
Next
Start
Bit
Possible
Parity
Bit
Par Bit
UA1
UA1 UA1
UA1
Bit 1 Bit 2Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
UARTx_RX_DATA
(output)
Bit 3
Start
Bit STOP
BIT
Next
Start
Bit
Possible
Parity
Bit
Par Bit
UA2 UA2
UA2 UA2
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 109
4.12.18.1.3 UART IrDA Mode Timing
The following subsections give the UART transmit and receive timings in IrDA mode.
UART IrDA Mode Transmitter
Figure 75 depicts the UART IrDA mode transmit timing, with 8 data bit/1 stop bit format. Table 86 lists
the transmit timing characteristics.
Figure 75. UART IrDA Mode Transmit Timing Diagram
UART IrDA Mode Receiver
Figure 76 depicts the UART IrDA mode receive timing, with 8 data bit/1 stop bit format. Table 87 lists
the receive timing characteristics.
Figure 76. UART IrDA Mode Receive Timing Diagram
Table 86. IrDA Mode Transmit Timing Parameters
ID Parameter Symbol Min Max Unit
UA3 Transmit Bit Time in IrDA mode tTIRbit 1/Fbaud_rate1 -
Tref_clk2
1Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
2Tref_clk: The period of UART reference clock ref_clk (ipg_perclk after RFDIV divider).
1/Fbaud_rate + Tref_clk
UA4 Transmit IR Pulse Duration tTIRpulse (3/16) x (1/Fbaud_rate)
- Tref_clk
(3/16) x (1/Fbaud_rate)
+ Tref_clk
Table 87. IrDA Mode Receive Timing Parameters
ID Parameter Symbol Min Max Unit
UA5 Receive Bit Time1 in IrDA mode tRIRbit 1/Fbaud_rate2 - 1/(16
x Fbaud_rate)
1/Fbaud_rate + 1/(16 x
Fbaud_rate)
UA6 Receive IR Pulse Duration tRIRpulse 1.41 μs (5/16) x (1/Fbaud_rate)—
Bit 1 Bit 2
Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
UARTx_TX_DAT
A
Bit 3
Start
Bit
STOP
BIT
Possible
Parity
Bit
UA3 UA3 UA3 UA3
UA4
Bit 1 Bit 2
Bit 0 Bit 4 Bit 5 Bit 6 Bit 7
UARTx_RX_
DATA
(input)
Bit 3
Start
Bit
STOP
BIT
Possible
Parity
Bit
UA5 UA5 UA5 UA5
UA6
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
110 NXP Semiconductors
Electrical Characteristics
4.12.19 USB HSIC Timings
This section describes the electrical information of the USB HSIC port.
NOTE
In Figure 77, HSIC is a DDR interface and the timing parameters shown
refer to both rising and falling edges.
4.12.19.1 Transmit Timing
Figure 77. USB HSIC Transmit Waveform
4.12.19.2 Receive Timing
Figure 78. USB HSIC Receive Waveform
1 The UART receiver can tolerate 1/(16 x Fbaud_rate) tolerance in each bit. But accumulation tolerance in one frame must not
exceed 3/(16 x Fbaud_rate).
2Fbaud_rate: Baud rate frequency. The maximum baud rate the UART can support is (ipg_perclk frequency)/16.
Table 88. USB HSIC Transmit Parameters
Name Parameter Min Max Unit Comment
Tstrobe strobe period 4.166 4.167 ns
Todelay data output delay time 550 1350 ps Measured at 50% point
Tslew strobe/data rising/falling time 0.7 2 V/ns Averaged from 30% – 70% points
Table 89. USB HSIC Receive Parameters1
Name Parameter Min Max Unit Comment
Tstrobe strobe period 4.166 4.167 ns
Thold data hold time 300 ps Measured at 50% point
USB_H_STROBE
USB_H_DATA
Todelay
Tstrobe
Todelay
USB_H_STROBE
USB_H_DATA
Thold
Tstrobe
Tsetup
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 111
4.12.20 USB PHY Parameters
This section describes the USB-OTG PHY and the USB Host port PHY parameters.
The USB PHY meets the electrical compliance requirements defined in revision 2.0 of the USB
On-The-Go and Embedded Host Supplement to the USB 2.0 Specification with the amendments below
(On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification is not applicable to
Host port).
USB ENGINEERING CHANGE NOTICE
Title: 5V Short Circuit Withstand Requirement Change
Applies to: Universal Serial Bus Specification, Revision 2.0
Errata for USB Revision 2.0 April 27, 2000 as of 12/7/2000
USB ENGINEERING CHANGE NOTICE
Title: Pull-up/Pull-down resistors
Applies to: Universal Serial Bus Specification, Revision 2.0
USB ENGINEERING CHANGE NOTICE
Title: Suspend Current Limit Changes
Applies to: Universal Serial Bus Specification, Revision 2.0
USB ENGINEERING CHANGE NOTICE
Title: USB 2.0 Phase Locked SOFs
Applies to: Universal Serial Bus Specification, Revision 2.0
On-The-Go and Embedded Host Supplement to the USB Revision 2.0 Specification
Revision 2.0 plus errata and ECN June 4, 2010
Battery Charging Specification (available from USB-IF)
Revision 1.2, December 7, 2010
Portable device only
Tsetup data setup time 365 ps Measured at 50% point
Tslew strobe/data rising/falling time 0.7 2 V/ns Averaged from 30% – 70% points
1The timings in the table are guaranteed when:
—AC I/O voltage is between 0.9x to 1x of the I/O supply
—DDR_SEL configuration bits of the I/O are set to (10)b
Table 89. USB HSIC Receive Parameters1 (continued)
Name Parameter Min Max Unit Comment
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
112 NXP Semiconductors
Electrical Characteristics
4.13 A/D Converter
4.13.1 12-bit ADC Electrical Characteristics
4.13.1.1 12-bit ADC Operating Conditions
Table 90. 12-bit ADC Operating Conditions
Characteristic Conditions Symbol Min Typ1
1Typical values assume VDDA_ADC_3P3= 3.0 V, Temp = 25°C, fADCK=20 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
Max Unit Comment
Supply voltage Absolute VDDA_ADC_
3P3
3.0 - 3.6 V —
Delta to VDD
(VDD-VDDA_ADC_3P3
)2
2DC potential difference
VDDA_ADC_
3P3
-100 0 100 mV —
Ground voltage Delta to VSS
(VSS-VSSAD)
ΔVSSAD -100 0 100 mV
Ref Voltage High VREFH 1.13 VDDA_ADC_3P3 VDDA_ADC_3P3 V —
Ref Voltage Low VREFL VSSAD VSSAD VSSAD V —
Input Voltage VADIN VREFL —V
REFH V —
Input Capacitance 8/10/12 bit modes CADIN —1.5 2 pF
Input Resistance ADLPC=0, ADHSC=1 RADIN 5 7 kohms —
ADLPC=0, ADHSC=0 12.5 15 kohms
ADLPC=1, ADHSC=0 25 30 kohms
Analog Source
Resistance
12 bit mode fADCK =
40MHz ADLSMP=0,
ADSTS=10, ADHSC=1
RAS 1 kohms Tsamp=150ns
RAS depends on Sample Time Setting (ADLSMP, ADSTS) and ADC Power Mode (ADHSC, ADLPC). See charts for Minimum
Sample Time versus RAS
ADC Conversion
Clock Frequency
ADLPC=0, ADHSC=1
12 bit mode
fADCK 4 40 MHz —
ADLPC=0, ADHSC=0
12 bit mode
4 30 MHz —
ADLPC=1, ADHSC=0
12 bit mode
4 20 MHz —
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 113
Figure 79. 12-bit ADC Input Impedance Equivalency Diagram
4.13.1.2 12-bit ADC Characteristics
Table 91. 12-bit ADC Characteristics (VREFH = VDDA_ADC_3P3, VREFL = VSSAD)
Characteristic Conditions1Symbol Min Typ2Max Unit Comment
[L:] Supply Current ADLPC=1, ADHSC=0 IDDAD 250 µA ADLSMP=0
ADSTS=10
ADCO=1
ADLPC=0, ADHSC=0 350
ADLPC=0, ADHSC=1 400
[L:] Supply Current Stop, Reset,
Module Off
IDDAD —0.010.8 µA
ADC Asynchronous
Clock Source
ADHSC=0 fADACK —10 MHz t
ADACK = 1/fADACK
ADHSC=1 20
Sample Cycles ADLSMP=0, ADSTS=00 Csamp 2 cycles —
ADLSMP=0, ADSTS=01 4
ADLSMP=0, ADSTS=10 6
ADLSMP=0, ADSTS=11 8
ADLSMP=1, ADSTS=00 12
ADLSMP=1, ADSTS=01 16
ADLSMP=1, ADSTS=10 20
ADLSMP=1, ADSTS=11 24
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
114 NXP Semiconductors
Electrical Characteristics
Conversion Cycles ADLSMP=0 ADSTS=00 Cconv 28 cycles
ADLSMP=0 ADSTS=01 30
ADLSMP=0 ADSTS=10 32
ADLSMP=0 ADSTS=11 34
ADLSMP=1 ADSTS=00 38
ADLSMP=1 ADSTS=01 42
ADLSMP=1 ADSTS=10 46
ADLSMP=1, ADSTS=11 50
Conversion Time ADLSMP=0 ADSTS=00 Tconv 0.7 µs Fadc=40 MHz
ADLSMP=0 ADSTS=01 0.75
ADLSMP=0 ADSTS=10 0.8
ADLSMP=0 ADSTS=11 0.85
ADLSMP=1 ADSTS=00 0.95
ADLSMP=1 ADSTS=01 1.05
ADLSMP=1 ADSTS=10 1.15
ADLSMP=1, ADSTS=11 1.25
[P:][C:] Total
Unadjusted Error
12 bit mode TUE -2 +5 LSB
1 LSB =
(VREFH - VREFL)/2N
With Max Averaging
10 bit mode -0.5 +2
8 bit mode -0.25 +1.5
[P:][C:] Differential
Non-Linearity
12 bit mode DNL ±0.6 ±2.5 LSB Waiting for histogram
method confirmation
10bit mode ±0.5 ±1
8 bit mode ±0.25 ±0.5
[P:][C:] Integral
Non-Linearity
12 bit mode INL ±2 ±5 LSB Waiting for histogram
method confirmation
10bit mode ±1 ±2
8 bit mode ±0.5 ±1
Zero-Scale Error 12 bit mode EZS 1 2 LSB VADIN = VREFL With
Max Averaging
10bit mode 0.5 1
8 bit mode 0.2 0.5
Full-Scale Error 12 bit mode EFS ±2 +1/-6 LSB VADIN = VREFH With
Max Averaging
10bit mode ±0.5 ±1/-2
8 bit mode ±0.25 ±0.75
Table 91. 12-bit ADC Characteristics (VREFH = VDDA_ADC_3P3, VREFL = VSSAD) (continued)
Characteristic Conditions1Symbol Min Typ2Max Unit Comment
Electrical Characteristics
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 115
NOTE
The ADC electrical spec is met with the calibration enabled configuration.
Figure 80. Minimum Sample Time versus Ras (Cas = 2pF)
Figure 81. Minimum Sample Time versus Ras (Cas = 5pF)
[L:] Effective
Number of Bits
12 bit mode ENOB 10.1 10.7 Bits Fin = 100Hz
[L:] Signal to Noise
plus Distortion
See ENOB SINAD SINAD = 6.02 x ENOB + 1.76 dB
1All accuracy numbers assume the ADC is calibrated with VREFH=VDDA_ADC_3P3
2Typical values assume VDDA_ADC_3P3 = 3.0 V, Temp = 25°C, Fadck=20 MHz unless otherwise stated. Typical values are for
reference only and are not tested in production.
Table 91. 12-bit ADC Characteristics (VREFH = VDDA_ADC_3P3, VREFL = VSSAD) (continued)
Characteristic Conditions1Symbol Min Typ2Max Unit Comment
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
116 NXP Semiconductors
Boot Mode Configuration
Figure 82. Minimum Sample Time versus Ras (Cas = 10pF)
5 Boot Mode Configuration
This section provides information on boot mode configuration pins allocation and boot devices interfaces
allocation.
5.1 Boot Mode Configuration Pins
Table 92 provides boot options, functionality, fuse values, and associated pins. Several input pins are also
sampled at reset and can be used to override fuse values, depending on the value of BT_FUSE_SEL fuse.
The boot option pins are in effect when BT_FUSE_SEL fuse is ‘0’ (cleared, which is the case for an
unblown fuse). For detailed boot mode options configured by the boot mode pins, see the i.MX 6SoloX
Fuse Map chapter and the System Boot chapter in i.MX 6SoloX Applications Processor Reference
Manual (IMX6SXRM).
Table 92. Fuses and Associated Pins Used for Boot
Pin Direction at
reset eFuse name
State during
reset (POR_B
asserted)
State after reset
(POR_B
deasserted)
Details
BOOT_MODE0 Input N/A Hi-Z Hi-Z Boot mode selection
BOOT_MODE1 Input N/A Hi-Z Hi-Z Bootmode selection
Boot Mode Configuration
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 117
LCD1_DATA00 Input BT_CFG1[0] 100K Pull Down Keeper Boot Options, Pin value
overrides fuse settings for
BT_FUSE_SEL=’0’. Signal
Configuration as Fuse
Override Input at Power Up.
These are special I/O lines that
control the boot up
configuration during product
development. In production,
the boot configuration can be
controlled by fuses.
LCD1_DATA01 Input BT_CFG1[1] 100K Pull Down Keeper
LCD1_DATA02 Input BT_CFG1[2] 100K Pull Down Keeper
LCD1_DATA03 Input BT_CFG1[3] 100K Pull Down Keeper
LCD1_DATA04 Input BT_CFG1[4] 100K Pull Down Keeper
LCD1_DATA05 Input BT_CFG1[5] 100K Pull Down Keeper
LCD1_DATA06 Input BT_CFG1[6] 100K Pull Down Keeper
LCD1_DATA07 Input BT_CFG1[7] 100K Pull Down Keeper
LCD1_DATA08 Input BT_CFG2[0] 100K Pull Down Keeper
LCD1_DATA09 Input BT_CFG2[1] 100K Pull Down Keeper
LCD1_DATA10 Input BT_CFG2[2] 100K Pull Down Keeper
LCD1_DATA11 Input BT_CFG2[3] 100K Pull Down Keeper
LCD1_DATA12 Input BT_CFG2[4] 100K Pull Down Keeper
LCD1_DATA13 Input BT_CFG2[5] 100K Pull Down Keeper
LCD1_DATA14 Input BT_CFG2[6] 100K Pull Down Keeper
LCD1_DATA15 Input BT_CFG2[7] 100K Pull Down Keeper
LCD1_DATA16 Input BT_CFG4[0] 100K Pull Down Keeper
LCD1_DATA17 Input BT_CFG4[1] 100K Pull Down Keeper
LCD1_DATA18 Input BT_CFG4[2] 100K Pull Down Keeper
LCD1_DATA19 Input BT_CFG4[3] 100K Pull Down Keeper
LCD1_DATA20 Input BT_CFG4[4] 100K Pull Down Keeper
LCD1_DATA21 Input BT_CFG4[5] 100K Pull Down Keeper
LCD1_DATA22 Input BT_CFG4[6] 100K Pull Down Keeper
LCD1_DATA23 Input BT_CFG4[7] 100K Pull Down Keeper
Table 92. Fuses and Associated Pins Used for Boot (continued)
Pin Direction at
reset eFuse name
State during
reset (POR_B
asserted)
State after reset
(POR_B
deasserted)
Details
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
118 NXP Semiconductors
Boot Mode Configuration
5.2 Boot Device Interface Allocation
The tables below list the interfaces that can be used by the boot process in accordance with the specific
boot mode configuration. The tables also describe the interface’s specific modes and IOMUXC
allocation, which are configured during boot when appropriate.
Table 93. QSPI Boot through QSPI1
Ball Name Signal Name Mux
Mode Common Quad
Mode
+ Port A
DQS
+ Port A
CS1
+ Port
B
+ Port B
DQS
+ Port B
CS1
QSPI1A_SCLK qspi1.A_SCLK Alt0 Yes Yes
QSPI1A_SS0_B qspi1.A_SS0_B Alt0 Yes Yes
QSPI1A_DATA0 qspi1.A_DATA[0] Alt0 Yes Yes
QSPI1A_DATA1 qspi1.A_DATA[1] Alt0 Yes Yes
QSPI1A_DATA2 qspi1.A_DATA[2] Alt0 Yes Yes
QSPI1A_DATA3 qspi1.A_DATA[3] Alt0 Yes Yes
QSPI1B_DATA3 qspi1.B_DATA[3] Alt0 Yes
QSPI1B_DATA2 qspi1.B_DATA[2] Alt0 Yes
QSPI1B_DATA1 qspi1.B_DATA[1] Alt0 Yes
QSPI1B_DATA0 qspi1.B_DATA[0] Alt0 Yes
QSPI1B_SS0_B qspi1.B_SS0_B Alt0 Yes
QSPI1B_SCLK qspi1.B_SCLK Alt0 Yes
QSPI1A_SS1_B qspi1.A_SS1_B Alt0 Yes
QSPI1A_DQS qspi1.A_DQS Alt0 Yes
QSPI1B_SS1_B qspi1.B_SS1_B Alt0 Yes
QSPI1B_DQS qspi1.B_DQS Alt0 Yes
Table 94. QPSI Boot through QPSI2
Ball Name Signal Name Mux
Mode Common Quad
Mode
+ Port A
DQS
+ Port A
CS1
+ Port
B
+ Port B
DQS
+ Port B
CS1
NAND_CLE qspi2.A_SCLK Alt2 Yes Yes
NAND_ALE qspi2.A_SS0_B Alt2 Yes Yes
NAND_WP_B qspi2.A_DATA[0] Alt2 Yes Yes
NAND_READY_B qspi2.A_DATA[1] Alt2 Yes Yes
NAND_CE0_B qspi2.A_DATA[2] Alt2 Yes Yes
NAND_CE1_B qspi2.A_DATA[3] Alt2 Yes Yes
NAND_RE_B qspi2.B_DATA[3] Alt2 Yes
NAND_WE_B qspi2.B_DATA[2] Alt2 Yes
NAND_DATA00 qspi2.B_DATA[1] Alt2 Yes
Boot Mode Configuration
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 119
NAND_DATA01 qspi2.B_DATA[0] Alt2 Yes
NAND_DATA03 qspi2.B_SS0_B Alt2 Yes
NAND_DATA02 qspi2.B_SCLK Alt2 Yes
NAND_DATA06 qspi2.A_SS1_B Alt2 Yes
NAND_DATA07 qspi2.A_DQS Alt2 Yes
NAND_DATA04 qspi2.B_SS1_B Alt2 Yes
NAND_DATA05 qspi2.B_DQS Alt2 Yes
Table 95. SPI Boot through ECSPI1
Ball Name Signal Name Mux
Mode Common BOOT_CFG
4[5:4]=00b
BOOT_CFG
4[5:4]=01b
BOOT_CFG
4[5:4]=10b
BOOT_CFG
4[5:4]=11b
KEY_COL1 ecspi1.MISO Alt 3 Yes
KEY_ROW0 ecspi1.MOSI Alt 3 Yes
KEY_COL0 (SCLK) ecspi1.SCLK Alt 3 Yes
KEY_ROW1 ecspi1.SS0 Alt 3 Yes
KEY_ROW3 ecspi1.SS1 Alt 7 Yes
KEY_COL3 ecspi1.SS2 Alt 7 Yes
KEY_ROW2 ecspi1.SS3 Alt 7 Yes
Table 96. SPI Boot through ECSPI2
Ball Name Signal Name Mux Mode Common BOOT_CFG
4[5:4]=00b
BOOT_CFG
4[5:4]=01b
BOOT_CFG
4[5:4]=10b
BOOT_CFG
4[5:4]=11b
SD4_CLK ecspi2.MISO Alt 2 Yes
SD4_CMD ecspi2.MOSI Alt 2 Yes
SD4_DATA1 ecspi2.SCLK Alt 2 Yes
SD4_DATA0 ecspi2.SS0 Alt 2 Yes
SD3_DATA0 ecspi2.SS1 Alt 2 Yes
SD3_DATA1 ecspi2.SS2 Alt 2 Yes
SD4_DATA2 ecspi2.SS3 Alt 6 Yes
Table 94. QPSI Boot through QPSI2 (continued)
Ball Name Signal Name Mux
Mode Common Quad
Mode
+ Port A
DQS
+ Port A
CS1
+ Port
B
+ Port B
DQS
+ Port B
CS1
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
120 NXP Semiconductors
Boot Mode Configuration
Table 97. SPI Boot through ECSPI3
Ball Name Signal Name Mux Mode Common BOOT_CFG
4[5:4]=00b
BOOT_CFG
4[5:4]=01b
BOOT_CFG
4[5:4]=10b
BOOT_CFG
4[5:4]=11b
SD4_DATA6 ecspi3.MISO Alt 3 Yes
SD4_DATA5 ecspi3.MOSI Alt 3 Yes
SD4_DATA4 ecspi3.SCLK Alt 3 Yes
SD4_DATA7 ecspi3.SS0 Alt 3 Yes
SD4_CMD ecspi3.SS1 Alt 6 Yes
SD4_CLK ecspi3.SS2 Alt 6 Yes
SD4_DATA0 ecspi3.SS3 Alt 6 Yes
Table 98. SPI Boot through ECSPI4
Ball Name Signal Name Mux Mode Common BOOT_CFG4
[5:4]=00b
BOOT_CFG4
[5:4]=01b
BOOT_CFG4
[5:4]=10b
BOOT_CFG4
[5:4]=11b
SD2_DATA3 ecspi4.MISO Alt 3 Yes
SD2_CMD ecspi4.MOSI Alt 3 Yes
SD2_CLK ecspi4.SCLK Alt 3 Yes
SD2_DATA2 ecspi4.SS0 Alt 3 Yes
SD1_DATA3 ecspi4.SS1 Alt 6 Yes
SD2_DATA1 ecspi4.SS2 Alt 6 Yes
SD2_DATA0 ecspi4.SS3 Alt 6 Yes
Table 99. SPI Boot through ECSPI5
Ball Name Signal Name Mux Mode Common BOOT_CFG4
[5:4]=00b
BOOT_CFG4
[5:4]=01b
BOOT_CFG4[
5:4]=10b
BOOT_CFG4
[5:4]=11b
QSPI1A_SS1_B ecspi5.MISO Alt 3 Yes
QSPI1A_DQS ecspi5.MOSI Alt 3 Yes
QSPI1B_SS1_B ecspi5.SCLK Alt 3 Yes
QSPI1B_DQS ecspi5.SS0 Alt 3 Yes
QSPI1A_DATA2 ecspi5.SS1 Alt 2 Yes
QSPI1A_DATA3 ecspi5.SS2 Alt 2 Yes
QSPI1B_DATA3 ecspi5.SS3 Alt 2 Yes
Boot Mode Configuration
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 121
Table 100. NAND Boot through GPMI
Ball Name Signal Name Mux Mode Common BOOT_CFG1[3:2]=01b BOOT_CFG1[3:2]=10b
NAND_CLE rawnand.CLE Alt 0 Yes
NAND_ALE rawnand.ALE Alt 0 Yes
NAND_WP_B rawnand.WP_B Alt 0 Yes
NAND_READY_B rawnand.READY_B Alt 0 Yes
NAND_CE0_B rawnand.CE0_B Alt 0 Yes
NAND_CE1_B rawnand.CE1_B Alt 0 Yes
NAND_RE_B rawnand.RE_B Alt 0 Yes
NAND_WE_B rawnand.WE_B Alt 0 Yes
NAND_DATA00 rawnand.DATA00 Alt 0 Yes
NAND_DATA01 rawnand.DATA01 Alt 0 Yes
NAND_DATA02 rawnand.DATA02 Alt 0 Yes
NAND_DATA03 rawnand.DATA03 Alt 0 Yes
NAND_DATA04 rawnand.DATA04 Alt 0 Yes
NAND_DATA05 rawnand.DATA05 Alt 0 Yes
NAND_DATA06 rawnand.DATA06 Alt 0 Yes
NAND_DATA07 rawnand.DATA07 Alt 0 Yes
SD4_RESET_B rawnand.DQS Alt 1 Yes
SD4_DATA5 rawnand.CE2_B Alt 1 Yes
SD4_DATA6 rawnand.CE3_B Alt 1 Yes
Table 101. SD/MMC Boot through USDHC1
Ball Name Signal Name Mux
Mode Common 4-bit 8-bit
BOOT_CFG1[1]=1
(SD Power Cycle
or SD boot with
SDR50/SDR104)
SDMMC
MFG
Mode
GPIO1_IO02 usdhc1.CD_B Alt 1 Yes
SD1_CLK usdhc1.CLK Alt 0 Yes
SD1_CMD usdhc1.CMD Alt 0 Yes
SD1_DATA0 usdhc1.DATA0 Alt 0 Yes
SD1_DATA1 usdhc1.DATA1 Alt 0 Yes Yes
SD1_DATA2 usdhc1.DATA2 Alt 0 Yes Yes
SD1_DATA3 usdhc1.DATA3 Alt 0 Yes
NAND_DATA00 usdhc1.DATA4 Alt 1 Yes
NAND_DATA01 usdhc1.DATA5 Alt 1 Yes
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
122 NXP Semiconductors
Boot Mode Configuration
NAND_DATA02 usdhc1.DATA6 Alt 1 Yes
NAND_DATA03 usdhc1.DATA7 Alt 1 Yes
NAND_WP_B GPIO4_15 Alt 5 Yes
NAND_READY_B usdhc1.VSELECT Alt 1 Yes
Table 102. SD/MMC Boot through USDHC2
Ball Name Signal Name Mux Mode Common 4-bit 8-bit
BOOT_CFG1[1]=1
(SD Power Cycle
or SD boot with
SDR50/SDR104)
SD2_CLK usdhc2.CLK Alt 0 Yes
SD2_CMD usdhc2.CMD Alt 0 Yes
SD2_DATA0 usdhc2.DATA0 Alt 0 Yes
SD2_DATA1 usdhc2.DATA1 Alt 0 Yes Yes
SD2_DATA2 usdhc2.DATA2 Alt 0 Yes Yes
SD2_DATA3 usdhc2.DATA3 Alt 0 Yes
NAND_DATA04 usdhc2.DATA4 Alt 1 Yes
NAND_DATA05 usdhc2.DATA5 Alt 1 Yes
NAND_DATA06 usdhc2.DATA6 Alt 1 Yes
NAND_DATA07 usdhc2.DATA7 Alt 1 Yes
NAND_RE_B GPIO4_IO12 Alt 5 Yes
NAND_CE0_B usdhc2.VSELECT Alt 1 Yes
Table 103. SD/MMC Boot through USDHC3
Ball Name Signal Name Mux Mode Common 4-bit 8-bit
BOOT_CFG1[1]=1
(SD Power Cycle
or SD boot with
SDR50/SDR104)
SD3_CLK usdhc3.CLK Alt 0 Yes
SD3_CMD usdhc3.CMD Alt 0 Yes
SD3_DATA0 usdhc3.DATA0 Alt 0 Yes
SD3_DATA1 usdhc3.DATA1 Alt 0 Yes Yes
SD3_DATA2 usdhc3.DATA2 Alt 0 Yes Yes
Table 101. SD/MMC Boot through USDHC1 (continued)
Ball Name Signal Name Mux
Mode Common 4-bit 8-bit
BOOT_CFG1[1]=1
(SD Power Cycle
or SD boot with
SDR50/SDR104)
SDMMC
MFG
Mode
Boot Mode Configuration
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 123
SD3_DATA3 usdhc3.DATA3 Alt 0 Yes
SD3_DATA4 usdhc3.DATA4 Alt 0 Yes
SD3_DATA5 usdhc3.DATA5 Alt 0 Yes
SD3_DATA6 usdhc3.DATA6 Alt 0 Yes
SD3_DATA7 usdhc3.DATA7 Alt 0 Yes
KEY_COL1 GPIO2_IO11 Alt 5 Yes
Table 104. SD/MMC Boot through USDHC4
Ball Name Signal Name Mux Mode Common 4-bit 8-bit
BOOT_CFG1[1]=1
(SD Power Cycle or
SD boot with
SDR50/SDR104)
SD4_CLK usdhc4.CLK Alt 0 Yes
SD4_CMD usdhc4.CMD Alt 0 Yes
SD4_DATA0 usdhc4.DATA0 Alt 0 Yes
SD4_DATA1 usdhc4.DATA1 Alt 0 Yes Yes
SD4_DATA2 usdhc4.DATA2 Alt 0 Yes Yes
SD4_DATA3 usdhc4.DATA3 Alt 0 Yes
SD4_DATA4 usdhc4.DATA4 Alt 0 Yes
SD4_DATA5 usdhc4.DATA5 Alt 0 Yes
SD4_DATA6 usdhc4.DATA6 Alt 0 Yes
SD4_DATA7 usdhc4.DATA7 Alt 0 Yes
SD4_RESET_B GPIO6_IO22 Alt 5 Yes
KEY_ROW1 usdhc4.VSELECT Alt 1 Yes
Table 105. NOR/OneNAND Boot through EIM
Ball Name Signal Name Mux Mode Common ADH16
Non-Mux
ADL16
Non-Mux AD16 Mux
NAND_DATA00 weim.AD[0] Alt 6 Yes
NAND_DATA01 weim.AD[1] Alt 6 Yes
NAND_DATA02 weim.AD[2] Alt 6 Yes
NAND_DATA03 weim.AD[3] Alt 6 Yes
NAND_DATA04 weim.AD[4] Alt 6 Yes
Table 103. SD/MMC Boot through USDHC3 (continued)
Ball Name Signal Name Mux Mode Common 4-bit 8-bit
BOOT_CFG1[1]=1
(SD Power Cycle
or SD boot with
SDR50/SDR104)
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
124 NXP Semiconductors
Boot Mode Configuration
NAND_DATA05 weim.AD[5] Alt 6 Yes
NAND_DATA06 weim.AD[6] Alt 6 Yes
NAND_DATA07 weim.AD[7] Alt 6 Yes
LCD1_DATA08 weim.AD[8] Alt 1 Yes
LCD1_DATA09 weim.AD[9] Alt 1 Yes
LCD1_DATA10 weim.AD[10] Alt 1 Yes
LCD1_DATA11 weim.AD[11] Alt 1 Yes
LCD1_DATA12 weim.AD[12] Alt 1 Yes
LCD1_DATA13 weim.AD[13] Alt 1 Yes
LCD1_DATA14 weim.AD[14] Alt 1 Yes
LCD1_DATA15 weim.AD[15] Alt 1 Yes
LCD1_DATA16 weim.ADDR[16] Alt 1 Yes Yes Yes
LCD1_DATA17 weim.ADDR[17] Alt 1 Yes Yes Yes
LCD1_DATA18 weim.ADDR[18] Alt 1 Yes Yes Yes
LCD1_DATA19 weim.ADDR[19] Alt 1 Yes Yes Yes
LCD1_DATA20 weim.ADDR[20] Alt 1 Yes Yes Yes
LCD1_DATA21 weim.ADDR[21] Alt 1 Yes Yes Yes
LCD1_DATA22 weim.ADDR[22] Alt 1 Yes Yes Yes
LCD1_DATA23 weim.ADDR[23] Alt 1 Yes Yes Yes
LCD1_DATA03 weim.ADDR[24] Alt 1 Yes Yes Yes
LCD1_DATA04 weim.ADDR[25] Alt 1 Yes Yes Yes
LCD1_DATA05 weim.ADDR[26] Alt 1 Yes Yes Yes
NAND_ALE weim.CS0_B Alt 6 Yes
QSPI1A_SCLK weim.DATA[0] Alt 6 Yes
QSPI1A_SS0_B weim.DATA[1] Alt 6 Yes
QSPI1A_SS1_B weim.DATA[2] Alt 6 Yes
QSPI1A_DATA3 weim.DATA[3] Alt 6 Yes
QSPI1A_DATA2 weim.DATA[4] Alt 6 Yes
QSPI1A_DATA1 weim.DATA[5] Alt 6 Yes
QSPI1A_DATA0 weim.DATA[6] Alt 6 Yes
QSPI1A_DQS weim.DATA[7] Alt 6 Yes
QSPI1B_SCLK weim.DATA[8] Alt 6 Yes
Table 105. NOR/OneNAND Boot through EIM (continued)
Ball Name Signal Name Mux Mode Common ADH16
Non-Mux
ADL16
Non-Mux AD16 Mux
Boot Mode Configuration
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 125
QSPI1B_SS0_B weim.DATA[9] Alt 6 Yes
QSPI1B_SS1_B weim.DATA[10] Alt 6 Yes
QSPI1B_DATA3 weim.DATA[11] Alt 6 Yes
QSPI1B_DATA2 weim.DATA[12] Alt 6 Yes
QSPI1B_DATA1 weim.DATA[13] Alt 6 Yes
QSPI1B_DATA0 weim.DATA[14] Alt 6 Yes
QSPI1B_DQS weim.DATA[15] Alt 6 Yes
CSI_DATA07 weim.DATA[16] Alt 6 Yes
CSI_DATA06 weim.DATA[17] Alt 6 Yes
CSI_DATA05 weim.DATA[18] Alt 6 Yes
CSI_DATA04 weim.DATA[19] Alt 6 Yes
CSI_DATA03 weim.DATA[20] Alt 6 Yes
CSI_DATA02 weim.DATA[21] Alt 6 Yes
CSI_DATA01 weim.DATA[22] Alt 6 Yes
CSI_DATA00 weim.DATA[23] Alt 6 Yes
CSI_VSYNC weim.DATA[24] Alt 6 Yes
CSI_HSYNC weim.DATA[25] Alt 6 Yes
CSI_MCLK weim.DATA[26] Alt 6 Yes
CSI_PIXCLK weim.DATA[27] Alt 6 Yes
KEY_COL3 weim.DATA[28] Alt 6 Yes
KEY_ROW2 weim.DATA[29] Alt 6 Yes
KEY_COL2 weim.DATA[30] Alt 6 Yes
KEY_ROW1 weim.DATA[31] Alt 6 Yes
NAND_WP_B weim.EB_B[0] Alt 6 Yes Yes
NAND_READY_B weim.EB_B[1] Alt 6 Yes Yes
LCD1_DATA06 weim.EB_B[2] Alt 1 Yes
LCD1_DATA07 weim.EB_B[3] Alt 1 Yes
NAND_CE0_B weim.LBA_B Alt 6 Yes
NAND_CE1_B weim.OE Alt 6 Yes
NAND_RE_B weim.RW Alt 6 Yes
Table 105. NOR/OneNAND Boot through EIM (continued)
Ball Name Signal Name Mux Mode Common ADH16
Non-Mux
ADL16
Non-Mux AD16 Mux
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
126 NXP Semiconductors
Package Information and Contact Assignments
6 Package Information and Contact Assignments
This section includes the contact assignment information and mechanical package drawing.
