Datasheet
www.renesas.com
S3A6 Microcontroller Group
Datasheet
Renesas Synergy™ Platform
Synergy Microcontrollers
S3 Series
Jun 2018Rev.1.10
All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).
Cover
R01DS0308EU0110 Rev.1.10 Page 2 of 130
Jun 25, 2018
Features
■ Arm Cortex-M4 Core with Floating Point Unit (FPU)
Armv7E-M architecture with DSP instruction set
Maximum operating frequency: 48 MHz
Support for 4-GB address space
Arm Memory Protection Unit (Arm MPU) with 8 regions
Debug and Trace: ITM, DWT, FPB, TPIU, ETB
CoreSight™ Debug Port: JTAG-DP and SW-DP
■ Memory
256-KB code flash memory
8-KB data flash memory (100,000 program/erase (P/E) cycles)
32-KB SRAM
Flash Cache (FCACHE)
Memory Protection Unit (MPU)
128-bit unique ID
■ Connectivity
USB 2.0 Full-Speed Module (USBFS)
- On-chip transceiver with voltage regulator
- Compliant with USB Battery Charging Specification 1.2
Serial Communications Interface (SCI) × 4
- UART
- Simple IIC
- Simple SPI
Serial Peripheral Interface (SPI) × 2
I2C bus interface (IIC) × 2
Controller Area Network (CAN) module
Serial Sound Interface Enhanced (SSIE)
■ Analog
14-bit A/D Converter (ADC14)
12-bit D/A Converter (DAC12)
8-bit D/A Converter (DAC8) ×2 (for ACMPLP)
Low-Power Analog Comparator (ACMPLP) × 2
Operational Amplifier (OPAMP) × 4
Temperature Sensor (TSN)
■ Timers
General PWM Timer 32-Bit (GPT32) × 2
General PWM Timer 16-Bit (GPT16) × 6
Asynchronous General-Purpose Timer (AGT) × 2
Watchdog Timer (WDT)
■ Safety
Error Correction Code (ECC) in SRAM
SRAM parity error check
Flash area protection
ADC self-diagnosis function
Clock Frequency Accuracy Measurement Circuit (CAC)
Cyclic Redundancy Check (CRC) calculator
Data Operation Circuit (DOC)
Port Output Enable for GPT (POEG)
Independent Watchdog Timer (IWDT)
GPIO readback level detection
Register write protection
Main oscillator stop detection
Illegal memory access
■ System and Power Management
Low power modes
Realtime Clock (RTC) with calendar and Battery Backup support
Event Link Controller (ELC)
DMA Controller (DMAC) × 4
Data Transfer Controller (DTC)
Key Interrupt Function (KINT)
Power-on reset
Low Voltage Detection (LVD) with voltage settings
■ Security and Encryption
AES128/256
GHASH
True Random Number Generator (TRNG)
■ Human Machine Interface (HMI)
Segment LCD Controller (SLCDC)
- Up to 38 segments × 4 commons
- Up to 34 segments × 8 commons
Capacitive Touch Sensing Unit (CTSU)
■ Multiple Clock Sources
Main clock oscillator (MOSC)
(1 to 20 MHz when VCC = 2.4 to 5.5 V)
(1 to 8 MHz when VCC = 1.8 to 2.4 V)
(1 to 4 MHz when VCC = 1.6 to 1.8 V)
Sub-clock oscillator (SOSC) (32.768 kHz)
High-speed on-chip oscillator (HOCO)
(24, 32, 48, 64 MHz when VCC = 2.4 to 5.5 V)
(24, 32, 48 MHz when VCC = 1.8 to 5.5 V)
(24, 32 MHz when VCC = 1.6 to 5.5 V)
Middle-speed on-chip oscillator (MOCO) (8 MHz)
Low-speed on-chip oscillator (LOCO) (32.768 kHz)
IWDT-dedicated on-chip oscillator (15 kHz)
Clock trim function for HOCO/MOCO/LOCO
Clock out support
■ General Purpose I/O Ports
Up to 84 input/output pins
- Up to 3 CMOS input
- Up to 81 CMOS input/output
- Up to 9 input/output 5-V tolerant
- Up to 2 high current (20 mA)
■ Operating Voltage
VCC: 1.6 to 5.5 V
■ Operating Temperature and Packages
Ta = -40°C to +85°C
- 100-pin LGA (7 mm × 7 mm, 0.65 mm pitch)
Ta = -40°C to +105°C
- 100-pin LQFP (14 mm × 14 mm, 0.5 mm pitch)
- 64-pin LQFP (10 mm × 10 mm, 0.5 mm pitch)
- 64-pin QFN (8 mm × 8 mm, 0.4 mm pitch)
- 48-pin LQFP (7 mm × 7 mm, 0.5 mm pitch)
- 48-pin QFN (7 mm × 7 mm, 0.5 mm pitch)
- 40-pin QFN (6 mm × 6 mm, 0.5 mm pitch)
High efficiency 48-MHz Arm® Cortex®-M4 core, 256-KB code flash memory, 32-KB SRAM, Segment LCD Controller,
Capacitive Touch Sensing Unit, USB 2.0 Full-Speed Module, 14-bit A/D Converter, 12-bit D/A Converter, security and
safety features
S3A6 Microcontroller Group
Datasheet
Features
R01DS0308EU0110 Rev.1.10 Page 3 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
1. Overview
The MCU integrates multiple series of software- and pin-compatible Arm®-based 32-bit cores that share a common set
of Renesas peripherals to facilitate design scalability and efficient platform-based product development.
