March 2017
DocID029451 Rev 2
1/56
This is information on a product in full production.
www.st.com
STWLC03
Dual mode Qi/PMA wireless power receiver
Datasheet - production data
Features
1 W to 12 W output power
Qi 1.1 and PMA wireless standard
communication protocols
Integrated high efficiency synchronous
rectifier
800 kHz programmable step-down converter
with input current and input voltage
regulation loops
Step-down converter efficiency up to 90%
Simplified Li-Ion/Polymer charger function
32-bit, 16 MHz embedded microcontroller
with 16 kB ROM and 2 kB RAM memory
2 kB NVM for customization
Integrated driver for external supply switch
Precise voltage and current measurements
for received power calculation
I2C interface
Configurable GPIO output
Rx coil NTC protection
Thermal protection
Low power dissipative rectifier overvoltage
clamp
Flip Chip 77 bumps (3.12x4.73 mm)
Applications
Cellular phones
Power banks
Navigation systems
Tablets
Medical and healthcare instrumentation
Description
The STWLC03 is an integrated wireless power
receiver solution suitable for portable
applications. The STWLC03 is able to operate
with Qi 1.1 or PMA communication protocol.
Thanks to the integrated low impedance
synchronous rectifier and DC-DC step-down
converter, the STWLC03 achieves high
efficiency, low power dissipation and output
power beyond 5 W. Digital control and precise
analog control loops ensure stable operation. I2C
interface allows many parameters to be
customized in the device and this configuration
can be stored in the embedded NVM.
The STWLC03 can deliver the output power in
two modes: as a power supply with configured
output voltage or as a simple CC/CV battery
charger with configurable charging current.
The STWLC03 can detect an external (wired)
power supply connection and drive an external
power switch.
Table 1: Device summary
Order code
Package
Packing
STWLC03JR
12 W output
Flip Chip 77 bumps (3.12x4.73 mm)
Tape and reel
Contents
STWLC03
2/56
DocID029451 Rev 2
Contents
1 Introduction ..................................................................................... 6
2 Pin configuration ............................................................................. 7
3 Maximum ratings ........................................................................... 10
4 Electrical characteristics .............................................................. 12
5 Device description ......................................................................... 17
5.1 Using the STWLC03 as a power supply .......................................... 17
5.2 Using the STWLC03 as a battery charger ....................................... 17
5.3 Wireless standard auto-detection .................................................... 18
5.4 Qi operation and flow chart ............................................................. 19
5.4.1 Received power calibration (FOD feature) ....................................... 21
5.5 PMA operation ................................................................................ 21
5.6 External power supply ..................................................................... 22
5.7 The device interface ........................................................................ 24
6 I2C register description ................................................................. 25
6.1 ADC measured values .................................................................... 31
6.2 Service registers ............................................................................. 33
7 Non-volatile memory ..................................................................... 35
7.1 NVM sector maps ............................................................................ 35
8 Application information ................................................................ 45
8.1 Application schematic and recommended external components..... 45
8.2 External passive component selection ............................................ 49
8.2.1 Input resonant circuit component selection (L1, C1, C2) ................. 49
8.2.2 Voltage clamp resistor selection (RCL1, RCL2) ............................... 49
8.2.3 Load modulation capacitors selection (CM1, CM2) ......................... 49
8.2.4 Feedback resistor divider components selection (RFB1, RFB2) ..... 49
8.2.5 Rx NTC circuit component selection (RNTC, R1) ............................ 49
8.2.6 Soft-start capacitor selection (C10) .................................................. 50
8.2.7 External supply transistor selection .................................................. 50
8.3 Reference PCB layout ..................................................................... 51
9 Package information ..................................................................... 53
9.1 Flip Chip 77 bumps (3.12x4.73 mm) package information .............. 53
10 Revision history ............................................................................ 55
STWLC03
List of tables
DocID029451 Rev 2
3/56
List of tables
Table 1: Device summary ........................................................................................................................... 1
Table 2: Pin description .............................................................................................................................. 7
Table 3: Absolute maximum ratings ......................................................................................................... 10
Table 4: Thermal data ............................................................................................................................... 11
Table 5: Electrical characteristics ............................................................................................................. 12
Table 6: Recommended VRECT and VRMIN values for various VOUT .................................................. 17
Table 7: EPT reasons in Qi ....................................................................................................................... 20
Table 8: EOC reasons in PMA .................................................................................................................. 22
Table 9: User register map ....................................................................................................................... 25
Table 10: Control register ......................................................................................................................... 25
Table 11: Target rectified voltage register (register address 02h) ............................................................ 26
Table 12: Input voltage threshold for output power limitation register (register address 03h) ................. 26
Table 13: Input current limit register (register address 05h) ..................................................................... 26
Table 14: Overload threshold register (register address 06h) .................................................................. 26
Table 15: Step-down output voltage register (register address 07h) ....................................................... 27
Table 16: Step-down converter feedback voltages .................................................................................. 27
Table 17: Buck current limit register ......................................................................................................... 27
Table 18: Chip overtemperature threshold register (register address 09h) .............................................. 27
Table 19: Interrupt mask L register (register address 0Ah) ...................................................................... 27
Table 20: Interrupt mask H register ( register address 0Bh) .................................................................... 28
Table 21: Interrupt status L register ( register address 0Ch) .................................................................... 28
Table 22: Interrupt status H register ......................................................................................................... 29
Table 23: Interrupt latch L register ............................................................................................................ 29
Table 24: Interrupt latch H register ........................................................................................................... 29
Table 25: Operation mode detection status register ................................................................................. 30
Table 26: Operation mode detection control register (register address 11h) ........................................... 30
Table 27: Qi charge status register (register address 12h) ...................................................................... 31
Table 28: Charger status register (register address 13h) ......................................................................... 31
Table 29: Charger control register ............................................................................................................ 31
Table 30: ADC measured value register map .......................................................................................... 31
Table 31: Rectified voltage (VRECT) ........................................................................................................ 32
Table 32: Rectified output current (IRECT) .............................................................................................. 32
Table 33: RX coil NTC voltage ................................................................................................................. 32
Table 34: VOUT voltage ........................................................................................................................... 32
Table 35: VDROP voltage ........................................................................................................................ 33
Table 36: Chip temperature ...................................................................................................................... 33
Table 37: Ground voltage ......................................................................................................................... 33
Table 38: RX_POWER ............................................................................................................................. 33
Table 39: Service register map ................................................................................................................. 34
Table 40: NVM control .............................................................................................................................. 34
Table 41: I2C registers corresponding to bytes in NVM sector ................................................................ 34
Table 42: Non-volatile memory sector map .............................................................................................. 35
Table 43: Map of NVM sector 04 .............................................................................................................. 35
Table 44: Byte 0 ........................................................................................................................................ 36
Table 45: Byte 1 ........................................................................................................................................ 36
Table 46: Byte 2 ........................................................................................................................................ 36
Table 47: Byte 3 ........................................................................................................................................ 36
Table 48: Byte 4 ........................................................................................................................................ 37
Table 49: Map of NVM sector 05 .............................................................................................................. 37
Table 50: Map of NVM sector 07 .............................................................................................................. 38
Table 51: Map of NVM sector 08 .............................................................................................................. 39
Table 52: Map of NVM sector 10 .............................................................................................................. 40
Table 53: Map of NVM sector 13 .............................................................................................................. 41
List of tables
STWLC03
4/56
DocID029451 Rev 2
Table 54: Byte 0 Qi_EPT_threshold [7:0] ................................................................................................. 41
Table 55: Byte 1, Qi_EPT_Time [7:0] ....................................................................................................... 41
Table 56: Byte 2, Qi charger enable ......................................................................................................... 42
Table 57: Qi target voltage ....................................................................................................................... 42
Table 58: Byte 3, Q1_Precharge_Battery_overvoltage ............................................................................ 42
Table 59: Byte 4, Q1_Precharge and Fastcharge .................................................................................... 42
Table 60: Byte 8, PMA_EOC_theshold [7:0] ............................................................................................ 43
Table 61: Byte 9, PMA_EOC_Time [7:0] .................................................................................................. 43
Table 62: Byte 10, PMA_Target_Voltage [2:0] ......................................................................................... 43
Table 63: PMA target voltage vs charging voltage ................................................................................... 44
Table 64: Byte 11 ...................................................................................................................................... 44
Table 65: Byte 12 ...................................................................................................................................... 44
Table 66: STWLC03 recommended external components....................................................................... 46
Table 67: Flip Chip 77 bumps (3.12x4.73 mm) package mechanical data .............................................. 54
Table 68: Document revision history ........................................................................................................ 55
STWLC03
List of figures
DocID029451 Rev 2
5/56
List of figures
Figure 1: Simplified block diagram .............................................................................................................. 6
Figure 2: Pin configuration Flip Chip 77 bumps (3.12x4.73 mm) ............................................................... 7
Figure 3: Typical step-down converter efficiency ..................................................................................... 17
Figure 4: Typical charging profile .............................................................................................................. 18
Figure 5: Wireless standard detection flowchart ....................................................................................... 19
Figure 6: Qi simplified flow diagram .......................................................................................................... 20
Figure 7: PMA simplified flow diagram ..................................................................................................... 21
Figure 8: External power supply situation ................................................................................................. 23
Figure 9: External power supply situation 1 .............................................................................................. 23
Figure 10: STWLC03 application schematic ............................................................................................ 45
Figure 11: STWLC03 charger configuration ............................................................................................. 46
Figure 12: VIO and digital interface in standalone application schematic ................................................ 48
Figure 13: VIO and digital interface in platform application schematic ..................................................... 48
Figure 14: Top overlay .............................................................................................................................. 51
Figure 15: Top layer .................................................................................................................................. 51
Figure 16: Mid layer 1 ............................................................................................................................... 51
Figure 17: Mid layer 2 ............................................................................................................................... 51
Figure 18: Bottom layer............................................................................................................................. 52
Figure 19: Flip Chip 77 bumps (3.12x4.73 mm) package outline ............................................................. 53
Figure 20: Flip Chip 77 bumps (3.12x4.73 mm) recommended footprint ................................................. 54
Introduction
STWLC03
6/56
DocID029451 Rev 2
1 Introduction
The STWLC03 is a dual mode Qi/PMA wireless power receiver. It works as a voltage
source with regulated output voltage, typically 5 V. It can be reconfigured into a simple
battery charger mode (CC/CV) to charge directly Li-Ion or Li-Pol batteries. The STWLC03
can operate autonomously or can be controlled through I2C by the host system.