6.1 i.MX 6SoloX Signal Availability by Package
The i.MX 6SoloX is available in multiple packages. Not all signals are available in all packages. Table 106
summarizes the signal differences and their implications. Signals available on all packages are not shown in this
table. This table only shows signals impacted that are not available through another IOMUX option.
Table 106. i.MX 6SoloX Signal Availability by Package
Affected
Module
Package
SoC Capability
Implication
19x19 mm
[VM]
17x17 mm NP
(no PCIe) [VO]
17x17 mm WP
(with PCIe) [VN]
14x14 mm
[VK]
ADC ADC1_IN0 ADC1_IN0 ADC1_IN0 ADC1_IN0
ADC1_IN1 ADC1_IN1 ADC1_IN1 ADC1_IN1
ADC1_IN2 ADC1_IN2 ADC1_IN2
ADC1_IN3 ADC1_IN3 ADC1_IN3
ADC2_IN0 ADC2_IN0 ADC2_IN0
ADC2_IN1 ADC2_IN1 ADC2_IN1
ADC2_IN2 ADC2_IN2 ADC2_IN2
ADC2_IN3 ADC2_IN3 ADC2_IN3
ADC_VREFL ADC_VREFL Tied internally
to VSS
ADC_VREFL 17x17NP low reference voltage is not
controllable.
ADC_VREFH ADC_VREFH Tied internally to
VDDA_ADC_3P3
ADC_VREFH 17x17NP high reference voltage is not
controllable.
ECSPI4 ECSPI4_RDY Master mode flow control cannot be
used without ECSPI4_RDY
EIM EIM_DATA[27:16] Reduced EIM throughput on the
smaller packages
ENET1 1588_EVENT1_IN
1588_EVENT1_OUT
ENET2 1588_EVENT1_IN
1588_EVENT1_OUT
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 127
GPIO GPIO1_IO[21]
GPIO1_IO[20]
GPIO1_IO[19]
GPIO1_IO[18]
GPIO1_IO[17]
GPIO1_IO[16]
GPIO1_IO[15]
GPIO1_IO[14]
GPIO1_IO[25]
GPIO1_IO[22]
GPIO1_IO[23]
GPIO1_IO[24]
GPIO6_IO[2]
GPIO6_IO[3]
GPIO6_IO[1]
GPIO6_IO[0]
GPIO6_IO[4]
GPIO6_IO[5]
GPT GPT_CAPTURE1
GPT_CAPTURE2
GPT_COMPARE1
GPT_CLK
GPT_COMPARE2
GPT_COMPARE3
GPT_CAPTURE1
LVDS I/F LVDS_CLK_N
LVDS_CLK_P
LVDS_DATA0_N
LVDS_DATA0_P
LVDS_DATA1_N
LVDS_DATA1_P
LVDS_DATA2_N
LVDS_DATA2_P
LVDS_DATA3_N
LVDS_DATA3_P
LVDS_CLK_N
Table 106. i.MX 6SoloX Signal Availability by Package (continued)
Affected
Module
Package
SoC Capability
Implication
19x19 mm
[VM]
17x17 mm NP
(no PCIe) [VO]
17x17 mm WP
(with PCIe) [VN]
14x14 mm
[VK]
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
128 NXP Semiconductors
Package Information and Contact Assignments
6.2 Signals with Different States During Reset and After Reset
For most of the signals, the state during reset is the same as the state after reset as listed in the “Out of Reset
Condition” column of the Functional Contact Assignment tables for the various packages (Table 109,
Table 113, Table 116, and Table 119). However, there are a few signals for which the state during reset is
different from the state after reset. These signals along with their state during reset are given in Table 107.
MMDC DRAM_ADDR15 Address space is limited to 2GB on the
smaller packages vs.4 GB on the
19x19 package.
PCIe PCIE_REXT PCIE_REXT
PCIE_RX_N PCIE_RX_N
PCIE_RX_P PCIE_RX_P
PCIE_TX_N PCIE_TX_N
PCIE_TX_P PCIE_TX_P
PCIE_VP PCIE_VP
PCIE_VP_CAP PCIE_VP_CAP
PCIE_VPH PCIE_VPH
PCIE_VPTX PCIE_VPTX
UART6 UART6_DCD_B
UART6_DTR_B
UART6_DSR_B
UART6_RI_B
uSDHC1 SD1_DATA0 Entire interface not available on the
smaller packages
SD1_DATA1
SD1_CMD
SD1_CLK
SD1_DATA2
SD1_DATA3
Table 107. Signals with Different States During Reset and After Reset
Ball Name
State During Reset (POR_B Asserted)
Input/Output Value
GPIO1_IO06 Output Drive state unknown. This signal should not be used for system functions that will
require it to be an input or stable output during reset.
GPIO1_IO09 Output Drive state unknown. This signal should not be used for system functions that will
require it to be an input or stable output during reset.
Table 106. i.MX 6SoloX Signal Availability by Package (continued)
Affected
Module
Package
SoC Capability
Implication
19x19 mm
[VM]
17x17 mm NP
(no PCIe) [VO]
17x17 mm WP
(with PCIe) [VN]
14x14 mm
[VK]
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 129
6.3 19x19 mm Package Information
6.3.1 19x19 mm, 0.8 mm Pitch, 23x23 Ball Matrix
Figure 83 shows the top, bottom, and side views of the 19×19 mm BGA package.
RGMII2_TD3 Output Drive state unknown. This signal should not be used for system functions that will
require it to be an input or stable output during reset.
LCD1_DATA00 Input BT_CFG[0] with 100K Pull Down
LCD1_DATA01 Input BT_CFG[1] with 100K Pull Down
LCD1_DATA02 Input BT_CFG[2] with 100K Pull Down
LCD1_DATA03 Input BT_CFG[3] with 100K Pull Down
LCD1_DATA04 Input BT_CFG[4] with 100K Pull Down
LCD1_DATA05 Input BT_CFG[5] with 100K Pull Down
LCD1_DATA06 Input BT_CFG[6] with 100K Pull Down
LCD1_DATA07 Input BT_CFG[7] with 100K Pull Down
LCD1_DATA08 Input BT_CFG[8] with 100K Pull Down
LCD1_DATA09 Input BT_CFG[9] with 100K Pull Down
LCD1_DATA10 Input BT_CFG[10] with 100K Pull Down
LCD1_DATA11 Input BT_CFG[11] with 100K Pull Down
LCD1_DATA12 Input BT_CFG[12] with 100K Pull Down
LCD1_DATA13 Input BT_CFG[13] with 100K Pull Down
LCD1_DATA14 Input BT_CFG[14] with 100K Pull Down
LCD1_DATA15 Input BT_CFG[15] with 100K Pull Down
LCD1_DATA16 Input BT_CFG[24] with 100K Pull Down
LCD1_DATA17 Input BT_CFG[25] with 100K Pull Down
LCD1_DATA18 Input BT_CFG[26] with 100K Pull Down
LCD1_DATA19 Input BT_CFG[27] with 100K Pull Down
LCD1_DATA20 Input BT_CFG[28] with 100K Pull Down
LCD1_DATA21 Input BT_CFG[29] with 100K Pull Down
LCD1_DATA22 Input BT_CFG[30] with 100K Pull Down
LCD1_DATA23 Input BT_CFG[31] with 100K Pull Down
Table 107. Signals with Different States During Reset and After Reset (continued)
Ball Name
State During Reset (POR_B Asserted)
Input/Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
130 NXP Semiconductors
Package Information and Contact Assignments
Figure 83. 19x19 mm BGA Package—Top, Bottom, and Side Views
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 131
Figure 84. 19x19 mm BGA Package Notes
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
132 NXP Semiconductors
Package Information and Contact Assignments
6.3.2 19x19 mm Supplies Contact Assignments and Functional Contact
Assignments
Table 108 shows supplies contact assignments for the 19x19 mm package.
Table 108. 19x19 mm Supplies Contact Assignments
Supply Rail Name 19x19
Ball(s) Position(s) Remark
ADC_VREFH AA16 ADC high reference voltage
ADC_VREFL U16 ADC low reference voltage
DRAM_VREF M3 DDR voltage reference input. Connect to a voltage source
that is 50% of NVCC_DRAM.
DRAM_ZQPAD C4 DDR output buffer driver calibration reference voltage input.
Connect DRAM_ZQPAD to an external 240 ohm 1% resistor
to Vss.
GPANAIO V18 Analog output for NXP use only. This output must always be
left unconnected.
NGND_KEL0 R16 Connect to Vss
NVCC_CSI P18 Supply input for the CSI interface
NVCC_DRAM F5, G5, H5, J5, K5, L5, M5, N5, P5,
R5, T5, U5, V5
Supply input for the DDR I/O interface
NVCC_DRAM_2P5 M6 Supply input for the DDR interface
NVCC_ENET F6 Supply input for the ENET interfaces
NVCC_GPIO G15 Supply input for the GPIO interface
NVCC_HIGH U12 3.3 V Supply input for the dual-voltage I/Os on the SD3
interface
NVCC_JTAG U11 Supply input for the JTAG interface
NVCC_KEY G16 Supply input for the Key Pad Port (KPP) interface
NVCC_LCD1 G17 Supply input for the LCD interface
NVCC_LOW V11 1.8 V Supply input for the dual-voltage IOs on the SD3
interface
NVCC_LVDS T18 Supply input for the LVDS interface
NVCC_NAND U8 Supply input for the Raw NAND flash memories interface
NVCC_PLL Y23 Supply input for the PLLs
NVCC_QSPI G14 Supply input for the QSPI interface
NVCC_RGMII1 F8 Supply input for the RGMII1 interface
NVCC_RGMII2 G9 Supply input for the RGMII2 interface
NVCC_SD1 G12 Supply input for the SD1 interface
NVCC_SD2 G11 Supply input for the SD2 interface
NVCC_SD4 U10 Supply input for the SD4 interface
NVCC_USB_H AA6 Supply input for the USB HSIC interface
PCIE_REXT M21 PCIe impedance calibration resistor. Connect PCIE_REXT to
an external 200 ohm 1% resistor to Vss.
PCIE_VP L18 Supply input for the PCIe PHY
PCIE_VPH R18 Supply input for the PCIe PHY
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 133
PCIE_VPTX M18 Supply input for the PCIe PHY
RSVD E5 Reserved. Do not connect.
USB_OTG1_VBUS W20 VBUS input for USB_OTG1
USB_OTG2_VBUS Y18 VBUS input for USB_OTG2
Reserved K21 Reserved. Leave unconnected.
Reserved L21 Reserved. Connect to ground through a 10 kΩ resistor.
Reserved N18 Reserved. Connect to ground through a 10 kΩ resistor.
VDD_ARM_CAP C18, J12, J13, J14, J15, J16, K16,
L16, M16
Supply voltage output from internal LDO_ARM. Requires
external capacitor(s).
VDD_ARM_IN K12, K13, K14, K15, J21, L15, M15 Supply voltage input for internal LDO_ARM.
VDD_HIGH_CAP U17, U18 Supply voltage output from internal LDO_2P5. Requires
external capacitor(s).
VDD_HIGH_IN U14, U15 Supply voltage input to internal LDO_2P5, LDO_1P1 and
LDO_SNVS.
VDD_SNVS_CAP Y22 Supply voltage output from internal LDO_SNVS. Requires
external capacitor(s).
VDD_SNVS_IN V15 Supply voltage input to the SNVS voltage domain
VDD_SOC_CAP J7, J8, J9, J10, J11, K7, L7, M7, N7,
N16, P7, P16, R7, R8, R9, R10, R11,
R12, R13, R14, R15, Y10, AA10
Supply voltage output from internal LDO_SOC. Requires
external capacitor(s).
VDD_SOC_IN C9, K8, K9, K10, K11, L8, M8, N8,
N15, P8, P9, P10, P11, P12, P13,
P14, P15
Supply voltage input to internal LDO_SOC and LDO_PCIE
VDD_USB_CAP AA17 Supply voltage output from internal LDO_USB. Requires
external capacitor(s).
VDDA_ADC_3P3 U13 Supply voltage input to the ADC. This supply must be
provided even if the ADC is not used.
VSS A1, A6, A23, B3, B6, C2, C3, C5, D7,
D9, D11, D13, D15, D17, D19, F2, F3,
F20, G6, G7, G8, H6, H7, H8, H9,
H10, H11, H12, H13, H14, H15, H16,
H17, J2, J3, J6, J17, J20, K6, K17, L2,
L3, L6, L9, L10, L11, L12, L13, L14,
L17, M9, M10, M11, M12, M13, M14,
M17, M20, M22, M23, N2, N3, N6, N9,
N10, N11, N12, N13, N14, N17, P6,
P17, R2, R3, R6, R17, R20, R21, R22,
R23, T6, T7, T8, T9, T10, T11, T12,
T13, T14, T15, T16, T17, U6, U7, U20,
U21, V2, V3, V8, V9, W19, W21, W22,
W23, Y7, Y11, Y13, Y15, Y17, Y20,
AA2, AA3, AA5, AA18, AA20, AB3,
AB6, AB19, AB21, AB23, AC1, AC6,
AC19, AC21, AC23
Ground
Table 108. 19x19 mm Supplies Contact Assignments (continued)
Supply Rail Name 19x19
Ball(s) Position(s) Remark
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
134 NXP Semiconductors
Package Information and Contact Assignments
Table 109 shows an alpha-sorted list of functional contact assignments for the 19x19 mm package.
Table 109. 19x19 mm Functional Contact Assignments
Ball Name 19x19
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
ADC1_IN0 AC15 VDDA_ADC_3P3 ADC1_IN0 Input
ADC1_IN1 AB15 VDDA_ADC_3P3 ADC1_IN1 Input
ADC1_IN2 AC16 VDDA_ADC_3P3 ADC1_IN2 Input
ADC1_IN3 AB16 VDDA_ADC_3P3 ADC1_IN3 Input
ADC2_IN0 AC17 VDDA_ADC_3P3 ADC2_IN0 Input
ADC2_IN1 AB17 VDDA_ADC_3P3 ADC2_IN1 Input
ADC2_IN2 AC18 VDDA_ADC_3P3 ADC2_IN2 Input
ADC2_IN3 AB18 VDDA_ADC_3P3 ADC2_IN3 Input
BOOT_MODE0 W14 VDD_SNVS_IN GPIO BOOT_MODE0 Input 100 kΩ
pull-down
BOOT_MODE1 W15 VDD_SNVS_IN GPIO BOOT_MODE1 Input 100 kΩ
pull-down
CCM_CLK1_N AA22 VDD_HIGH_CAP CCM_CLK1_N
CCM_CLK1_P AA23 VDD_HIGH_CAP CCM_CLK1_P
CCM_CLK2 W18 VDD_HIGH_CAP CCM_CLK2
CCM_PMIC_STBY_REQ V16 VDD_SNVS_IN GPIO CCM_PMIC_STBY_REQ Output 0
CSI_DATA00 P21 NVCC_CSI GPIO ALT5 GPIO1_IO14 Input Keeper
CSI_DATA01 P20 NVCC_CSI GPIO ALT5 GPIO1_IO15 Input Keeper
CSI_DATA02 P19 NVCC_CSI GPIO ALT5 GPIO1_IO16 Input Keeper
CSI_DATA03 N21 NVCC_CSI GPIO ALT5 GPIO1_IO17 Input Keeper
CSI_DATA04 N19 NVCC_CSI GPIO ALT5 GPIO1_IO18 Input Keeper
CSI_DATA05 N20 NVCC_CSI GPIO ALT5 GPIO1_IO19 Input Keeper
CSI_DATA06 M19 NVCC_CSI GPIO ALT5 GPIO1_IO20 Input Keeper
CSI_DATA07 L19 NVCC_CSI GPIO ALT5 GPIO1_IO21 Input Keeper
CSI_HSYNC L20 NVCC_CSI GPIO ALT5 GPIO1_IO22 Input Keeper
CSI_MCLK R19 NVCC_CSI GPIO ALT5 GPIO1_IO23 Input Keeper
CSI_PIXCLK T19 NVCC_CSI GPIO ALT5 GPIO1_IO24 Input Keeper
CSI_VSYNC U19 NVCC_CSI GPIO ALT5 GPIO1_IO25 Input Keeper
DRAM_ADDR00 N4 NVCC_DRAM DDR DRAM_ADDR00 Output 100 kΩ
pull-up
DRAM_ADDR01 Y4 NVCC_DRAM DDR DRAM_ADDR01 Output 100 kΩ
pull-up
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 135
DRAM_ADDR02 G4 NVCC_DRAM DDR DRAM_ADDR02 Output 100 kΩ
pull-up
DRAM_ADDR03 H3 NVCC_DRAM DDR DRAM_ADDR03 Output 100 kΩ
pull-up
DRAM_ADDR04 R4 NVCC_DRAM DDR DRAM_ADDR04 Output 100 kΩ
pull-up
DRAM_ADDR05 G3 NVCC_DRAM DDR DRAM_ADDR05 Output 100 kΩ
pull-up
DRAM_ADDR06 Y3 NVCC_DRAM DDR DRAM_ADDR06 Output 100 kΩ
pull-up
DRAM_ADDR07 F4 NVCC_DRAM DDR DRAM_ADDR07 Output 100 kΩ
pull-up
DRAM_ADDR08 T3 NVCC_DRAM DDR DRAM_ADDR08 Output 100 kΩ
pull-up
DRAM_ADDR09 P3 NVCC_DRAM DDR DRAM_ADDR09 Output 100 kΩ
pull-up
DRAM_ADDR10 U4 NVCC_DRAM DDR DRAM_ADDR10 Output 100 kΩ
pull-up
DRAM_ADDR11 T4 NVCC_DRAM DDR DRAM_ADDR11 Output 100 kΩ
pull-up
DRAM_ADDR12 W3 NVCC_DRAM DDR DRAM_ADDR12 Output 100 kΩ
pull-up
DRAM_ADDR13 P4 NVCC_DRAM DDR DRAM_ADDR13 Output 100 kΩ
pull-up
DRAM_ADDR14 W4 NVCC_DRAM DDR DRAM_ADDR14 Output 100 kΩ
pull-up
DRAM_ADDR15 E4 NVCC_DRAM DDR DRAM_ADDR15 Output 100 kΩ
pull-up
DRAM_CAS_B K4 NVCC_DRAM DDR DRAM_CAS_B Output 100 kΩ
pull-up
DRAM_CS0_B J4 NVCC_DRAM DDR DRAM_CS0_B Output 100 kΩ
pull-up
DRAM_CS1_B D3 NVCC_DRAM DDR DRAM_CS1_B Output 100 kΩ
pull-up
DRAM_DATA00 U2 NVCC_DRAM DDR DRAM_DATA00 Input 100 kΩ
pull-up
DRAM_DATA01 W2 NVCC_DRAM DDR DRAM_DATA01 Input 100 kΩ
pull-up
DRAM_DATA02 V1 NVCC_DRAM DDR DRAM_DATA02 Input 100 kΩ
pull-up
Table 109. 19x19 mm Functional Contact Assignments (continued)
Ball Name 19x19
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
136 NXP Semiconductors
Package Information and Contact Assignments
DRAM_DATA03 W1 NVCC_DRAM DDR DRAM_DATA03 Input 100 kΩ
pull-up
DRAM_DATA04 P1 NVCC_DRAM DDR DRAM_DATA04 Input 100 kΩ
pull-up
DRAM_DATA05 N1 NVCC_DRAM DDR DRAM_DATA05 Input 100 kΩ
pull-up
DRAM_DATA06 R1 NVCC_DRAM DDR DRAM_DATA06 Input 100 kΩ
pull-up
DRAM_DATA07 P2 NVCC_DRAM DDR DRAM_DATA07 Input 100 kΩ
pull-up
DRAM_DATA08 J1 NVCC_DRAM DDR DRAM_DATA08 Input 100 kΩ
pull-up
DRAM_DATA09 L1 NVCC_DRAM DDR DRAM_DATA09 Input 100 kΩ
pull-up
DRAM_DATA10 K2 NVCC_DRAM DDR DRAM_DATA10 Input 100 kΩ
pull-up
DRAM_DATA11 G2 NVCC_DRAM DDR DRAM_DATA11 Input 100 kΩ
pull-up
DRAM_DATA12 K1 NVCC_DRAM DDR DRAM_DATA12 Input 100 kΩ
pull-up
DRAM_DATA13 F1 NVCC_DRAM DDR DRAM_DATA13 Input 100 kΩ
pull-up
DRAM_DATA14 E2 NVCC_DRAM DDR DRAM_DATA14 Input 100 kΩ
pull-up
DRAM_DATA15 E1 NVCC_DRAM DDR DRAM_DATA15 Input 100 kΩ
pull-up
DRAM_DATA16 AB1 NVCC_DRAM DDR DRAM_DATA16 Input 100 kΩ
pull-up
DRAM_DATA17 AB5 NVCC_DRAM DDR DRAM_DATA17 Input 100 kΩ
pull-up
DRAM_DATA18 AC5 NVCC_DRAM DDR DRAM_DATA18 Input 100 kΩ
pull-up
DRAM_DATA19 AB4 NVCC_DRAM DDR DRAM_DATA19 Input 100 kΩ
pull-up
DRAM_DATA20 Y2 NVCC_DRAM DDR DRAM_DATA20 Input 100 kΩ
pull-up
DRAM_DATA21 AC3 NVCC_DRAM DDR DRAM_DATA21 Input 100 kΩ
pull-up
DRAM_DATA22 AA1 NVCC_DRAM DDR DRAM_DATA22 Input 100 kΩ
pull-up
Table 109. 19x19 mm Functional Contact Assignments (continued)
Ball Name 19x19
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 137
DRAM_DATA23 Y1 NVCC_DRAM DDR DRAM_DATA23 Input 100 kΩ
pull-up
DRAM_DATA24 B4 NVCC_DRAM DDR DRAM_DATA24 Input 100 kΩ
pull-up
DRAM_DATA25 D1 NVCC_DRAM DDR DRAM_DATA25 Input 100 kΩ
pull-up
DRAM_DATA26 B2 NVCC_DRAM DDR DRAM_DATA26 Input 100 kΩ
pull-up
DRAM_DATA27 D2 NVCC_DRAM DDR DRAM_DATA27 Input 100 kΩ
pull-up
DRAM_DATA28 B1 NVCC_DRAM DDR DRAM_DATA28 Input 100 kΩ
pull-up
DRAM_DATA29 A4 NVCC_DRAM DDR DRAM_DATA29 Input 100 kΩ
pull-up
DRAM_DATA30 B5 NVCC_DRAM DDR DRAM_DATA30 Input 100 kΩ
pull-up
DRAM_DATA31 A5 NVCC_DRAM DDR DRAM_DATA31 Input 100 kΩ
pull-up
DRAM_DQM0 T2 NVCC_DRAM DDR DRAM_DQM0 Output 100 kΩ
pull-up
DRAM_DQM1 G1 NVCC_DRAM DDR DRAM_DQM1 Output 100 kΩ
pull-up
DRAM_DQM2 AC4 NVCC_DRAM DDR DRAM_DQM2 Output 100 kΩ
pull-up
DRAM_DQM3 C1 NVCC_DRAM DDR DRAM_DQM3 Output 100 kΩ
pull-up
DRAM_ODT0 AA4 NVCC_DRAM DDR DRAM_ODT0 Output 100 kΩ
pull-down
DRAM_RAS_B L4 NVCC_DRAM DDR DRAM_RAS_B Output 100 kΩ
pull-up
DRAM_RESET D4 NVCC_DRAM DDR DRAM_RESET Output 100 kΩ
pull-down
DRAM_SDBA0 H4 NVCC_DRAM DDR DRAM_SDBA0 Output 100 kΩ
pull-up
DRAM_SDBA1 U3 NVCC_DRAM DDR DRAM_SDBA1 Output 100 kΩ
pull-up
DRAM_SDBA2 M4 NVCC_DRAM DDR DRAM_SDBA2 Output 100 kΩ
pull-up
DRAM_SDCKE0 V4 NVCC_DRAM DDR DRAM_SDCKE0 Output 100 kΩ
pull-down
Table 109. 19x19 mm Functional Contact Assignments (continued)
Ball Name 19x19
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
138 NXP Semiconductors
Package Information and Contact Assignments
DRAM_SDCKE1 E3 NVCC_DRAM DDR DRAM_SDCKE1 Output 100 kΩ
pull-down
DRAM_SDCLK0_N M1 NVCC_DRAM DDRCLK DRAM_SDCLK0_N
DRAM_SDCLK0_P M2 NVCC_DRAM DDRCLK DRAM_SDCLK0_P Output Low
DRAM_SDQS0_N U1 NVCC_DRAM DDRCLK DRAM_SDQS0_N
DRAM_SDQS0_P T1 NVCC_DRAM DDRCLK DRAM_SDQS0_P Input
DRAM_SDQS1_N H2 NVCC_DRAM DDRCLK DRAM_SDQS1_N
DRAM_SDQS1_P H1 NVCC_DRAM DDRCLK DRAM_SDQS1_P Input
DRAM_SDQS2_N AC2 NVCC_DRAM DDRCLK DRAM_SDQS2_N
DRAM_SDQS2_P AB2 NVCC_DRAM DDRCLK DRAM_SDQS2_P Input
DRAM_SDQS3_N A2 NVCC_DRAM DDRCLK DRAM_SDQS3_N
DRAM_SDQS3_P A3 NVCC_DRAM DDRCLK DRAM_SDQS3_P Input
DRAM_SDWE_B K3 NVCC_DRAM DDR DRAM_SDWE_B Output 100 kΩ
pull-up
ENET1_COL E6 NVCC_ENET GPIO ALT5 GPIO2_IO00 Input Keeper
ENET1_CRS C7 NVCC_ENET GPIO ALT5 GPIO2_IO01 Input Keeper
ENET1_MDC F9 NVCC_ENET GPIO ALT5 GPIO2_IO02 Input Keeper
ENET1_MDIO E7 NVCC_ENET GPIO ALT5 GPIO2_IO03 Input Keeper
ENET1_RX_CLK B7 NVCC_ENET GPIO ALT5 GPIO2_IO04 Input Keeper
ENET1_TX_CLK A7 NVCC_ENET GPIO ALT5 GPIO2_IO05 Input Keeper
ENET2_COL F7 NVCC_ENET GPIO ALT5 GPIO2_IO06 Input Keeper
ENET2_CRS D6 NVCC_ENET GPIO ALT5 GPIO2_IO07 Input Keeper
ENET2_RX_CLK D5 NVCC_ENET GPIO ALT5 GPIO2_IO08 Input Keeper
ENET2_TX_CLK C6 NVCC_ENET GPIO ALT5 GPIO2_IO09 Input Keeper