The MCU provides an optimal combination of low-power, high-performance Arm Cortex®-M4 core running up to
48 MHz with the following features:
256-KB code flash memory
32-KB SRAM
Segment LCD Controller (SLCDC)
Capacitive Touch Sensing Unit (CTSU)
USB 2.0 Full-Speed Module (USBFS)
14-bit A/D Converter (ADC14)
12-bit D/A Converter (DAC12)
Security features.
1.1 Function Outline
Table 1.1 Arm core
Feature Functional description
Arm Cortex-M4 core Maximum operating frequency: up to 48 MHz
Arm Cortex-M4 core
- Revision: r0p1-01rel0
- Armv7E-M architecture profile
- Single precision floating-point unit compliant with the ANSI/IEEE Std 754-2008.
Arm Memory Protection Unit (Arm MPU)
- Armv7 Protected Memory System Architecture
- 8 protected regions.
SysTick timer
- Driven by SYSTICCLK (LOCO) or ICLK.
Table 1.2 Memory
Feature Functional description
Code flash memory Maximum 256-KB code flash memory. See section 44, Flash Memory in User’s Manual.
Data flash memory 8-KB data flash memory. See section 44, Flash Memory in User’s Manual.
Option-setting memory The option-setting memory determines the state of the MCU after a reset. See section 6,
Option-Setting Memory in User’s Manual.
SRAM On-chip high-speed SRAM with either parity bit or Error Correction Code (ECC). An area in
SRAM0 provides error correction capability using ECC. See section 43, SRAM in User’s
Manual.
R01DS0308EU0110 Rev.1.10 Page 4 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
Table 1.3 System (1 of 2)
Feature Functional description
Operating modes Two operating modes:
Single-chip mode
SCI/USB boot mode.
See section 3, Operating Modes in User’s Manual.
Resets 14 resets:
RES pin reset
Power-on reset
VBATT-selected voltage power-on reset
Independent watchdog timer reset
Watchdog timer reset
Voltage monitor 0 reset
Voltage monitor 1 reset
Voltage monitor 2 reset
SRAM parity error reset
SRAM ECC error reset
Bus master MPU error reset
Bus slave MPU error reset
CPU stack pointer error reset
Software reset.
See section 5, Resets in User’s Manual.
Low Voltage Detection (LVD) Low Voltage Detection (LVD) function monitors the voltage level input to the VCC pin, and the
detection level can be selected using a software program. See section 7, Low Voltage
Detection (LVD) in User’s Manual.
Clocks Main clock oscillator (MOSC)
Sub-clock oscillator (SOSC)
High-speed on-chip oscillator (HOCO)
Middle-speed on-chip oscillator (MOCO)
Low-speed on-chip oscillator (LOCO)
PLL frequency synthesizer
IWDT-dedicated on-chip oscillator
Clock out support.
See section 8, Clock Generation Circuit in User’s Manual.
Clock Frequency Accuracy
Measurement Circuit (CAC)
The Clock Frequency Accuracy Measurement Circuit (CAC) counts pulses of the clock to be
measured (measurement target clock) within the time generated by the clock to be used as a
measurement reference (measurement reference clock), and determines the accuracy
depending on whether the number of pulses is within the allowable range.
When measurement is complete or the number of pulses within the time generated by the
measurement reference clock is not within the allowable range, an interrupt request is
generated.
See section 9, Clock Frequency Accuracy Measurement Circuit (CAC) in User’s Manual.