Figure 1: Simplified block diagram
STWLC03
Pin configuration
DocID029451 Rev 2
7/56
2 Pin configuration
Figure 2: Pin configuration Flip Chip 77 bumps (3.12x4.73 mm)
Table 2: Pin description
Pin name
Pin position
Description
AC1
F6, F7, G7
RX coil circuit terminal connection
AC2
E9, E10, E11
RX coil circuit terminal connection
MOD1
G6
Load modulation capacitor 1 connection
MOD2
F11
Load modulation capacitor 2 connection
CLMP1
G5
Clamping capacitor/resistor 1 connection
CLMP2
F9
Clamping capacitor/resistor 2 connection
RMOD
E7
Modulation current sink connection, internally connected to
VRECT
RMOD1
G11
Load modulation external resistor connection.
RM resistor is not necessary for most applications
VRECT
F10, G10
Synchronous rectifier output
BOOT1
G8
Bootstrap capacitor connection for the rectifier
BOOT2
E8
Bootstrap capacitor connection for the rectifier
BOOT
G9
Bootstrap capacitor connection for the step-down converter
CLAMP
F8
Low power clamp connection
VSUP
A8, B8, B7
Power supply input for the step-down converter
VSUPS
A7, C6
Sensing terminal of the external current sensing resistor
Pin configuration
STWLC03
8/56
DocID029451 Rev 2
Pin name
Pin position
Description
RESL
A6
Sensing terminal of the external current sensing resistor
VOUT
D5
Step-down output voltage
VFB
A5
Step-down feedback input
FBGND
B6
Ground connection of the resistor feedback divider for step-
down converter
LX
A11, B11, B10
Step-down converter coil connection
NTCRX
A3
Comparator input for RX coil temperature sensing
NTC thermistor has to be placed close to RX coil
VA
A4
LDO1 output to filtering capacitor. ADC supply and sensitive
analog circuitries are connected to this LDO; any external
circuit cannot be connected to this node
VCORE
F2
LDO2 output to filtering capacitor. The microcontroller core
and logic supply. VCORE voltage can be used as a reference
voltage for the RX coil NTC divider
V5V
A9, B9
LDO3 output to filtering capacitor
VIO
G1
VIO power supply for the digital interface. It can be connected
to VCORE or provided externally
SCL
D1
I2C clock input
SDA
D4
I2C data
GPIO0
D6
General purpose push-pull I/O pin. This function depends on
firmware configuration
GPIO1
E5
General purpose push-pull I/O pin. This function depends on
firmware configuration
GPIO2
E4
General purpose push-pull I/O pin. This function depends on
firmware configuration
GPIO3
E1
Open drain output pin only. This function depends on firmware
configuration
RESET
D2
Chip reset input, active low
INT
C3
Open drain interrupt output to the host platform
RPGND
D8, D9, D10, D11
Rectifier power ground
BPGND
C8, C9, C10, C11
Step-down converter power ground
GND
G2, F3
Digital ground
AGND
B4, C4, B5, C5
Analog ground
VEXT
A10
Detection of the external power supply voltage adapter/USB
voltage. 30 V spike tolerant
SWDRV
D7
External P-channel switch control for connecting adapter/USB
voltage to VOUT
USBOK
C2
Digital input for the USBOK signal from platforms
COMP
C7
Step-down converter soft-start capacitor connection
GND
G4, F4
Reserved. Connect to ground
VCORE
A1
Reserved. Connect to VCORE
STWLC03
Pin configuration
DocID029451 Rev 2
9/56
Pin name
Pin position
Description
N/C
G3
Reserved. Do not connect
GND
B1, E2, E6, F1
Reserved. Connect to ground
N/C
B2, B3, D3, E3
Reserved. Do not connect
GND
C1
Reserved. Connect to ground
N/C
A2, F5
Reserved. Do not connect
Maximum ratings
STWLC03
10/56
DocID029451 Rev 2
3 Maximum ratings
Table 3: Absolute maximum ratings
Pin
Parameter
Value
Unit
AC1, AC2
Input AC voltage
-0.3 to 20
V
MOD1, MOD2
Modulation transistor voltage
-0.3 to 20
V
CLMP1, CLMP2
Clamp transistor voltage
-0.3 to 20
V
BOOT1, BOOT2
Voltage on bootstraps
AC1, AC2 -0.3;
AC1, AC2 + 6
V
BOOT
Voltage on bootstrap
VRECT-0.3;
VRECT + 6
V
VRECT
Rectified voltage
-0.3 to 20
V
VRESL, VSUPS
Current sensing resistor connection voltage
-0.3 to 20
V
VRESL-VSUPS
Voltage on the current sensing resistor
-0.3 to 2
V
VSUP
Input voltage of the buck converter
-0.3 to 20
V
LX
Buck converter switching node voltage
-0.3 to 20
V
RMOD, RMOD1
Resistive modulation current source and
transistor voltage
-0.3 to 20
V
FBGND
Internal feedback transistor VDS voltage
-0.3 to 20
V
VOUT
Output voltage range
-0.3 to 20
V
VFB
Buck converter feedback voltage
-0.3 to 3
V
VEXT, SWDRW
Detection pin for the external voltage and driver
output for the external transistor
-0.3 to 30
V
NTCRX
RX coil NTC voltage
-0.3 to 2.3
V
VA, VCORE
LDO1,2 voltages
-0.3 to 2.3
V
V5V
LDO 3 voltage
-0.3 to 6
V
VIO
VIO voltage
-0.3 to 6
V
SCL, SDA, USBOK,
INT, RESET
Digital interface voltage
-0.3 to VIO+0.3
V
GPIO0, GPIO1,
GPIO2, GPIO3
General purpose I/O voltage
-0.3 to VIO+0.3
V
TSTG
Storage temperature range
-40 to 150
°C
TOP
Operating ambient temperature range
-40 to +85
°C
TJ
Maximum junction temperature
+125
°C
ESD
Machine model
±100
V
Charged device model
±500
V
Human body model
±2000
V
STWLC03
Maximum ratings
DocID029451 Rev 2
11/56
Absolute maximum ratings are those values beyond which damage to the device
may occur. Functional operation under these conditions is not implied.