GPIO1_IO00 A20 NVCC_GPIO GPIO ALT5 GPIO1_IO00 Input Keeper
GPIO1_IO01 B20 NVCC_GPIO GPIO ALT5 GPIO1_IO01 Input Keeper
GPIO1_IO02 C20 NVCC_GPIO GPIO ALT5 GPIO1_IO02 Input Keeper
GPIO1_IO03 D20 NVCC_GPIO GPIO ALT5 GPIO1_IO03 Input Keeper
GPIO1_IO04 A19 NVCC_GPIO GPIO ALT5 GPIO1_IO04 Input Keeper
GPIO1_IO05 B19 NVCC_GPIO GPIO ALT5 GPIO1_IO05 Input Keeper
GPIO1_IO06 C19 NVCC_GPIO GPIO ALT5 GPIO1_IO06 Input Keeper
GPIO1_IO07 A18 NVCC_GPIO GPIO ALT5 GPIO1_IO07 Input Keeper
GPIO1_IO08 B18 NVCC_GPIO GPIO ALT5 GPIO1_IO08 Input Keeper
GPIO1_IO09 D18 NVCC_GPIO GPIO ALT5 GPIO1_IO09 Input Keeper
Table 109. 19x19 mm Functional Contact Assignments (continued)
Ball Name 19x19
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 139
GPIO1_IO10 E19 NVCC_GPIO GPIO ALT5 GPIO1_IO10 Input Keeper
GPIO1_IO11 E18 NVCC_GPIO GPIO ALT5 GPIO1_IO11 Input Keeper
GPIO1_IO12 A17 NVCC_GPIO GPIO ALT5 GPIO1_IO12 Input Keeper
GPIO1_IO13 B17 NVCC_GPIO GPIO ALT5 GPIO1_IO13 Input Keeper
JTAG_MOD U9 NVCC_JTAG GPIO JTAG_MOD Input 100 kΩ
pull-up
JTAG_TCK V10 NVCC_JTAG GPIO JTAG_TCK Input 47 kΩ
pull-up
JTAG_TDI V12 NVCC_JTAG GPIO JTAG_TDI Input 47 kΩ
pull-up
JTAG_TDO W9 NVCC_JTAG GPIO JTAG_TDO Output Keeper
JTAG_TMS W12 NVCC_JTAG GPIO JTAG_TMS Input 47 kΩ
pull-up
JTAG_TRST_B V13 NVCC_JTAG GPIO JTAG_TRST_B Input 47 kΩ
pull-up
KEY_COL0 C23 NVCC_KEY GPIO ALT5 GPIO2_IO10 Input Keeper
KEY_COL1 C22 NVCC_KEY GPIO ALT5 GPIO2_IO11 Input Keeper
KEY_COL2 B23 NVCC_KEY GPIO ALT5 GPIO2_IO12 Input Keeper
KEY_COL3 B22 NVCC_KEY GPIO ALT5 GPIO2_IO13 Input Keeper
KEY_COL4 A22 NVCC_KEY GPIO ALT5 GPIO2_IO14 Input Keeper
KEY_ROW0 A21 NVCC_KEY GPIO ALT5 GPIO2_IO15 Input Keeper
KEY_ROW1 B21 NVCC_KEY GPIO ALT5 GPIO2_IO16 Input Keeper
KEY_ROW2 C21 NVCC_KEY GPIO ALT5 GPIO2_IO17 Input Keeper
KEY_ROW3 D21 NVCC_KEY GPIO ALT5 GPIO2_IO18 Input Keeper
KEY_ROW4 D22 NVCC_KEY GPIO ALT5 GPIO2_IO19 Input Keeper
LCD1_CLK H21 NVCC_LCD1 GPIO ALT5 GPIO3_IO00 Input Keeper
LCD1_DATA00 J23 NVCC_LCD1 GPIO ALT5 GPIO3_IO01 Input Keeper
LCD1_DATA01 J22 NVCC_LCD1 GPIO ALT5 GPIO3_IO02 Input Keeper
LCD1_DATA02 K20 NVCC_LCD1 GPIO ALT5 GPIO3_IO03 Input Keeper
LCD1_DATA03 K19 NVCC_LCD1 GPIO ALT5 GPIO3_IO04 Input Keeper
LCD1_DATA04 K18 NVCC_LCD1 GPIO ALT5 GPIO3_IO05 Input Keeper
LCD1_DATA05 J19 NVCC_LCD1 GPIO ALT5 GPIO3_IO06 Input Keeper
LCD1_DATA06 J18 NVCC_LCD1 GPIO ALT5 GPIO3_IO07 Input Keeper
LCD1_DATA07 H23 NVCC_LCD1 GPIO ALT5 GPIO3_IO08 Input Keeper
LCD1_DATA08 H22 NVCC_LCD1 GPIO ALT5 GPIO3_IO09 Input Keeper
Table 109. 19x19 mm Functional Contact Assignments (continued)
Ball Name 19x19
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
140 NXP Semiconductors
Package Information and Contact Assignments
LCD1_DATA09 H20 NVCC_LCD1 GPIO ALT5 GPIO3_IO10 Input Keeper
LCD1_DATA10 H19 NVCC_LCD1 GPIO ALT5 GPIO3_IO11 Input Keeper
LCD1_DATA11 H18 NVCC_LCD1 GPIO ALT5 GPIO3_IO12 Input Keeper
LCD1_DATA12 G23 NVCC_LCD1 GPIO ALT5 GPIO3_IO13 Input Keeper
LCD1_DATA13 G22 NVCC_LCD1 GPIO ALT5 GPIO3_IO14 Input Keeper
LCD1_DATA14 G21 NVCC_LCD1 GPIO ALT5 GPIO3_IO15 Input Keeper
LCD1_DATA15 G19 NVCC_LCD1 GPIO ALT5 GPIO3_IO16 Input Keeper
LCD1_DATA16 G18 NVCC_LCD1 GPIO ALT5 GPIO3_IO17 Input Keeper
LCD1_DATA17 F23 NVCC_LCD1 GPIO ALT5 GPIO3_IO18 Input Keeper
LCD1_DATA18 F22 NVCC_LCD1 GPIO ALT5 GPIO3_IO19 Input Keeper
LCD1_DATA19 F21 NVCC_LCD1 GPIO ALT5 GPIO3_IO20 Input Keeper
LCD1_DATA20 G20 NVCC_LCD1 GPIO ALT5 GPIO3_IO21 Input Keeper
LCD1_DATA21 F19 NVCC_LCD1 GPIO ALT5 GPIO3_IO22 Input Keeper
LCD1_DATA22 F18 NVCC_LCD1 GPIO ALT5 GPIO3_IO23 Input Keeper
LCD1_DATA23 E20 NVCC_LCD1 GPIO ALT5 GPIO3_IO24 Input Keeper
LCD1_ENABLE E21 NVCC_LCD1 GPIO ALT5 GPIO3_IO25 Input Keeper
LCD1_HSYNC D23 NVCC_LCD1 GPIO ALT5 GPIO3_IO26 Input Keeper
LCD1_RESET E22 NVCC_LCD1 GPIO ALT5 GPIO3_IO27 Input Keeper
LCD1_VSYNC E23 NVCC_LCD1 GPIO ALT5 GPIO3_IO28 Input Keeper
LVDS_CLK_N T20 NVCC_LVDS LVDS LVDS_CLK_N
LVDS_CLK_P T21 NVCC_LVDS LVDS ALT0 LVDS_CLK_P Input
LVDS_DATA0_N V22 NVCC_LVDS LVDS LVDS_DATA0_N
LVDS_DATA0_P V23 NVCC_LVDS LVDS ALT0 LVDS_DATA0_P Input
LVDS_DATA1_N V20 NVCC_LVDS LVDS LVDS_DATA1_N
LVDS_DATA1_P V21 NVCC_LVDS LVDS ALT0 LVDS_DATA1_P Input
LVDS_DATA2_N U22 NVCC_LVDS LVDS LVDS_DATA2_N
LVDS_DATA2_P U23 NVCC_LVDS LVDS ALT0 LVDS_DATA2_P Input
LVDS_DATA3_N T22 NVCC_LVDS LVDS LVDS_DATA3_N
LVDS_DATA3_P T23 NVCC_LVDS LVDS ALT0 LVDS_DATA3_P Input
NAND_ALE AB7 NVCC_NAND GPIO ALT5 GPIO4_IO00 Input Keeper
NAND_CE0_B AB8 NVCC_NAND GPIO ALT5 GPIO4_IO01 Input Keeper
NAND_CE1_B AC9 NVCC_NAND GPIO ALT5 GPIO4_IO02 Input Keeper
NAND_CLE AB9 NVCC_NAND GPIO ALT5 GPIO4_IO03 Input Keeper
Table 109. 19x19 mm Functional Contact Assignments (continued)
Ball Name 19x19
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 141
NAND_DATA00 V7 NVCC_NAND GPIO ALT5 GPIO4_IO04 Input Keeper
NAND_DATA01 AA8 NVCC_NAND GPIO ALT5 GPIO4_IO05 Input Keeper
NAND_DATA02 W8 NVCC_NAND GPIO ALT5 GPIO4_IO06 Input Keeper
NAND_DATA03 V6 NVCC_NAND GPIO ALT5 GPIO4_IO07 Input Keeper
NAND_DATA04 W7 NVCC_NAND GPIO ALT5 GPIO4_IO08 Input Keeper
NAND_DATA05 W5 NVCC_NAND GPIO ALT5 GPIO4_IO09 Input Keeper
NAND_DATA06 Y8 NVCC_NAND GPIO ALT5 GPIO4_IO10 Input Keeper
NAND_DATA07 W6 NVCC_NAND GPIO ALT5 GPIO4_IO11 Input Keeper
NAND_RE_B AA9 NVCC_NAND GPIO ALT5 GPIO4_IO12 Input Keeper
NAND_READY_B AC7 NVCC_NAND GPIO ALT5 GPIO4_IO13 Input Keeper
NAND_WE_B AA7 NVCC_NAND GPIO ALT5 GPIO4_IO14 Input Keeper
NAND_WP_B AC8 NVCC_NAND GPIO ALT5 GPIO4_IO15 Input Keeper
ONOFF W17 VDD_SNVS_IN GPIO ONOFF Input 100 kΩ
pull-up
PCIE_RX_N N22 PCIE_VPH PCIE_RX_N
PCIE_RX_P N23 PCIE_VPH PCIE_RX_P
PCIE_TX_N P22 PCIE_VPH PCIE_TX_N
PCIE_TX_P P23 PCIE_VPH PCIE_TX_P
POR_B V17 VDD_SNVS_IN GPIO POR_B Input 100 kΩ
pull-up
QSPI1A_DATA0 C16 NVCC_QSPI GPIO ALT5 GPIO4_IO16 Input Keeper
QSPI1A_DATA1 E16 NVCC_QSPI GPIO ALT5 GPIO4_IO17 Input Keeper
QSPI1A_DATA2 D16 NVCC_QSPI GPIO ALT5 GPIO4_IO18 Input Keeper
QSPI1A_DATA3 C17 NVCC_QSPI GPIO ALT5 GPIO4_IO19 Input Keeper
QSPI1A_DQS E13 NVCC_QSPI GPIO ALT5 GPIO4_IO20 Input Keeper
QSPI1A_SCLK E17 NVCC_QSPI GPIO ALT5 GPIO4_IO21 Input Keeper
QSPI1A_SS0_B F16 NVCC_QSPI GPIO ALT5 GPIO4_IO22 Input Keeper
QSPI1A_SS1_B F17 NVCC_QSPI GPIO ALT5 GPIO4_IO23 Input Keeper
QSPI1B_DATA0 C14 NVCC_QSPI GPIO ALT5 GPIO4_IO24 Input Keeper
QSPI1B_DATA1 E14 NVCC_QSPI GPIO ALT5 GPIO4_IO25 Input Keeper
QSPI1B_DATA2 D14 NVCC_QSPI GPIO ALT5 GPIO4_IO26 Input Keeper
QSPI1B_DATA3 C15 NVCC_QSPI GPIO ALT5 GPIO4_IO27 Input Keeper
QSPI1B_DQS C13 NVCC_QSPI GPIO ALT5 GPIO4_IO28 Input Keeper
QSPI1B_SCLK E15 NVCC_QSPI GPIO ALT5 GPIO4_IO29 Input Keeper
Table 109. 19x19 mm Functional Contact Assignments (continued)
Ball Name 19x19
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
142 NXP Semiconductors
Package Information and Contact Assignments
QSPI1B_SS0_B F14 NVCC_QSPI GPIO ALT5 GPIO4_IO30 Input Keeper
QSPI1B_SS1_B F15 NVCC_QSPI GPIO ALT5 GPIO4_IO31 Input Keeper
RGMII1_RD0 D8 NVCC_RGMII1 GPIO ALT5 GPIO5_IO00 Input Keeper
RGMII1_RD1 E9 NVCC_RGMII1 GPIO ALT5 GPIO5_IO01 Input Keeper
RGMII1_RD2 C8 NVCC_RGMII1 GPIO ALT5 GPIO5_IO02 Input Keeper
RGMII1_RD3 E8 NVCC_RGMII1 GPIO ALT5 GPIO5_IO03 Input Keeper
RGMII1_RX_CTL E10 NVCC_RGMII1 GPIO ALT5 GPIO5_IO04 Input Keeper
RGMII1_RXC D10 NVCC_RGMII1 GPIO ALT5 GPIO5_IO05 Input Keeper
RGMII1_TD0 C12 NVCC_RGMII1 GPIO ALT5 GPIO5_IO06 Input Keeper
RGMII1_TD1 D12 NVCC_RGMII1 GPIO ALT5 GPIO5_IO07 Input Keeper
RGMII1_TD2 E12 NVCC_RGMII1 GPIO ALT5 GPIO5_IO08 Input Keeper
RGMII1_TD3 C11 NVCC_RGMII1 GPIO ALT5 GPIO5_IO09 Input Keeper
RGMII1_TX_CTL C10 NVCC_RGMII1 GPIO ALT5 GPIO5_IO10 Input Keeper
RGMII1_TXC E11 NVCC_RGMII1 GPIO ALT5 GPIO5_IO11 Input Keeper
RGMII2_RD0 A9 NVCC_RGMII2 GPIO ALT5 GPIO5_IO12 Input Keeper
RGMII2_RD1 B9 NVCC_RGMII2 GPIO ALT5 GPIO5_IO13 Input Keeper
RGMII2_RD2 A8 NVCC_RGMII2 GPIO ALT5 GPIO5_IO14 Input Keeper
RGMII2_RD3 B8 NVCC_RGMII2 GPIO ALT5 GPIO5_IO15 Input Keeper
RGMII2_RX_CTL B10 NVCC_RGMII2 GPIO ALT5 GPIO5_IO16 Input Keeper
RGMII2_RXC A10 NVCC_RGMII2 GPIO ALT5 GPIO5_IO17 Input Keeper
RGMII2_TD0 A12 NVCC_RGMII2 GPIO ALT5 GPIO5_IO18 Input Keeper
RGMII2_TD1 B12 NVCC_RGMII2 GPIO ALT5 GPIO5_IO19 Input Keeper
RGMII2_TD2 A13 NVCC_RGMII2 GPIO ALT5 GPIO5_IO20 Input Keeper
RGMII2_TD3 B13 NVCC_RGMII2 GPIO ALT5 GPIO5_IO21 Input Keeper
RGMII2_TX_CTL B11 NVCC_RGMII2 GPIO ALT5 GPIO5_IO22 Input Keeper
RGMII2_TXC A11 NVCC_RGMII2 GPIO ALT5 GPIO5_IO23 Input Keeper
RTC_XTALI AB20 VDD_SNVS_CAP RTC_XTALI
RTC_XTALO AC20 VDD_SNVS_CAP RTC_XTALO
SD1_CLK A15 NVCC_SD1 GPIO ALT5 GPIO6_IO00 Input Keeper
SD1_CMD B15 NVCC_SD1 GPIO ALT5 GPIO6_IO01 Input Keeper
SD1_DATA0 B16 NVCC_SD1 GPIO ALT5 GPIO6_IO02 Input Keeper
SD1_DATA1 A16 NVCC_SD1 GPIO ALT5 GPIO6_IO03 Input Keeper
SD1_DATA2 B14 NVCC_SD1 GPIO ALT5 GPIO6_IO04 Input Keeper
Table 109. 19x19 mm Functional Contact Assignments (continued)
Ball Name 19x19
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 143
SD1_DATA3 A14 NVCC_SD1 GPIO ALT5 GPIO6_IO05 Input Keeper
SD2_CLK F12 NVCC_SD2 GPIO ALT5 GPIO6_IO06 Input Keeper
SD2_CMD F11 NVCC_SD2 GPIO ALT5 GPIO6_IO07 Input Keeper
SD2_DATA0 G13 NVCC_SD2 GPIO ALT5 GPIO6_IO08 Input Keeper
SD2_DATA1 F13 NVCC_SD2 GPIO ALT5 GPIO6_IO09 Input Keeper
SD2_DATA2 F10 NVCC_SD2 GPIO ALT5 GPIO6_IO10 Input Keeper
SD2_DATA3 G10 NVCC_SD2 GPIO ALT5 GPIO6_IO11 Input Keeper
SD3_CLK Y12 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO00 Input 100 kΩ
pull-down
SD3_CMD W13 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO01 Input 100 kΩ
pull-down
SD3_DATA0 AA11 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO02 Input 100 kΩ
pull-down
SD3_DATA1 W10 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO03 Input 100 kΩ
pull-down
SD3_DATA2 AA15 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO04 Input 100 kΩ
pull-down
SD3_DATA3 Y14 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO05 Input 100 kΩ
pull-down
SD3_DATA4 AA14 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO06 Input 100 kΩ
pull-down
SD3_DATA5 AA13 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO07 Input 100 kΩ
pull-down
SD3_DATA6 AA12 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO08 Input 100 kΩ
pull-down
SD3_DATA7 W11 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO09 Input 100 kΩ
pull-down
SD4_CLK AB12 NVCC_SD4 GPIO ALT5 GPIO6_IO12 Input Keeper
SD4_CMD AB13 NVCC_SD4 GPIO ALT5 GPIO6_IO13 Input Keeper
SD4_DATA0 AC10 NVCC_SD4 GPIO ALT5 GPIO6_IO14 Input Keeper
SD4_DATA1 AB10 NVCC_SD4 GPIO ALT5 GPIO6_IO15 Input Keeper
SD4_DATA2 AC14 NVCC_SD4 GPIO ALT5 GPIO6_IO16 Input Keeper
SD4_DATA3 AB14 NVCC_SD4 GPIO ALT5 GPIO6_IO17 Input Keeper
SD4_DATA4 AC13 NVCC_SD4 GPIO ALT5 GPIO6_IO18 Input Keeper
SD4_DATA5 AC12 NVCC_SD4 GPIO ALT5 GPIO6_IO19 Input Keeper
SD4_DATA6 AC11 NVCC_SD4 GPIO ALT5 GPIO6_IO20 Input Keeper
Table 109. 19x19 mm Functional Contact Assignments (continued)
Ball Name 19x19
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
144 NXP Semiconductors
Package Information and Contact Assignments
SD4_DATA7 AB11 NVCC_SD4 GPIO ALT5 GPIO6_IO21 Input Keeper
SD4_RESET_B Y9 NVCC_SD4 GPIO ALT5 GPIO6_IO22 Input Keeper
SNVS_PMIC_ON_REQ1W16 VDD_SNVS_IN GPIO SNVS_PMIC_ON_REQ Output 100 kΩ
pull-up
SNVS_TAMPER V14 VDD_SNVS_IN GPIO SNVS_TAMPER Input 100 kΩ
pull-down
TEST_MODE Y16 VDD_SNVS_IN TEST_MODE Input 100 kΩ
pull-down
USB_H_DATA Y5 NVCC_USB_H GPIO ALT5 GPIO7_IO10 Input 100 kΩ
pull-down
USB_H_STROBE Y6 NVCC_USB_H GPIO ALT5 GPIO7_IO11 Input 100 kΩ
pull-down
USB_OTG1_CHD_B V19 VDD_USB_CAP USB_OTG1_CHD_B
USB_OTG1_DN Y21 VDD_USB_CAP USB_OTG1_DN
USB_OTG1_DP AA21 VDD_USB_CAP USB_OTG1_DP
USB_OTG2_DN Y19 VDD_USB_CAP USB_OTG2_DN
USB_OTG2_DP AA19 VDD_USB_CAP USB_OTG2_DP
Reserved L23
Reserved L22
Reserved K23
Reserved K22
XTALI AB22 NVCC_PLL XTALI
XTALO AC22 NVCC_PLL XTALO
1On silicon revisions prior to 1.2, the SNVS_PMIC_ON_REQ may briefly go low and then return high during POR. SNVS_PMIC_ON_REQ should be
high during POR. An external 100k pull-up is required.
Table 109. 19x19 mm Functional Contact Assignments (continued)
Ball Name 19x19
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 145
6.3.3 19x19 mm, 0.8 mm Pitch, 23x23 Ball Map
Table 110 shows the 19x19 mm, 0.8 mm pitch ball map for the i.MX 6SoloX.
Table 110. 19x19 mm, 0.8 mm Pitch, 23x23 Ball Map
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
A
VSS
DRAM_SDQS3_N
DRAM_SDQS3_P
DRAM_DATA29
DRAM_DATA31
VSS
ENET1_TX_CLK
RGMII2_RD2
RGMII2_RD0
RGMII2_RXC
RGMII2_TXC
RGMII2_TD0
RGMII2_TD2
SD1_DATA3
SD1_CLK
SD1_DATA1
GPIO1_IO12
GPIO1_IO07
GPIO1_IO04
GPIO1_IO00
KEY_ROW0
KEY_COL4
VSS
A
B
DRAM_DATA28
DRAM_DATA26
VSS
DRAM_DATA24
DRAM_DATA30
VSS
ENET1_RX_CLK
RGMII2_RD3
RGMII2_RD1
RGMII2_RX_CTL
RGMII2_TX_CTL
RGMII2_TD1
RGMII2_TD3
SD1_DATA2
SD1_CMD
SD1_DATA0
GPIO1_IO13
GPIO1_IO08
GPIO1_IO05
GPIO1_IO01
KEY_ROW1
KEY_COL3
KEY_COL2
B
C
DRAM_DQM3
VSS
VSS
DRAM_ZQPAD
VSS
ENET2_TX_CLK
ENET1_CRS
RGMII1_RD2
VDD_SOC_IN
RGMII1_TX_CTL
RGMII1_TD3
RGMII1_TD0
QSPI1B_DQS
QSPI1B_DATA0
QSPI1B_DATA3
QSPI1A_DATA0
QSPI1A_DATA3
VDD_ARM_CAP
GPIO1_IO06
GPIO1_IO02
KEY_ROW2
KEY_COL1
KEY_COL0
C
D
DRAM_DATA25
DRAM_DATA27
DRAM_CS1_B
DRAM_RESET
ENET2_RX_CLK
ENET2_CRS
VSS
RGMII1_RD0
VSS
RGMII1_RXC
VSS
RGMII1_TD1
VSS
QSPI1B_DATA2
VSS
QSPI1A_DATA2
VSS
GPIO1_IO09
VSS
GPIO1_IO03
KEY_ROW3
KEY_ROW4
LCD1_HSYNC
D
E
DRAM_DATA15
DRAM_DATA14
DRAM_SDCKE1
DRAM_ADDR15
RSVD
ENET1_COL
ENET1_MDIO
RGMII1_RD3
RGMII1_RD1
RGMII1_RX_CTL
RGMII1_TXC
RGMII1_TD2
QSPI1A_DQS
QSPI1B_DATA1
QSPI1B_SCLK
QSPI1A_DATA1
QSPI1A_SCLK
GPIO1_IO11
GPIO1_IO10
LCD1_DATA23
LCD1_ENABLE
LCD1_RESET
LCD1_VSYNC
E
F
DRAM_DATA13
VSS
VSS
DRAM_ADDR07
NVCC_DRAM
NVCC_ENET
ENET2_COL
NVCC_RGMII1
ENET1_MDC
SD2_DATA2
SD2_CMD
SD2_CLK
SD2_DATA1
QSPI1B_SS0_B
QSPI1B_SS1_B
QSPI1A_SS0_B
QSPI1A_SS1_B
LCD1_DATA22
LCD1_DATA21
VSS
LCD1_DATA19
LCD1_DATA18
LCD1_DATA17
F
G
DRAM_DQM1
DRAM_DATA11
DRAM_ADDR05
DRAM_ADDR02
NVCC_DRAM
VSS
VSS
VSS
NVCC_RGMII2
SD2_DATA3
NVCC_SD2
NVCC_SD1
SD2_DATA0
NVCC_QSPI
NVCC_GPIO
NVCC_KEY
NVCC_LCD1
LCD1_DATA16
LCD1_DATA15
LCD1_DATA20
LCD1_DATA14
LCD1_DATA13
LCD1_DATA12
G
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
146 NXP Semiconductors
Package Information and Contact Assignments
H
DRAM_SDQS1_P
DRAM_SDQS1_N
DRAM_ADDR03
DRAM_SDBA0
NVCC_DRAM
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
LCD1_DATA11
LCD1_DATA10
LCD1_DATA09
LCD1_CLK
LCD1_DATA08
LCD1_DATA07
H
J
DRAM_DATA08
VSS
VSS
DRAM_CS0_B
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VDD_ARM_CAP
VDD_ARM_CAP
VDD_ARM_CAP
VDD_ARM_CAP
VDD_ARM_CAP
VSS
LCD1_DATA06
LCD1_DATA05
VSS
VDD_ARM_IN
LCD1_DATA01
LCD1_DATA00
J
K
DRAM_DATA12
DRAM_DATA10
DRAM_SDWE_B
DRAM_CAS_B
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
VDD_ARM_IN
VDD_ARM_IN
VDD_ARM_IN
VDD_ARM_IN
VDD_ARM_CAP
VSS
LCD1_DATA04
LCD1_DATA03
LCD1_DATA02
RSVD
RSVD
RSVD
K
L
DRAM_DATA09
VSS
VSS
DRAM_RAS_B
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_IN
VSS
VSS
VSS
VSS
VSS
VSS
VDD_ARM_IN
VDD_ARM_CAP
VSS
PCIE_VP
CSI_DATA07
CSI_HSYNC
RSVD
RSVD
RSVD
L
M
DRAM_SDCLK0_N
DRAM_SDCLK0_P
DRAM_VREF
DRAM_SDBA2
NVCC_DRAM
NVCC_DRAM_2P5
VDD_SOC_CAP
VDD_SOC_IN
VSS
VSS
VSS
VSS
VSS
VSS
VDD_ARM_IN
VDD_ARM_CAP
VSS
PCIE_VPTX
CSI_DATA06
VSS
PCIE_REXT
VSS
VSS
M
N
DRAM_DATA05
VSS
VSS
DRAM_ADDR00
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_IN
VSS
VSS
VSS
VSS
VSS
VSS
VDD_SOC_IN
VDD_SOC_CAP
VSS
RSVD
CSI_DATA04
CSI_DATA05
CSI_DATA03
PCIE_RX_N
PCIE_RX_P
N
P
DRAM_DATA04
DRAM_DATA07
DRAM_ADDR09
DRAM_ADDR13
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_CAP
VSS
NVCC_CSI
CSI_DATA02
CSI_DATA01
CSI_DATA00
PCIE_TX_N
PCIE_TX_P
P
Table 110. 19x19 mm, 0.8 mm Pitch, 23x23 Ball Map (continued)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 147
R
DRAM_DATA06
VSS
VSS
DRAM_ADDR04
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
NGND_KEL0
VSS
PCIE_VPH
CSI_MCLK
VSS
VSS
VSS
VSS
R
T
DRAM_SDQS0_P
DRAM_DQM0
DRAM_ADDR08
DRAM_ADDR11
NVCC_DRAM
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
NVCC_LVDS
CSI_PIXCLK
LVDS_CLK_N
LVDS_CLK_P
LVDS_DATA3_N
LVDS_DATA3_P
T
U
DRAM_SDQS0_N
DRAM_DATA00
DRAM_SDBA1
DRAM_ADDR10
NVCC_DRAM
VSS
VSS
NVCC_NAND
JTAG_MOD
NVCC_SD4
NVCC_JTAG
NVCC_HIGH
VDDA_ADC_3P3
VDD_HIGH_IN
VDD_HIGH_IN
ADC_VREFL
VDD_HIGH_CAP
VDD_HIGH_CAP
CSI_VSYNC
VSS
VSS
LVDS_DATA2_N
LVDS_DATA2_P
U
V
DRAM_DATA02
VSS
VSS
DRAM_SDCKE0
NVCC_DRAM
NAND_DATA03
NAND_DATA00
VSS
VSS
JTAG_TCK
NVCC_LOW
JTAG_TDI
JTAG_TRST_B
SNVS_TAMPER
VDD_SNVS_IN
CCM_PMIC_STBY_REQ
POR_B
GPANAIO
USB_OTG1_CHD_B
LVDS_DATA1_N
LVDS_DATA1_P
LVDS_DATA0_N
LVDS_DATA0_P
V
W
DRAM_DATA03
DRAM_DATA01
DRAM_ADDR12
DRAM_ADDR14
NAND_DATA05
NAND_DATA07
NAND_DATA04
NAND_DATA02
JTAG_TDO
SD3_DATA1
SD3_DATA7
JTAG_TMS
SD3_CMD
BOOT_MODE0
BOOT_MODE1
SNVS_PMIC_ON_REQ
ONOFF
CCM_CLK2
VSS
USB_OTG1_VBUS
VSS
VSS
VSS
W
Y
DRAM_DATA23
DRAM_DATA20
DRAM_ADDR06
DRAM_ADDR01
USB_H_DATA
USB_H_STROBE
VSS
NAND_DATA06
SD4_RESET_B
VDD_SOC_CAP
VSS
SD3_CLK
VSS
SD3_DATA3
VSS
TEST_MODE
VSS
USB_OTG2_VBUS
USB_OTG2_DN
VSS
USB_OTG1_DN
VDD_SNVS_CAP
NVCC_PLL
Y
AA
DRAM_DATA22
VSS
VSS
DRAM_ODT0
VSS
NVCC_USB_H
NAND_WE_B
NAND_DATA01
NAND_RE_B
VDD_SOC_CAP
SD3_DATA0
SD3_DATA6
SD3_DATA5
SD3_DATA4
SD3_DATA2
ADC_VREFH
VDD_USB_CAP
VSS
USB_OTG2_DP
VSS
USB_OTG1_DP
CCM_CLK1_N
CCM_CLK1_P
AA
Table 110. 19x19 mm, 0.8 mm Pitch, 23x23 Ball Map (continued)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
148 NXP Semiconductors
Package Information and Contact Assignments
6.4 17x17 mm Package Information
6.4.1 17x17 mm Package Comparison
The i.MX 6SoloX comes in two versions in a 17x17 mm package:
The 17x17 NP (No PCIe) package does not support PCIe but supports an increased number of ADC
input channels.