Interrupt Controller Unit (ICU) The Interrupt Controller Unit (ICU) controls which event signals are linked to the NVIC/DTC
module and DMAC module. The ICU also controls NMI interrupts. See section 13, Interrupt
Controller Unit (ICU) in User’s Manual.
Key Interrupt Function (KINT) A key interrupt can be generated by setting the Key Return Mode Register (KRM) and inputting
a rising or falling edge to the key interrupt input pins. See section 20, Key Interrupt Function
(KINT) in User’s Manual.
Low power modes Power consumption can be reduced in multiple ways, such as by setting clock dividers,
stopping modules, selecting power control mode in normal operation, and transitioning to low
power modes. See section 10, Low Power Modes in User’s Manual.
Battery backup function A battery backup function is provided for partial powering by a battery. The battery powered
area includes RTC, SOSC, LOCO, wakeup control, backup memory, VBATT_R low voltage
detection, and switches between VCC and VBATT.
During normal operation, the battery powered area is powered by the main power supply,
which is the VCC pin. When a VCC voltage drop is detected, the power source is switched to
the dedicated battery backup power pin, the VBATT pin.
When the voltage rises again, the power source is switched from the VBATT pin to the VCC
pin. See section 11, Battery Backup Function in User’s Manual.
Register write protection The register write protection function protects important registers from being overwritten
because of software errors. See section 12, Register Write Protection in User’s Manual.
R01DS0308EU0110 Rev.1.10 Page 5 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
Memory Protection Unit (MPU) Four Memory Protection Units (MPUs) and a CPU stack pointer monitor function are provided
for memory protection. See section 15, Memory Protection Unit (MPU) in User’s Manual.
Watchdog Timer (WDT) The Watchdog Timer (WDT) is a 14-bit down-counter. It can be used to reset the MCU when
the counter underflows because the system has run out of control and is unable to refresh the
WDT. In addition, a non-maskable interrupt or interrupt can be generated by an underflow. A
refresh-permitted period can be set to refresh the counter and used as the condition to detect
when the system runs out of control. See section 25, Watchdog Timer (WDT) in User’s
Manual.
Independent Watchdog Timer (IWDT) The Independent Watchdog Timer (IWDT) consists of a 14-bit down-counter that must be
serviced periodically to prevent counter underflow. It can be used to reset the MCU or to
generate a non-maskable interrupt/interrupt for a timer underflow. Because the timer operates
with an independent, dedicated clock source, it is particularly useful in returning the MCU to a
known state as a fail-safe mechanism when the system runs out of control. The IWDT can be
triggered automatically on a reset, underflow, refresh error, or by a refresh of the count value in
the registers. See section 26, Independent Watchdog Timer (IWDT) in User’s Manual.
Table 1.4 Event link
Feature Functional description
Event Link Controller (ELC) The Event Link Controller (ELC) uses the interrupt requests generated by various peripheral
modules as event signals to connect them to different modules, enabling direct interaction
between the modules without CPU intervention. See section 18, Event Link Controller (ELC) in
User’s Manual.
Table 1.5 Direct memory access
Feature Functional description
Data Transfer Controller (DTC) A Data Transfer Controller (DTC) module is provided for transferring data when activated by an
interrupt request. See section 17, Data Transfer Controller (DTC) in User’s Manual.
DMA Controller (DMAC) A 4-channel DMA Controller (DMAC) module is provided for transferring data without the CPU.
When a DMA transfer request is generated, the DMAC transfers data stored at the transfer
source address to the transfer destination address. See section 16, DMA Controller (DMAC) in
User’s Manual.
Table 1.3 System (2 of 2)
Feature Functional description
R01DS0308EU0110 Rev.1.10 Page 6 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
Table 1.6 Timers
Feature Functional description
General PWM Timer (GPT) The General PWM Timer (GPT) is a 32-bit timer with 2 channels and a 16-bit timer with 6
channels. PWM waveforms can be generated by controlling the up-counter, down-counter, or
the up- and down-counter. In addition, PWM waveforms can be generated for controlling
brushless DC motors. The GPT can also be used as a general-purpose timer. See section 22,
General PWM Timer (GPT) in User’s Manual.
Port Output Enable for GPT (POEG) Use the Port Output Enable for GPT (POEG) function to place the General PWM Timer (GPT)
output pins in the output disable state. See section 21, Port Output Enable for GPT (POEG) in
User’s Manual.
Asynchronous General Purpose
Timer (AGT)
The Asynchronous General Purpose Timer (AGT) is a 16-bit timer that can be used for pulse
output, external pulse width or period measurement, and counting of external events.