Table 4: Thermal data
Package
Symbol
Parameter
Value
Unit
Flip Chip 77 (3.12x4.73 mm)
RTHJA
Junction-to-ambient thermal resistance(1)
35
°C/W
Notes:
(1)This parameter corresponds to the PCB board, 4-layer with 1 inch2 of cooling area.
Electrical characteristics
STWLC03
12/56
DocID029451 Rev 2
4 Electrical characteristics
-30 °C < TA < 85 °C; typical values are at TA = 25 °C, unless otherwise specified.
Table 5: Electrical characteristics
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
General section
VIN
AC input voltage
Peak-to-peak
voltage between
AC1- AC2 over
the period
32
V
VUVLO
Undervoltage
lockout threshold
VSUP rising
3.6
3.8
V
VSUP falling
3.3
3.5
TIMEOUTRESET
Reset time-out for
shutdown mode
1
ms
IQ
Current
consumption in
the shutdown
mode
RESET=0 (active
low) duration>1
ms, measured at
VEXT
10
μA
RESET=0 (active
low) duration>1
ms, measured at
VRECT
2
4
mA
IRESET
Current
consumption in
the RESET
condition
RESET=0 (active
low), duration<1
ms, GPIO 0
floating
5
mA
ICC
Current
consumption of
the device
RESET=1
(inactive), GPIO 0
floating
7
mA
LDO 1
VA
LDO 1 output
voltage
IA = 5 mA
1.8
V
IILIM
Load current limit
50
mA
LDO 2
VCORE
LDO 2 output
voltage
VSUP = 3.6 V to
11 V, ICORE = 5
mA
1.8
V
IDDLIM
Load current limit
40
mA
LDO 3
V5V
LDO 3 output
voltage
IV5V = 20 mA,
VR = 5.5 V
5
V
IILIM
Load current limit
30
mA
Synchronous rectifier
STWLC03
Electrical characteristics
DocID029451 Rev 2
13/56
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
RDS(on)
Drain-source
NMOS on-
resistance low-
side
IRECT = 1.4 A,
VRECT = 8 V
90
Drain-source
NMOS on-
resistance high-
side
70
Efficiency
Rectifier efficiency
IRECT = 0.8 A,
VRECT = 7 V,
fRectifier = 130 kHz
91
%
IRACTIVE
Active mode
rectifier threshold,
voltage @ Rs
VRECT = 10 V,
rising edge
8.75
mV
VRECT = 10 V,
falling edge
3.25
fRECTIFIER
Rectifier
frequency range
50
500
kHz
VCLAMP
Clamp of the
rectified voltage
ICLAMP = 1 mA
17.4
V
Active clamp drivers
RDS(on)CLMP1,2
Active clamp MOS
RDS(on)
VSUP = 5 V
1
Ω
VOVP
VRECT voltage
threshold of active
clamp
15.4
15.9
16.4
V
VOVP hyst
VRECT voltage
active clamp
hysteresis
600
mV
Load modulation
RDS(on)MOD1,2
Load modulation
MOS RDS(on)
VSUP = 5 V
1
Ω
IMOD
RMOD pin sink
current range
VSUP = 5 V
15
410
mA
Modulation
current tolerance
VSUP = 5 to 12 V,
IMOD = 80 mA
10
%
IMAXMOD1
VSUP = 5 V,
RM = 2 Ω
2
A
Protections
VLDMAX.
Overcurrent
protection
threshold, voltage
@ RS
VLDMAX = 0Fh
1.7
V
VLDMAX = 04h
0.875
TOL_VLDMAX
Tolerance of the
VLDMAX
VLDMAX = 0Fh
-5
+5
%
VLDMAX = 04h
-10
+10
Electrical characteristics
STWLC03
14/56
DocID029451 Rev 2
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
VNTCTRIG
NTC trigger
voltage for RX
0.6
V
TOL_VNTCTRIG
NTC trigger
voltage tolerance
3
%
Hyst_VNTCTRIG
NTC trigger
voltage hysteresis
100
mV
tSHDN
Thermal shutdown
150
°C
tSHDNHYST
Thermal shutdown
hysteresis
20
°C
Current-to-voltage converter
EOC_CURRENT
End-of-charge
current threshold
RS = 0.05 Ω 1%,
VSUP = 5 to 15 V
0
400
mA
TOLEOC_CURRENT
Tolerance of the
EOC threshold
RS = 0.05 Ω 1%,
VSUP = 5 to 15 V,
EOC_CURRENT
= 50 mA
20
%
RS = 0.05 Ω 1%,
VSUP = 5 to 15 V,
EOC_CURRENT
= 200 mA
10
%
Step-down converter
VVOUT
Output voltage
range
3
7
V
TolVOUT
VOUT tolerance
VOUTreg = 011,
VOUT = 4.2 V
0.5
%
OVPVOUT
Overvoltage
protection
threshold
8.5
V
IVOUT + IFB
Output leakage
current
Step-down is off,
VOUT = 5 V,
1
µA
IFB
Feedback pin bias
current
500
nA
ILIM
Coil current limit
250
4000
mA
Coil current limit
accuracy
CURRLIM reg =
1111
10
%
IOVERCURR
Overcurrent/short-
circuit protection
VSUP = 5 to 12 V
4500
mA
DIVVOUT
Output voltage
internal divider
ratio
6
nA
fSW
Switching
frequency
0.8
MHz
VSUP
Input voltage
range
IOUT = 2 A
5.5
12
V
STWLC03
Electrical characteristics
DocID029451 Rev 2
15/56
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
N-RDS(on)SW
NMOS RDS(on)
high-side
Back-to-back
connected
transistors
130
N-RDS(on)SW
NMOS RDS(on) low-
side
60
Efficiency
Step-down
efficiency
POUT = 5 W
89
%
POUT = 12 W
80
RFBGND
VOUT feedback
divider grounding
switch resistance
IFBGND = 500 µA
40
Ω
tSTART
Buck converter
soft-start time
C10 = 1 µF,
PLOAD = 0
to 12 W
1
s
Input voltage loop for output power limiting
VRMIN
Minimum rectified
voltage threshold
for output power
limitation
VRMIN = 00h
5
V
VRMIN = 0Ah
7
TOLVRMIN
VRMIN threshold
tolerance
5
%
Input current limitation loop
IRREG
Input current
limitation
threshold,
voltage @ Rs
IRREG = F6h
82.5
mV
IRREG = 32h
17.55
TOLIRREG
IRREG threshold
tolerance
IRREG = F6h
5
%
IRREG = 32h
10
External voltage switch driver
VEXTUVLO
External supply
undervoltage
threshold
4.2
4.4
4.6
V
VEXTOVP
External supply
overvoltage
threshold
5.25
5.55
5.9
V
IEXTCONS
Input consumption
current
VEXT = 5 V,
VRECT = 0 V,
RESET = 1 (active
low)
8
mA
VSWDRV
Switch driver
voltage drop
VEXT = 5 V,
SWDRV low
200
mV
GPIO pins
IOUTGPIO0/1/2
GPIO pin current
capability
GPIO0/1/2 high,
VIO = 1.8 V,
VGPIO0/1/2 = 1.4 V
3
mA
Electrical characteristics
STWLC03
16/56
DocID029451 Rev 2
Symbol
Parameter
Test conditions
Min.
Typ.
Max.
Unit
VGPIO0/1/2/3
GPIO pin drop
GPIO0/1/2/3 low,
VIO = 1.8 V,
IGPIO0/1/2 = 3 mA
360
mV
VIL
Low level input
voltage
0.3*VIO
V
VIH
High level input
voltage
0.7*VIO
V
Microcontroller
Architecture
32
bit
NVM
Memory size for
customization
2
kbit
Clock generator
fOSC
Clock generator
frequency
VSUP = 4.5
to 15 V
16
MHz
TOLFOSC
Tolerance of the
clock generator
frequency
TAMB = 0 °C
to 85 °C
-4
+4
%
STWLC03
Device description
DocID029451 Rev 2
17/56
5 Device description
5.1 Using the STWLC03 as a power supply
The STWLC03 is configured as a power supply with 5 V output voltage by default. Output
voltage can be adjusted in 8 steps in runtime through I2C or as a new default start-up
configuration in NVM. Output voltage can be also slightly fixed in the range among the
software steps, by tuning the resistor feedback divider.