The 17x17 WP (With PCIe) package supports PCIe with a reduced number of ADC input channels.
Note that the package pinouts have differences beyond the PCIe and ADC signals.
A summary of the difference between the two packages is shown in Table 111 below. All other signals have
the same ball number on both 17x17 package versions.
AB
DRAM_DATA16
DRAM_SDQS2_P
VSS
DRAM_DATA19
DRAM_DATA17
VSS
NAND_ALE
NAND_CE0_B
NAND_CLE
SD4_DATA1
SD4_DATA7
SD4_CLK
SD4_CMD
SD4_DATA3
ADC1_IN1
ADC1_IN3
ADC2_IN1
ADC2_IN3
VSS
RTC_XTALI
VSS
XTALI
VSS
AB
AC
VSS
DRAM_SDQS2_N
DRAM_DATA21
DRAM_DQM2
DRAM_DATA18
VSS
NAND_READY_B
NAND_WP_B
NAND_CE1_B
SD4_DATA0
SD4_DATA6
SD4_DATA5
SD4_DATA4
SD4_DATA2
ADC1_IN0
ADC1_IN2
ADC2_IN0
ADC2_IN2
VSS
RTC_XTALO
VSS
XTALO
VSS
AC
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Table 111. Pinout Differences Between 17x17 NP and 17x17 WP Packages
17x17 NP Package
(No PCIe)
17x17 WP Package
(With PCIe) Ball Name
M18 L18 LCD1_DATA01
N19 M18 LCD1_DATA03
N20 N17 LCD1_DATA04
V15 U14 SD3_DATA2
U14 T14 SD3_DATA4
V16 Not in this package ADC_VREFH1
R14 Not in this package ADC_VREFL1
Y15 Not in this package ADC1_IN2
W15 Not in this package ADC1_IN3
Y16 Not in this package ADC2_IN0
Table 110. 19x19 mm, 0.8 mm Pitch, 23x23 Ball Map (continued)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 149
W16 Not in this package ADC2_IN1
T16 Not in this package ADC2_IN2
U16 Not in this package ADC2_IN3
N15 U20 BOOT_MODE0
P14 U19 BOOT_MODE1
P19 P16 CCM_CLK1_N
P20 R16 CCM_CLK1_P
T14 R15 CCM_CLK2
N16 P15 CCM_PMIC_STBY_REQ
T15 U16 GPANAIO
U18 W20 NVCC_PLL
R15 N15 ONOFF
Not in this package N18 PCIE_REXT
Not in this package P19 PCIE_RX_N
Not in this package P20 PCIE_RX_P
Not in this package R19 PCIE_TX_N
Not in this package R20 PCIE_TX_P
Not in this package P18 PCIE_VP
L18 Not in this package PCIE_VP_CAP2
Not in this package R18 PCIE_VPH
Not in this package P17 PCIE_VPTX
R16 P14 POR_B
V19 W19 RTC_XTALI
V20 Y19 RTC_XTALO
P16 N16 SNVS_PMIC_ON_REQ
P15 R14 SNVS_TAMPER
W20 T17 USB_OTG1_CHD_B
W19 W17 USB_OTG1_DN
Y19 Y17 USB_OTG1_DP
T17 T16 USB_OTG1_VBUS
W17 W15 USB_OTG2_DN
Y17 Y15 USB_OTG2_DP
Table 111. Pinout Differences Between 17x17 NP and 17x17 WP Packages (continued)
17x17 NP Package
(No PCIe)
17x17 WP Package
(With PCIe) Ball Name
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
150 NXP Semiconductors
Package Information and Contact Assignments
6.4.2 17x17 mm, 0.8 mm Pitch, 20x20 Ball Matrix
Figure 85 shows the top, bottom, and side views of the 17×17 mm BGA package.
U17 T15 USB_OTG2_VBUS
N17 V17 VDD_HIGH_CAP
N18 V18 VDD_HIGH_CAP
P17 U17 VDD_HIGH_IN
P18 U18 VDD_HIGH_IN
T18 V16 VDD_SNVS_CAP
R18 T18 VDD_SNVS_IN
V17 V15 VDD_USB_CAP
R19 N19 VSS
R20 N20 VSS
U19 T19 VSS
U20 T20 VSS
V18 Not in this package VSS
Not in this package W16 VSS
Not in this package Y16 VSS
T19 V19 XTALI
T20 V20 XTALO
1In the 17x17 WP package, ADC_VREFL is connected internally to VSS. ADC_VREFH is
connected internally to VDDA_ADC_3P3.
2In the 17x17 NP package, PCIE_VP_CAP must be connected to an external 4.7uF filter capacitor.
Table 111. Pinout Differences Between 17x17 NP and 17x17 WP Packages (continued)
17x17 NP Package
(No PCIe)
17x17 WP Package
(With PCIe) Ball Name
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 151
Figure 85. 17x17 mm BGA Package—Top, Bottom, and Side Views
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
152 NXP Semiconductors
Package Information and Contact Assignments
Figure 86. 17x17 mm BGA Package Notes
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 153
6.4.3 17x17 mm NP (No PCIe) Supplies Contact Assignments and
Functional Contact Assignments
Table 112 shows supplies contact assignments for the 17x17 mm NP (No PCIe) package.
Table 112. 17x17 mm NP (no PCIe) Supplies Contact Assignments
Supply Rail Name 17x17 NP [No PCIe]
Ball(s) Position(s) Remark
ADC_VREFH V16 ADC high reference voltage
ADC_VREFL R14 ADC low reference voltage
DRAM_VREF J3 DDR voltage reference input. Connect to a voltage source that
is 50% of NVCC_DRAM.
DRAM_ZQPAD C5 DDR output buffer driver calibration reference voltage input.
Connect DRAM_ZQPAD to an external 240 ohm 1% resistor to
Vss.
GPANAIO T15 Analog output for NXP use only. This output must always be left
unconnected.
NGND_KEL0 P13 Connect to Vss
NVCC_DRAM G6, H6, J6, K6, L6, M6, N6, P6 Supply input for the DDR I/O interface
NVCC_DRAM_2P5 K7 Supply input for the DDR interface
NVCC_ENET F6 Supply input for the ENET interfaces
NVCC_GPIO F15 Supply input for the GPIO interface
NVCC_HIGH R12 3.3 V Supply input for the dual-voltage I/Os on the SD3
interface
NVCC_JTAG R11 Supply input for the JTAG interface
NVCC_KEY G15 Supply input for the Key Pad Port (KPP) interface
NVCC_LCD1 H15 Supply input for the LCD interface
NVCC_LOW V13 1.8 V Supply input for the dual-voltage I/Os on the SD3
interface
NVCC_NAND R6 Supply input for the Raw NAND flash memories interface
NVCC_PLL U18 Supply input for the PLLs
NVCC_QSPI F14 Supply input for the QSPI interface
NVCC_RGMII1 F8 Supply input for the RGMII1 interface
NVCC_RGMII2 F9 Supply input for the RGMII2 interface
NVCC_SD2 F13 Supply input for the SD2 interface
NVCC_SD4 V10 Supply input for the SD4 interface
NVCC_USB_H V5 Supply input for the USB HSIC interface
PCIE_VP_CAP L18 PCIe LDO output
USB_OTG1_VBUS T17 VBUS input for USB_OTG1
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
154 NXP Semiconductors
Package Information and Contact Assignments
Table 113 shows an alpha-sorted list of functional contact assignments for the 17x17 mm NP (No PCIe)
package.
USB_OTG2_VBUS U17 VBUS input for USB_OTG2
VDD_ARM_CAP C16, D16, H10, H11, H12, H13,
J13, K13, L13
Supply voltage output from internal LDO_ARM. Requires
external capacitor(s).
VDD_ARM_IN H18, J10, J11, J12, K12, L12 Supply voltage input for internal LDO_ARM.
VDD_HIGH_CAP N17, N18 Supply voltage output from internal LDO_2P5. Requires
external capacitor(s).
VDD_HIGH_IN P17, P18 Supply voltage input to internal LDO_2P5, LDO_1P1 and
LDO_SNVS.
VDD_SNVS_CAP T18 Supply voltage output from internal LDO_SNVS. Requires
external capacitor(s).
VDD_SNVS_IN R18 Supply voltage input to the SNVS voltage domain
VDD_SOC_CAP H8, H9, J8, K8, L8, M8, M13, N8,
N9, N10, N11, N12, V8
Supply voltage output from internal LDO_SOC. Requires
external capacitor(s).
VDD_SOC_IN C7, C8, J9, K9, L9,
M9, M10, M11, M12
Supply voltage input to internal LDO_SOC and LDO_PCIE
VDD_USB_CAP V17 Supply voltage output from internal LDO_USB. Requires
external capacitor(s).
VDDA_ADC_3P3 R13 Supply voltage input to the ADC. This supply must be provided
even if the ADC is not used.
VSS A1, A20, C3, C4, C18, D6, D9, D12,
D15, E3, F3, F5, F17, G7, G8, G9,
G10, G11, G12, G13, G14, H3, H7,
H14, J7, J14, J17, K3, K10, K11,
K14, L3, L7, L10, L11, L14, M7,
M14, M17, N3, N7, N13, P7, P8,
P9, P10, P11, P12, R3, R5, R17,
R19, R20, T3, U6, U9, U12, U15,
U19, U20, V3, V4, V18, W18, Y1,
Y18, Y20
Ground
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments
Ball Name
17x17
NP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
ADC1_IN0 Y14 VDDA_ADC_3P3 ADC1_IN0 Input
ADC1_IN1 W14 VDDA_ADC_3P3 ADC1_IN1 Input
ADC1_IN2 Y15 VDDA_ADC_3P3 ADC1_IN2 Input
Table 112. 17x17 mm NP (no PCIe) Supplies Contact Assignments (continued)
Supply Rail Name 17x17 NP [No PCIe]
Ball(s) Position(s) Remark
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 155
ADC1_IN3 W15 VDDA_ADC_3P3 ADC1_IN3 Input
ADC2_IN0 Y16 VDDA_ADC_3P3 ADC2_IN0 Input
ADC2_IN1 W16 VDDA_ADC_3P3 ADC2_IN1 Input
ADC2_IN2 T16 VDDA_ADC_3P3 ADC2_IN2 Input
ADC2_IN3 U16 VDDA_ADC_3P3 ADC2_IN3 Input
BOOT_MODE0 N15 VDD_SNVS_IN GPIO BOOT_MODE0 Input 100 kΩ
pull-down
BOOT_MODE1 P14 VDD_SNVS_IN GPIO BOOT_MODE1 Input 100 kΩ
pull-down
CCM_CLK1_N P19 VDD_HIGH_CAP CCM_CLK1_N
CCM_CLK1_P P20 VDD_HIGH_CAP CCM_CLK1_P
CCM_CLK2 T14 VDD_HIGH_CAP CCM_CLK2
CCM_PMIC_STBY_REQ N16 VDD_SNVS_IN GPIO CCM_PMIC_STBY_REQ Output 0
DRAM_ADDR00 L4 NVCC_DRAM DDR DRAM_ADDR00 Output 100 kΩ
pull-up
DRAM_ADDR01 U4 NVCC_DRAM DDR DRAM_ADDR01 Output 100 kΩ
pull-up
DRAM_ADDR02 K5 NVCC_DRAM DDR DRAM_ADDR02 Output 100 kΩ
pull-up
DRAM_ADDR03 G5 NVCC_DRAM DDR DRAM_ADDR03 Output 100 kΩ
pull-up
DRAM_ADDR04 M3 NVCC_DRAM DDR DRAM_ADDR04 Output 100 kΩ
pull-up
DRAM_ADDR05 G4 NVCC_DRAM DDR DRAM_ADDR05 Output 100 kΩ
pull-up
DRAM_ADDR06 T4 NVCC_DRAM DDR DRAM_ADDR06 Output 100 kΩ
pull-up
DRAM_ADDR07 F4 NVCC_DRAM DDR DRAM_ADDR07 Output 100 kΩ
pull-up
DRAM_ADDR08 M5 NVCC_DRAM DDR DRAM_ADDR08 Output 100 kΩ
pull-up
DRAM_ADDR09 L5 NVCC_DRAM DDR DRAM_ADDR09 Output 100 kΩ
pull-up
DRAM_ADDR10 N5 NVCC_DRAM DDR DRAM_ADDR10 Output 100 kΩ
pull-up
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
NP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
156 NXP Semiconductors
Package Information and Contact Assignments
DRAM_ADDR11 N4 NVCC_DRAM DDR DRAM_ADDR11 Output 100 kΩ
pull-up
DRAM_ADDR12 P4 NVCC_DRAM DDR DRAM_ADDR12 Output 100 kΩ
pull-up
DRAM_ADDR13 M4 NVCC_DRAM DDR DRAM_ADDR13 Output 100 kΩ
pull-up
DRAM_ADDR14 R4 NVCC_DRAM DDR DRAM_ADDR14 Output 100 kΩ
pull-up
DRAM_CAS_B J4 NVCC_DRAM DDR DRAM_CAS_B Output 100 kΩ
pull-up
DRAM_CS0_B H4 NVCC_DRAM DDR DRAM_CS0_B Output 100 kΩ
pull-up
DRAM_CS1_B D3 NVCC_DRAM DDR DRAM_CS1_B Output 100 kΩ
pull-up
DRAM_DATA00 R1 NVCC_DRAM DDR DRAM_DATA00 Input 100 kΩ
pull-up
DRAM_DATA01 T2 NVCC_DRAM DDR DRAM_DATA01 Input 100 kΩ
pull-up
DRAM_DATA02 T1 NVCC_DRAM DDR DRAM_DATA02 Input 100 kΩ
pull-up
DRAM_DATA03 R2 NVCC_DRAM DDR DRAM_DATA03 Input 100 kΩ
pull-up
DRAM_DATA04 M1 NVCC_DRAM DDR DRAM_DATA04 Input 100 kΩ
pull-up
DRAM_DATA05 M2 NVCC_DRAM DDR DRAM_DATA05 Input 100 kΩ
pull-up
DRAM_DATA06 L2 NVCC_DRAM DDR DRAM_DATA06 Input 100 kΩ
pull-up
DRAM_DATA07 N1 NVCC_DRAM DDR DRAM_DATA07 Input 100 kΩ
pull-up
DRAM_DATA08 H1 NVCC_DRAM DDR DRAM_DATA08 Input 100 kΩ
pull-up
DRAM_DATA09 F2 NVCC_DRAM DDR DRAM_DATA09 Input 100 kΩ
pull-up
DRAM_DATA10 K2 NVCC_DRAM DDR DRAM_DATA10 Input 100 kΩ
pull-up
DRAM_DATA11 J2 NVCC_DRAM DDR DRAM_DATA11 Input 100 kΩ
pull-up
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
NP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 157
DRAM_DATA12 J1 NVCC_DRAM DDR DRAM_DATA12 Input 100 kΩ
pull-up
DRAM_DATA13 F1 NVCC_DRAM DDR DRAM_DATA13 Input 100 kΩ
pull-up
DRAM_DATA14 E2 NVCC_DRAM DDR DRAM_DATA14 Input 100 kΩ
pull-up
DRAM_DATA15 E1 NVCC_DRAM DDR DRAM_DATA15 Input 100 kΩ
pull-up
DRAM_DATA16 V1 NVCC_DRAM DDR DRAM_DATA16 Input 100 kΩ
pull-up
DRAM_DATA17 W4 NVCC_DRAM DDR DRAM_DATA17 Input 100 kΩ
pull-up
DRAM_DATA18 Y4 NVCC_DRAM DDR DRAM_DATA18 Input 100 kΩ
pull-up
DRAM_DATA19 U2 NVCC_DRAM DDR DRAM_DATA19 Input 100 kΩ
pull-up
DRAM_DATA20 W3 NVCC_DRAM DDR DRAM_DATA20 Input 100 kΩ
pull-up
DRAM_DATA21 Y2 NVCC_DRAM DDR DRAM_DATA21 Input 100 kΩ
pull-up
DRAM_DATA22 U1 NVCC_DRAM DDR DRAM_DATA22 Input 100 kΩ
pull-up
DRAM_DATA23 V2 NVCC_DRAM DDR DRAM_DATA23 Input 100 kΩ
pull-up
DRAM_DATA24 A2 NVCC_DRAM DDR DRAM_DATA24 Input 100 kΩ
pull-up
DRAM_DATA25 D1 NVCC_DRAM DDR DRAM_DATA25 Input 100 kΩ
pull-up
DRAM_DATA26 C1 NVCC_DRAM DDR DRAM_DATA26 Input 100 kΩ
pull-up
DRAM_DATA27 D2 NVCC_DRAM DDR DRAM_DATA27 Input 100 kΩ
pull-up
DRAM_DATA28 C2 NVCC_DRAM DDR DRAM_DATA28 Input 100 kΩ
pull-up
DRAM_DATA29 B3 NVCC_DRAM DDR DRAM_DATA29 Input 100 kΩ
pull-up
DRAM_DATA30 B4 NVCC_DRAM DDR DRAM_DATA30 Input 100 kΩ
pull-up
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
NP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
158 NXP Semiconductors
Package Information and Contact Assignments
DRAM_DATA31 A4 NVCC_DRAM DDR DRAM_DATA31 Input 100 kΩ
pull-up
DRAM_DQM0 N2 NVCC_DRAM DDR DRAM_DQM0 Output 100 kΩ
pull-up
DRAM_DQM1 G2 NVCC_DRAM DDR DRAM_DQM1 Output 100 kΩ
pull-up
DRAM_DQM2 Y3 NVCC_DRAM DDR DRAM_DQM2 Output 100 kΩ
pull-up
DRAM_DQM3 A3 NVCC_DRAM DDR DRAM_DQM3 Output 100 kΩ
pull-up
DRAM_ODT0 U3 NVCC_DRAM DDR DRAM_ODT0 Output 100 kΩ
pull-down
DRAM_RAS_B H5 NVCC_DRAM DDR DRAM_RAS_B Output 100 kΩ
pull-up
DRAM_RESET D4 NVCC_DRAM DDR DRAM_RESET Output 100 kΩ
pull-down
DRAM_SDBA0 G3 NVCC_DRAM DDR DRAM_SDBA0 Output 100 kΩ
pull-up
DRAM_SDBA1 P3 NVCC_DRAM DDR DRAM_SDBA1 Output 100 kΩ
pull-up
DRAM_SDBA2 K4 NVCC_DRAM DDR DRAM_SDBA2 Output 100 kΩ
pull-up
DRAM_SDCKE0 P5 NVCC_DRAM DDR DRAM_SDCKE0 Output 100 kΩ
pull-down
DRAM_SDCKE1 E4 NVCC_DRAM DDR DRAM_SDCKE1 Output 100 kΩ
pull-down
DRAM_SDCLK0_N L1 NVCC_DRAM DDRCLK DRAM_SDCLK0_N
DRAM_SDCLK0_P K1 NVCC_DRAM DDRCLK DRAM_SDCLK0_P Output Low
DRAM_SDQS0_N P2 NVCC_DRAM DDRCLK DRAM_SDQS0_N
DRAM_SDQS0_P P1 NVCC_DRAM DDRCLK DRAM_SDQS0_P Input
DRAM_SDQS1_N H2 NVCC_DRAM DDRCLK DRAM_SDQS1_N
DRAM_SDQS1_P G1 NVCC_DRAM DDRCLK DRAM_SDQS1_P Input
DRAM_SDQS2_N W1 NVCC_DRAM DDRCLK DRAM_SDQS2_N
DRAM_SDQS2_P W2 NVCC_DRAM DDRCLK DRAM_SDQS2_P Input
DRAM_SDQS3_N B2 NVCC_DRAM DDRCLK DRAM_SDQS3_N
DRAM_SDQS3_P B1 NVCC_DRAM DDRCLK DRAM_SDQS3_P Input
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
NP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 159
DRAM_SDWE_B J5 NVCC_DRAM DDR DRAM_SDWE_B Output 100 kΩ
pull-up
ENET1_COL B5 NVCC_ENET GPIO ALT5 GPIO2_IO00 Input Keeper
ENET1_CRS C6 NVCC_ENET GPIO ALT5 GPIO2_IO01 Input Keeper
ENET1_MDC B6 NVCC_ENET GPIO ALT5 GPIO2_IO02 Input Keeper
ENET1_MDIO A6 NVCC_ENET GPIO ALT5 GPIO2_IO03 Input Keeper
ENET1_RX_CLK A5 NVCC_ENET GPIO ALT5 GPIO2_IO04 Input Keeper
ENET1_TX_CLK F7 NVCC_ENET GPIO ALT5 GPIO2_IO05 Input Keeper
ENET2_COL E7 NVCC_ENET GPIO ALT5 GPIO2_IO06 Input Keeper
ENET2_CRS E6 NVCC_ENET GPIO ALT5 GPIO2_IO07 Input Keeper
ENET2_RX_CLK E5 NVCC_ENET GPIO ALT5 GPIO2_IO08 Input Keeper
ENET2_TX_CLK D5 NVCC_ENET GPIO ALT5 GPIO2_IO09 Input Keeper
GPIO1_IO00 C19 NVCC_GPIO GPIO ALT5 GPIO1_IO00 Input Keeper
GPIO1_IO01 D19 NVCC_GPIO GPIO ALT5 GPIO1_IO01 Input Keeper
GPIO1_IO02 C20 NVCC_GPIO GPIO ALT5 GPIO1_IO02 Input Keeper
GPIO1_IO03 D20 NVCC_GPIO GPIO ALT5 GPIO1_IO03 Input Keeper
GPIO1_IO04 A18 NVCC_GPIO GPIO ALT5 GPIO1_IO04 Input Keeper
GPIO1_IO05 B18 NVCC_GPIO GPIO ALT5 GPIO1_IO05 Input Keeper
GPIO1_IO06 D18 NVCC_GPIO GPIO ALT5 GPIO1_IO06 Input Keeper
GPIO1_IO07 A17 NVCC_GPIO GPIO ALT5 GPIO1_IO07 Input Keeper
GPIO1_IO08 B17 NVCC_GPIO GPIO ALT5 GPIO1_IO08 Input Keeper
GPIO1_IO09 A19 NVCC_GPIO GPIO ALT5 GPIO1_IO09 Input Keeper
GPIO1_IO10 B19 NVCC_GPIO GPIO ALT5 GPIO1_IO10 Input Keeper
GPIO1_IO11 B20 NVCC_GPIO GPIO ALT5 GPIO1_IO11 Input Keeper
GPIO1_IO12 B16 NVCC_GPIO GPIO ALT5 GPIO1_IO12 Input Keeper
GPIO1_IO13 A16 NVCC_GPIO GPIO ALT5 GPIO1_IO13 Input Keeper
JTAG_MOD R7 NVCC_JTAG GPIO JTAG_MOD Input 100 kΩ
pull-up
JTAG_TCK R9 NVCC_JTAG GPIO JTAG_TCK Input 47 kΩ
pull-up
JTAG_TDI R10 NVCC_JTAG GPIO JTAG_TDI Input 47 kΩ
pull-up
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
NP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
160 NXP Semiconductors
Package Information and Contact Assignments
JTAG_TDO R8 NVCC_JTAG GPIO JTAG_TDO Output Keeper
JTAG_TMS T10 NVCC_JTAG GPIO JTAG_TMS Input 47 kΩ
pull-up
JTAG_TRST_B T9 NVCC_JTAG GPIO JTAG_TRST_B Input 47 kΩ
pull-up
KEY_COL0 G20 NVCC_KEY GPIO ALT5 GPIO2_IO10 Input Keeper
KEY_COL1 F20 NVCC_KEY GPIO ALT5 GPIO2_IO11 Input Keeper
KEY_COL2 G18 NVCC_KEY GPIO ALT5 GPIO2_IO12 Input Keeper
KEY_COL3 E20 NVCC_KEY GPIO ALT5 GPIO2_IO13 Input Keeper
KEY_COL4 E19 NVCC_KEY GPIO ALT5 GPIO2_IO14 Input Keeper
KEY_ROW0 F16 NVCC_KEY GPIO ALT5 GPIO2_IO15 Input Keeper
KEY_ROW1 E18 NVCC_KEY GPIO ALT5 GPIO2_IO16 Input Keeper
KEY_ROW2 F18 NVCC_KEY GPIO ALT5 GPIO2_IO17 Input Keeper
KEY_ROW3 F19 NVCC_KEY GPIO ALT5 GPIO2_IO18 Input Keeper
KEY_ROW4 G19 NVCC_KEY GPIO ALT5 GPIO2_IO19 Input Keeper
LCD1_CLK L17 NVCC_LCD1 GPIO ALT5 GPIO3_IO00 Input Keeper
LCD1_DATA00 M20 NVCC_LCD1 GPIO ALT5 GPIO3_IO01 Input Keeper
LCD1_DATA01 M18 NVCC_LCD1 GPIO ALT5 GPIO3_IO02 Input Keeper
LCD1_DATA02 M19 NVCC_LCD1 GPIO ALT5 GPIO3_IO03 Input Keeper
LCD1_DATA03 N19 NVCC_LCD1 GPIO ALT5 GPIO3_IO04 Input Keeper
LCD1_DATA04 N20 NVCC_LCD1 GPIO ALT5 GPIO3_IO05 Input Keeper
LCD1_DATA05 M16 NVCC_LCD1 GPIO ALT5 GPIO3_IO06 Input Keeper
LCD1_DATA06 M15 NVCC_LCD1 GPIO ALT5 GPIO3_IO07 Input Keeper
LCD1_DATA07 L20 NVCC_LCD1 GPIO ALT5 GPIO3_IO08 Input Keeper
LCD1_DATA08 K18 NVCC_LCD1 GPIO ALT5 GPIO3_IO09 Input Keeper
LCD1_DATA09 L16 NVCC_LCD1 GPIO ALT5 GPIO3_IO10 Input Keeper
LCD1_DATA10 L19 NVCC_LCD1 GPIO ALT5 GPIO3_IO11 Input Keeper
LCD1_DATA11 L15 NVCC_LCD1 GPIO ALT5 GPIO3_IO12 Input Keeper
LCD1_DATA12 K16 NVCC_LCD1 GPIO ALT5 GPIO3_IO13 Input Keeper
LCD1_DATA13 K15 NVCC_LCD1 GPIO ALT5 GPIO3_IO14 Input Keeper
LCD1_DATA14 K17 NVCC_LCD1 GPIO ALT5 GPIO3_IO15 Input Keeper
LCD1_DATA15 H16 NVCC_LCD1 GPIO ALT5 GPIO3_IO16 Input Keeper
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
NP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 161
LCD1_DATA16 H20 NVCC_LCD1 GPIO ALT5 GPIO3_IO17 Input Keeper
LCD1_DATA17 K19 NVCC_LCD1 GPIO ALT5 GPIO3_IO18 Input Keeper
LCD1_DATA18 K20 NVCC_LCD1 GPIO ALT5 GPIO3_IO19 Input Keeper
LCD1_DATA19 J20 NVCC_LCD1 GPIO ALT5 GPIO3_IO20 Input Keeper
LCD1_DATA20 H17 NVCC_LCD1 GPIO ALT5 GPIO3_IO21 Input Keeper
LCD1_DATA21 G17 NVCC_LCD1 GPIO ALT5 GPIO3_IO22 Input Keeper
LCD1_DATA22 H19 NVCC_LCD1 GPIO ALT5 GPIO3_IO23 Input Keeper
LCD1_DATA23 G16 NVCC_LCD1 GPIO ALT5 GPIO3_IO24 Input Keeper
LCD1_ENABLE J19 NVCC_LCD1 GPIO ALT5 GPIO3_IO25 Input Keeper
LCD1_HSYNC J16 NVCC_LCD1 GPIO ALT5 GPIO3_IO26 Input Keeper
LCD1_RESET J18 NVCC_LCD1 GPIO ALT5 GPIO3_IO27 Input Keeper
LCD1_VSYNC J15 NVCC_LCD1 GPIO ALT5 GPIO3_IO28 Input Keeper
NAND_ALE W6 NVCC_NAND GPIO ALT5 GPIO4_IO00 Input Keeper
NAND_CE0_B U7 NVCC_NAND GPIO ALT5 GPIO4_IO01 Input Keeper
NAND_CE1_B V9 NVCC_NAND GPIO ALT5 GPIO4_IO02 Input Keeper
NAND_CLE T8 NVCC_NAND GPIO ALT5 GPIO4_IO03 Input Keeper
NAND_DATA00 V6 NVCC_NAND GPIO ALT5 GPIO4_IO04 Input Keeper
NAND_DATA01 W8 NVCC_NAND GPIO ALT5 GPIO4_IO05 Input Keeper
NAND_DATA02 Y7 NVCC_NAND GPIO ALT5 GPIO4_IO06 Input Keeper
NAND_DATA03 U5 NVCC_NAND GPIO ALT5 GPIO4_IO07 Input Keeper
NAND_DATA04 W7 NVCC_NAND GPIO ALT5 GPIO4_IO08 Input Keeper
NAND_DATA05 T5 NVCC_NAND GPIO ALT5 GPIO4_IO09 Input Keeper
NAND_DATA06 Y8 NVCC_NAND GPIO ALT5 GPIO4_IO10 Input Keeper
NAND_DATA07 T6 NVCC_NAND GPIO ALT5 GPIO4_IO11 Input Keeper
NAND_RE_B U8 NVCC_NAND GPIO ALT5 GPIO4_IO12 Input Keeper
NAND_READY_B Y6 NVCC_NAND GPIO ALT5 GPIO4_IO13 Input Keeper
NAND_WE_B T7 NVCC_NAND GPIO ALT5 GPIO4_IO14 Input Keeper
NAND_WP_B V7 NVCC_NAND GPIO ALT5 GPIO4_IO15 Input Keeper
ONOFF R15 VDD_SNVS_IN GPIO ONOFF Input 100 kΩ
pull-up
POR_B R16 VDD_SNVS_IN GPIO POR_B Input 100 kΩ
