SN74ALVCH16825 18-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCES039D - JULY 1995 - REVISED OCTOBER 2004 FEATURES * * * * * * DGG OR DL PACKAGE (TOP VIEW) Member of the Texas Instruments WidebusTM Family EPICTM (Enhanced-Performance Implanted CMOS) Submicron Process ESD Protection Exceeds 2000 V Per MIL-STD-883, Method 3015; Exceeds 200 V Using Machine Model (C = 200 pF, R = 0) Latch-Up Performance Exceeds 250 mA Per JESD 17 Bus Hold on Data Inputs Eliminates the Need for External Pullup/Pulldown Resistors Package Options Include Plastic 300-mil Shrink Small-Outline (DL) and Thin Shrink Small-Outline (DGG) Packages 1OE1 1Y1 1Y2 GND 1Y3 1Y4 VCC 1Y5 1Y6 1Y7 GND 1Y8 1Y9 GND GND 2Y1 2Y2 GND 2Y3 2Y4 2Y5 VCC 2Y6 2Y7 GND 2Y8 2Y9 2OE1 DESCRIPTION This 18-bit buffer and line driver is designed for 1.65-V to 3.6-V VCC operation. This SN74ALVCH16825 improves the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as two 9-bit buffers or one 18-bit buffer. It provides true data. The 3-state control gate is a 2-input AND gate with active-low inputs so that if either output-enable (OE1 or OE2) input is high, all nine affected outputs are in the high-impedance state. To ensure the high-impedance state during power up or power down, OE should be tied to VCC through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver. 1 56 2 55 3 54 4 53 5 52 6 51 7 50 8 49 9 48 10 47 11 46 12 45 13 44 14 43 15 42 16 41 17 40 18 39 19 38 20 37 21 36 22 35 23 34 24 33 25 32 26 31 27 30 28 29 1OE2 1A1 1A2 GND 1A3 1A4 VCC 1A5 1A6 1A7 GND 1A8 1A9 GND GND 2A1 2A2 GND 2A3 2A4 2A5 VCC 2A6 2A7 GND 2A8 2A9 2OE2 Active bus-hold circuitry is provided to hold unused or floating inputs at a valid logic level. The SN74ALVCH16825 is characterized for operation from -40C to 85C. FUNCTION TABLE (each 9-bit section) INPUTS A OUTPUT Y OE1 OE2 L L L L L L H H H X X Z X H X Z Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet. Widebus, EPIC are trademarks of Texas Instruments. PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of the Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters. Copyright (c) 1995-2004, Texas Instruments Incorporated SN74ALVCH16825 18-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCES039D - JULY 1995 - REVISED OCTOBER 2004 LOGIC SYMBOL(1) 1 & 1OE1 EN1 56 1OE2 2OE1 2OE2 1A1 1A2 1A3 1A4 1A5 1A6 1A7 1A8 1A9 2A1 2A2 2A2 2A3 2A4 2A5 2A6 2A7 2A8 28 & 29 EN2 55 2 1 54 3 52 5 51 6 49 8 48 9 47 10 45 12 44 13 41 16 2 40 17 38 19 37 20 36 21 34 23 33 24 31 26 30 27 1Y1 1Y2 1Y3 1Y4 1Y5 1Y6 1Y7 1Y8 1Y9 2Y1 2Y2 2Y3 2Y4 2Y5 2Y6 2Y7 2Y8 2Y9 (1) This symbol is in accordance with ANSI/IEEE Std 91-1984 and IEC Publication 617-12. LOGIC DIAGRAM (POSITIVE LOGIC) 1OE1 1OE2 1A1 1 2OE1 56 2OE2 55 2 To Eight Other Channels 2 1Y1 2A1 28 29 41 16 To Eight Other Channels 2Y1 SN74ALVCH16825 18-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCES039D - JULY 1995 - REVISED OCTOBER 2004 ABSOLUTE MAXIMUM RATINGS (1) over operating free-air temperature range (unless otherwise noted) MIN MAX UNIT VCC Supply voltage range -0.5 4.6 V VI Input voltage range (2) -0.5 4.6 V VO Output voltage range (2) (3) -0.5 VCC + 0.5 IIK Input clamp current VI < 0 IOK Output clamp current VO < 0 IO Continuous output current Continuous current through each VCC or GND JA Package thermal impedance (4) Tstg Storage temperature range (1) (2) (3) (4) mA -50 mA 50 mA 100 mA DGG package 81 DL package 74 -65 V -50 150 C/W C Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed. This value is limited to 4.6 V maximum. The package thermal impedance is calculated in accordance with JESD 51. RECOMMENDED OPERATING CONDITIONS (1) VCC Supply voltage VCC = 1.65 V to 1.95 V VIH High-level input voltage MIN MAX 