When the output voltage changes, the related parameters have to be taken into account:
rectified voltage VRECT and input voltage threshold for output limitation VRMIN. The table
below shows the recommended values.
Table 6: Recommended VRECT and VRMIN values for various VOUT
Parameter
Min.
Typ.
Max.
VOUT
5 V
6 V
7 V
VRECT
7 V
8 V
9 V
VRMIN
5.6 V
5.6 V
5.6 V
Input current limit and overload threshold should be fixed according to maximum expected
peak load in the application.
The STWLC03 monitors continuously the rectifier current. If the current drops below the
defined threshold for the defined time, the power transfer is over. This configuration is
stored in NVM, values Qi_EPT_Threshold, Qi_EPT_Time, PMA_EOC_Threshold,
PMA_EOC_Time. This configuration is common for power supply mode and battery
charger mode. To avoid power transfer termination, zero-current and maximum time have
to be fixed.
Figure 3: Typical step-down converter efficiency
5.2 Using the STWLC03 as a battery charger
The STWLC03 is equipped with a software feature allowing the input current limitation loop
to control the charging current. In this manner the STWLC03 can operate as a CC/CV
Device description
STWLC03
18/56
DocID029451 Rev 2
charger without HW output current control loop. VOUT pin leakage is minimized to save
battery operation time.
The STWLC03 can be switched to battery charger mode instantly by I2C register
(evaluation only, not recommended for production) or as a new default start-up
configuration in NVM (safe recommended solution).
Figure 4: Typical charging profile
Thanks to very low leakage from VOUT pin, the STWLC03 can remain connected to the
battery and does not cause any discharge.
5.3 Wireless standard auto-detection
The STWLC03 automatically detects the operating standard when it is placed on a wireless
transmitter. Detection is based on combination of operating frequency and receiving FSK
signaling from the transmitter.
STWLC03
Device description
DocID029451 Rev 2
19/56
Figure 5: Wireless standard detection flowchart
The STWLC03 can be also configured to skip the auto-detection and use directly the pre-
configured wireless standard.
5.4 Qi operation and flow chart
The STWLC03 follows Qi 1.1.2 version.
When Qi state machine starts, it proceeds through ping and identification and configuration
phases to power transfer phase according to Qi wireless power transfer, volume I: low
power 1.1.2 specification.
Device description
STWLC03
20/56
DocID029451 Rev 2
Figure 6: Qi simplified flow diagram
End-power-transfer can be requested because of the following reasons:
Table 7: EPT reasons in Qi
Reason
EPT code
I2C “Force EPT” bit set
Unknown (00h)
VEXT above UVLO
USBOK digital input
Termination current reached
Charge complete (01h)
Charger in unexpected state
Internal fault (02h)
Step-down overload
Step-down output overvoltage
Rx coil NTC above threshold
Overtemperature (03h)
Chip temperature above threshold
Rectifier output overvoltage
Overvoltage (04h)
Rectifier output overcurrent
Overcurrent (05h)
Charger output voltage above threshold
Battery failure (06h)
I2C “Reconfigure” bit set
Reconfigure (07h)
STWLC03
Device description
DocID029451 Rev 2
21/56
5.4.1 Received power calibration (FOD feature)
Although the STWLC03 is well-trimmed, inaccuracy in the received power estimation can
be caused in the target application due to manufacturing different environment conditions.
Different serial resistances of used receiver coil or different shieldings of the receiver coil
(e.g. battery or ground plane in a near proximity of the coil) are the main issues. The
STWLC03 features dedicated adjustment options placed in NVM.
5.5 PMA operation
The STWLC03 follows PMA1 SR1 specification. When PMA state machine starts, it
proceeds through ping and identification phase to power transfer phase according to PMA
inductive wireless power and charging receiver specifications, system release 1.
Figure 7: PMA simplified flow diagram
End-of-charge can be requested due to the following reasons:
Device description
STWLC03
22/56
DocID029451 Rev 2
Table 8: EOC reasons in PMA
Reasons
I2C “Force EOC” bit set
VEXT above UVLO
USBOK digital input
Termination current reached
Charger in unexpected state
Step-down overload
Step-down output overvoltage
Rx coil NTC above threshold
Chip temperature above threshold
Rectifier output overvoltage
Rectifier output overcurrent
Charger output voltage above threshold
5.6 External power supply
Figure 8: "External power supply situation" illustrates the situation where the STWLC03
detects the external voltage presence and drives SWDRV (external voltage) to the output.
The STWLC03 also terminates the wireless power transfer.
Figure 9: "External power supply situation 1" illustrates the situation where the STWLC03 is
assembled in a system with another PMIC that serves multiple power supply inputs. PMIC
uses digital line to let the STWLC03 know that there is a higher priority power supply
available and the wireless power transfer should be terminated.
For proper operation, RESETn pin must be high. Connecting VEXT power supply,
consumption from VIO increases if VIO supply is provided externally. (It has not
effect if VIO is connected to VCORE).
STWLC03
Device description
DocID029451 Rev 2
23/56
Figure 8: External power supply situation
Figure 9: External power supply situation 1
Device description
STWLC03
24/56
DocID029451 Rev 2
5.7 The device interface
The STWLC03 is equipped with I2C interface with an open-drain interrupt line to connect
with the host system. If I2C connection is not used by the host platform, SDA and SCL lines
should be pulled-up to VIO voltage. The STWLC03 contains RESETn input. The device
under reset conditions has very low power consumption. If reset is not controlled by the
host platform it should be pulled-up to VIO voltage. USBOK is a digital input, which
terminates power transfer if another preferred power supply is available. The STWLC03
features GPIO pins. By default GPIO 0 only is active and detects power transfer state on
wireless interface.
STWLC03
I2C register description
DocID029451 Rev 2
25/56
6 I2C register description
The device I2C address is 14h (0010100b).
Table 9: User register map
Address
Register
00h
Control
01h
Reserved
02h
Target rectified voltage
03h
Input voltage threshold for output limitation
04h
Reserved
05h
Input current limit
06h
Overload threshold
07h
Buck output voltage
08h
Buck current limit
09h
Chip overtemperature
0Ah
Interrupt mask L
0Bh
Interrupt mask H
0Ch
Interrupt status L
0Dh
Interrupt status H
0Eh
Interrupt latch L
0Fh
Interrupt latch H
10h
Operation mode detection status
11h
Operation mode detection control
12h
Qi charge status packet content
13h
Charger status
14h
Charger control
Table 10: Control register
b7
b6
b5
b4
b3
b2
b1
b0
Force/EPT
Disable/EPT on error
Qi reconfigure
-
-
-
-
USBcon_cnf
R/W
Loaded from NVM at startup
Default
USBcon_cnf:
0: auto connect switch + disable buck + send EPT@VEXT/disable buck + send
EPT@USBOK
1: ignore VEXT/USBOK completely
Qi reconfigure:
0: no action
I2C register description
STWLC03
26/56
DocID029451 Rev 2
1: send reconfigure packet (auto-clear)
Disable EPT on error:
0: automatically send EPT to OVP, overload, overtemperature or buck fault
1: do not send EPT automatically, wait for master
Force EPT:
0: no action
1: send EPT (auto-clear)
Table 11: Target rectified voltage register (register address 02h)
b7
b6
b5
b4
b3
b2
b1
b0
TARGET_VRECT[7:0]
R/W
Loaded from NVM at startup
Default
The target rectifier output voltage.
Rectified voltage = 0.25 V * TARGET_VRECT
Valid range 14h - 30h (5 V - 12 V).
Table 12: Input voltage threshold for output power limitation register (register address 03h)
b7
b6
b5
b4
b3
b2
b1
b0
-
-
VRMIN[5:0]
R/W
Loaded from NVM at startup
Default
VRMIN represents a VRECT voltage threshold where step-down converter applies output
power limitation to prevent VRECT from dropping too low.