pull-up
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
NP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
162 NXP Semiconductors
Package Information and Contact Assignments
QSPI1A_DATA0 E15 NVCC_QSPI GPIO ALT5 GPIO4_IO16 Input Keeper
QSPI1A_DATA1 C15 NVCC_QSPI GPIO ALT5 GPIO4_IO17 Input Keeper
QSPI1A_DATA2 D14 NVCC_QSPI GPIO ALT5 GPIO4_IO18 Input Keeper
QSPI1A_DATA3 E16 NVCC_QSPI GPIO ALT5 GPIO4_IO19 Input Keeper
QSPI1A_DQS A13 NVCC_QSPI GPIO ALT5 GPIO4_IO20 Input Keeper
QSPI1A_SCLK D17 NVCC_QSPI GPIO ALT5 GPIO4_IO21 Input Keeper
QSPI1A_SS0_B C17 NVCC_QSPI GPIO ALT5 GPIO4_IO22 Input Keeper
QSPI1A_SS1_B E17 NVCC_QSPI GPIO ALT5 GPIO4_IO23 Input Keeper
QSPI1B_DATA0 B14 NVCC_QSPI GPIO ALT5 GPIO4_IO24 Input Keeper
QSPI1B_DATA1 A14 NVCC_QSPI GPIO ALT5 GPIO4_IO25 Input Keeper
QSPI1B_DATA2 D13 NVCC_QSPI GPIO ALT5 GPIO4_IO26 Input Keeper
QSPI1B_DATA3 C13 NVCC_QSPI GPIO ALT5 GPIO4_IO27 Input Keeper
QSPI1B_DQS B13 NVCC_QSPI GPIO ALT5 GPIO4_IO28 Input Keeper
QSPI1B_SCLK B15 NVCC_QSPI GPIO ALT5 GPIO4_IO29 Input Keeper
QSPI1B_SS0_B C14 NVCC_QSPI GPIO ALT5 GPIO4_IO30 Input Keeper
QSPI1B_SS1_B A15 NVCC_QSPI GPIO ALT5 GPIO4_IO31 Input Keeper
RGMII1_RD0 D8 NVCC_RGMII1 GPIO ALT5 GPIO5_IO00 Input Keeper
RGMII1_RD1 C9 NVCC_RGMII1 GPIO ALT5 GPIO5_IO01 Input Keeper
RGMII1_RD2 D7 NVCC_RGMII1 GPIO ALT5 GPIO5_IO02 Input Keeper
RGMII1_RD3 E8 NVCC_RGMII1 GPIO ALT5 GPIO5_IO03 Input Keeper
RGMII1_RX_CTL C10 NVCC_RGMII1 GPIO ALT5 GPIO5_IO04 Input Keeper
RGMII1_RXC E9 NVCC_RGMII1 GPIO ALT5 GPIO5_IO05 Input Keeper
RGMII1_TD0 D11 NVCC_RGMII1 GPIO ALT5 GPIO5_IO06 Input Keeper
RGMII1_TD1 C12 NVCC_RGMII1 GPIO ALT5 GPIO5_IO07 Input Keeper
RGMII1_TD2 E11 NVCC_RGMII1 GPIO ALT5 GPIO5_IO08 Input Keeper
RGMII1_TD3 D10 NVCC_RGMII1 GPIO ALT5 GPIO5_IO09 Input Keeper
RGMII1_TX_CTL E10 NVCC_RGMII1 GPIO ALT5 GPIO5_IO10 Input Keeper
RGMII1_TXC C11 NVCC_RGMII1 GPIO ALT5 GPIO5_IO11 Input Keeper
RGMII2_RD0 A8 NVCC_RGMII2 GPIO ALT5 GPIO5_IO12 Input Keeper
RGMII2_RD1 B8 NVCC_RGMII2 GPIO ALT5 GPIO5_IO13 Input Keeper
RGMII2_RD2 A7 NVCC_RGMII2 GPIO ALT5 GPIO5_IO14 Input Keeper
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
NP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 163
RGMII2_RD3 B7 NVCC_RGMII2 GPIO ALT5 GPIO5_IO15 Input Keeper
RGMII2_RX_CTL B9 NVCC_RGMII2 GPIO ALT5 GPIO5_IO16 Input Keeper
RGMII2_RXC A9 NVCC_RGMII2 GPIO ALT5 GPIO5_IO17 Input Keeper
RGMII2_TD0 A11 NVCC_RGMII2 GPIO ALT5 GPIO5_IO18 Input Keeper
RGMII2_TD1 B11 NVCC_RGMII2 GPIO ALT5 GPIO5_IO19 Input Keeper
RGMII2_TD2 A12 NVCC_RGMII2 GPIO ALT5 GPIO5_IO20 Input Keeper
RGMII2_TD3 B12 NVCC_RGMII2 GPIO ALT5 GPIO5_IO21 Input Keeper
RGMII2_TX_CTL B10 NVCC_RGMII2 GPIO ALT5 GPIO5_IO22 Input Keeper
RGMII2_TXC A10 NVCC_RGMII2 GPIO ALT5 GPIO5_IO23 Input Keeper
RTC_XTALI V19 VDD_SNVS_CAP RTC_XTALI
RTC_XTALO V20 VDD_SNVS_CAP RTC_XTALO
SD2_CLK E12 NVCC_SD2 GPIO ALT5 GPIO6_IO06 Input Keeper
SD2_CMD F12 NVCC_SD2 GPIO ALT5 GPIO6_IO07 Input Keeper
SD2_DATA0 E13 NVCC_SD2 GPIO ALT5 GPIO6_IO08 Input Keeper
SD2_DATA1 E14 NVCC_SD2 GPIO ALT5 GPIO6_IO09 Input Keeper
SD2_DATA2 F10 NVCC_SD2 GPIO ALT5 GPIO6_IO10 Input Keeper
SD2_DATA3 F11 NVCC_SD2 GPIO ALT5 GPIO6_IO11 Input Keeper
SD3_CLK V11 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO00 Input 100 kΩ
pull-down
SD3_CMD T13 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO01 Input 100 kΩ
pull-down
SD3_DATA0 U10 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO02 Input 100 kΩ
pull-down
SD3_DATA1 T11 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO03 Input 100 kΩ
pull-down
SD3_DATA2 V15 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO04 Input 100 kΩ
pull-down
SD3_DATA3 V14 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO05 Input 100 kΩ
pull-down
SD3_DATA4 U14 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO06 Input 100 kΩ
pull-down
SD3_DATA5 U13 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO07 Input 100 kΩ
pull-down
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
NP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
164 NXP Semiconductors
Package Information and Contact Assignments
SD3_DATA6 V12 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO08 Input 100 kΩ
pull-down
SD3_DATA7 U11 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO09 Input 100 kΩ
pull-down
SD4_CLK W11 NVCC_SD4 GPIO ALT5 GPIO6_IO12 Input Keeper
SD4_CMD W12 NVCC_SD4 GPIO ALT5 GPIO6_IO13 Input Keeper
SD4_DATA0 Y9 NVCC_SD4 GPIO ALT5 GPIO6_IO14 Input Keeper
SD4_DATA1 W9 NVCC_SD4 GPIO ALT5 GPIO6_IO15 Input Keeper
SD4_DATA2 Y13 NVCC_SD4 GPIO ALT5 GPIO6_IO16 Input Keeper
SD4_DATA3 W13 NVCC_SD4 GPIO ALT5 GPIO6_IO17 Input Keeper
SD4_DATA4 Y12 NVCC_SD4 GPIO ALT5 GPIO6_IO18 Input Keeper
SD4_DATA5 Y11 NVCC_SD4 GPIO ALT5 GPIO6_IO19 Input Keeper
SD4_DATA6 Y10 NVCC_SD4 GPIO ALT5 GPIO6_IO20 Input Keeper
SD4_DATA7 W10 NVCC_SD4 GPIO ALT5 GPIO6_IO21 Input Keeper
SD4_RESET_B T12 NVCC_SD4 GPIO ALT5 GPIO6_IO22 Input Keeper
SNVS_PMIC_ON_REQ P16 VDD_SNVS_IN GPIO SNVS_PMIC_ON_REQ Output 100 kΩ
pull-up
SNVS_TAMPER P15 VDD_SNVS_IN GPIO SNVS_TAMPER Input 100 kΩ
pull-down
TEST_MODE N14 VDD_SNVS_IN TEST_MODE Input 100 kΩ
pull-down
USB_H_DATA Y5 NVCC_USB_H GPIO ALT5 GPIO7_IO10 Input 100 kΩ
pull-down
USB_H_STROBE W5 NVCC_USB_H GPIO ALT5 GPIO7_IO11 Input 100 kΩ
pull-down
USB_OTG1_CHD_B W20 VDD_USB_CAP USB_OTG1_CHD_B
USB_OTG1_DN W19 VDD_USB_CAP USB_OTG1_DN
USB_OTG1_DP Y19 VDD_USB_CAP USB_OTG1_DP
USB_OTG2_DN W17 VDD_USB_CAP USB_OTG2_DN
USB_OTG2_DP Y17 VDD_USB_CAP USB_OTG2_DP
XTALI T19 NVCC_PLL XTALI
XTALO T20 NVCC_PLL XTALO
Table 113. 17x17 mm NP (No PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
NP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 165
6.4.4 17x17 mm NP (No PCIe), 0.8 mm Pitch, 20x20 Ball Map
Table 114. 17x17 mm (No PCIe), 0.8 mm Pitch, 20x20 Ball Map
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
A
VSS
DRAM_DATA24
DRAM_DQM3
DRAM_DATA31
ENET1_RX_CLK
ENET1_MDIO
RGMII2_RD2
RGMII2_RD0
RGMII2_RXC
RGMII2_TXC
RGMII2_TD0
RGMII2_TD2
QSPI1A_DQS
QSPI1B_DATA1
QSPI1B_SS1_B
GPIO1_IO13
GPIO1_IO07
GPIO1_IO04
GPIO1_IO09
VSS
A
B
DRAM_SDQS3_P
DRAM_SDQS3_N
DRAM_DATA29
DRAM_DATA30
ENET1_COL
ENET1_MDC
RGMII2_RD3
RGMII2_RD1
RGMII2_RX_CTL
RGMII2_TX_CTL
RGMII2_TD1
RGMII2_TD3
QSPI1B_DQS
QSPI1B_DATA0
QSPI1B_SCLK
GPIO1_IO12
GPIO1_IO08
GPIO1_IO05
GPIO1_IO10
GPIO1_IO11
B
C
DRAM_DATA26
DRAM_DATA28
VSS
VSS
DRAM_ZQPAD
ENET1_CRS
VDD_SOC_IN
VDD_SOC_IN
RGMII1_RD1
RGMII1_RX_CTL
RGMII1_TXC
RGMII1_TD1
QSPI1B_DATA3
QSPI1B_SS0_B
QSPI1A_DATA1
VDD_ARM_CAP
QSPI1A_SS0_B
VSS
GPIO1_IO00
GPIO1_IO02
C
D
DRAM_DATA25
DRAM_DATA27
DRAM_CS1_B
DRAM_RESET
ENET2_TX_CLK
VSS
RGMII1_RD2
RGMII1_RD0
VSS
RGMII1_TD3
RGMII1_TD0
VSS
QSPI1B_DATA2
QSPI1A_DATA2
VSS
VDD_ARM_CAP
QSPI1A_SCLK
GPIO1_IO06
GPIO1_IO01
GPIO1_IO03
D
E
DRAM_DATA15
DRAM_DATA14
VSS
DRAM_SDCKE1
ENET2_RX_CLK
ENET2_CRS
ENET2_COL
RGMII1_RD3
RGMII1_RXC
RGMII1_TX_CTL
RGMII1_TD2
SD2_CLK
SD2_DATA0
SD2_DATA1
QSPI1A_DATA0
QSPI1A_DATA3
QSPI1A_SS1_B
KEY_ROW1
KEY_COL4
KEY_COL3
E
F
DRAM_DATA13
DRAM_DATA09
VSS
DRAM_ADDR07
VSS
NVCC_ENET
ENET1_TX_CLK
NVCC_RGMII1
NVCC_RGMII2
SD2_DATA2
SD2_DATA3
SD2_CMD
NVCC_SD2
NVCC_QSPI
NVCC_GPIO
KEY_ROW0
VSS
KEY_ROW2
KEY_ROW3
KEY_COL1
F
G
DRAM_SDQS1_P
DRAM_DQM1
DRAM_SDBA0
DRAM_ADDR05
DRAM_ADDR03
NVCC_DRAM
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
NVCC_KEY
LCD1_DATA23
LCD1_DATA21
KEY_COL2
KEY_ROW4
KEY_COL0
G
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
166 NXP Semiconductors
Package Information and Contact Assignments
H
DRAM_DATA08
DRAM_SDQS1_N
VSS
DRAM_CS0_B
DRAM_RAS_B
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_CAP
VDD_ARM_CAP
VDD_ARM_CAP
VDD_ARM_CAP
VDD_ARM_CAP
VSS
NVCC_LCD1
LCD1_DATA15
LCD1_DATA20
VDD_ARM_IN
LCD1_DATA22
LCD1_DATA16
H
J
DRAM_DATA12
DRAM_DATA11
DRAM_VREF
DRAM_CAS_B
DRAM_SDWE_B
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_IN
VDD_ARM_IN
VDD_ARM_IN
VDD_ARM_IN
VDD_ARM_CAP
VSS
LCD1_VSYNC
LCD1_HSYNC
VSS
LCD1_RESET
LCD1_ENABLE
LCD1_DATA19
J
K
DRAM_SDCLK0_P
DRAM_DATA10
VSS
DRAM_SDBA2
DRAM_ADDR02
NVCC_DRAM
NVCC_DRAM_2P5
VDD_SOC_CAP
VDD_SOC_IN
VSS
VSS
VDD_ARM_IN
VDD_ARM_CAP
VSS
LCD1_DATA13
LCD1_DATA12
LCD1_DATA14
LCD1_DATA08
LCD1_DATA17
LCD1_DATA18
K
L
DRAM_SDCLK0_N
DRAM_DATA06
VSS
DRAM_ADDR00
DRAM_ADDR09
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_IN
VSS
VSS
VDD_ARM_IN
VDD_ARM_CAP
VSS
LCD1_DATA11
LCD1_DATA09
LCD1_CLK
PCIE_VP_CAP
LCD1_DATA10
LCD1_DATA07
L
M
DRAM_DATA04
DRAM_DATA05
DRAM_ADDR04
DRAM_ADDR13
DRAM_ADDR08
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_CAP
VSS
LCD1_DATA06
LCD1_DATA05
VSS
LCD1_DATA01
LCD1_DATA02
LCD1_DATA00
M
N
DRAM_DATA07
DRAM_DQM0
VSS
DRAM_ADDR11
DRAM_ADDR10
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VSS
TEST_MODE
BOOT_MODE0
CCM_PMIC_STBY_REQ
VDD_HIGH_CAP
VDD_HIGH_CAP
LCD1_DATA03
LCD1_DATA04
N
Table 114. 17x17 mm (No PCIe), 0.8 mm Pitch, 20x20 Ball Map (continued)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 167
P
DRAM_SDQS0_P
DRAM_SDQS0_N
DRAM_SDBA1
DRAM_ADDR12
DRAM_SDCKE0
NVCC_DRAM
VSS
VSS
VSS
VSS
VSS
VSS
NGND_KEL0
BOOT_MODE1
SNVS_TAMPER
SNVS_PMIC_ON_REQ
VDD_HIGH_IN
VDD_HIGH_IN
CCM_CLK1_N
CCM_CLK1_P
P
R
DRAM_DATA00
DRAM_DATA03
VSS
DRAM_ADDR14
VSS
NVCC_NAND
JTAG_MOD
JTAG_TDO
JTAG_TCK
JTAG_TDI
NVCC_JTAG
NVCC_HIGH
VDDA_ADC_3P3
ADC_VREFL
ONOFF
POR_B
VSS
VDD_SNVS_IN
VSS
VSS
R
T
DRAM_DATA02
DRAM_DATA01
VSS
DRAM_ADDR06
NAND_DATA05
NAND_DATA07
NAND_WE_B
NAND_CLE
JTAG_TRST_B
JTAG_TMS
SD3_DATA1
SD4_RESET_B
SD3_CMD
CCM_CLK2
GPANAIO
ADC2_IN2
USB_OTG1_VBUS
VDD_SNVS_CAP
XTALI
XTALO
T
U
DRAM_DATA22
DRAM_DATA19
DRAM_ODT0
DRAM_ADDR01
NAND_DATA03
VSS
NAND_CE0_B
NAND_RE_B
VSS
SD3_DATA0
SD3_DATA7
VSS
SD3_DATA5
SD3_DATA4
VSS
ADC2_IN3
USB_OTG2_VBUS
NVCC_PLL
VSS
VSS
U
V
DRAM_DATA16
DRAM_DATA23
VSS
VSS
NVCC_USB_H
NAND_DATA00
NAND_WP_B
VDD_SOC_CAP
NAND_CE1_B
NVCC_SD4
SD3_CLK
SD3_DATA6
NVCC_LOW
SD3_DATA3
SD3_DATA2
ADC_VREFH
VDD_USB_CAP
VSS
RTC_XTALI
RTC_XTALO
V
W
DRAM_SDQS2_N
DRAM_SDQS2_P
DRAM_DATA20
DRAM_DATA17
USB_H_STROBE
NAND_ALE
NAND_DATA04
NAND_DATA01
SD4_DATA1
SD4_DATA7
SD4_CLK
SD4_CMD
SD4_DATA3
ADC1_IN1
ADC1_IN3
ADC2_IN1
USB_OTG2_DN
VSS
USB_OTG1_DN
USB_OTG1_CHD_B
W
Y
VSS
DRAM_DATA21
DRAM_DQM2
DRAM_DATA18
USB_H_DATA
NAND_READY_B
NAND_DATA02
NAND_DATA06
SD4_DATA0
SD4_DATA6
SD4_DATA5
SD4_DATA4
SD4_DATA2
ADC1_IN0
ADC1_IN2
ADC2_IN0
USB_OTG2_DP
VSS
USB_OTG1_DP
VSS
Y
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Table 114. 17x17 mm (No PCIe), 0.8 mm Pitch, 20x20 Ball Map (continued)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
168 NXP Semiconductors
Package Information and Contact Assignments
6.4.5 17x17 mm WP (with PCIe) Supplies Contact Assignments and
Functional Contact Assignments
Table 115 shows supplies contact assignments for the 17x17 mm WP (with PCIe) package.
Table 115. 17x17 mm WP (with PCIe) Supplies Contact Assignments
Supply Rail Name 17x17 WP [with PCIe]
Ball(s) Position(s) Remark
DRAM_VREF J3 DDR voltage reference input. Connect to a voltage source that
is 50% of NVCC_DRAM.
DRAM_ZQPAD C5 DDR output buffer driver calibration reference voltage input.
Connect DRAM_ZQPAD to an external 240 ohm 1% resistor
to Vss.
GPANAIO U16 Analog output for NXP use only. This output must always be
left unconnected.
NGND_KEL0 P13 Connect to Vss
NVCC_DRAM G6, H6, J6, K6, L6, M6, N6, P6 Supply input for the DDR I/O interface
NVCC_DRAM_2P5 K7 Supply input for the DDR interface
NVCC_ENET F6 Supply input for the ENET interfaces
NVCC_GPIO F15 Supply input for the GPIO interface
NVCC_HIGH R12 3.3 V Supply input for the dual-voltage I/Os on the SD3
interface
NVCC_JTAG R11 Supply input for the JTAG interface
NVCC_KEY G15 Supply input for the Key Pad Port (KPP) interface
NVCC_LCD1 H15 Supply input for the LCD interface
NVCC_LOW V13 1.8 V Supply input for the dual-voltage I/Os on the SD3
interface
NVCC_NAND R6 Supply input for the Raw NAND flash memories interface
NVCC_PLL W20 Supply input for the PLLs
NVCC_QSPI F14 Supply input for the QSPI interface
NVCC_RGMII1 F8 Supply input for the RGMII1 interface
NVCC_RGMII2 F9 Supply input for the RGMII2 interface
NVCC_SD2 F13 Supply input for the SD2 interface
NVCC_SD4 V10 Supply input for the SD4 interface
NVCC_USB_H V5 Supply input for the USB HSIC interface
PCIE_REXT N18 PCIe impedance calibration resistor. Connect PCIE_REXT to
an external 200 ohm 1% resistor to Vss.
PCIE_VP P18 Supply input for the PCIe PHY
PCIE_VPH R18 Supply input for the PCIe PHY
PCIE_VPTX P17 Supply input for the PCIe PHY
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 169
Table 116 shows an alpha-sorted list of functional contact assignments for the 17x17 mm WP (with
PCIe) package.
USB_OTG1_VBUS T16 VBUS input for USB_OTG1
USB_OTG2_VBUS T15 VBUS input for USB_OTG2
VDD_ARM_CAP C16, D16, H10, H11, H12, H13,
J13, K13, L13
Supply voltage output from internal LDO_ARM. Requires
external capacitor(s).
VDD_ARM_IN H18, J10, J11, J12, K12, L12 Supply voltage input for internal LDO_ARM.
VDD_HIGH_CAP V17, V18 Supply voltage output from internal LDO_2P5. Requires
external capacitor(s).
VDD_HIGH_IN U17, U18 Supply voltage input to internal LDO_2P5, LDO_1P1 and
LDO_SNVS.
VDD_SNVS_CAP V16 Supply voltage output from internal LDO_SNVS. Requires
external capacitor(s).
VDD_SNVS_IN T18 Supply voltage input to the SNVS voltage domain
VDD_SOC_CAP H8, H9, J8, K8, L8, M8, M13, N8,
N9, N10, N11, N12, V8
Supply voltage output from internal LDO_SOC. Requires
external capacitor(s).
VDD_SOC_IN C7, C8, J9, K9, L9,
M9, M10, M11, M12
Supply voltage input to internal LDO_SOC and LDO_PCIE
VDD_USB_CAP V15 Supply voltage output from internal LDO_USB. Requires
external capacitor(s).
VDDA_ADC_3P3 R13 Supply voltage input to the ADC. This supply must be provided
even if the ADC is not used.
VSS A1, A20, C3, C4, C18, D6, D9, D12,
D15, E3, F3, F5, F17, G7, G8, G9,
G10, G11, G12, G13, G14, H3, H7,
H14, J7, J14, J17, K3, K10, K11,
K14, L3, L7, L10, L11, L14, M7,
M14, M17, N3, N7, N13, N19, N20,
P7, P8, P9, P10, P11, P12, R3, R5,
R17, T3, T19, T20, U6, U9, U12,
U15, V3, V4, W16, W18, Y1, Y16,
Y18, Y20
Ground
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments
Ball Name
17x17
WP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
ADC1_IN0 Y14 VDDA_ADC_3P3 ADC1_IN0 Input
ADC1_IN1 W14 VDDA_ADC_3P3 ADC1_IN1 Input
Table 115. 17x17 mm WP (with PCIe) Supplies Contact Assignments (continued)
Supply Rail Name 17x17 WP [with PCIe]
Ball(s) Position(s) Remark
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
170 NXP Semiconductors
Package Information and Contact Assignments
BOOT_MODE0 U20 VDD_SNVS_IN GPIO BOOT_MODE0 Input 100 kΩ
pull-down
BOOT_MODE1 U19 VDD_SNVS_IN GPIO BOOT_MODE1 Input 100 kΩ
pull-down
CCM_CLK1_N P16 VDD_HIGH_CAP CCM_CLK1_N
CCM_CLK1_P R16 VDD_HIGH_CAP CCM_CLK1_P
CCM_CLK2 R15 VDD_HIGH_CAP CCM_CLK2
CCM_PMIC_STBY_REQ P15 VDD_SNVS_IN GPIO CCM_PMIC_STBY_REQ Output 0
DRAM_ADDR00 L4 NVCC_DRAM DDR DRAM_ADDR00 Output 100 kΩ
pull-up
DRAM_ADDR01 U4 NVCC_DRAM DDR DRAM_ADDR01 Output 100 kΩ
pull-up
DRAM_ADDR02 K5 NVCC_DRAM DDR DRAM_ADDR02 Output 100 kΩ
pull-up
DRAM_ADDR03 G5 NVCC_DRAM DDR DRAM_ADDR03 Output 100 kΩ
pull-up
DRAM_ADDR04 M3 NVCC_DRAM DDR DRAM_ADDR04 Output 100 kΩ
pull-up
DRAM_ADDR05 G4 NVCC_DRAM DDR DRAM_ADDR05 Output 100 kΩ
pull-up
DRAM_ADDR06 T4 NVCC_DRAM DDR DRAM_ADDR06 Output 100 kΩ
pull-up
DRAM_ADDR07 F4 NVCC_DRAM DDR DRAM_ADDR07 Output 100 kΩ
pull-up
DRAM_ADDR08 M5 NVCC_DRAM DDR DRAM_ADDR08 Output 100 kΩ
pull-up
DRAM_ADDR09 L5 NVCC_DRAM DDR DRAM_ADDR09 Output 100 kΩ
pull-up
DRAM_ADDR10 N5 NVCC_DRAM DDR DRAM_ADDR10 Output 100 kΩ
pull-up
DRAM_ADDR11 N4 NVCC_DRAM DDR DRAM_ADDR11 Output 100 kΩ
pull-up
DRAM_ADDR12 P4 NVCC_DRAM DDR DRAM_ADDR12 Output 100 kΩ
pull-up
DRAM_ADDR13 M4 NVCC_DRAM DDR DRAM_ADDR13 Output 100 kΩ
pull-up
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
WP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 171
DRAM_ADDR14 R4 NVCC_DRAM DDR DRAM_ADDR14 Output 100 kΩ
pull-up
DRAM_CAS_B J4 NVCC_DRAM DDR DRAM_CAS_B Output 100 kΩ
pull-up
DRAM_CS0_B H4 NVCC_DRAM DDR DRAM_CS0_B Output 100 kΩ
pull-up
DRAM_CS1_B D3 NVCC_DRAM DDR DRAM_CS1_B Output 100 kΩ
pull-up
DRAM_DATA00 R1 NVCC_DRAM DDR DRAM_DATA00 Input 100 kΩ
pull-up
DRAM_DATA01 T2 NVCC_DRAM DDR DRAM_DATA01 Input 100 kΩ
pull-up
DRAM_DATA02 T1 NVCC_DRAM DDR DRAM_DATA02 Input 100 kΩ
pull-up
DRAM_DATA03 R2 NVCC_DRAM DDR DRAM_DATA03 Input 100 kΩ
pull-up
DRAM_DATA04 M1 NVCC_DRAM DDR DRAM_DATA04 Input 100 kΩ
pull-up
DRAM_DATA05 M2 NVCC_DRAM DDR DRAM_DATA05 Input 100 kΩ
pull-up
DRAM_DATA06 L2 NVCC_DRAM DDR DRAM_DATA06 Input 100 kΩ
pull-up
DRAM_DATA07 N1 NVCC_DRAM DDR DRAM_DATA07 Input 100 kΩ
pull-up
DRAM_DATA08 H1 NVCC_DRAM DDR DRAM_DATA08 Input 100 kΩ
pull-up
DRAM_DATA09 F2 NVCC_DRAM DDR DRAM_DATA09 Input 100 kΩ
pull-up
DRAM_DATA10 K2 NVCC_DRAM DDR DRAM_DATA10 Input 100 kΩ
pull-up
DRAM_DATA11 J2 NVCC_DRAM DDR DRAM_DATA11 Input 100 kΩ
pull-up
DRAM_DATA12 J1 NVCC_DRAM DDR DRAM_DATA12 Input 100 kΩ
pull-up
DRAM_DATA13 F1 NVCC_DRAM DDR DRAM_DATA13 Input 100 kΩ
pull-up
DRAM_DATA14 E2 NVCC_DRAM DDR DRAM_DATA14 Input 100 kΩ
pull-up
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
WP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
172 NXP Semiconductors
Package Information and Contact Assignments
DRAM_DATA15 E1 NVCC_DRAM DDR DRAM_DATA15 Input 100 kΩ
pull-up
DRAM_DATA16 V1 NVCC_DRAM DDR DRAM_DATA16 Input 100 kΩ
pull-up
DRAM_DATA17 W4 NVCC_DRAM DDR DRAM_DATA17 Input 100 kΩ
pull-up
DRAM_DATA18 Y4 NVCC_DRAM DDR DRAM_DATA18 Input 100 kΩ
pull-up
DRAM_DATA19 U2 NVCC_DRAM DDR DRAM_DATA19 Input 100 kΩ
pull-up
DRAM_DATA20 W3 NVCC_DRAM DDR DRAM_DATA20 Input 100 kΩ
pull-up
DRAM_DATA21 Y2 NVCC_DRAM DDR DRAM_DATA21 Input 100 kΩ
pull-up
DRAM_DATA22 U1 NVCC_DRAM DDR DRAM_DATA22 Input 100 kΩ
pull-up
DRAM_DATA23 V2 NVCC_DRAM DDR DRAM_DATA23 Input 100 kΩ
pull-up
DRAM_DATA24 A2 NVCC_DRAM DDR DRAM_DATA24 Input 100 kΩ
pull-up
DRAM_DATA25 D1 NVCC_DRAM DDR DRAM_DATA25 Input 100 kΩ
pull-up
DRAM_DATA26 C1 NVCC_DRAM DDR DRAM_DATA26 Input 100 kΩ
pull-up
DRAM_DATA27 D2 NVCC_DRAM DDR DRAM_DATA27 Input 100 kΩ
pull-up
DRAM_DATA28 C2 NVCC_DRAM DDR DRAM_DATA28 Input 100 kΩ
pull-up
DRAM_DATA29 B3 NVCC_DRAM DDR DRAM_DATA29 Input 100 kΩ
pull-up
DRAM_DATA30 B4 NVCC_DRAM DDR DRAM_DATA30 Input 100 kΩ
pull-up
DRAM_DATA31 A4 NVCC_DRAM DDR DRAM_DATA31 Input 100 kΩ
pull-up
DRAM_DQM0 N2 NVCC_DRAM DDR DRAM_DQM0 Output 100 kΩ
pull-up
DRAM_DQM1 G2 NVCC_DRAM DDR DRAM_DQM1 Output 100 kΩ
pull-up
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