1.65 3.6 Low-level input voltage VI Input voltage VO Output voltage IOH IOL High-level output current Low-level output current VCC = 2.3 V to 2.7 V 1.7 VCC = 2.7 V to 3.6 V 2 (1) Operating free-air temperature V 0.35 x VCC VCC = 2.3 V to 2.7 V 0.7 VCC = 2.7 V to 3.6 V 0.8 V 0 VCC V 0 VCC V VCC = 1.65 V -4 VCC = 2.3 V -12 VCC = 2.7 V -12 VCC = 3 V -24 VCC = 1.65 V 4 VCC = 2.3 V 12 VCC = 2.7 V 12 VCC = 3 V 24 t/v Input transition rise or fall rate TA V 0.65 x VCC VCC = 1.65 V to 1.95 V VIL UNIT -40 mA mA 10 ns/V 85 C All unused control inputs of the device must be held at VCC or GND to ensure proper device operation. Refer to the TI application report, Implications of Slow or Floating CMOS Inputs, literature number SCBA004. 3 SN74ALVCH16825 18-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCES039D - JULY 1995 - REVISED OCTOBER 2004 ELECTRICAL CHARACTERISTICS over recommended operating free-air temperature range (unless otherwise noted) PARAMETER TEST CONDITIONS IOH = -100 A 1.65 V to 3.6 V 1.65 V IOH = -6 mA 2.3 V 2 2.3 V 1.7 2.7 V 2.2 3V 2.4 IOH = -24 mA 3V 2 IOL = 100 A IOH = -12 mA II(hold) 0.2 1.65 V 0.45 IOL = 6 mA 2.3 V 0.4 2.3 V 0.7 2.7 V 0.4 3V 0.55 3.6 V VI = 0.58 V 1.65 V 25 VI = 1.07 V 1.65 V -25 VI = 0.7 V 2.3 V 45 VI = 1.7 V 2.3 V -45 VI = 0.8 V 3V 75 3V -75 VI = 0 to 3.6 VO = VCC or GND ICC VI = VCC or GND IO = 0 ICC One input at VCC - 0.6 V, Other inputs at VCC or GND Co (1) (2) Control inputs Data inputs Outputs A A 3.6 V 500 3.6 V 10 A 3.6 V 40 A 3 V to 3.6 V 750 A V (2) IOZ V 5 VI = VCC or GND VI = 2 V Ci V 1.65 V to 3.6 V IOL = 24 mA UNIT 1.2 IOL = 4 mA IOL = 12 mA II MAX VCC - 0.2 IOH = -4 mA VOH VOL MIN TYP (1) VCC VI = VCC or GND 3.3 V VO = VCC or GND 3.3 V 3.5 pF 6 7.5 pF All typical values are at VCC = 3.3 V, TA = 25C. This is the bus-hold maximum dynamic current. It is the minimum overdrive current required to switch the input from one state to another. SWITCHING CHARACTERISTICS over recommended operating free-air temperature range (unless otherwise noted) (see Figure 1 through Figure 3) FROM (INPUT) TO (OUTPUT) VCC = 1.8 V tpd A Y ten OE tdis OE PARAMETER (1) 4 TYP VCC = 2.5 V 0.2 V VCC = 2.7 V MIN MAX (1) 1 Y (1) 1 Y (1) 1.2 This information was not available at the time of publication. MIN VCC = 3.3 V 0.3 V UNIT MAX MIN MAX 4.1 3.9 1 3.4 ns 6 5.7 1 4.7 ns 5.6 4.9 1.3 4.5 ns SN74ALVCH16825 18-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCES039D - JULY 1995 - REVISED OCTOBER 2004 OPERATING CHARACTERISTICS TA = 25C PARAMETER Cpd (1) Power dissipation capacitance Outputs enabled Outputs disabled TEST CONDITIONS CL = 50 pF, f = 10 MHz VCC = 1.8 V VCC = 2.5 V VCC = 3.3 V TYP TYP TYP (1) 16 18 (1) 4 6 UNIT pF This information was not available at the time of publication. 5 SN74ALVCH16825 18-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCES039D - JULY 1995 - REVISED OCTOBER 2004 PARAMETER MEASUREMENT INFORMATION VCC = 1.8 V 2 x VCC S1 1 k From Output Under Test Open TEST tpd tPLZ/tPZL tPHZ/tPZH GND CL = 30 pF (see Note A) 1 k S1 Open 2 x VCC GND LOAD CIRCUIT tw VCC Timing Input VCC/2 VCC/2 VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VCC/2 VCC/2 0V tPLH Output Control (low-level enabling) VCC/2 VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES tPLZ VCC VCC/2 tPZH VOH VCC/2 0V Output Waveform 1 S1 at 2 x VCC (see Note B) tPHL VCC/2 VCC VCC/2 tPZL VCC Input VOLTAGE WAVEFORMS PULSE DURATION th VCC Data Input VCC/2 0V 0V tsu Output VCC VCC/2 Input Output Waveform 2 S1 at GND (see Note B) VOL + 0.15 V VOL tPHZ VCC/2 VOH VOH - 0.15 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2 ns, tf 2 ns. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 1. Load Circuit and Voltage Waveforms 6 SN74ALVCH16825 18-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCES039D - JULY 1995 - REVISED OCTOBER 2004 PARAMETER MEASUREMENT INFORMATION VCC = 2.5 V 0.2 V 2 x VCC S1 500 From Output Under Test Open TEST tpd tPLZ/tPZL tPHZ/tPZH GND CL = 30 pF (see Note A) 500 S1 Open 2 x VCC GND LOAD CIRCUIT tw VCC Timing Input VCC/2 VCC/2 VCC/2 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES VCC/2 VCC/2 0V tPLH Output Control (low-level enabling) VCC/2 VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES tPLZ VCC VCC/2 tPZH VOH VCC/2 0V Output Waveform 1 S1 at 2 x VCC (see Note B) tPHL VCC/2 VCC VCC/2 tPZL VCC Input VOLTAGE WAVEFORMS PULSE DURATION th VCC Data Input VCC/2 0V 0V tsu Output VCC VCC/2 Input Output Waveform 2 S1 at GND (see Note B) VOL + 0.15 V VOL tPHZ VCC/2 VOH VOH - 0.15 V 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2 ns, tf 2 ns. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 2. Load Circuit and Voltage Waveforms 7 SN74ALVCH16825 18-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS www.ti.com SCES039D - JULY 1995 - REVISED OCTOBER 2004 PARAMETER MEASUREMENT INFORMATION VCC = 2.7 V AND 3.3 V 0.3 V 6V S1 500 From Output Under Test GND CL = 50 pF (see Note A) TEST S1 tpd tPLZ/tPZL tPHZ/tPZH Open 6V GND Open 500 tw LOAD CIRCUIT 2.7 V 2.7 V Timing Input 1.5 V Input 1.5 V 1.5 V 0V 0V tsu VOLTAGE WAVEFORMS PULSE DURATION th 2.7 V Data Input 1.5 V 1.5 V 0V VOLTAGE WAVEFORMS SETUP AND HOLD TIMES 2.7 V Output Control (low-level enabling) 1.5 V 0V tPZL 2.7 V Input 1.5 V 1.5 V 0V tPLH 1.5 V 1.5 V VOL VOLTAGE WAVEFORMS PROPAGATION DELAY TIMES tPLZ 3V 1.5 V VOL + 0.3 V VOL tPZH VOH Output Output Waveform 1 S1 at 6 V (see Note B) tPHL 1.5 V Output Waveform 2 S1 at GND (see Note B) tPHZ 1.5 V VOH - 0.3 V VOH 0V VOLTAGE WAVEFORMS ENABLE AND DISABLE TIMES NOTES: A. CL includes probe and jig capacitance. B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control. C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, ZO = 50 , tr 2.5 ns, tf 2.5 ns. D. The outputs are measured one at a time, with one transition per measurement. E. tPLZ and tPHZ are the same as tdis. F. tPZL and tPZH are the same as ten. G. tPLH and tPHL are the same as tpd. Figure 3. Load Circuit and Voltage Waveforms 8 PACKAGE OPTION ADDENDUM www.ti.com 27-Sep-2007 PACKAGING INFORMATION Orderable Device Status (1) Package Type Package Drawing Pins Package Eco Plan (2) Qty 74ALVCH16825DGGRE4 ACTIVE TSSOP DGG 56 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 74ALVCH16825DGGRG4 ACTIVE TSSOP DGG 56 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 74ALVCH16825DLG4 ACTIVE SSOP DL 56 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 74ALVCH16825DLRG4 ACTIVE SSOP DL 56 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74ALVCH16825DGGR ACTIVE TSSOP DGG 56 2000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74ALVCH16825DL ACTIVE SSOP DL 56 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM SN74ALVCH16825DLR ACTIVE SSOP DL 56 1000 Green (RoHS & no Sb/Br) CU NIPDAU Level-1-260C-UNLIM 20 20 Lead/Ball Finish MSL Peak Temp (3) (1) The marketing status values are defined as follows: ACTIVE: Product device recommended for new designs. LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect. NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design. PREVIEW: Device has been announced but is not in production. Samples may or may not be available. OBSOLETE: TI has discontinued the production of the device. (2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details. TBD: The Pb-Free/Green conversion plan has not been defined. Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes. Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above. Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material) (3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature. Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release. In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis. Addendum-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 11-Mar-2008 TAPE AND REEL INFORMATION *All dimensions are nominal Device Package Package Pins Type Drawing SN74ALVCH16825DGGR TSSOP SN74ALVCH16825DLR SSOP SPQ Reel Reel Diameter Width (mm) W1 (mm) A0 (mm) B0 (mm) K0 (mm) P1 (mm) W Pin1 (mm) Quadrant DGG 56 2000 330.0 24.4 8.6 15.6 1.8 12.0 24.0 Q1 DL 56 1000 330.0 32.4 11.35 18.67 3.1 16.0 32.0 Q1 Pack Materials-Page 1 PACKAGE MATERIALS INFORMATION www.ti.com 11-Mar-2008 *All dimensions are nominal Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm) SN74ALVCH16825DGGR TSSOP DGG 56 2000 346.0 346.0 41.0 SN74ALVCH16825DLR SSOP DL 56 1000 346.0 346.0 49.0 Pack Materials-Page 2 MECHANICAL DATA MTSS003D - JANUARY 1995 - REVISED JANUARY 1998 DGG (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 48 PINS SHOWN 0,27 0,17 0,50 48 0,08 M 25 6,20 6,00 8,30 7,90 0,15 NOM Gage Plane 1 0,25 24 0- 8 A 0,75 0,50 Seating Plane 0,15 0,05 1,20 MAX PINS ** 0,10 48 56 64 A MAX 12,60 14,10 17,10 A MIN 12,40 13,90 16,90 DIM 4040078 / F 12/97 NOTES: A. B. C. D. All linear dimensions are in millimeters. This drawing is subject to change without notice. Body dimensions do not include mold protrusion not to exceed 0,15. Falls within JEDEC MO-153 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 MECHANICAL DATA MSSO001C - JANUARY 1995 - REVISED DECEMBER 2001 DL (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE 48 PINS SHOWN 0.025 (0,635) 0.0135 (0,343) 0.008 (0,203) 48 0.005 (0,13) M 25 0.010 (0,25) 0.005 (0,13) 0.299 (7,59) 0.291 (7,39) 0.420 (10,67) 0.395 (10,03) Gage Plane 0.010 (0,25) 1 0-8 24 0.040 (1,02) A 0.020 (0,51) Seating Plane 0.110 (2,79) MAX 0.004 (0,10) 0.008 (0,20) MIN PINS ** 28 48 56 A MAX 0.380 (9,65) 0.630 (16,00) 0.730 (18,54) A MIN 0.370 (9,40) 0.620 (15,75) 0.720 (18,29) DIM 4040048 / E 12/01 NOTES: A. B. C. D. All linear dimensions are in inches (millimeters). This drawing is subject to change without notice. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15). Falls within JEDEC MO-118 POST OFFICE BOX 655303 * DALLAS, TEXAS 75265 IMPORTANT NOTICE Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment. TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed. TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards. TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI. Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements. TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications. TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use. TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements. Following are URLs where you can obtain information on other Texas Instruments products and application solutions: Products Amplifiers Data Converters DSP Clocks and Timers Interface Logic Power Mgmt Microcontrollers RFID RF/IF and ZigBee(R) Solutions amplifier.ti.com dataconverter.ti.com dsp.ti.com www.ti.com/clocks interface.ti.com logic.ti.com power.ti.com microcontroller.ti.com www.ti-rfid.com www.ti.com/lprf Applications Audio Automotive Broadband Digital Control Medical Military Optical Networking Security Telephony Video & Imaging Wireless www.ti.com/audio www.ti.com/automotive www.ti.com/broadband www.ti.com/digitalcontrol www.ti.com/medical www.ti.com/military www.ti.com/opticalnetwork www.ti.com/security www.ti.com/telephony www.ti.com/video www.ti.com/wireless Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright (c) 2008, Texas Instruments Incorporated