Threshold = 5.0 V + VRMIN * 0.2 V
Valid range from 00h to 0Ah (5.0 V 7 V). Recommended value is 01h (5.2 V).
Table 13: Input current limit register (register address 05h)
b7
b6
b5
b4
b3
b2
b1
b0
INPUT_CURR_LIMIT[7:0]
R/W
Loaded from NVM at startup
Default
Output power does not exceed this input current limit. The current is sensed on the sensing
resistor (RS).
Input current limit = (1.625 mV + INPUT_CURR_LIMIT * 0.325 mV) / RS.
Valid range from 00h to F6h (0.001625 V 0.0816 V ~ 16.25 mA 816 mA @ 100 mΩ RS).
Table 14: Overload threshold register (register address 06h)
b7
b6
b5
b4
b3
b2
b1
b0
-
-
-
-
OVERLOAD_THRD[3:0]
R/W
Loaded from NVM at startup
Default
This register configures overcurrent protection threshold, sensed on the sensing resistor
(RS). Voltage represents the voltage drop caused by current flowing through the sensing
STWLC03
I2C register description
DocID029451 Rev 2
27/56
resistor. Overcurrent protection threshold = (6.25 mV + OVERLOAD_THRD * 6.25 mV) /
RS.
Valid range 00h 0Fh (6.25 mV 100 mV ~ 0.0625 A 1 A @ 100 mΩ RS.
Table 15: Step-down output voltage register (register address 07h)
b7
b6
b5
b4
b3
b2
b1
b0
-
-
-
-
-
STEP_DOWN_OUTPUT_VOLT[2:0]
R/W
Loaded from NVM at startup
Default
This register sets step-down converter feedback reference voltage. Output voltage is
derived from the feedback voltage through the feedback resistor divider.
Table below shows values of the reference voltage of the step-down converter for each
setting and the VOUT voltage assuming the typical recommended feedback resistor
divider.
Table 16: Step-down converter feedback voltages
BUCK_OUTPUT_VOLT
STEP_DOWN FB REF [V]
VOUT [V]
000
0.57
3.30
001
0.62
3.60
010
0.70
4.10
011
0.72
4.20
100
0.86
5.00
Table 17: Buck current limit register
b7
b6
b5
b4
b3
b2
b1
b0
-
-
-
-
BUCK_ILIM[3:0]
R/W
Loaded from NVM at startup
Default
This register sets the peak coil current limit value of the buck converter.
Peak current = 250 mA + BUCK_ILIM * 250 mA.
Valid range from 00h to 04h (250 mA 1250 mA).
Table 18: Chip overtemperature threshold register (register address 09h)
b7
b6
b5
b4
b3
b2
b1
b0
CHIP_OVERTEMP_THRESHOLD[7:0]
R/W
Loaded from NVM at startup
Default
This threshold is compared to the value read by the AD converter from the chip
temperature channel divided by 4.
Table 19: Interrupt mask L register (register address 0Ah)
b7
b6
b5
b4
b3
b2
b1
b0
INT_MASK_L
R/W
Loaded from NVM at startup
Default
Interrupt mask register ( INT output only is masked, no effect on EPT):
I2C register description
STWLC03
28/56
DocID029451 Rev 2
b0: buck fault
b1: overload
b2: chip overtemperature
b3: coil overtemperature
b4: VRECT overvoltage
b5: VEXT (external voltage connection)
b6: USB OK (USB connection)
b7: standard detection finished
0 = interrupt not masked
1 = interrupt masked
Table 20: Interrupt mask H register ( register address 0Bh)
b7
b6
b5
b4
b3
b2
b1
b0
INT_MASK_H
R/W
Loaded from NVM at startup
Default
Interrupt mask register (INT output only is masked, no effect on EPT):
b0: charging finished
b1: charger internal fault
b2: charger battery fail
b3: not used
b4: not used
b5: not used
b6: not used
b7: not used
0 = interrupt not masked
1 = interrupt masked
Table 21: Interrupt status L register ( register address 0Ch)
b7
b6
b5
b4
b3
b2
b1
b0
INT_STATUS_L
Read only
0
0
0
0
0
0
0
0
Default
b0: N/A
b1: N/A
b2: chip overtemperature
b3: coil overtemperature
b4: N/A
b5: VEXT (external voltage connection)
b6: USB OK (USB connection)
STWLC03
I2C register description
DocID029451 Rev 2
29/56
b7: standard detection finished
Bit value 1 means valid, 0 means not valid.
Table 22: Interrupt status H register
b7
b6
b5
b4
b3
b2
b1
b0
INT_STATUS_H
Read only
1
0
0
0
0
0
0
0
Default
b0: charging finished
b1: charger internal fault
b2: charger battery fail
b3: N/A
b4: N/A
b5: N/A
b6: N/A
b7: N/A
Bit value 1 means valid, 0 means not valid.
Table 23: Interrupt latch L register
b7
b6
b5
b4
b3
b2
b1
b0
INT_LATCH_L
Read/clear
0
0
0
0
0
0
0
0
Default
b0: buck fault
b1: overload
b2: chip overtemperature
b3: coil overtemperature
b4: VRECT overvoltage
b5: VEXT (external voltage connection)
b6: USB OK (USB connection)
b7: standard detection finished
Bit value 1 means valid, 0 means not valid.
Table 24: Interrupt latch H register
b7
b6
b5
b4
b3
b2
b1
b0
INT_LATCH_H
Read/clear
0
0
0
0
0
0
0
0
Default
b0: charging finished
b1: charger internal fault
b2: charger battery fail
I2C register description
STWLC03
30/56
DocID029451 Rev 2
b3: N/A
b4: N/A
b5: N/A
b6: N/A
b7: power ON in I2C driven standard detection mode
Bit value 1 means valid, 0 means not valid.
Table 25: Operation mode detection status register
b7
b6
b5
b4
b3
b2
b1
b0
Wireless powered
Forced
OP_STANDARD
Read only
0
0
0
0
0
0
0
0
Default
Wireless powered:
0: no wireless supply (i.e. USB supply)
1: the device is engaged with a wireless pad
FORCED:
0: standard is based on auto-detection
1: standard is forced by NVM configuration
OP_STANDARD:
0: unknown
1: PMA1
2: PMA4 (low frequency + advertising)
3: Qi 1.0 / Qi 1.1
4: reserved
FORCED flag set + unknown standard means that standard has been detected
but it is forbidden by detection configuration
Table 26: Operation mode detection control register (register address 11h)
b7
b6
b5
b4
b3
b2
b1
b0
-
-
-
-
OP_STANDARD
R/W
0
0
0
0
0
0
0
0
Default
OP_STANDARD:
1: PMA1
2: PMA4 (low frequency + advertising)
3: Qi 1.0 / Qi 1.1
4: reserved
STWLC03
I2C register description
DocID029451 Rev 2
31/56
This register is functional only in combination with “I2C master driven” detection
configuration
Table 27: Qi charge status register (register address 12h)
b7
b6
b5
b4
b3
b2
b1
b0
Qi_CHARGE_PACKET
R/W
1
1
1
1
1
1
1
1
Default
Available in Qi mode only. It contains a value that is sent to the Qi charge status packet.
Values in the range from 0 to 100 provide percentage of the battery capacity. If there is no
need to use the charge status packets, this register should be set to FFh.
Table 28: Charger status register (register address 13h)
b7
b6
b5
b4
b3
b2
b1
b0
CHARGER_STATUS
R/W
x
x
x
x
x
x
x
x
Default
CHARGER_STATUS:
0: off
1: pre-charge
2: fast charge
3: termination counter running
4: battery OVP
Table 29: Charger control register
b7
b6
b5
b4
b3
b2
b1
b0
CHARGER_CONTROL
R/W
Loaded from NVM at startup
Default
CHARGER_CONTROL:
0: disabled
1: enabled
6.1 ADC measured values
Table 30: ADC measured value register map
Address
Register
20-21h
Rectified voltage
22-23h
Rectifier output current
24-25h
Rx coil NTC voltage
26-27h
Output voltage
28-29h
Rectifier internal drop voltage
2A-2Bh
Chip temperature
I2C register description
STWLC03
32/56
DocID029451 Rev 2
Address
Register
2C-2Dh
ADC calibration channel
2E-2Fh
Received power (Qi only)
Table 31: Rectified voltage (VRECT)
Address 20h
Address 21h
b7
b6
b5
b4
b3
b2
b1
b0
b7
b6
b5
b4
b3
b2
b1
b0
-
-
-
-
-
-
VRECT_MEAS[9:0]
Rectified voltage VRECT is sensed on VRECT pin.