WP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 173
DRAM_DQM2 Y3 NVCC_DRAM DDR DRAM_DQM2 Output 100 kΩ
pull-up
DRAM_DQM3 A3 NVCC_DRAM DDR DRAM_DQM3 Output 100 kΩ
pull-up
DRAM_ODT0 U3 NVCC_DRAM DDR DRAM_ODT0 Output 100 kΩ
pull-down
DRAM_RAS_B H5 NVCC_DRAM DDR DRAM_RAS_B Output 100 kΩ
pull-up
DRAM_RESET D4 NVCC_DRAM DDR DRAM_RESET Output 100 kΩ
pull-down
DRAM_SDBA0 G3 NVCC_DRAM DDR DRAM_SDBA0 Output 100 kΩ
pull-up
DRAM_SDBA1 P3 NVCC_DRAM DDR DRAM_SDBA1 Output 100 kΩ
pull-up
DRAM_SDBA2 K4 NVCC_DRAM DDR DRAM_SDBA2 Output 100 kΩ
pull-up
DRAM_SDCKE0 P5 NVCC_DRAM DDR DRAM_SDCKE0 Output 100 kΩ
pull-down
DRAM_SDCKE1 E4 NVCC_DRAM DDR DRAM_SDCKE1 Output 100 kΩ
pull-down
DRAM_SDCLK0_N L1 NVCC_DRAM DDRCLK DRAM_SDCLK0_N
DRAM_SDCLK0_P K1 NVCC_DRAM DDRCLK DRAM_SDCLK0_P Output Low
DRAM_SDQS0_N P2 NVCC_DRAM DDRCLK DRAM_SDQS0_N
DRAM_SDQS0_P P1 NVCC_DRAM DDRCLK DRAM_SDQS0_P Input
DRAM_SDQS1_N H2 NVCC_DRAM DDRCLK DRAM_SDQS1_N
DRAM_SDQS1_P G1 NVCC_DRAM DDRCLK DRAM_SDQS1_P Input
DRAM_SDQS2_N W1 NVCC_DRAM DDRCLK DRAM_SDQS2_N
DRAM_SDQS2_P W2 NVCC_DRAM DDRCLK DRAM_SDQS2_P Input
DRAM_SDQS3_N B2 NVCC_DRAM DDRCLK DRAM_SDQS3_N
DRAM_SDQS3_P B1 NVCC_DRAM DDRCLK DRAM_SDQS3_P Input
DRAM_SDWE_B J5 NVCC_DRAM DDR DRAM_SDWE_B Output 100 kΩ
pull-up
ENET1_COL B5 NVCC_ENET GPIO ALT5 GPIO2_IO00 Input Keeper
ENET1_CRS C6 NVCC_ENET GPIO ALT5 GPIO2_IO01 Input Keeper
ENET1_MDC B6 NVCC_ENET GPIO ALT5 GPIO2_IO02 Input Keeper
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
WP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
174 NXP Semiconductors
Package Information and Contact Assignments
ENET1_MDIO A6 NVCC_ENET GPIO ALT5 GPIO2_IO03 Input Keeper
ENET1_RX_CLK A5 NVCC_ENET GPIO ALT5 GPIO2_IO04 Input Keeper
ENET1_TX_CLK F7 NVCC_ENET GPIO ALT5 GPIO2_IO05 Input Keeper
ENET2_COL E7 NVCC_ENET GPIO ALT5 GPIO2_IO06 Input Keeper
ENET2_CRS E6 NVCC_ENET GPIO ALT5 GPIO2_IO07 Input Keeper
ENET2_RX_CLK E5 NVCC_ENET GPIO ALT5 GPIO2_IO08 Input Keeper
ENET2_TX_CLK D5 NVCC_ENET GPIO ALT5 GPIO2_IO09 Input Keeper
GPIO1_IO00 C19 NVCC_GPIO GPIO ALT5 GPIO1_IO00 Input Keeper
GPIO1_IO01 D19 NVCC_GPIO GPIO ALT5 GPIO1_IO01 Input Keeper
GPIO1_IO02 C20 NVCC_GPIO GPIO ALT5 GPIO1_IO02 Input Keeper
GPIO1_IO03 D20 NVCC_GPIO GPIO ALT5 GPIO1_IO03 Input Keeper
GPIO1_IO04 A18 NVCC_GPIO GPIO ALT5 GPIO1_IO04 Input Keeper
GPIO1_IO05 B18 NVCC_GPIO GPIO ALT5 GPIO1_IO05 Input Keeper
GPIO1_IO06 D18 NVCC_GPIO GPIO ALT5 GPIO1_IO06 Input Keeper
GPIO1_IO07 A17 NVCC_GPIO GPIO ALT5 GPIO1_IO07 Input Keeper
GPIO1_IO08 B17 NVCC_GPIO GPIO ALT5 GPIO1_IO08 Input Keeper
GPIO1_IO09 A19 NVCC_GPIO GPIO ALT5 GPIO1_IO09 Input Keeper
GPIO1_IO10 B19 NVCC_GPIO GPIO ALT5 GPIO1_IO10 Input Keeper
GPIO1_IO11 B20 NVCC_GPIO GPIO ALT5 GPIO1_IO11 Input Keeper
GPIO1_IO12 B16 NVCC_GPIO GPIO ALT5 GPIO1_IO12 Input Keeper
GPIO1_IO13 A16 NVCC_GPIO GPIO ALT5 GPIO1_IO13 Input Keeper
JTAG_MOD R7 NVCC_JTAG GPIO JTAG_MOD Input 100 kΩ
pull-up
JTAG_TCK R9 NVCC_JTAG GPIO JTAG_TCK Input 47 kΩ
pull-up
JTAG_TDI R10 NVCC_JTAG GPIO JTAG_TDI Input 47 kΩ
pull-up
JTAG_TDO R8 NVCC_JTAG GPIO JTAG_TDO Output Keeper
JTAG_TMS T10 NVCC_JTAG GPIO JTAG_TMS Input 47 kΩ
pull-up
JTAG_TRST_B T9 NVCC_JTAG GPIO JTAG_TRST_B Input 47 kΩ
pull-up
KEY_COL0 G20 NVCC_KEY GPIO ALT5 GPIO2_IO10 Input Keeper
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
WP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 175
KEY_COL1 F20 NVCC_KEY GPIO ALT5 GPIO2_IO11 Input Keeper
KEY_COL2 G18 NVCC_KEY GPIO ALT5 GPIO2_IO12 Input Keeper
KEY_COL3 E20 NVCC_KEY GPIO ALT5 GPIO2_IO13 Input Keeper
KEY_COL4 E19 NVCC_KEY GPIO ALT5 GPIO2_IO14 Input Keeper
KEY_ROW0 F16 NVCC_KEY GPIO ALT5 GPIO2_IO15 Input Keeper
KEY_ROW1 E18 NVCC_KEY GPIO ALT5 GPIO2_IO16 Input Keeper
KEY_ROW2 F18 NVCC_KEY GPIO ALT5 GPIO2_IO17 Input Keeper
KEY_ROW3 F19 NVCC_KEY GPIO ALT5 GPIO2_IO18 Input Keeper
KEY_ROW4 G19 NVCC_KEY GPIO ALT5 GPIO2_IO19 Input Keeper
LCD1_CLK L17 NVCC_LCD1 GPIO ALT5 GPIO3_IO00 Input Keeper
LCD1_DATA00 M20 NVCC_LCD1 GPIO ALT5 GPIO3_IO01 Input Keeper
LCD1_DATA01 L18 NVCC_LCD1 GPIO ALT5 GPIO3_IO02 Input Keeper
LCD1_DATA02 M19 NVCC_LCD1 GPIO ALT5 GPIO3_IO03 Input Keeper
LCD1_DATA03 M18 NVCC_LCD1 GPIO ALT5 GPIO3_IO04 Input Keeper
LCD1_DATA04 N17 NVCC_LCD1 GPIO ALT5 GPIO3_IO05 Input Keeper
LCD1_DATA05 M16 NVCC_LCD1 GPIO ALT5 GPIO3_IO06 Input Keeper
LCD1_DATA06 M15 NVCC_LCD1 GPIO ALT5 GPIO3_IO07 Input Keeper
LCD1_DATA07 L20 NVCC_LCD1 GPIO ALT5 GPIO3_IO08 Input Keeper
LCD1_DATA08 K18 NVCC_LCD1 GPIO ALT5 GPIO3_IO09 Input Keeper
LCD1_DATA09 L16 NVCC_LCD1 GPIO ALT5 GPIO3_IO10 Input Keeper
LCD1_DATA10 L19 NVCC_LCD1 GPIO ALT5 GPIO3_IO11 Input Keeper
LCD1_DATA11 L15 NVCC_LCD1 GPIO ALT5 GPIO3_IO12 Input Keeper
LCD1_DATA12 K16 NVCC_LCD1 GPIO ALT5 GPIO3_IO13 Input Keeper
LCD1_DATA13 K15 NVCC_LCD1 GPIO ALT5 GPIO3_IO14 Input Keeper
LCD1_DATA14 K17 NVCC_LCD1 GPIO ALT5 GPIO3_IO15 Input Keeper
LCD1_DATA15 H16 NVCC_LCD1 GPIO ALT5 GPIO3_IO16 Input Keeper
LCD1_DATA16 H20 NVCC_LCD1 GPIO ALT5 GPIO3_IO17 Input Keeper
LCD1_DATA17 K19 NVCC_LCD1 GPIO ALT5 GPIO3_IO18 Input Keeper
LCD1_DATA18 K20 NVCC_LCD1 GPIO ALT5 GPIO3_IO19 Input Keeper
LCD1_DATA19 J20 NVCC_LCD1 GPIO ALT5 GPIO3_IO20 Input Keeper
LCD1_DATA20 H17 NVCC_LCD1 GPIO ALT5 GPIO3_IO21 Input Keeper
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
WP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
176 NXP Semiconductors
Package Information and Contact Assignments
LCD1_DATA21 G17 NVCC_LCD1 GPIO ALT5 GPIO3_IO22 Input Keeper
LCD1_DATA22 H19 NVCC_LCD1 GPIO ALT5 GPIO3_IO23 Input Keeper
LCD1_DATA23 G16 NVCC_LCD1 GPIO ALT5 GPIO3_IO24 Input Keeper
LCD1_ENABLE J19 NVCC_LCD1 GPIO ALT5 GPIO3_IO25 Input Keeper
LCD1_HSYNC J16 NVCC_LCD1 GPIO ALT5 GPIO3_IO26 Input Keeper
LCD1_RESET J18 NVCC_LCD1 GPIO ALT5 GPIO3_IO27 Input Keeper
LCD1_VSYNC J15 NVCC_LCD1 GPIO ALT5 GPIO3_IO28 Input Keeper
NAND_ALE W6 NVCC_NAND GPIO ALT5 GPIO4_IO00 Input Keeper
NAND_CE0_B U7 NVCC_NAND GPIO ALT5 GPIO4_IO01 Input Keeper
NAND_CE1_B V9 NVCC_NAND GPIO ALT5 GPIO4_IO02 Input Keeper
NAND_CLE T8 NVCC_NAND GPIO ALT5 GPIO4_IO03 Input Keeper
NAND_DATA00 V6 NVCC_NAND GPIO ALT5 GPIO4_IO04 Input Keeper
NAND_DATA01 W8 NVCC_NAND GPIO ALT5 GPIO4_IO05 Input Keeper
NAND_DATA02 Y7 NVCC_NAND GPIO ALT5 GPIO4_IO06 Input Keeper
NAND_DATA03 U5 NVCC_NAND GPIO ALT5 GPIO4_IO07 Input Keeper
NAND_DATA04 W7 NVCC_NAND GPIO ALT5 GPIO4_IO08 Input Keeper
NAND_DATA05 T5 NVCC_NAND GPIO ALT5 GPIO4_IO09 Input Keeper
NAND_DATA06 Y8 NVCC_NAND GPIO ALT5 GPIO4_IO10 Input Keeper
NAND_DATA07 T6 NVCC_NAND GPIO ALT5 GPIO4_IO11 Input Keeper
NAND_RE_B U8 NVCC_NAND GPIO ALT5 GPIO4_IO12 Input Keeper
NAND_READY_B Y6 NVCC_NAND GPIO ALT5 GPIO4_IO13 Input Keeper
NAND_WE_B T7 NVCC_NAND GPIO ALT5 GPIO4_IO14 Input Keeper
NAND_WP_B V7 NVCC_NAND GPIO ALT5 GPIO4_IO15 Input Keeper
ONOFF N15 VDD_SNVS_IN GPIO ONOFF Input 100 kΩ
pull-up
PCIE_RX_N P19 PCIE_VPH PCIE_RX_N
PCIE_RX_P P20 PCIE_VPH PCIE_RX_P
PCIE_TX_N R19 PCIE_VPH PCIE_TX_N
PCIE_TX_P R20 PCIE_VPH PCIE_TX_P
POR_B P14 VDD_SNVS_IN GPIO POR_B Input 100 kΩ
pull-up
QSPI1A_DATA0 E15 NVCC_QSPI GPIO ALT5 GPIO4_IO16 Input Keeper
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
WP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 177
QSPI1A_DATA1 C15 NVCC_QSPI GPIO ALT5 GPIO4_IO17 Input Keeper
QSPI1A_DATA2 D14 NVCC_QSPI GPIO ALT5 GPIO4_IO18 Input Keeper
QSPI1A_DATA3 E16 NVCC_QSPI GPIO ALT5 GPIO4_IO19 Input Keeper
QSPI1A_DQS A13 NVCC_QSPI GPIO ALT5 GPIO4_IO20 Input Keeper
QSPI1A_SCLK D17 NVCC_QSPI GPIO ALT5 GPIO4_IO21 Input Keeper
QSPI1A_SS0_B C17 NVCC_QSPI GPIO ALT5 GPIO4_IO22 Input Keeper
QSPI1A_SS1_B E17 NVCC_QSPI GPIO ALT5 GPIO4_IO23 Input Keeper
QSPI1B_DATA0 B14 NVCC_QSPI GPIO ALT5 GPIO4_IO24 Input Keeper
QSPI1B_DATA1 A14 NVCC_QSPI GPIO ALT5 GPIO4_IO25 Input Keeper
QSPI1B_DATA2 D13 NVCC_QSPI GPIO ALT5 GPIO4_IO26 Input Keeper
QSPI1B_DATA3 C13 NVCC_QSPI GPIO ALT5 GPIO4_IO27 Input Keeper
QSPI1B_DQS B13 NVCC_QSPI GPIO ALT5 GPIO4_IO28 Input Keeper
QSPI1B_SCLK B15 NVCC_QSPI GPIO ALT5 GPIO4_IO29 Input Keeper
QSPI1B_SS0_B C14 NVCC_QSPI GPIO ALT5 GPIO4_IO30 Input Keeper
QSPI1B_SS1_B A15 NVCC_QSPI GPIO ALT5 GPIO4_IO31 Input Keeper
RGMII1_RD0 D8 NVCC_RGMII1 GPIO ALT5 GPIO5_IO00 Input Keeper
RGMII1_RD1 C9 NVCC_RGMII1 GPIO ALT5 GPIO5_IO01 Input Keeper
RGMII1_RD2 D7 NVCC_RGMII1 GPIO ALT5 GPIO5_IO02 Input Keeper
RGMII1_RD3 E8 NVCC_RGMII1 GPIO ALT5 GPIO5_IO03 Input Keeper
RGMII1_RX_CTL C10 NVCC_RGMII1 GPIO ALT5 GPIO5_IO04 Input Keeper
RGMII1_RXC E9 NVCC_RGMII1 GPIO ALT5 GPIO5_IO05 Input Keeper
RGMII1_TD0 D11 NVCC_RGMII1 GPIO ALT5 GPIO5_IO06 Input Keeper
RGMII1_TD1 C12 NVCC_RGMII1 GPIO ALT5 GPIO5_IO07 Input Keeper
RGMII1_TD2 E11 NVCC_RGMII1 GPIO ALT5 GPIO5_IO08 Input Keeper
RGMII1_TD3 D10 NVCC_RGMII1 GPIO ALT5 GPIO5_IO09 Input Keeper
RGMII1_TX_CTL E10 NVCC_RGMII1 GPIO ALT5 GPIO5_IO10 Input Keeper
RGMII1_TXC C11 NVCC_RGMII1 GPIO ALT5 GPIO5_IO11 Input Keeper
RGMII2_RD0 A8 NVCC_RGMII2 GPIO ALT5 GPIO5_IO12 Input Keeper
RGMII2_RD1 B8 NVCC_RGMII2 GPIO ALT5 GPIO5_IO13 Input Keeper
RGMII2_RD2 A7 NVCC_RGMII2 GPIO ALT5 GPIO5_IO14 Input Keeper
RGMII2_RD3 B7 NVCC_RGMII2 GPIO ALT5 GPIO5_IO15 Input Keeper
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
WP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
178 NXP Semiconductors
Package Information and Contact Assignments
RGMII2_RX_CTL B9 NVCC_RGMII2 GPIO ALT5 GPIO5_IO16 Input Keeper
RGMII2_RXC A9 NVCC_RGMII2 GPIO ALT5 GPIO5_IO17 Input Keeper
RGMII2_TD0 A11 NVCC_RGMII2 GPIO ALT5 GPIO5_IO18 Input Keeper
RGMII2_TD1 B11 NVCC_RGMII2 GPIO ALT5 GPIO5_IO19 Input Keeper
RGMII2_TD2 A12 NVCC_RGMII2 GPIO ALT5 GPIO5_IO20 Input Keeper
RGMII2_TD3 B12 NVCC_RGMII2 GPIO ALT5 GPIO5_IO21 Input Keeper
RGMII2_TX_CTL B10 NVCC_RGMII2 GPIO ALT5 GPIO5_IO22 Input Keeper
RGMII2_TXC A10 NVCC_RGMII2 GPIO ALT5 GPIO5_IO23 Input Keeper
RTC_XTALI W19 VDD_SNVS_CAP RTC_XTALI
RTC_XTALO Y19 VDD_SNVS_CAP RTC_XTALO
SD2_CLK E12 NVCC_SD2 GPIO ALT5 GPIO6_IO06 Input Keeper
SD2_CMD F12 NVCC_SD2 GPIO ALT5 GPIO6_IO07 Input Keeper
SD2_DATA0 E13 NVCC_SD2 GPIO ALT5 GPIO6_IO08 Input Keeper
SD2_DATA1 E14 NVCC_SD2 GPIO ALT5 GPIO6_IO09 Input Keeper
SD2_DATA2 F10 NVCC_SD2 GPIO ALT5 GPIO6_IO10 Input Keeper
SD2_DATA3 F11 NVCC_SD2 GPIO ALT5 GPIO6_IO11 Input Keeper
SD3_CLK V11 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO00 Input 100 kΩ
pull-down
SD3_CMD T13 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO01 Input 100 kΩ
pull-down
SD3_DATA0 U10 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO02 Input 100 kΩ
pull-down
SD3_DATA1 T11 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO03 Input 100 kΩ
pull-down
SD3_DATA2 U14 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO04 Input 100 kΩ
pull-down
SD3_DATA3 V14 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO05 Input 100 kΩ
pull-down
SD3_DATA4 T14 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO06 Input 100 kΩ
pull-down
SD3_DATA5 U13 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO07 Input 100 kΩ
pull-down
SD3_DATA6 V12 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO08 Input 100 kΩ
pull-down
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
WP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 179
SD3_DATA7 U11 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO09 Input 100 kΩ
pull-down
SD4_CLK W11 NVCC_SD4 GPIO ALT5 GPIO6_IO12 Input Keeper
SD4_CMD W12 NVCC_SD4 GPIO ALT5 GPIO6_IO13 Input Keeper
SD4_DATA0 Y9 NVCC_SD4 GPIO ALT5 GPIO6_IO14 Input Keeper
SD4_DATA1 W9 NVCC_SD4 GPIO ALT5 GPIO6_IO15 Input Keeper
SD4_DATA2 Y13 NVCC_SD4 GPIO ALT5 GPIO6_IO16 Input Keeper
SD4_DATA3 W13 NVCC_SD4 GPIO ALT5 GPIO6_IO17 Input Keeper
SD4_DATA4 Y12 NVCC_SD4 GPIO ALT5 GPIO6_IO18 Input Keeper
SD4_DATA5 Y11 NVCC_SD4 GPIO ALT5 GPIO6_IO19 Input Keeper
SD4_DATA6 Y10 NVCC_SD4 GPIO ALT5 GPIO6_IO20 Input Keeper
SD4_DATA7 W10 NVCC_SD4 GPIO ALT5 GPIO6_IO21 Input Keeper
SD4_RESET_B T12 NVCC_SD4 GPIO ALT5 GPIO6_IO22 Input Keeper
SNVS_PMIC_ON_REQ N16 VDD_SNVS_IN GPIO SNVS_PMIC_ON_REQ Output 100 kΩ
pull-up
SNVS_TAMPER R14 VDD_SNVS_IN GPIO SNVS_TAMPER Input 100 kΩ
pull-down
TEST_MODE N14 VDD_SNVS_IN TEST_MODE Input 100 kΩ
pull-down
USB_H_DATA Y5 NVCC_USB_H GPIO ALT5 GPIO7_IO10 Input 100 kΩ
pull-down
USB_H_STROBE W5 NVCC_USB_H GPIO ALT5 GPIO7_IO11 Input 100 kΩ
pull-down
USB_OTG1_CHD_B T17 VDD_USB_CAP USB_OTG1_CHD_B
USB_OTG1_DN W17 VDD_USB_CAP USB_OTG1_DN
USB_OTG1_DP Y17 VDD_USB_CAP USB_OTG1_DP
USB_OTG2_DN W15 VDD_USB_CAP USB_OTG2_DN
USB_OTG2_DP Y15 VDD_USB_CAP USB_OTG2_DP
XTALI V19 NVCC_PLL XTALI
XTALO V20 NVCC_PLL XTALO
Table 116. 17x17 WP (with PCIe) Functional Contact Assignments (continued)
Ball Name
17x17
WP
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
180 NXP Semiconductors
Package Information and Contact Assignments
6.4.6 17x17 mm WP (with PCIe), 0.8 mm Pitch, 20x20 Ball Map
Table 117. 17x17 mm WP (with PCIe), 0.8 mm Pitch, 20x20 Ball Map
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
A
VSS
DRAM_DATA24
DRAM_DQM3
DRAM_DATA31
ENET1_RX_CLK
ENET1_MDIO
RGMII2_RD2
RGMII2_RD0
RGMII2_RXC
RGMII2_TXC
RGMII2_TD0
RGMII2_TD2
QSPI1A_DQS
QSPI1B_DATA1
QSPI1B_SS1_B
GPIO1_IO13
GPIO1_IO07
GPIO1_IO04
GPIO1_IO09
VSS
A
B
DRAM_SDQS3_P
DRAM_SDQS3_N
DRAM_DATA29
DRAM_DATA30
ENET1_COL
ENET1_MDC
RGMII2_RD3
RGMII2_RD1
RGMII2_RX_CTL
RGMII2_TX_CTL
RGMII2_TD1
RGMII2_TD3
QSPI1B_DQS
QSPI1B_DATA0
QSPI1B_SCLK
GPIO1_IO12
GPIO1_IO08
GPIO1_IO05
GPIO1_IO10
GPIO1_IO11
B
C
DRAM_DATA26
DRAM_DATA28
VSS
VSS
DRAM_ZQPAD
ENET1_CRS
VDD_SOC_IN
VDD_SOC_IN
RGMII1_RD1
RGMII1_RX_CTL
RGMII1_TXC
RGMII1_TD1
QSPI1B_DATA3
QSPI1B_SS0_B
QSPI1A_DATA1
VDD_ARM_CAP
QSPI1A_SS0_B
VSS
GPIO1_IO00
GPIO1_IO02
C
D
DRAM_DATA25
DRAM_DATA27
DRAM_CS1_B
DRAM_RESET
ENET2_TX_CLK
VSS
RGMII1_RD2
RGMII1_RD0
VSS
RGMII1_TD3
RGMII1_TD0
VSS
QSPI1B_DATA2
QSPI1A_DATA2
VSS
VDD_ARM_CAP
QSPI1A_SCLK
GPIO1_IO06
GPIO1_IO01
GPIO1_IO03
D
E
DRAM_DATA15
DRAM_DATA14
VSS
DRAM_SDCKE1
ENET2_RX_CLK
ENET2_CRS
ENET2_COL
RGMII1_RD3
RGMII1_RXC
RGMII1_TX_CTL
RGMII1_TD2
SD2_CLK
SD2_DATA0
SD2_DATA1
QSPI1A_DATA0
QSPI1A_DATA3
QSPI1A_SS1_B
KEY_ROW1
KEY_COL4
KEY_COL3
E
F
DRAM_DATA13
DRAM_DATA09
VSS
DRAM_ADDR07
VSS
NVCC_ENET
ENET1_TX_CLK
NVCC_RGMII1
NVCC_RGMII2
SD2_DATA2
SD2_DATA3
SD2_CMD
NVCC_SD2
NVCC_QSPI
NVCC_GPIO
KEY_ROW0
VSS
KEY_ROW2
KEY_ROW3
KEY_COL1
F
G
DRAM_SDQS1_P
DRAM_DQM1
DRAM_SDBA0
DRAM_ADDR05
DRAM_ADDR03
NVCC_DRAM
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
NVCC_KEY
LCD1_DATA23
LCD1_DATA21
KEY_COL2
KEY_ROW4
KEY_COL0
G
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 181
H
DRAM_DATA08
DRAM_SDQS1_N
VSS
DRAM_CS0_B
DRAM_RAS_B
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_CAP
VDD_ARM_CAP
VDD_ARM_CAP
VDD_ARM_CAP
VDD_ARM_CAP
VSS
NVCC_LCD1
LCD1_DATA15
LCD1_DATA20
VDD_ARM_IN
LCD1_DATA22
LCD1_DATA16
H
J
DRAM_DATA12
DRAM_DATA11
DRAM_VREF
DRAM_CAS_B
DRAM_SDWE_B
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_IN
VDD_ARM_IN
VDD_ARM_IN
VDD_ARM_IN
VDD_ARM_CAP
VSS
LCD1_VSYNC
LCD1_HSYNC
VSS
LCD1_RESET
LCD1_ENABLE
LCD1_DATA19
J
K
DRAM_SDCLK0_P
DRAM_DATA10
VSS
DRAM_SDBA2
DRAM_ADDR02
NVCC_DRAM
NVCC_DRAM_2P5
VDD_SOC_CAP
VDD_SOC_IN
VSS
VSS
VDD_ARM_IN
VDD_ARM_CAP
VSS
LCD1_DATA13
LCD1_DATA12
LCD1_DATA14
LCD1_DATA08
LCD1_DATA17
LCD1_DATA18
K
L
DRAM_SDCLK0_N
DRAM_DATA06
VSS
DRAM_ADDR00
DRAM_ADDR09
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_IN
VSS
VSS
VDD_ARM_IN
VDD_ARM_CAP
VSS
LCD1_DATA11
LCD1_DATA09
LCD1_CLK
LCD1_DATA01
LCD1_DATA10
LCD1_DATA07
L
M
DRAM_DATA04
DRAM_DATA05
DRAM_ADDR04
DRAM_ADDR13
DRAM_ADDR08
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_CAP
VSS
LCD1_DATA06
LCD1_DATA05
VSS
LCD1_DATA03
LCD1_DATA02
LCD1_DATA00
M
N
DRAM_DATA07
DRAM_DQM0
VSS
DRAM_ADDR11
DRAM_ADDR10
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VSS
TEST_MODE
ONOFF
SNVS_PMIC_ON_REQ
LCD1_DATA04
PCIE_REXT
VSS
VSS
N
Table 117. 17x17 mm WP (with PCIe), 0.8 mm Pitch, 20x20 Ball Map (continued)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
182 NXP Semiconductors
Package Information and Contact Assignments
P
DRAM_SDQS0_P
DRAM_SDQS0_N
DRAM_SDBA1
DRAM_ADDR12
DRAM_SDCKE0
NVCC_DRAM
VSS
VSS
VSS
VSS
VSS
VSS
NGND_KEL0
POR_B
CCM_PMIC_STBY_REQ
CCM_CLK1_N
PCIE_VPTX
PCIE_VP
PCIE_RX_N
PCIE_RX_P
P
R
DRAM_DATA00
DRAM_DATA03
VSS
DRAM_ADDR14
VSS
NVCC_NAND
JTAG_MOD
JTAG_TDO
JTAG_TCK
JTAG_TDI
NVCC_JTAG
NVCC_HIGH
VDDA_ADC_3P3
SNVS_TAMPER
CCM_CLK2
CCM_CLK1_P
VSS
PCIE_VPH
PCIE_TX_N
PCIE_TX_P
R
T
DRAM_DATA02
DRAM_DATA01
VSS
DRAM_ADDR06
NAND_DATA05
NAND_DATA07
NAND_WE_B
NAND_CLE
JTAG_TRST_B
JTAG_TMS
SD3_DATA1
SD4_RESET_B
SD3_CMD
SD3_DATA4
USB_OTG2_VBUS
USB_OTG1_VBUS
USB_OTG1_CHD_B
VDD_SNVS_IN
VSS
VSS
T
U
DRAM_DATA22
DRAM_DATA19
DRAM_ODT0
DRAM_ADDR01
NAND_DATA03
VSS
NAND_CE0_B
NAND_RE_B
VSS
SD3_DATA0
SD3_DATA7
VSS
SD3_DATA5
SD3_DATA2
VSS
GPANAIO
VDD_HIGH_IN
VDD_HIGH_IN
BOOT_MODE1
BOOT_MODE0
U
V
DRAM_DATA16
DRAM_DATA23
VSS
VSS
NVCC_USB_H
NAND_DATA00
NAND_WP_B
VDD_SOC_CAP
NAND_CE1_B
NVCC_SD4
SD3_CLK
SD3_DATA6
NVCC_LOW
SD3_DATA3
VDD_USB_CAP
VDD_SNVS_CAP
VDD_HIGH_CAP
VDD_HIGH_CAP
XTALI
XTALO
V
W
DRAM_SDQS2_N
DRAM_SDQS2_P
DRAM_DATA20
DRAM_DATA17
USB_H_STROBE
NAND_ALE
NAND_DATA04
NAND_DATA01
SD4_DATA1
SD4_DATA7
SD4_CLK
SD4_CMD
SD4_DATA3
ADC1_IN1
USB_OTG2_DN
VSS
USB_OTG1_DN
VSS
RTC_XTALI
NVCC_PLL
W
Y
VSS
DRAM_DATA21
DRAM_DQM2
DRAM_DATA18
USB_H_DATA
NAND_READY_B
NAND_DATA02
NAND_DATA06
SD4_DATA0
SD4_DATA6
SD4_DATA5
SD4_DATA4
SD4_DATA2
ADC1_IN0
USB_OTG2_DP
VSS
USB_OTG1_DP
VSS
RTC_XTALO
VSS
Y
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Table 117. 17x17 mm WP (with PCIe), 0.8 mm Pitch, 20x20 Ball Map (continued)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 183
6.5 14x14 mm Package Information
6.5.1 14x14 mm, 0.65 mm Pitch, 20x20 Ball Matrix
Figure 87 shows the top, bottom, and side views of the 14×14 mm BGA package.
Figure 87. 14x14 mm BGA Package—Top, Bottom, and Side Views
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
184 NXP Semiconductors
Package Information and Contact Assignments
Figure 88. 14x14 mm BGA Package Notes
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 185
6.5.2 14x14 mm Supplies Contact Assignments and Functional Contact
Assignments
Table 118 shows supplies contact assignments for the 14x14 mm package and Table 119 shows the
functional contact assignments.
Table 118. 14x14 mm Supplies Contact Assignments
Supply Rail Name 14x14 mm
Ball Position(s) Comments
ADC_VREFH Y15 ADC high reference voltage
ADC_VREFL V14 ADC low reference voltage
DRAM_VREF K4 DDR voltage reference input. Connect to a voltage source that is 50% of
NVCC_DRAM.
