ST3020 Power Rectifier S15Q0100 A ~| Dim. Inches Millimeter {oT Minimum Maximum Minimum Maximum Notes B | | 1) Baseplate i c | A=Common Anode A .875 22.23 Dia. | B .250 .450 6.35 11.43 | Cc 312 7.92 D D .038 043 97 1.09 Dia. H E 1.177 1.197 29.90 30.40 F .655 .675 16.64 17.15 Baseplate G 420 440 10.67 11.18 Common Cathode H 525 13.34 Rad. J 151 161 3.84 4.09 Dia. >| > K .205 .225 5.21 5.72 L _ 135 3.43 Baseplate M 188 4.78 Rad. D=Doubler TO204AA (TO-3) Microsemi Peak e Glass Passivated Die Catalog Number Reverse Voltage . ST3020* 00V e Glass to metal seal construction ST3040* 400V eVRRM 200 to 1000V Spor oy e 250A Surge Rating T30100* 1000V e Available as Common Anode, *Add D, C, or A Common Cathode, or Doubler Electrical Characteristics Average forward current per leg (standard) Average forward current per leg Maximum surge current Max |2 t for fusing Max peak forward voltage Max peak reverse current Max peak reverse current Max Recommended Operating Frequency reverse) IECAY 15 Amps TC = 125C, half sine wave,, Rac = 1.4C/W 15 Amps TC = 82C, half sine wave, RaJC = 2.2C/W iy 250 Amps 8.3ms, half sine, Ty = 200C 12t 260 A2s VFM 1.2 Volts IFM = 15A: J = 25C* RM 10 MA VRRM, lJ = 25C IRM 1.0 mA VRRM,TJ = 150C 10kHz *Pulse test: Pulse width 300 usec. Duty cycle 2% Thermal and Mechanical Characteristics Storage temperature range Operating junction temp range Maximum thermal resistance (standard polarity) Maximum thermal resistance (reverse polarity) Typical thermal resistance (greased) Weight TsT TJ Rac Rac Recs 65C to 200C -65C to 200C 1.4C/W Junction to Case 2.2C/W Junction to Case 0.5C/W Case to sink 1.0 ounces (28 grams) typical Micr COLORADO rosemi 800 Hoyt Street Broomfield, CO. 80020 PH: (303) 469-2161 FAX: (303) 466-3775 www.microsemi.com 12-6-00 Rev. 1 Instantaneous Forward Current Amperes ST S020 Figure 1 Typical Forward Charateristics Per Leg 1000 800 600 400 200 100 80 60 No Oo > > GC = o0o Oo OP ed oO Oo 0 .2 6 1.0 Instantaneous Forward Voltage Volts Figure 2 Typical Reverse Characteristics Per Leg Typical Reverse Current mA 10 01 -001 .0001125%C 0 200 400 Reverse Voltage Volts 1.8 600 2.2 800 2.6 1000 ST 507100 Figure 3 Forward Current Derating Per Leg Standard Polarity & 200 WN 170 WS SIN NA 165 y = oo on V/ L 1 y LIA L IN N NEN 150 Maximum Allowable Case Temperature 135 \ NI 120 105 GOPC] 1poC 180C Dq 0 5 10 15 20 25 Average Forward Current Amperes Figure 4 Maximum Forward Power Dissipation Per Leg Standard Polari 70 60 DC toe 80 f 50 o ri AZ| Ae Maximum Power Dissipation Watts 40 / 7 5 NIA NV ee 10 Go| 0 5 10 15 20 25 Average Forward Current Amperes Figure 5 Forward Current Derating Per Leg Reverse Polarity 200 = 180 NS p WQS z 160 AAS rn AAT OK 8 140 \ XN N s 120) \ \ DN = = 100 N S 5 80 \ E s 60 60%] 120C 180C Dd 0 5 10 15 20 25 Average Forward Current Amperes 12-6-00_ Rev. 1 Junction to Case ST S020 Figure 6 Maximum Forward Power Dissipation Per Leg Reverse Polarity 2 70 So = 60 ! 180 y oC c 120 y S g 90 a} f J 7 2 L\AAL lA B 4 lV 7 2 59 / AL HZ o = 20 LAA 5 We 10 i Pad oS = 0 5 10 15 20 25 Average Forward Current Amperes Figure 7 Transient Thermal Impedance Per Leg Standard Polarity 1.4 = 2 TT 3S 1.2 a oS = Y ~ 1.0 4 | 3 / 8 y S | Ss 6 a. E 4 LZ V4 E 2 La o Lt 0 .001 .01 0.1 1.0 10 100 Time in Seconds ST 507100 Figure 8 Transient Thermal Impedance Per Leg Reverse Polarity 2.8 N ~ ht \ = an oo YH i va Thermal Impedance C/Watts iS N Junction to Case 0 a 001 .01 0.1 1.0 10 Time in Seconds 100 Figure 9 Maximum Nonrepetitive Surge Current Per Leg 260 230 \ 200 \ \ 170 N\ 140 N 110 80 Peak Forward Current Amperes 50 1 10 100 Time in Cycles 12-6-00_ Rev. 1