VRECT = VRECT_MEAS * VRECT_Div * 1.46 mV.
Nominal VRECT_Div value is 11 but the real value is trimmed for each device to match
internal analog parameters.
Table 32: Rectified output current (IRECT)
Address 22h
Address 23h
b7
b6
b5
b4
b3
b2
b1
b0
b7
b6
b5
b4
b3
b2
b1
b0
-
-
-
-
-
-
LOAD_CURR_MEAS[9:0]
Load current ILD is measured as a voltage drop VLD on the current sensing resistor (RS).
VLD = (LOAD_CURR_MEAS VLD_offset) / VLD_Gain * 1.46 mV.
Nominal VLD_Gain value is 12 but the real value is trimmed for each device to match
internal analog parameters.
Nominal VLD_Offset value is 341 but the real value is trimmed for each device to match
internal analog parameters.
ILD = VLD/RS
Table 33: RX coil NTC voltage
Address 24h
Address 25h
b7
b6
b5
b4
b3
b2
b1
b0
b7
b6
b5
b4
b3
b2
b1
b0
-
-
-
-
-
-
RX_NTC__MEAS[9:0]
NTC voltage VNTC is sensed on NTCRX pin.
VNTC = RX_NTC_MEAS * 1.46 mV.
Voltage to temperature conversion depends on the used NTC and the R1 divider.
Table 34: VOUT voltage
Address 26h
Address 27h
b7
b6
b5
b4
b3
b2
b1
b0
b7
b6
b5
b4
b3
b2
b1
b0
-
-
-
-
-
-
VOUT__MEAS[9:0]
Output voltage VOUT is sensed on VOUT pin
STWLC03
I2C register description
DocID029451 Rev 2
33/56
VOUT = VOUT_MEAS * VOUT_Div * 1.46 mV
Nominal VOUT_Div value is 6 but the real value is trimmed for each device to match
internal analog parameters.
Table 35: VDROP voltage
Address 28h
Address 29h
b7
b6
b5
b4
b3
b2
b1
b0
b7
b6
b5
b4
b3
b2
b1
b0
-
-
-
-
-
-
VDROP__MEAS[9:0]
Rectifier drop voltage VDROP is sensed internally on rectifier power stages.
VDROP = (VDROP_MEAS VDROP_Offset) / VDROP_Gain * 1.46 mV.
Nominal VDROP_Gain value is 6 but the real value is trimmed for each device to match
internal analog parameters.
Nominal VDROP_Offset value is 136 but the real value is trimmed for each device to match
internal analog parameters.
Table 36: Chip temperature
Address 28h
Address 29h
b7
b6
b5
b4
b3
b2
b1
b0
b7
b6
b5
b4
b3
b2
b1
b0
-
-
-
-
-
-
CHIP_TEMP_MEAS[9:0]
Chip temperature TJ measured internally.
TJ = CHIP_TEMP_MEAS * (-0.57) + 430
Table 37: Ground voltage
Address 2Ch
Address 2Dh
b7
b6
b5
b4
b3
b2
b1
b0
b7
b6
b5
b4
b3
b2
b1
b0
-
-
-
-
-
-
GND_MEAS[9:0]
Ground voltage VG is sensed directly on internal ground node.
VG = GND_MEAS * 1.46 mV.
Table 38: RX_POWER
Address 2Eh
Address 2Fh
b7
b6
b5
b4
b3
b2
b1
b0
b7
b6
b5
b4
b3
b2
b1
b0
RX_POWER[15:8]
RX_POWER[7:0]
This value is valid in Qi mode only. It contains the last calculated received power.
RX_POWER[15:8] corresponds to the data sent, the 8-bit received, power packet sent
during communication with Qi transmitter. RX_POWER[7:0] is a fraction of 256.
6.2 Service registers
These registers allow access the NVM and the firmware version number. Registers in
address range 50h-5Fh are used as data buffer for operations with non-volatile memory
(NVM). Register at address 4Fh serves as a command register.
I2C register description
STWLC03
34/56
DocID029451 Rev 2
Table 39: Service register map
Address
Register
40h
Firmware version
4Fh
NVM control
50-5Fh
Data manipulation registers
Table 40: NVM control
b7
b6
b5
b4
b3
b2
b1
b0
NVM_WR
NVM_RD
NVM_SECT[3:0]
R/W
0
0
0
0
0
0
0
0
Default
NVM_WR bit:
0: no action
1: write data into NVM sector (auto-clear)
NVM_RD bit:
0: no action
1: read data from NVM sector (auto-clear)
NVM_SECT contains the address of the sector in the NVM, which should be used for
reading or writing operations.
Data to write must be prepared in data manipulation registers before starting writing
operation into the control register.
Byte 00 of the NVM sector is located in data manipulation register address 50h, byte 01 in
register 51h etc. according to the following table:
Table 41: I2C registers corresponding to bytes in NVM sector
Data
manipulation
register
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F
NVM byte
00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
STWLC03
Non-volatile memory
DocID029451 Rev 2
35/56
7 Non-volatile memory
Non-volatile memory (NVM) contains 2048 bits organized into 16 sectors. The first 15
sectors are available for the firmware. I2C access is through service registers.
7.1 NVM sector maps
Table 42: Non-volatile memory sector map
Sector
Content
00
Trimming and configuration data
01
Trimming and configuration data
02
Trimming and configuration data
03
Trimming and configuration data
04
Platform HW parameters (Resr, Rs, FOD offset)
05
Default values for user registers in Qi mode
06
Reserved for future use
07
Qi identification and configuration packet content (ID, vendor, power class)
08
Reserved for future use
09
Reserved for future use
0A
Reserved for future use
0B
Reserved for future use
0C
Reserved for future use
0D
Termination current, charging parameters
0E
Reserved for future use
Sector 00, 01, 02, 03
These sectors contain trimming and configuration data. Any modification could degrade the
performance of the device.
Sector 04
This sector contains hardware parameters.
Table 43: Map of NVM sector 04
Byte
Parameter
STWLC03 default value
00
Resr
00h
01
01h
02
RxPower offset
DCh
03
05h
04
RS
33h
05
Not used
Non-volatile memory
STWLC03
36/56
DocID029451 Rev 2
Byte
Parameter
STWLC03 default value
06
07
08
09
10
11
12
13
14
15
Table 44: Byte 0
Byte 0
b7
b6
b5
b4
b3
b2
b1
b0
Resr [7:0] (LSB)
Table 45: Byte 1
Byte 1
b7
b6
b5
b4
b3
b2
b1
b0
Resr [15:8] (MSB)
Rx coil resistance. Resr is a 16 bit unsigned valued in Ohm multiplied by 1024. This value
is used when power losses are estimated during RxPower calculation in Qi mode.
Table 46: Byte 2
Byte 2
b7
b6
b5
b4
b3
b2
b1
b0
RxPower offset [7:0] (LSB)
Table 47: Byte 3
Byte 3
b7
b6
b5
b4
b3
b2
b1
b0
RxPower offset [15:8] (MSB)
RxPower offset is a 16-bit signed value that is added to the RxPower calculated in Qi
mode. It tunes the accuracy and compensates potential additional losses in the magnetic
field caused by a presence of other objects such as the PCB or battery.
STWLC03
Non-volatile memory
DocID029451 Rev 2
37/56
Table 48: Byte 4
Byte 4
b7
b6
b5
b4
b3
b2
b1
b0
Rs[7:0]
This parameter represents the value of the current sensing resistor RS in Ohm multiplied by
1024. This value is necessary for RxPower calculation in Qi mode.
Sector 05
This sector contains default register values for Qi mode that are loaded into internal I2C
registers after the startup of the microcontroller.