DRAM_ZQPAD H2 DDR output buffer driver calibration reference voltage input. Connect
DRAM_ZQPAD to an external 240 ohm 1% resistor to Vss.
GPANAIO P16 Analog output for NXP use only. This output must always be left unconnected.
NVCC_DRAM G6, H6, J6, K6, L6,
M6, N6, P6
Supply input for the DDR I/O interface
NVCC_DRAM_2P5 K7 Supply input for the DDR interface
NVCC_ENET F6 Supply input for the ENET interfaces
NVCC_GPIO F15 Supply input for the GPIO interface
NVCC_HIGH R12 3.3 V Supply input for the dual-voltage I/Os on the SD3 interface
NVCC_JTAG T9 Supply input for the JTAG interface
NVCC_KEY G15 Supply input for the Key Pad Port (KPP) interface
NVCC_CSI_LCD1 H15 Supply input for the LCD interface
NVCC_LOW V13 1.8 V Supply input for the dual-voltage I/Os on the SD3 interface
NVCC_NAND R6 Supply input for the Raw NAND flash memories interface
NVCC_PLL U18 Supply input for the PLLs
NVCC_QSPI F14 Supply input for the QSPI interface
NVCC_RGMII1 F8 Supply input for the RGMII1 interface
NVCC_RGMII2 E11 Supply input for the RGMII2 interface
NVCC_SD1_SD2 F13 Supply input for the SD2 interface
NVCC_SD4 T12 Supply input for the SD4 interface
NVCC_USB_H V5 Supply input for the USB HSIC interface
NGND_KEL0 T16 Ground
PCIE_VP_CAP L18 PCIe LDO output. Although this package does not support PCIe, this output
requires a 4.7uF capacitor to ground unless the PCIE LDO is disabled.
USB_OTG1_VBUS W20 VBUS input for USB_OTG1
USB_OTG2_VBUS U17 VBUS input for USB_OTG2
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
186 NXP Semiconductors
Package Information and Contact Assignments
VDD_ARM_CAP C16, D16, H10,
H11, H12, H13,
J13, K13, L13
Supply voltage output from internal LDO_ARM. Requires external capacitor(s).
VDD_ARM_IN H18, J10, J11,
J12, K12, L12
Supply voltage input for internal LDO_ARM.
VDD_HIGH_CAP N17, N18 Supply voltage output from internal LDO_2P5. Requires external capacitor(s).
VDD_HIGH_IN P17, P18 Supply voltage input to internal LDO_2P5, LDO_1P1 and LDO_SNVS.
VDD_SNVS_CAP T18 Supply voltage output from internal LDO_SNVS. Requires external capacitor(s).
VDD_SNVS_IN R18 Supply voltage input to the SNVS voltage domain
VDD_SOC_CAP H8, H9, J8, K8, L8,
M8, M13, N8, N9,
N10, N11, N12, V9
Supply voltage output from internal LDO_SOC. Requires external capacitor(s).
VDD_SOC_IN D7, D8, J9, K9, L9,
M9, M10, M11,
M12
Supply voltage input to internal LDO_SOC and LDO_PCIE
VDD_USB_CAP V17 Supply voltage output from internal LDO_USB. Requires external capacitor(s).
VDDA_ADC_3P3 R13 Supply voltage input to the ADC. This supply must be provided even if the ADC is
not used.
VSS A1, A20, C3, C4,
C18, D6, D9, D12,
D15, E3, F3, F5,
F17, G7, G8, G9,
G10, G11, G12,
G13, G14, H3, H7,
H14, J7, J14, J17,
K3, K10, K11,
K14, L3, L7, L10,
L11, L14, M7,
M14, M17, N3, N7,
N13, P7, P8, P9,
P10, P11, P12,
R3, R5, R17, R19,
R20, T3, U6, U9,
U12, U15, U19,
U20, V3, V4, V18,
W18, Y1, Y18,
Y20
Ground
Table 118. 14x14 mm Supplies Contact Assignments (continued)
Supply Rail Name 14x14 mm
Ball Position(s) Comments
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 187
Table 119. 14 x 14 Functional Contact Assignments
Ball Name 14x14
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
ADC1_IN0 N14 VDDA_ADC_3P3 ADC1_IN0 Input
ADC1_IN1 T15 VDDA_ADC_3P3 ADC1_IN1 Input
ADC1_IN2 W14 VDDA_ADC_3P3 ADC1_IN2 Input
ADC1_IN3 P13 VDDA_ADC_3P3 ADC1_IN3 Input
ADC2_IN0 W15 VDDA_ADC_3P3 ADC2_IN0 Input
ADC2_IN1 R14 VDDA_ADC_3P3 ADC2_IN1 Input
ADC2_IN2 N15 VDDA_ADC_3P3 ADC2_IN2 Input
ADC2_IN3 R15 VDDA_ADC_3P3 ADC2_IN3 Input
BOOT_MODE0 Y16 VDD_SNVS_IN GPIO BOOT_MODE0 Input 100 kΩ
pull-down
BOOT_MODE1 W16 VDD_SNVS_IN GPIO BOOT_MODE1 Input 100 kΩ
pull-down
CCM_CLK1_N P20 VDD_HIGH_CAP CCM_CLK1_N
CCM_CLK1_P P19 VDD_HIGH_CAP CCM_CLK1_P
CCM_CLK2 V16 VDD_HIGH_CAP CCM_CLK2
CCM_PMIC_STBY_REQ N16 VDD_SNVS_IN GPIO CCM_PMIC_STB
Y_REQ
Output 0
DRAM_ADDR00 N5 NVCC_DRAM DDR DRAM_ADDR00 Output 100 kΩ pull-up
DRAM_ADDR01 P5 NVCC_DRAM DDR DRAM_ADDR01 Output 100 kΩ pull-up
DRAM_ADDR02 M4 NVCC_DRAM DDR DRAM_ADDR02 Output 100 kΩ pull-up
DRAM_ADDR03 K5 NVCC_DRAM DDR DRAM_ADDR03 Output 100 kΩ pull-up
DRAM_ADDR04 H5 NVCC_DRAM DDR DRAM_ADDR04 Output 100 kΩ pull-up
DRAM_ADDR05 F4 NVCC_DRAM DDR DRAM_ADDR05 Output 100 kΩ pull-up
DRAM_ADDR06 N4 NVCC_DRAM DDR DRAM_ADDR06 Output 100 kΩ pull-up
DRAM_ADDR07 G5 NVCC_DRAM DDR DRAM_ADDR07 Output 100 kΩ pull-up
DRAM_ADDR08 J4 NVCC_DRAM DDR DRAM_ADDR08 Output 100 kΩ pull-up
DRAM_ADDR09 L2 NVCC_DRAM DDR DRAM_ADDR09 Output 100 kΩ pull-up
DRAM_ADDR10 H4 NVCC_DRAM DDR DRAM_ADDR10 Output 100 kΩ pull-up
DRAM_ADDR11 M3 NVCC_DRAM DDR DRAM_ADDR11 Output 100 kΩ pull-up
DRAM_ADDR12 M5 NVCC_DRAM DDR DRAM_ADDR12 Output 100 kΩ pull-up
DRAM_ADDR13 J3 NVCC_DRAM DDR DRAM_ADDR13 Output 100 kΩ pull-up
DRAM_ADDR14 R1 NVCC_DRAM DDR DRAM_ADDR14 Output 100 kΩ pull-up
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
188 NXP Semiconductors
Package Information and Contact Assignments
DRAM_CAS_B N2 NVCC_DRAM DDR DRAM_CAS_B Output 100 kΩ pull-up
DRAM_CS0_B L4 NVCC_DRAM DDR DRAM_CS0_B Output 100 kΩ pull-up
DRAM_CS1_B K2 NVCC_DRAM DDR DRAM_CS1_B Output 100 kΩ pull-up
DRAM_DATA00 T2 NVCC_DRAM DDR DRAM_DATA00 Input 100 kΩ pull-up
DRAM_DATA01 U2 NVCC_DRAM DDR DRAM_DATA01 Input 100 kΩ pull-up
DRAM_DATA02 U1 NVCC_DRAM DDR DRAM_DATA02 Input 100 kΩ pull-up
DRAM_DATA03 R2 NVCC_DRAM DDR DRAM_DATA03 Input 100 kΩ pull-up
DRAM_DATA04 U3 NVCC_DRAM DDR DRAM_DATA04 Input 100 kΩ pull-up
DRAM_DATA05 R4 NVCC_DRAM DDR DRAM_DATA05 Input 100 kΩ pull-up
DRAM_DATA06 P3 NVCC_DRAM DDR DRAM_DATA06 Input 100 kΩpull-up
DRAM_DATA07 P4 NVCC_DRAM DDR DRAM_DATA07 Input 100 kΩ pull-up
DRAM_DATA08 F1 NVCC_DRAM DDR DRAM_DATA08 Input 100 kΩ pull-up
DRAM_DATA09 F2 NVCC_DRAM DDR DRAM_DATA09 Input 100 kΩ pull-up
DRAM_DATA10 G3 NVCC_DRAM DDR DRAM_DATA10 Input 100 kΩ pull-up
DRAM_DATA11 E2 NVCC_DRAM DDR DRAM_DATA11 Input 100 kΩ pull-up
DRAM_DATA12 E4 NVCC_DRAM DDR DRAM_DATA12 Input 100 kΩ pull-up
DRAM_DATA13 D1 NVCC_DRAM DDR DRAM_DATA13 Input 100 kΩ pull-up
DRAM_DATA14 E1 NVCC_DRAM DDR DRAM_DATA14 Input 100 kΩ pull-up
DRAM_DATA15 D2 NVCC_DRAM DDR DRAM_DATA15 Input 100 kΩ pull-up
DRAM_DATA16 Y4 NVCC_DRAM DDR DRAM_DATA16 Input 100 kΩ pull-up
DRAM_DATA17 W4 NVCC_DRAM DDR DRAM_DATA17 Input 100 kΩ pull-up
DRAM_DATA18 Y3 NVCC_DRAM DDR DRAM_DATA18 Input 100 kΩ pull-up
DRAM_DATA19 U4 NVCC_DRAM DDR DRAM_DATA19 Input 100 kΩ pull-up
DRAM_DATA20 W3 NVCC_DRAM DDR DRAM_DATA20 Input 100 kΩ pull-up
DRAM_DATA21 Y2 NVCC_DRAM DDR DRAM_DATA21 Input 100 kΩ pull-up
DRAM_DATA22 T4 NVCC_DRAM DDR DRAM_DATA22 Input 100 kΩ pull-up
DRAM_DATA23 W2 NVCC_DRAM DDR DRAM_DATA23 Input 100 kΩ pull-up
DRAM_DATA24 D3 NVCC_DRAM DDR DRAM_DATA24 Input 100 kΩ pull-up
DRAM_DATA25 B3 NVCC_DRAM DDR DRAM_DATA25 Input 100 kΩ pull-up
DRAM_DATA26 A3 NVCC_DRAM DDR DRAM_DATA26 Input 100 kΩ pull-up
DRAM_DATA27 C2 NVCC_DRAM DDR DRAM_DATA27 Input 100 kΩ pull-up
Table 119. 14 x 14 Functional Contact Assignments (continued)
Ball Name 14x14
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 189
DRAM_DATA28 A2 NVCC_DRAM DDR DRAM_DATA28 Input 100 kΩ pull-up
DRAM_DATA29 C5 NVCC_DRAM DDR DRAM_DATA29 Input 100 kΩ pull-up
DRAM_DATA30 B4 NVCC_DRAM DDR DRAM_DATA30 Input 100 kΩ pull-up
DRAM_DATA31 A4 NVCC_DRAM DDR DRAM_DATA31 Input 100 kΩ pull-up
DRAM_DQM0 N1 NVCC_DRAM DDR DRAM_DQM0 Output 100 kΩ pull-up
DRAM_DQM1 G2 NVCC_DRAM DDR DRAM_DQM1 Output 100 kΩ pull-up
DRAM_DQM2 W1 NVCC_DRAM DDR DRAM_DQM2 Output 100 kΩ pull-up
DRAM_DQM3 C1 NVCC_DRAM DDR DRAM_DQM3 Output 100 kΩ pull-up
DRAM_ODT0 T1 NVCC_DRAM DDR DRAM_ODT0 Output 100 kΩ
pull-down
DRAM_RAS_B J1 NVCC_DRAM DDR DRAM_RAS_B Output 100 kΩ pull-up
DRAM_RESET D4 NVCC_DRAM DDR DRAM_RESET Output 100 kΩ
pull-down
DRAM_SDBA0 G4 NVCC_DRAM DDR DRAM_SDBA0 Output 100 kΩ pull-up
DRAM_SDBA1 M2 NVCC_DRAM DDR DRAM_SDBA1 Output 100 kΩ pull-up
DRAM_SDBA2 J2 NVCC_DRAM DDR DRAM_SDBA2 Output 100 kΩ pull-up
DRAM_SDCKE0 L5 NVCC_DRAM DDR DRAM_SDCKE0 Output 100 kΩ
pull-down
DRAM_SDCKE1 J5 NVCC_DRAM DDR DRAM_SDCKE1 Output 100 kΩ
pull-down
DRAM_SDCLK0_N L1 NVCC_DRAM DDRCLK DRAM_SDCLK0_
N
——
DRAM_SDCLK0_P K1 NVCC_DRAM DDRCLK DRAM_SDCLK0_
P
Output Low
DRAM_SDQS0_N P2 NVCC_DRAM DDRCLK DRAM_SDQS0_N ——
DRAM_SDQS0_P P1 NVCC_DRAM DDRCLK DRAM_SDQS0_P Input
DRAM_SDQS1_N H1 NVCC_DRAM DDRCLK DRAM_SDQS1_
N
——
DRAM_SDQS1_P G1 NVCC_DRAM DDRCLK DRAM_SDQS1_P Input
DRAM_SDQS2_N V2 NVCC_DRAM DDRCLK DRAM_SDQS2_
N
——
DRAM_SDQS2_P V1 NVCC_DRAM DDRCLK DRAM_SDQS2_P Input
DRAM_SDQS3_N B1 NVCC_DRAM DDRCLK DRAM_SDQS3_
N
——
Table 119. 14 x 14 Functional Contact Assignments (continued)
Ball Name 14x14
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
190 NXP Semiconductors
Package Information and Contact Assignments
DRAM_SDQS3_P B2 NVCC_DRAM DDRCLK DRAM_SDQS3_P Input
DRAM_SDWE_B M1 NVCC_DRAM DDR DRAM_SDWE_B Output 100 kΩ pull-up
ENET1_COL B5 NVCC_ENET GPIO ALT5 GPIO2_IO00 Input Keeper
ENET1_CRS C6 NVCC_ENET GPIO ALT5 GPIO2_IO01 Input Keeper
ENET1_MDC B6 NVCC_ENET GPIO ALT5 GPIO2_IO02 Input Keeper
ENET1_MDIO A6 NVCC_ENET GPIO ALT5 GPIO2_IO03 Input Keeper
ENET1_RX_CLK A5 NVCC_ENET GPIO ALT5 GPIO2_IO04 Input Keeper
ENET1_TX_CLK F7 NVCC_ENET GPIO ALT5 GPIO2_IO05 Input Keeper
ENET2_COL E7 NVCC_ENET GPIO ALT5 GPIO2_IO06 Input Keeper
ENET2_CRS E6 NVCC_ENET GPIO ALT5 GPIO2_IO07 Input Keeper
ENET2_RX_CLK E5 NVCC_ENET GPIO ALT5 GPIO2_IO08 Input Keeper
ENET2_TX_CLK D5 NVCC_ENET GPIO ALT5 GPIO2_IO09 Input Keeper
GPIO1_IO00 B20 NVCC_GPIO GPIO ALT5 GPIO1_IO00 Input Keeper
GPIO1_IO01 D19 NVCC_GPIO GPIO ALT5 GPIO1_IO01 Input Keeper
GPIO1_IO02 C19 NVCC_GPIO GPIO ALT5 GPIO1_IO02 Input Keeper
GPIO1_IO03 D20 NVCC_GPIO GPIO ALT5 GPIO1_IO03 Input Keeper
GPIO1_IO04 E16 NVCC_GPIO GPIO ALT5 GPIO1_IO04 Input Keeper
GPIO1_IO05 B18 NVCC_GPIO GPIO ALT5 GPIO1_IO05 Input Keeper
GPIO1_IO06 D18 NVCC_GPIO GPIO ALT5 GPIO1_IO06 Input Keeper
GPIO1_IO07 A17 NVCC_GPIO GPIO ALT5 GPIO1_IO07 Input Keeper
GPIO1_IO08 E17 NVCC_GPIO GPIO ALT5 GPIO1_IO08 Input Keeper
GPIO1_IO09 A19 NVCC_GPIO GPIO ALT5 GPIO1_IO09 Input Keeper
GPIO1_IO10 B19 NVCC_GPIO GPIO ALT5 GPIO1_IO10 Input Keeper
GPIO1_IO11 C20 NVCC_GPIO GPIO ALT5 GPIO1_IO11 Input Keeper
GPIO1_IO12 D17 NVCC_GPIO GPIO ALT5 GPIO1_IO12 Input Keeper
GPIO1_IO13 A16 NVCC_GPIO GPIO ALT5 GPIO1_IO13 Input Keeper
JTAG_MOD R8 NVCC_JTAG GPIO JTAG_MOD Input 100 kΩ pull-up
JTAG_TCK R9 NVCC_JTAG GPIO JTAG_TCK Input 47 kΩ pull-up
JTAG_TDI R10 NVCC_JTAG GPIO JTAG_TDI Input 47 kΩ pull-up
JTAG_TDO Y9 NVCC_JTAG GPIO JTAG_TDO Output Keeper
JTAG_TMS W9 NVCC_JTAG GPIO JTAG_TMS Input 47 kΩ pull-up
Table 119. 14 x 14 Functional Contact Assignments (continued)
Ball Name 14x14
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 191
JTAG_TRST_B V8 NVCC_JTAG GPIO JTAG_TRST_B Input 47 kΩ pull-up
KEY_COL0 F18 NVCC_KEY GPIO ALT5 GPIO2_IO10 Input Keeper
KEY_COL1 F19 NVCC_KEY GPIO ALT5 GPIO2_IO11 Input Keeper
KEY_COL2 G17 NVCC_KEY GPIO ALT5 GPIO2_IO12 Input Keeper
KEY_COL3 E20 NVCC_KEY GPIO ALT5 GPIO2_IO13 Input Keeper
KEY_COL4 E19 NVCC_KEY GPIO ALT5 GPIO2_IO14 Input Keeper
KEY_ROW0 F16 NVCC_KEY GPIO ALT5 GPIO2_IO15 Input Keeper
KEY_ROW1 E18 NVCC_KEY GPIO ALT5 GPIO2_IO16 Input Keeper
KEY_ROW2 F20 NVCC_KEY GPIO ALT5 GPIO2_IO17 Input Keeper
KEY_ROW3 G20 NVCC_KEY GPIO ALT5 GPIO2_IO18 Input Keeper
KEY_ROW4 H19 NVCC_KEY GPIO ALT5 GPIO2_IO19 Input Keeper
LCD1_CLK L19 NVCC_LCD1 GPIO ALT5 GPIO3_IO00 Input Keeper
LCD1_DATA00 M19 NVCC_LCD1 GPIO ALT5 GPIO3_IO01 Input Keeper
LCD1_DATA01 L17 NVCC_LCD1 GPIO ALT5 GPIO3_IO02 Input Keeper
LCD1_DATA02 M18 NVCC_LCD1 GPIO ALT5 GPIO3_IO03 Input Keeper
LCD1_DATA03 N20 NVCC_LCD1 GPIO ALT5 GPIO3_IO04 Input Keeper
LCD1_DATA04 N19 NVCC_LCD1 GPIO ALT5 GPIO3_IO05 Input Keeper
LCD1_DATA05 M15 NVCC_LCD1 GPIO ALT5 GPIO3_IO06 Input Keeper
LCD1_DATA06 M16 NVCC_LCD1 GPIO ALT5 GPIO3_IO07 Input Keeper
LCD1_DATA07 J19 NVCC_LCD1 GPIO ALT5 GPIO3_IO08 Input Keeper
LCD1_DATA08 K18 NVCC_LCD1 GPIO ALT5 GPIO3_IO09 Input Keeper
LCD1_DATA09 L15 NVCC_LCD1 GPIO ALT5 GPIO3_IO10 Input Keeper
LCD1_DATA10 K19 NVCC_LCD1 GPIO ALT5 GPIO3_IO11 Input Keeper
LCD1_DATA11 L16 NVCC_LCD1 GPIO ALT5 GPIO3_IO12 Input Keeper
LCD1_DATA12 K15 NVCC_LCD1 GPIO ALT5 GPIO3_IO13 Input Keeper
LCD1_DATA13 K16 NVCC_LCD1 GPIO ALT5 GPIO3_IO14 Input Keeper
LCD1_DATA14 K17 NVCC_LCD1 GPIO ALT5 GPIO3_IO15 Input Keeper
LCD1_DATA15 H16 NVCC_LCD1 GPIO ALT5 GPIO3_IO16 Input Keeper
LCD1_DATA16 H20 NVCC_LCD1 GPIO ALT5 GPIO3_IO17 Input Keeper
LCD1_DATA17 M20 NVCC_LCD1 GPIO ALT5 GPIO3_IO18 Input Keeper
LCD1_DATA18 L20 NVCC_LCD1 GPIO ALT5 GPIO3_IO19 Input Keeper
Table 119. 14 x 14 Functional Contact Assignments (continued)
Ball Name 14x14
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
192 NXP Semiconductors
Package Information and Contact Assignments
LCD1_DATA19 J20 NVCC_LCD1 GPIO ALT5 GPIO3_IO20 Input Keeper
LCD1_DATA20 H17 NVCC_LCD1 GPIO ALT5 GPIO3_IO21 Input Keeper
LCD1_DATA21 G18 NVCC_LCD1 GPIO ALT5 GPIO3_IO22 Input Keeper
LCD1_DATA22 G19 NVCC_LCD1 GPIO ALT5 GPIO3_IO23 Input Keeper
LCD1_DATA23 G16 NVCC_LCD1 GPIO ALT5 GPIO3_IO24 Input Keeper
LCD1_ENABLE K20 NVCC_LCD1 GPIO ALT5 GPIO3_IO25 Input Keeper
LCD1_HSYNC J15 NVCC_LCD1 GPIO ALT5 GPIO3_IO26 Input Keeper
LCD1_RESET J18 NVCC_LCD1 GPIO ALT5 GPIO3_IO27 Input Keeper
LCD1_VSYNC J16 NVCC_LCD1 GPIO ALT5 GPIO3_IO28 Input Keeper
NAND_ALE W6 NVCC_NAND GPIO ALT5 GPIO4_IO00 Input Keeper
NAND_CE0_B U7 NVCC_NAND GPIO ALT5 GPIO4_IO01 Input Keeper
NAND_CE1_B T8 NVCC_NAND GPIO ALT5 GPIO4_IO02 Input Keeper
NAND_CLE R7 NVCC_NAND GPIO ALT5 GPIO4_IO03 Input Keeper
NAND_DATA00 V6 NVCC_NAND GPIO ALT5 GPIO4_IO04 Input Keeper
NAND_DATA01 W8 NVCC_NAND GPIO ALT5 GPIO4_IO05 Input Keeper
NAND_DATA02 Y7 NVCC_NAND GPIO ALT5 GPIO4_IO06 Input Keeper
NAND_DATA03 U5 NVCC_NAND GPIO ALT5 GPIO4_IO07 Input Keeper
NAND_DATA04 W7 NVCC_NAND GPIO ALT5 GPIO4_IO08 Input Keeper
NAND_DATA05 T5 NVCC_NAND GPIO ALT5 GPIO4_IO09 Input Keeper
NAND_DATA06 Y8 NVCC_NAND GPIO ALT5 GPIO4_IO10 Input Keeper
NAND_DATA07 T6 NVCC_NAND GPIO ALT5 GPIO4_IO11 Input Keeper
NAND_RE_B U8 NVCC_NAND GPIO ALT5 GPIO4_IO12 Input Keeper
NAND_READY_B Y6 NVCC_NAND GPIO ALT5 GPIO4_IO13 Input Keeper
NAND_WE_B T7 NVCC_NAND GPIO ALT5 GPIO4_IO14 Input Keeper
NAND_WP_B V7 NVCC_NAND GPIO ALT5 GPIO4_IO15 Input Keeper
ONOFF U16 VDD_SNVS_IN GPIO ONOFF Input 100 kΩ pull-up
POR_B R16 VDD_SNVS_IN GPIO POR_B Input 100 kΩ pull-up
QSPI1A_DATA0 E15 NVCC_QSPI GPIO ALT5 GPIO4_IO16 Input Keeper
QSPI1A_DATA1 C15 NVCC_QSPI GPIO ALT5 GPIO4_IO17 Input Keeper
QSPI1A_DATA2 D14 NVCC_QSPI GPIO ALT5 GPIO4_IO18 Input Keeper
QSPI1A_DATA3 A18 NVCC_QSPI GPIO ALT5 GPIO4_IO19 Input Keeper
Table 119. 14 x 14 Functional Contact Assignments (continued)
Ball Name 14x14
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 193
QSPI1A_DQS A13 NVCC_QSPI GPIO ALT5 GPIO4_IO20 Input Keeper
QSPI1A_SCLK B16 NVCC_QSPI GPIO ALT5 GPIO4_IO21 Input Keeper
QSPI1A_SS0_B C17 NVCC_QSPI GPIO ALT5 GPIO4_IO22 Input Keeper
QSPI1A_SS1_B B17 NVCC_QSPI GPIO ALT5 GPIO4_IO23 Input Keeper
QSPI1B_DATA0 A15 NVCC_QSPI GPIO ALT5 GPIO4_IO24 Input Keeper
QSPI1B_DATA1 A14 NVCC_QSPI GPIO ALT5 GPIO4_IO25 Input Keeper
QSPI1B_DATA2 C13 NVCC_QSPI GPIO ALT5 GPIO4_IO26 Input Keeper
QSPI1B_DATA3 D13 NVCC_QSPI GPIO ALT5 GPIO4_IO27 Input Keeper
QSPI1B_DQS B13 NVCC_QSPI GPIO ALT5 GPIO4_IO28 Input Keeper
QSPI1B_SCLK B14 NVCC_QSPI GPIO ALT5 GPIO4_IO29 Input Keeper
QSPI1B_SS0_B C14 NVCC_QSPI GPIO ALT5 GPIO4_IO30 Input Keeper
QSPI1B_SS1_B B15 NVCC_QSPI GPIO ALT5 GPIO4_IO31 Input Keeper
RGMII1_RD0 E8 NVCC_RGMII1 GPIO ALT5 GPIO5_IO00 Input Keeper
RGMII1_RD1 A7 NVCC_RGMII1 GPIO ALT5 GPIO5_IO01 Input Keeper
RGMII1_RD2 C7 NVCC_RGMII1 GPIO ALT5 GPIO5_IO02 Input Keeper
RGMII1_RD3 C8 NVCC_RGMII1 GPIO ALT5 GPIO5_IO03 Input Keeper
RGMII1_RX_CTL B7 NVCC_RGMII1 GPIO ALT5 GPIO5_IO04 Input Keeper
RGMII1_RXC C10 NVCC_RGMII1 GPIO ALT5 GPIO5_IO05 Input Keeper
RGMII1_TD0 E10 NVCC_RGMII1 GPIO ALT5 GPIO5_IO06 Input Keeper
RGMII1_TD1 A8 NVCC_RGMII1 GPIO ALT5 GPIO5_IO07 Input Keeper
RGMII1_TD2 F9 NVCC_RGMII1 GPIO ALT5 GPIO5_IO08 Input Keeper
RGMII1_TD3 E9 NVCC_RGMII1 GPIO ALT5 GPIO5_IO09 Input Keeper
RGMII1_TX_CTL D10 NVCC_RGMII1 GPIO ALT5 GPIO5_IO10 Input Keeper
RGMII1_TXC B8 NVCC_RGMII1 GPIO ALT5 GPIO5_IO11 Input Keeper
RGMII2_RD0 C11 NVCC_RGMII2 GPIO ALT5 GPIO5_IO12 Input Keeper
RGMII2_RD1 A9 NVCC_RGMII2 GPIO ALT5 GPIO5_IO13 Input Keeper
RGMII2_RD2 A11 NVCC_RGMII2 GPIO ALT5 GPIO5_IO14 Input Keeper
RGMII2_RD3 D11 NVCC_RGMII2 GPIO ALT5 GPIO5_IO15 Input Keeper
RGMII2_RX_CTL B9 NVCC_RGMII2 GPIO ALT5 GPIO5_IO16 Input Keeper
RGMII2_RXC A12 NVCC_RGMII2 GPIO ALT5 GPIO5_IO17 Input Keeper
RGMII2_TD0 A10 NVCC_RGMII2 GPIO ALT5 GPIO5_IO18 Input Keeper
Table 119. 14 x 14 Functional Contact Assignments (continued)
Ball Name 14x14
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
194 NXP Semiconductors
Package Information and Contact Assignments
RGMII2_TD1 C12 NVCC_RGMII2 GPIO ALT5 GPIO5_IO19 Input Keeper
RGMII2_TD2 B10 NVCC_RGMII2 GPIO ALT5 GPIO5_IO20 Input Keeper
RGMII2_TD3 B12 NVCC_RGMII2 GPIO ALT5 GPIO5_IO21 Input Keeper
RGMII2_TX_CTL C9 NVCC_RGMII2 GPIO ALT5 GPIO5_IO22 Input Keeper
RGMII2_TXC B11 NVCC_RGMII2 GPIO ALT5 GPIO5_IO23 Input Keeper
RTC_XTALI Y17 VDD_SNVS_CAP RTC_XTALI
RTC_XTALO W17 VDD_SNVS_CAP RTC_XTALO
SD2_CLK E12 NVCC_SD1_SD2 GPIO ALT5 GPIO6_IO06 Input Keeper
SD2_CMD F12 NVCC_SD1_SD2 GPIO ALT5 GPIO6_IO07 Input Keeper
SD2_DATA0 E13 NVCC_SD1_SD2 GPIO ALT5 GPIO6_IO08 Input Keeper
SD2_DATA1 E14 NVCC_SD1_SD2 GPIO ALT5 GPIO6_IO09 Input Keeper
SD2_DATA2 F10 NVCC_SD1_SD2 GPIO ALT5 GPIO6_IO10 Input Keeper
SD2_DATA3 F11 NVCC_SD1_SD2 GPIO ALT5 GPIO6_IO11 Input Keeper
SD3_CLK V11 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO00 Input 100 kΩ
pull-down
SD3_CMD T13 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO01 Input 100 kΩ
pull-down
SD3_DATA0 R11 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO02 Input 100 kΩ
pull-down
SD3_DATA1 T11 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO03 Input 100 kΩ
pull-down
SD3_DATA2 Y14 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO04 Input 100 kΩ
pull-down
SD3_DATA3 T14 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO05 Input 100 kΩ
pull-down
SD3_DATA4 U14 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO06 Input 100 kΩ
pull-down
SD3_DATA5 U13 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO07 Input 100 kΩ
pull-down
SD3_DATA6 V12 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO08 Input 100 kΩ
pull-down
SD3_DATA7 U11 NVCC_LOW
NVCC_HIGH
GPIO ALT5 GPIO7_IO09 Input 100 kΩ
pull-down
SD4_CLK T10 NVCC_SD4 GPIO ALT5 GPIO6_IO12 Input Keeper
SD4_CMD W12 NVCC_SD4 GPIO ALT5 GPIO6_IO13 Input Keeper
Table 119. 14 x 14 Functional Contact Assignments (continued)
Ball Name 14x14
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 195
6.5.3 14 x 14 mm, 0.65 mm pitch, 20 x 20 Ball Map
Table 120 shows the 14 x14 mm, 0.65 mm pitch, 20 x 20 ball map for the i.MX 6SoloX.