Table 49: Map of NVM sector 05
Byte
Target I2C register
STWLC03 default value
00
00h
01h
01
01h
0Fh
02
02h
18h
03
03h
00h
04
04h
01h
05
05h
4Eh
06
06h
05h
07
07h
04h
08
08h
04h
09
09h
80h
10
0Ah
00h
11
0Bh
00h
12
Not used
13
14
15
Sector 06
This sector is reserved for future use.
Sector 07
This sector contains data used in identification and configuration packets in Qi mode.
Non-volatile memory
STWLC03
38/56
DocID029451 Rev 2
Table 50: Map of NVM sector 07
Byte
Parameter
STWLC03 default value
00
Manufacturer code MSB
00h
01
Manufacturer code LSB
16h
02
Basic device identifier MSB
01h
03
Basic device identifier
02h
04
Basic device identifier
03h
05
Basic device identifier LSB
04h
06
Extended device identifier MSB
11h
07
Extended device identifier
12h
08
Extended device identifier
13h
09
Extended device identifier
14h
10
Extended device identifier
15h
11
Extended device identifier
16h
12
Extended device identifier
17h
13
Extended device identifier LSB
18h
14
Maximum power
0Ah
15
Unused
00h
Sector 08
This sector contains default register values for PMA mode that are loaded into internal I2C
registers after start-up of the microcontroller.
STWLC03
Non-volatile memory
DocID029451 Rev 2
39/56
Table 51: Map of NVM sector 08
Byte
Target I2C register
STWLC03 default value
00
00h
01h
01
01h
19h
02
02h
1Dh
03
03h
01h
04
04h
0Ah
05
05h
C3h
06
06h
09h
07
07h
04h
08
08h
0Dh
09
09h
7Ah
10
0Ah
00h
11
0Bh
00h
12
Not used
13
Not used
14
Not used
15
Not used
Sector 09
This sector is reserved for future use.
Sector 10
This sector contains PMA RXID and its CRC.
Non-volatile memory
STWLC03
40/56
DocID029451 Rev 2
Table 52: Map of NVM sector 10
Byte
Parameter
Default value
00
Preamble
00h
01
Message ID
AAh
02
Certification version
10h
03
RXID LSB
00h
04
RXID
00h
05
RXID
00h
06
RXID
25h
07
RXID
50h
08
RXID MSB
02h
09
CRC LSB
63h
10
CRC MSB
25h
11
Not used
00h
12
Not used
00h
13
Not used
00h
14
Not used
00h
15
Not used
00h
Sector 11, 12
These sectors are reserved for future use.
Sector 13
Charging parameters are stored in this sector.
STWLC03
Non-volatile memory
DocID029451 Rev 2
41/56
Table 53: Map of NVM sector 13
Byte
STWLC03 default value
00
26h
01
24h
02
03h
03
4Ch
04
CCh
05
Not used
06
Not used
07
Not used
08
4Dh
09
24h
10
03h
11
4Ch
12
CCh
13
Not used
14
Not used
15
Not used
Table 54: Byte 0 Qi_EPT_threshold [7:0]
Byte 0
b7
b6
b5
b4
b3
b2
b1
b0
Qi_EPT_threshold [7:0]
It sets the threshold for charging termination. Current has not be sensed on the output but
on RS sensing resistor.
Qi_EPT_threshold is directly compared with (LOAD_CURR_MEAS/2).
This parameter is active both in fixed output voltage mode and in charger mode.
Table 55: Byte 1, Qi_EPT_Time [7:0]
Byte 1
b7
b6
b5
b4
b3
b2
b1
b0
Qi_EPT_Time [7:0]
Qi_EPT_Time is end-of-power transfer deglitch time in minutes. If the charging current is
permanently lower than Qi_EPT_threshold for more than Qi_EPT_Time, the end-of-power
transfer packet is sent to the transmitter.
Non-volatile memory
STWLC03
42/56
DocID029451 Rev 2
This parameter is active both in fixed output voltage mode and in charger mode.
Table 56: Byte 2, Qi charger enable
Byte 2
b7
b6
b5
b4
b3
b2
b1
b0
Qi charger enable
-
-
-
-
Qi target voltage [2:0]
Qi charger enable bit:
0: charging algorithm is not active after startup
1: charging algorithm is active after startup
Table 57: Qi target voltage
Qi target voltage
Charging voltage [V]
0
3.3
1
3.6
2
4.1
3
4.2
4
5.0
Table 58: Byte 3, Q1_Precharge_Battery_overvoltage
Byte 3
b7
b6
b5
b4
b3
b2
b1
b0
Qi_Precharge_voltage [1:0]
Qi_Battery_overvoltage [5:0]
Qi_Precharge_voltage:
00b: 2.5 V
01b: 2.7 V
10b: 2.9 V
11b: 3.1 V
Battery OVP threshold = (3.3 V + Qi_Battery_overvoltage * 100 mV) / 1024 * 1000
Table 59: Byte 4, Q1_Precharge and Fastcharge
Byte 4
b7
b6
b5
b4
b3
b2
b1
b0
Qi_Precharge_current [1:0]
Qi_Fastcharge_current [5:0]
Qi_Precharge_current
00b: 2.5 mV / RS (50 mA @ 50 mΩ RS)
01b: 5 mV / RS (100 mA @ 50 mΩ RS)
10b: 7.5 mV / RS (150 mA @ 50 mΩ RS)
STWLC03
Non-volatile memory
DocID029451 Rev 2
43/56
11b: 10 mV / RS (200 mA @ 50 mΩ RS)
Qi Fastcharge current = (Qi_Fastcharge_current * 2.5 mV + 5 mV) / RS
Table 60: Byte 8, PMA_EOC_theshold [7:0]
Byte 8
b7
b6
b5
b4
b3
b2
b1
b0
PMA_EOC_theshold [7:0]
It sets the threshold for charging termination. Current has not be sensed on the output but
on RS sensing resistor.
PMA_EOC_threshold is directly compared with (LOAD_CURR_MEAS / 2).
This parameter is active both in fixed output voltage mode and in charger mode.
Table 61: Byte 9, PMA_EOC_Time [7:0]
Byte 9
b7
b6
b5
b4
b3
b2
b1
b0
PMA_EOC_Time [7:0]
PMA_EOC_Time is end-of-power transfer deglitch time in minutes. If the charging current
is permanently lower than PMA_EOC_theshold for more PMA_EOC_Time, the end-of-
charging signal is sent to the transmitter.
This parameter is active both in fixed output voltage mode and in charger mode.
Table 62: Byte 10, PMA_Target_Voltage [2:0]
Byte 10
b7
b6
b5
b4
b3
b2
b1
b0
PMA charger enable
-
-
-
-
PMA_ Target_Voltage [2:0]
PMA charger enable bit:
0: charging algorithm is not active after startup
1: charging algorithm is active after startup
Non-volatile memory
STWLC03
44/56
DocID029451 Rev 2
Table 63: PMA target voltage vs charging voltage
PMA target voltage
Charging voltage
0
3.3
1
3.6
2
4.1
3
4.2
4
5.0
5
5.5
6
6.0
7
7.0
Table 64: Byte 11
Byte 11
b7
b6
b5
b4
b3
b2
b1
b0
PMA_Precharge_ voltage[1:0]
-
-
-
PMA_ Battery_overvoltage [5:0]
PMA_Precharge_voltage:
00b: 2.5 V
01b: 2.7 V
10b: 2.9 V
11b: 3.1 V
Bat OVP threshold = (3.3 V + PMA_Battery_overvoltage * 100 mV) / 1024 * 1000
Table 65: Byte 12
Byte 12
b7
b6
b5
b4
b3
b2
b1
b0
PMA_Precharge_ current[1:0]
PMA_ Fastcharge_current [5:0]
PMA_Precharge_current:
00b: 2.5 mV / RS (50 mA @ 50 mΩ RS)
01b: 5 mV / RS (100 mA @ 50 mΩ RS)
10b: 7.5 mV / RS (150 mA @ 50 mΩ RS)
11b: 10 mV / RS (200 mA @ 50 mΩ RS)
PMA Fastcharge current = PMA_Fastcharge_current * 2.5 mV + 5 mV
Sector 14
This sector is reserved for future use.