SD4_DATA0 Y10 NVCC_SD4 GPIO ALT5 GPIO6_IO14 Input Keeper
SD4_DATA1 Y11 NVCC_SD4 GPIO ALT5 GPIO6_IO15 Input Keeper
SD4_DATA2 Y13 NVCC_SD4 GPIO ALT5 GPIO6_IO16 Input Keeper
SD4_DATA3 W13 NVCC_SD4 GPIO ALT5 GPIO6_IO17 Input Keeper
SD4_DATA4 Y12 NVCC_SD4 GPIO ALT5 GPIO6_IO18 Input Keeper
SD4_DATA5 W10 NVCC_SD4 GPIO ALT5 GPIO6_IO19 Input Keeper
SD4_DATA6 U10 NVCC_SD4 GPIO ALT5 GPIO6_IO20 Input Keeper
SD4_DATA7 W11 NVCC_SD4 GPIO ALT5 GPIO6_IO21 Input Keeper
SD4_RESET_B V10 NVCC_SD4 GPIO ALT5 GPIO6_IO22 Input Keeper
SNVS_PMIC_ON_REQ P15 VDD_SNVS_IN GPIO SNVS_PMIC_ON
_REQ
Output 100 kΩ pull-up
SNVS_TAMPER P14 VDD_SNVS_IN GPIO SNVS_TAMPER Input 100 kΩ
pull-down
TEST_MODE V15 VDD_SNVS_IN TEST_MODE Input 100 kΩ
pull-down
USB_H_DATA Y5 NVCC_USB_H GPIO ALT5 GPIO7_IO10 Input 100 kΩ
pull-down
USB_H_STROBE W5 NVCC_USB_H GPIO ALT5 GPIO7_IO11 Input 100 kΩ
pull-down
USB_OTG1_CHD_B T17 VDD_USB_CAP USB_OTG1_CHD
_B
——
USB_OTG1_DN V19 VDD_USB_CAP USB_OTG1_DN
USB_OTG1_DP V20 VDD_USB_CAP USB_OTG1_DP
USB_OTG2_DN Y19 VDD_USB_CAP USB_OTG2_DN
USB_OTG2_DP W19 VDD_USB_CAP USB_OTG2_DP
XTALI T19 NVCC_PLL XTALI
XTALO T20 NVCC_PLL XTALO
Table 119. 14 x 14 Functional Contact Assignments (continued)
Ball Name 14x14
Ball
Power
Group
Ball
Type
Out of Reset Condition
Default
Mode
Default
Function
Input/
Output Value
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
196 NXP Semiconductors
Package Information and Contact Assignments
Table 120. 14 x 14 mm Ball Map
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
A
VSS
DRAM_DATA28
DRAM_DATA26
DRAM_DATA31
ENET1_RX_CLK
ENET1_MDIO
RGMII1_RD1
RGMII1_TD1
RGMII2_RD1
RGMII2_TD0
RGMII2_RD2
RGMII2_RXC
QSPI1A_DQS
QSPI1B_DATA1
QSPI1B_DATA0
GPIO1_IO13
GPIO1_IO07
QSPI1A_DATA3
GPIO1_IO09
VSS
B
DRAM_SDQS3_N
DRAM_SDQS3_P
DRAM_DATA25
DRAM_DATA30
ENET1_COL
ENET1_MDC
RGMII1_RX_CTL
RGMII1_TXC
RGMII2_RX_CTL
RGMII2_TD2
RGMII2_TXC
RGMII2_TD3
QSPI1B_DQS
QSPI1B_SCLK
QSPI1B_SS1_B
QSPI1A_SCLK
QSPI1A_SS1_B
GPIO1_IO05
GPIO1_IO10
GPIO1_IO00
C
DRAM_DQM3
DRAM_DATA27
VSS
VSS
DRAM_DATA29
ENET1_CRS
RGMII1_RD2
RGMII1_RD3
RGMII2_TX_CTL
RGMII1_RXC
RGMII2_RD0
RGMII2_TD1
QSPI1B_DATA2
QSPI1B_SS0_B
QSPI1A_DATA1
VDD_ARM_CAP
QSPI1A_SS0_B
VSS
GPIO1_IO02
GPIO1_IO11
D
DRAM_DATA13
DRAM_DATA15
DRAM_DATA24
DRAM_RESET
ENET2_TX_CLK
VSS
VDD_SOC_IN
VDD_SOC_IN
VSS
RGMII1_TX_CTL
RGMII2_RD3
VSS
QSPI1B_DATA3
QSPI1A_DATA2
VSS
VDD_ARM_CAP
GPIO1_IO12
GPIO1_IO06
GPIO1_IO01
GPIO1_IO03
E
DRAM_DATA14
DRAM_DATA11
VSS
DRAM_DATA12
ENET2_RX_CLK
ENET2_CRS
ENET2_COL
RGMII1_RD0
RGMII1_TD3
RGMII1_TD0
NVCC_RGMII2
SD2_CLK
SD2_DATA0
SD2_DATA1
QSPI1A_DATA0
GPIO1_IO04
GPIO1_IO08
KEY_ROW1
KEY_COL4
KEY_COL3
F
DRAM_DATA08
DRAM_DATA09
VSS
DRAM_ADDR05
VSS
NVCC_ENET
ENET1_TX_CLK
NVCC_RGMII1
RGMII1_TD2
SD2_DATA2
SD2_DATA3
SD2_CMD
NVCC_SD1_SD2
NVCC_QSPI
NVCC_GPIO
KEY_ROW0
VSS
KEY_COL0
KEY_COL1
KEY_ROW2
G
DRAM_SDQS1_P
DRAM_DQM1
DRAM_DATA10
DRAM_SDBA0
DRAM_ADDR07
NVCC_DRAM
VSS
VSS
VSS
VSS
VSS
VSS
VSS
VSS
NVCC_KEY
LCD1_DATA23
KEY_COL2
LCD1_DATA21
LCD1_DATA22
KEY_ROW3
Package Information and Contact Assignments
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 197
H
DRAM_SDQS1_N
DRAM_ZQPAD
VSS
DRAM_ADDR10
DRAM_ADDR04
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_CAP
VDD_ARM_CAP
VDD_ARM_CAP
VDD_ARM_CAP
VDD_ARM_CAP
VSS
NVCC_CSI_LCD1
LCD1_DATA15
LCD1_DATA20
VDD_ARM_IN
KEY_ROW4
LCD1_DATA16
J
DRAM_RAS_B
DRAM_SDBA2
DRAM_ADDR13
DRAM_ADDR08
DRAM_SDCKE1
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_IN
VDD_ARM_IN
VDD_ARM_IN
VDD_ARM_IN
VDD_ARM_CAP
VSS
LCD1_HSYNC
LCD1_VSYNC
VSS
LCD1_RESET
LCD1_DATA07
LCD1_DATA19
K
DRAM_SDCLK0_P
DRAM_CS1_B
VSS
DRAM_VREF
DRAM_ADDR03
NVCC_DRAM
NVCC_DRAM_2P5
VDD_SOC_CAP
VDD_SOC_IN
VSS
VSS
VDD_ARM_IN
VDD_ARM_CAP
VSS
LCD1_DATA12
LCD1_DATA13
LCD1_DATA14
LCD1_DATA08
LCD1_DATA10
LCD1_ENABLE
L
DRAM_SDCLK0_N
DRAM_ADDR09
VSS
DRAM_CS0_B
DRAM_SDCKE0
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_IN
VSS
VSS
VDD_ARM_IN
VDD_ARM_CAP
VSS
LCD1_DATA09
LCD1_DATA11
LCD1_DATA01
PCIE_VP_CAP
LCD1_CLK
LCD1_DATA18
M
DRAM_SDWE_B
DRAM_SDBA1
DRAM_ADDR11
DRAM_ADDR02
DRAM_ADDR12
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_IN
VDD_SOC_CAP
VSS
LCD1_DATA05
LCD1_DATA06
VSS
LCD1_DATA02
LCD1_DATA00
LCD1_DATA17
N
DRAM_DQM0
DRAM_CAS_B
VSS
DRAM_ADDR06
DRAM_ADDR00
NVCC_DRAM
VSS
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VDD_SOC_CAP
VSS
ADC1_IN0
ADC2_IN2
CCM_PMIC_STBY_REQ
VDD_HIGH_CAP
VDD_HIGH_CAP
LCD1_DATA04
LCD1_DATA03
Table 120. 14 x 14 mm Ball Map (continued)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
198 NXP Semiconductors
Package Information and Contact Assignments
P
DRAM_SDQS0_P
DRAM_SDQS0_N
DRAM_DATA06
DRAM_DATA07
DRAM_ADDR01
NVCC_DRAM
VSS
VSS
VSS
VSS
VSS
VSS
ADC1_IN3
SNVS_TAMPER
SNVS_PMIC_ON_REQ
GPANAIO
VDD_HIGH_IN
VDD_HIGH_IN
CCM_CLK1_P
CCM_CLK1_N
R
DRAM_ADDR14
DRAM_DATA03
VSS
DRAM_DATA05
VSS
NVCC_NAND
NAND_CLE
JTAG_MOD
JTAG_TCK
JTAG_TDI
SD3_DATA0
NVCC_HIGH
VDDA_ADC_3P3
ADC2_IN1
ADC2_IN3
POR_B
VSS
VDD_SNVS_IN
VSS
VSS
T
DRAM_ODT0
DRAM_DATA00
VSS
DRAM_DATA22
NAND_DATA05
NAND_DATA07
NAND_WE_B
NAND_CE1_B
NVCC_JTAG
SD4_CLK
SD3_DATA1
NVCC_SD4
SD3_CMD
SD3_DATA3
ADC1_IN1
NGND_KEL0
USB_OTG1_CHD_B
VDD_SNVS_CAP
XTALI
XTALO
U
DRAM_DATA02
DRAM_DATA01
DRAM_DATA04
DRAM_DATA19
NAND_DATA03
VSS
NAND_CE0_B
NAND_RE_B
VSS
SD4_DATA6
SD3_DATA7
VSS
SD3_DATA5
SD3_DATA4
VSS
ONOFF
USB_OTG2_VBUS
NVCC_PLL
VSS
VSS
V
DRAM_SDQS2_P
DRAM_SDQS2_N
VSS
VSS
NVCC_USB_H
NAND_DATA00
NAND_WP_B
JTAG_TRST_B
VDD_SOC_CAP
SD4_RESET_B
SD3_CLK
SD3_DATA6
NVCC_LOW
ADC_VREFL
TEST_MODE
CCM_CLK2
VDD_USB_CAP
VSS
USB_OTG1_DN
USB_OTG1_DP
W
DRAM_DQM2
DRAM_DATA23
DRAM_DATA20
DRAM_DATA17
USB_H_STROBE
NAND_ALE
NAND_DATA04
NAND_DATA01
JTAG_TMS
SD4_DATA5
SD4_DATA7
SD4_CMD
SD4_DATA3
ADC1_IN2
ADC2_IN0
BOOT_MODE1
RTC_XTALO
VSS
USB_OTG2_DP
USB_OTG1_VBUS
Y
VSS
DRAM_DATA21
DRAM_DATA18
DRAM_DATA16
USB_H_DATA
NAND_READY_B
NAND_DATA02
NAND_DATA06
JTAG_TDO
SD4_DATA0
SD4_DATA1
SD4_DATA4
SD4_DATA2
SD3_DATA2
ADC_VREFH
BOOT_MODE0
RTC_XTALI
VSS
USB_OTG2_DN
VSS
Table 120. 14 x 14 mm Ball Map (continued)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
Revision History
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 199
7 Revision History
Table 121 provides a revision history for this data sheet.
Table 121. i.MX 6SoloX Data Sheet Document Revision History
Rev.
Number Date Substantive Change(s)
4 10/2018 Changes for this revision include:
Table 1, “Part Number Nomenclature—i.MX 6SoloX,” on page 5,
Part Differentiator section: Removed VADC column.”
Section 4.12.6.1.1, “MII Receive Signal Timing (ENET_RX_DATA3,2,1,0, ENET_RX_EN,
ENET_RX_ER, and ENET_RX_CLK)” on page 82, and Section 4.12.6.1.2, “MII Transmit Signal
Timing (ENET_TX_DATA3,2,1,0, ENET_TX_EN, ENET_TX_ER, and ENET_TX_CLK)” on page 82
Removed sentence: Additionally, the processor clock frequency must exceed twice the
ENET_RX_CLK frequency.”
Table 6, “Absolute Maximum Ratings,” on page 21,
Row VDD_SNVS_IN: Corrected maximum value from 3.4V to 3.6V.
Table 23, “XTALI and RTC_XTALI DC Parameters,” on page 38,
Row: XTALI input leakage current at startup, IXTALI_STARTUP: Changed from “... driven 32KHz
RTC clock @ 1.1V” to “...driven 24 MHz clock at 1.1V.”
Table 55, “eMMC4.4/4.41 Interface Timing Specification,” on page 79,
Row: SD2, uSDHC Output Delay: Changed tOD from 2.5ns minimum to 2.8ns and 7.1ns
maximum to 6.8ns.
Table 66, “LCDIF Display Interface Signal Mapping,” on page 89,
Rows LCD_D23 and LCD_D22: Corrected Column 24-bit DOTCLK LCD IF from G[7] to R[7] and
G[6] to R[6].
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
200 NXP Semiconductors
Revision History
3 09/2017 Minor formatting updates and editorial corrections throughout.
Removed references of ‘NTSC/PAL analog video input interface’ from features and throughout.
Removed support of Video ADC (VADC) and TVDECODE throughout.
Replaced ipp_dse with DSE throughout.
Section 1, “Introduction: Replaced LVDDR3 with DDR3L in text description.
Table 1: Added orderable part numbers in the Ordering Information table.
Figure 1:
– Changed the Part Differentiator table’s ADC column to include channel count.
– Included Rev 1.4 in Silicon Revision section
Figure 2: Removed VADC and TV Decoder blocks from the block diagram.
Section 1.2, “Features”:
– Modified “Displays” information from “Total two interfaces available” to “Total three interfaces
available”. Also added “Two parallel 24-bit display ports, each up to 1080P at 60 Hz” to
the list. Removed “One Parallel 24-bit display port, up to dual WXGA at 60 Hz“.
– Clarified the Miscellaneous interfaces from “Two 4-channel …(ADC)” to “Up to two 4-channel
(ADC)”.
Table 6:
– IO Supply for DDR Interface row, added the footnote “The absolute maximum voltage includes an
allowance for 400 mV of overshoot on the IO pins. Per JEDEC standards, the allowed
signal overshoot must be de-rated if NVCC_DRAM exceeds 1.575V.“
– IO Supply for RGMII Interface row, maximum value from 2.725 V to 3.7 V.
Input/Output Voltage Range row, split the row into DDR and non-DDR and added the corresponding
details.
– 1.2V supply for video A/D converter row, removed
– 3.3V supply for video A/D converter row, parameter name changed to 3.3V supply for analog
circuitry.
Table 9:
– GPIO supplies row, added NVCC_NAND to the Symbol column.
– Video A/D converter supply row, removed
Table 12:Following rows removed: VDD_AFE_1P2, VDDA_AFE_3P3
Table 56: SDR50/SDR104 Interface Timing Specification table, changed duplicate SD2 to SD3. Minor
format changes to minimum and maximum columns for SD2 and SD3 rows.
Updated introductory text of the following sections: Section 4.6.4.1, “LPDDR2 Mode I/O DC
Parameters, Section 4.6.4.2, “DDR3/DDR3L Mode I/O DC Parameters, Section 4.7.2, “DDR I/O AC
Parameters, Section 4.8.3, “DDR I/O Output Buffer Impedance.
Corrected Figure 19, "Asynchronous A/D Muxed Write Access," on page 57
Table 55: Minimum value of ‘uSDHC Input Setup Time’ corrected to 1.7ns.
Added Section 4.12.5.4, “HS200 Mode Timing.
Added Section 4.12.9.1, “LCDIF Display Interface Signal Mapping.
Removed phrase “Case x” from figure titles of all package diagrams. Also updated the diagrams with
NXP branding.
Table 108:
– Made the following ball positions Reserved: K21, L21, N18.
Table 109:
– Made the following balls Reserved: L23, L22, K23, and K22.
Table 110:
– Made the following balls Reserved: K21, K22, K23, L21, L22, L23, N18.
Table 121. i.MX 6SoloX Data Sheet Document Revision History (continued)
Rev.
Number Date Substantive Change(s)
Revision History
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 201
2 06/2016 Changed throughout:
- VDD_AFE_3P3 to VDDA_AFE_3P3
- VDDAD to VDDA_ADC_3P3
Table 1, changed all instances of “2N19K” to “2N19K or 3N19K”.
Figure 1, added new row under Silicon Rev, “Rev 1.3 Production...”
Table 2, i.MX 6SoloX Modules List:
- BCH, deleted “encryption/decryption” in Brief Description column
- eCSPI1-eCSPI5: deleted “with data rate...” in Brief Description column
- uSDHC1-uSDHC4: added “Conforms to the SD...”
- uSDHC1-uSDHC4: deleted 7th and 8th paragraphs
- uSDHC1-uSDHC4: added Each port is placed...”
Table 3, Special Signal Considerations
- Signal Name, GPANAIO: updated text to “Analog output for NXP...”
- Signal Name, POR_B: deleted second sentence
Section 3.2, “Recommended Connections for Unused Analog Interfaces”, removed text and original
table, Recommended Connections for Unused Analog Interfaces, and referred reader to the Hardware
Development Guide.
Section 4.1.1, “Absolute Maximum Ratings
- added new CAUTION
- updated Table 6, Absolute Maximum Ratings
Section 4.1.2, “Thermal Resistance, added NOTE
Table 7, 19x19 mm (VM)..., corrected Junction to Package Top value 0.2 to 2
Table 8, 17x17 mm NP (VO)..., corrected Junction to Package Top value 0.2 to 2
Table 9, 14x14 mm (VK)..., updated Junction to Package Top value 0.2 to 2
Table 9, Operating ranges, USB supply voltages: changed 5.25 to 5.5
Table 12, Maximum Supply Currents
- added text: Use Maximum IO equation
- added footnotes
Section 4.2.1, “Power-Up Sequence, - Removed references to the internal POR function. Internal
POR is not supported on the i.MX 6SoloX.”
- Deleted bullets 4 and 5
Section 4.3.2.3, “LDO_USB, changed 5.25 to 5.5
Section 4.6.1, “XTALI and RTC_XTALI (Clock Inputs) DC Parameters, added new NOTE.
Table 23, XTALI and RTC_XTALI DC Parameters, added new footnote, “This voltage specification...”
Section 4.10, “Multi-mode DDR Controller (MMDC) this new section added, replacing the original
section 4.9.4 DDR SRAM Specific Parameters (DDR3/DDR3L and LPDDR2).
Table 56, SDR50/SDR104 Interface..., changed SD2 Min and max values to 0.46 and 0.54. Changed
SD5 Max to 0.74.
Table 63, RGMII Signal Switching Specifications, deleted footnote 1.
Table 75, Master Mode SAI Timing:
- changed S1 Min value to 20
- changed S3 Min value to 2 x S1
(continued on next page)
Table 121. i.MX 6SoloX Data Sheet Document Revision History (continued)
Rev.
Number Date Substantive Change(s)
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
202 NXP Semiconductors
Revision History
2 06/2016 (continued from previous next page)
Table 76, Slave Mode SAI Timing:
- changed title from Master Mode Timing to Slave Mode SAI Timing
- changed S11 Min value to 20
- added new row, S19
- added new footnote
Figure 62, SAI Timing — Slave Modes: added S19
Table 90, 12-bit ADC Operating Conditions: changed Supply Voltage Min value to 3.0
Table 104, SD/MMC boot through USDHC4, changed Signal Names from usdhc3.DATA4 -
usdhc3.DATA7, to usdhc4.DATA4 - usdhc4.DATA7
Table 108, 19x19 mm Supplies Contact Assignments: changed GPANAIO Remark from “Test signal...”
to “Analog output for NXP use...”
Table 109, 19x19 mm Functional Contact Assignments: DRAM_SDCLK_0, updated “Input” to
“Output” and Value to “0”
Table 112, 17x17 mm NP (no PCIe) supplies contact assignments:
- GPANAIO: changed remark from “Test signal...” to “Analog output for NXP use...”
- VDD_SOC_CAP: deleted L9
- VDD_SOC_IN: added L9
- DRAM_SDCLK0_P: updated “Input” to “Output” and Value to “Low”
Table 115, 17x17 mm WP (with PCIe) supplies contact assignments:
- GPANAIO: changed remark from “Test signal...” to “Analog output for NXP use...”
- VDD_SOC_IN: added L9
Table 116 17x17 mm WP (with PCIe) Functional Contact Assignments, DRAM_SDCLK0_P: updated
“Input” to “Output” and Value to “Low”
Table 118 14x14 mm supplies contact assignments:
- added rows ADC_VREFL and PCIE_CP_CAP
- VDD_HIGH_CAP: added N18
- VDD_HIGH_IN: added P18
- VDD_SOC_IN: added L9
Table 119, 14x14 mm Functional Contact Assignments, DRAM_SDCLK0_P: updated “Input” to
“Output” and Value to “Low”
- RGMII1_TX_CTL: updated to D10
Table 121. i.MX 6SoloX Data Sheet Document Revision History (continued)
Rev.
Number Date Substantive Change(s)
Revision History
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
NXP Semiconductors 203
1 7/2015 Throughout:
– Updated Arm Cortex-M4 core operation speed as 227 MHz
– Corrected signal name from NVCC_LVDS_2P5 to NVCC_LVDS
– For supply rail NVCC_LOW, corrected supply input voltage from 3.3 V to 1.8 V
On page 2, in the list of i.MX 6SoloX features, updated the first bullet, adding that FreeRTOS can be
run on the Cortex-M4.
Table 1, “Ordering Information,” on page 3:
– Updated Cortex-M4 core operation speed as 227 MHz
– Added footnote on “Cortex-A9 Speed” column
•In Section 1.2, “Features”:
– Corrected second bullet under “External memory interfaces” to say, “16-bit NAND-Flash, including
support for Raw MLC/SLC, 2 KB, 4 KB, and 8 KB page size, BA-NAND, PBA-NAND,
LBA-NAND, OneNAND and others. BCH ECC up to 62 bits. 16-bit boot is supported from
OneNAND. 8-bit boot is supported from other NAND types.”
– Corrected second bullet under “USB” to say, “One HS-IC USB (High Speed Inter-Chip USB) host”
– Corrected first bullet under “Miscellaneous IPs and interfaces” to say, “Three SSIs and two SAIs
supporting up to five I2S or AC97 ports”
– Updated ninth bullet under “Miscellaneous IPs and interfaces” to say, “Two Gigabit Ethernet
Controllers (designed to be compatible with IEEE AVB standards and IEEE Std 1588®),
10/100/1000 Mbps”
Updated Section 2.1, “Block Diagram”:
– In “Shared Peripherals” block, corrected from UART(5) to UART(1) and added ASRC and ESAI. In
“AP Peripherals” block, added UART(5) and eCSPI(1).
– Updated note regarding number of module instances
Updated Table 2, “i.MX 6SoloX Modules List,” on page 10
•In Table 3, “Special Signal Considerations,” on page 18:
– In XTALI/XTALO row, added references to engineering bulletin and reference manual
– In row for NVCC_LVDS_2P5, corrected signal name to NVCC_LVDS and updated remarks
Updated Table 5, “Recommended Connections for Unused Analog Interfaces,” on page 21:
– Deleted row for RTC
– Added row for NVCC_USB_H
– Updated footnote pertaining to PCIe
Updated Table 6, “Absolute Maximum Ratings,” on page 21:
– Added footnote pertaining to “Symbol” column
– Updated maximum value for VDD_SNVS_IN supply voltage
Updated Table 9, “Operating Ranges,” on page 25. Table reformatted since previous release; not a
specification change.
•In Section 4.1.4, “External Clock Sources,” added caution about use of the internal RTC oscillator vs.
an external crystal.
Updated Table 13, “Low Power Mode Current and Power Consumption (LDO Bypass Mode),” on page
30
•In Section 4.5.2, “OSC32K,”
– Added caution about use of the internal RTC oscillator vs. an external crystal
– Updated description of result when the clock monitor determines that the OSC32K is not present
– Removed text pertaining to ~3 V coin-cell battery
Updated Table 23, “XTALI and RTC_XTALI DC Parameters,” on page 38
(continued on next page)
Table 121. i.MX 6SoloX Data Sheet Document Revision History (continued)
Rev.
Number Date Substantive Change(s)
i.MX 6SoloX Applications Processors for Industrial Products, Rev. 4, 11/2018
204 NXP Semiconductors
Revision History
1 7/2015 (continued from previous page)
Updated Table 44, “EIM Asynchronous Timing Parameters Relative to Chip Select,,” on page 58.
Elaborated to show results of calculations. No specification change.
In Table 64, “DDR3/DDR3L Read Cycle,” on page 93, updated minimum value for DDR26
Added note regarding ECSPIx_MOSI to Figure 36, "ECSPI Master Mode Timing Diagram," on page
72
Added note regarding ECSPIx_MISO to Figure 37, "ECSPI Slave Mode Timing Diagram," on page 73
Updated Figure 42, "SDR50/SDR104 Timing," on page 80
•In Table 67, “LVDS Display Bridge (LDB) Electrical Specification,” on page 91:
– Corrected units for VOH values from ‘mV’ to ‘V’
– Corrected units for VOL values from ‘mV’ to ‘V’
•In Section 4.12.20, “USB PHY Parameters,” in list of amendments to Rev. 2 of the The USB PHY
meets the electrical compliance requirements defined in revision 2.0 of the USB On-The-Go and
Embedded Host Supplement to the USB 2.0 Specification, added “Portable device only” under
“Battery Charging Specification”
Added Table 107, “Signals with Different States During Reset and After Reset,” on page 128
•In Table 109, “19x19 mm Functional Contact Assignments,” on page 134, corrected GPIO signal
names
•In Table 112, “17x17 mm NP (no PCIe) Supplies Contact Assignments,” on page 153, added ball L9
to the VDD_SOC_CAP row
•In Table 119, “14 x 14 Functional Contact Assignments,” on page 187, corrected power group for SD2
ball names to ‘NVCC_SD1_SD2’
0 2/2015 Initial public release
Table 121. i.MX 6SoloX Data Sheet Document Revision History (continued)
Rev.
Number Date Substantive Change(s)
Information in this document is provided solely to enable system and software implementers to
use NXP products. There are no express or implied copyright licenses granted hereunder to
design or fabricate any integrated circuits based on the information in this document. NXP
reserves the right to make changes without further notice to any products herein.
NXP makes no warranty, representation, or guarantee regarding the suitability of its products for
any particular purpose, nor does NXP assume any liability arising out of the application or use
of any product or circuit, and specifically disclaims any and all liability, including without limitation
consequential or incidental damages. “Typical” parameters that may be provided in NXP data
sheets and/or specifications can and do vary in different applications, and actual performance
may vary over time. All operating parameters, including “typicals,” must be validated for each
customer application by customer’s technical experts. NXP does not convey any license under
its patent rights nor the rights of others. NXP sells products pursuant to standard terms and
conditions of sale, which can be found at the following address:
nxp.com/SalesTermsandConditions.
While NXP has implemented advanced security features, all products may be subject to
unidentified vulnerabilities. Customers are responsible for the design and operation of their
applications and products to reduce the effect of these vulnerabilities on customer’s applications
and products, and NXP accepts no liability for any vulnerability that is discovered. Customers
should implement appropriate design and operating safeguards to minimize the risks associated
with their applications and products.
NXP, the NXP logo, NXP SECURE CONNECTIONS FOR A SMARTER WORLD, COOLFLUX,
EMBRACE, GREENCHIP, HITAG, I2C BUS, ICODE, JCOP, LIFE VIBES, MIFARE, MIFARE
CLASSIC, MIFARE DESFire, MIFARE PLUS, MIFARE FLEX, MANTIS, MIFARE ULTRALIGHT,
MIFARE4MOBILE, MIGLO, NTAG, ROADLINK, SMARTLX, SMARTMX, STARPLUG, TOPFET,
TRENCHMOS, UCODE, Freescale, the Freescale logo, AltiVec, C?5, CodeTEST, CodeWarrior,
ColdFire, ColdFire+, C?Ware, the Energy Efficient Solutions logo, Kinetis, Layerscape, MagniV,
mobileGT, PEG, PowerQUICC, Processor Expert, QorIQ, QorIQ Qonverge, Ready Play,
SafeAssure, the SafeAssure logo, StarCore, Symphony, VortiQa, Vybrid, Airfast, BeeKit,
BeeStack, CoreNet, Flexis, MXC, Platform in a Package, QUICC Engine, SMARTMOS, Tower,
TurboLink, and UMEMS are trademarks of NXP B.V. All other product or service names are the
property of their respective owners. Arm, AMBA, Artisan, Cortex, Jazelle, Keil, SecurCore,
Thumb, TrustZone, and µVision are registered trademarks of Arm Limited (or its subsidiaries) in
the EU and/or elsewhere. Arm7, Arm9, Arm11, big.LITTLE, CoreLink, CoreSight, DesignStart,
Mali, Mbed, NEON, POP, Sensinode, Socrates, ULINK and Versatile are trademarks of Arm
Limited (or its subsidiaries) in the EU and/or elsewhere. All rights reserved. Oracle and Java are
registered trademarks of Oracle and/or its affiliates. The Power Architecture and Power.org word
marks and the Power and Power.org logos and related marks are trademarks and service marks
licensed by Power.org.
© 2015-2018 NXP B.V.
Document Number: IMX6SXIEC
Rev. 4
11/2018
How to Reach Us:
Home Page:
nxp.com
Web Support:
nxp.com/support