STWLC03
Application information
DocID029451 Rev 2
45/56
8 Application information
8.1 Application schematic and recommended external
components
Figure 10: STWLC03 application schematic
RM is an optional component and it is not needed for a typical application. If
VEXT detection is disabled, C8 and TRSWDRV are optional.
Application information
STWLC03
46/56
DocID029451 Rev 2
Figure 11: STWLC03 charger configuration
Before connecting the battery, the STWLC03 has to be configured as a battery
charger in NVM.
Table 66: STWLC03 recommended external components
Component
Manufacturer
Part Number
Value
Size
L1
Wurth
760308103215
14.3 uH
48x32x1 mm
TDK
760308103202
12 μH
48x32x1 mm
L2
TOKO
DFE252012F-1R5
1.5 μH/3.8 A
2.5x2.0x1.2
mm
CYNTEC
PILE25201D-2R2MS-11
2.2 μH/3.1 A
2.5x2.0x1.4
mm
PIME041B-2R2MS-11
2.2 μH/4.3 A
4.4x4.2x1 mm
TDK
SPM3010T-1R0
1 μH/4.5 A
3x3.2x1mm
TFM1R0GHM
1 μH
2x1.6x1 mm
C1
MURATA
3x GRM188R72A104KA35
100 nF/X7R
0603
C2
MURATA
GRM155R71H332KA01
3.3 nF/C0G
0603
C3
MURATA
2x GRM188R61C106KAAL
10 μF/16 V
0603
TDK
2x C1608X5R1C106M
10 μF/16 V
0603
C4
MURATA
GRM188R61C106KAAL
10 μF/16 V
0603
CBOOT1,
CBOOT2,
CBOOT
MURATA
GRM155R61H473KE14
47 nF/50 V
0402
C5
MURATA
2x GRM188R61C106KAAL
10 µF/16 V
0603
STWLC03
Application information
DocID029451 Rev 2
47/56
Component
Manufacturer
Part Number
Value
Size
C6, C7
MURATA
GRM155R61A105KE15
1 µF/10 V
0402
CM1
MURATA
GRM155R71H563KE14
56 nF/50 V
0402
CM2
MURATA
GRM155R71H393KE14
39 nF/50 V
0402
RCL1, RCL2
PANASONIC
ERJ-PA2J150V
15R
0603
RM (optional)
12 Ω
0603
CFB
MURATA
GRM1555C1H150GA01
15 pF
0402
RS
PANASONIC
ERJ-L03KF50MV
0.05 Ω/1%
0603
R1
51 kΩ
0402
RFB1
TE-
CONNECTIVITY
CPF0402B160KE
160 kΩ
0402
RFB2
PANASONIC
ERA-2AEB3322X
33.2 kΩ
0402
RNTC
MURATA
100 kΩ
0402
CCHG (filter)
MURATA
4x GRM188R61C106KAAL
10 μF/16 V
0603
DCHG (filter)
STMICROELECT
RONICS
STPS3L45AF
3 A/45 V
SMA flat
C8
MURATA
GRM155R61E225KE11
2.2 µF/25 V
0402
TRSWDRW
FAIRCHILD
FDMA1027P
20 V/3 A dual
P-channel FET
2x2x0.8 mm
C10
TDK
GRM155R6YA474KE01
470 nF/35 V
0402
C11
TDK
GRM155R61H104KE19D
100 nF/50 V
0402
Application information
STWLC03
48/56
DocID029451 Rev 2
Figure 12: VIO and digital interface in standalone application schematic
Figure 13: VIO and digital interface in platform application schematic
STWLC03
Application information
DocID029451 Rev 2
49/56
8.2 External passive component selection
8.2.1 Input resonant circuit component selection (L1, C1, C2)
The selected RX coil should be optimized by the requested transferred power. The
inductance of the coil together with C1 and C2 capacitors create an input resonant circuit.
Components have to be carefully selected both to keep the resonant frequency compliant
with the wireless standard specification and to deliver the power. For more details please
see wireless standard specifications.
The following equations show the resonant frequencies, where L1’ is self-inductance of L1
placed on the transmitter:
Equation 1:
󰆒
Equation 2:
󰇡
󰇢
It is recommended to use high grade ceramic capacitors with C0G dielectrics type. X5R,
X7R capacitors can be used for 5 W output power applications.
8.2.2 Voltage clamp resistor selection (RCL1, RCL2)
The purpose of these resistors is to load the rectifier output by decreasing the rectified
voltage below overvoltage threshold hysteresis (VOVP-VOVPHYST), when VOVP is reached.
0.2 W resistors with pulse withstanding character are recommended for this application.
8.2.3 Load modulation capacitors selection (CM1, CM2)
These capacitors fulfill the backscatter modulation of the communication from the receiver
to the transmitter. X5R dielectrics type capacitors are suitable for this purpose. Higher
values of these capacitors help to comply to PMA standard, but increase the ripple in the
system.
8.2.4 Feedback resistor divider components selection (RFB1, RFB2)
Feedback voltage divider gives the ratio between the desired step-down converter output
voltage and the given feedback reference voltage. The RFB1 and RFB2 resistors should be
0.1% or 0.5% tolerance class.
8.2.5 Rx NTC circuit component selection (RNTC, R1)
To protect the receiver coil from overtemperature, the STWLC03 is equipped with a
comparator input. If the input voltage crosses certain level (see Table 4: "Thermal data"),
the STWLC03 can react by terminating the power transfer and sending an interrupt to the
host system depending on the configuration. The input voltage given as a ratio from RNTC
thermistor and R1 common resistor divider. The divider can be supplied from LDO1 (VA
pin) filtering capacitor.
Application information
STWLC03
50/56
DocID029451 Rev 2
8.2.6 Soft-start capacitor selection (C10)
The soft-start capacitor C10 connected to COMP pin influences the ramp-up time of the
step-down converter. The nominal VREF voltage is 1.2 V and the time needed to reach the
nominal voltage is given by the following equation:
Equation 3:  󰇟󰇠
Example: 470 nF ~ 560 ms
8.2.7 External supply transistor selection
The device contains the function of the connection external voltage supply directly to VOUT
by the external dual P-channel transistor back-to-back connected so to avoid the leakage
from VOUT to the external voltage supply.
STWLC03
Application information
DocID029451 Rev 2
51/56
8.3 Reference PCB layout
Figure 14: Top overlay
Figure 15: Top layer
Figure 16: Mid layer 1
Figure 17: Mid layer 2
Application information
STWLC03
52/56
DocID029451 Rev 2
Figure 18: Bottom layer
STWLC03
Package information
DocID029451 Rev 2
53/56
9 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
9.1 Flip Chip 77 bumps (3.12x4.73 mm) package information
Figure 19: Flip Chip 77 bumps (3.12x4.73 mm) package outline
Package information
STWLC03
54/56
DocID029451 Rev 2
Table 67: Flip Chip 77 bumps (3.12x4.73 mm) package mechanical data
Dim.
mm
Min.
Typ.
Max.
A
0.50
0.55
0.60
A1
0.17
0.20
0.23
A2
0.28
0.30
0.32
b
0.23
0.26
0.29
D
4.67
4.70
4.73
D1
4.00
E
3.06
3.09
3.12
E1
2.40
e
0.40
SD
0.20
SE
0.20
fD
0.352
fE
0.346
$
0.05
ccc
0.075
The terminal A1 on the bump side is identified by a distinguishing feature (for
instance by a circular "clear area", typically 0.1 mm diameter) and/or a missing
bump. The terminal A1 on the backside of the product is identified by a
distinguishing feature (for instance by a circular "clear area", typically between 0.1
and 0.5 mm diameter, depending on the die size).
Figure 20: Flip Chip 77 bumps (3.12x4.73 mm) recommended footprint
STWLC03
Revision history
DocID029451 Rev 2
55/56
10 Revision history
Table 68: Document revision history
Date
Revision
Changes
09-Nov-2016
1
Initial release.
14-Mar-2017
2
Updated Section 8.2.1: "Input resonant circuit component selection
(L1, C1, C2)".
STWLC03
56/56
DocID029451 Rev 2
IMPORTANT NOTICE PLEASE READ CAREFULLY
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on ST
products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or the
design of Purchasers’ products.
No license, express or implied, to any intellectual property right is granted by ST herein.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.
© 2017 STMicroelectronics All rights reserved