This 16-bit timer consists of a reload register and a down-counter. The reload register and the
down-counter are allocated to the same address, and they can be accessed with the AGT
register. See section 23, Asynchronous General Purpose Timer (AGT) in User’s Manual.
Realtime Clock (RTC) The Realtime Clock (RTC) has two counting modes, calendar count mode and binary count
mode, that are controlled by the register settings.
For calendar count mode, the RTC has a 100-year calendar from 2000 to 2099 and
automatically adjusts dates for leap years.
For binary count mode, the RTC counts seconds and retains the information as a serial value.
Binary count mode can be used for calendars other than the Gregorian (Western) calendar.
See section 24, Realtime Clock (RTC) in User’s Manual.
Table 1.7 Communication interfaces (1 of 2)
Feature Functional description
Serial Communications Interface
(SCI)
The Serial Communications Interface (SCI) is configurable to five asynchronous and
synchronous serial interfaces:
Asynchronous interfaces (UART and asynchronous communications interface adapter
(ACIA))
8-bit clock synchronous interface
Simple IIC (master-only)
Simple SPI
Smart card interface.
The smart card interface complies with the ISO/IEC 7816-3 standard for electronic signals and
transmission protocol.
SCI0 and SCI1 have FIFO buffers to enable continuous and full-duplex communication, and
the data transfer speed can be configured independently using an on-chip baud rate generator.
See section 28, Serial Communications Interface (SCI) in User’s Manual.
I2C Bus Interface (IIC) The 3-channel I2C Bus Interface (IIC) module conforms with and provides a subset of the NXP
I2C bus (Inter-Integrated Circuit bus) interface functions. See section 29, I2C Bus Interface
(IIC) in User’s Manual.
Serial Peripheral Interface (SPI) Two independent Serial Peripheral Interface (SPI) channels are capable of high-speed, full-
duplex synchronous serial communications with multiple processors and peripheral devices.
See section 31, Serial Peripheral Interface (SPI) in User’s Manual.
Serial Sound Interface Enhanced
(SSIE)
The Serial Sound Interface Enhanced (SSIE) peripheral provides functionality to interface with
digital audio devices for transmitting PCM audio data over a serial bus with the MCU. The
SSIE supports an audio clock frequency of up to 50 MHz, and can be operated as a slave or
master receiver, transmitter, or transceiver to suit various applications. The SSIE includes 8-
stage FIFO buffers in the receiver and transmitter, and supports interrupts and DMA-driven
data reception and transmission. See section 33, Serial Sound Interface Enhanced (SSIE) in
User’s Manual.
Controller Area Network (CAN)
module
The Controller Area Network (CAN) module provides functionality to receive and transmit data
using a message-based protocol between multiple slaves and masters in electromagnetically
noisy applications.
The CAN module complies with the ISO 11898-1 (CAN 2.0A/CAN 2.0B) standard and supports
up to 32 mailboxes, which can be configured for transmission or reception in normal mailbox
and FIFO modes. Both standard (11-bit) and extended (29-bit) messaging formats are
supported. See section 30, Controller Area Network (CAN) Module in User’s Manual.
R01DS0308EU0110 Rev.1.10 Page 7 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
USB 2.0 Full-Speed Module (USBFS) The USB 2.0 Full-Speed Module (USBFS) can operate as a host controller or device controller.
The module supports full-speed and low-speed (only for the host controller) transfer as defined
in the Universal Serial Bus Specification 2.0. The module has an internal USB transceiver and
supports all of the transfer types defined in the Universal Serial Bus Specification 2.0. The USB
has buffer memory for data transfer, providing a maximum of 10 pipes. Pipes 1 to 9 can be
assigned any endpoint number based on the peripheral devices used for communication or
based on the user system. The MCU supports revision 1.2 of the Battery Charging
specification. Because the MCU can be powered at 5 V, the USB LDO regulator provides the
internal USB transceiver power supply at 3.3 V. See section 27, USB 2.0 Full-Speed Module
(USBFS) in User’s Manual.
Table 1.8 Analog
Feature Functional description
14-bit A/D Converter (ADC14) A 14-bit successive approximation A/D converter is provided. Up to 25 analog input channels
are selectable. Temperature sensor output and internal reference voltage are selectable for
conversion. The A/D conversion accuracy is selectable from 12-bit and 14-bit conversion
making it possible to optimize the tradeoff between speed and resolution in generating a digital
value. See section 35, 14-Bit A/D Converter (ADC14) in User’s Manual.
12-Bit D/A Converter (DAC12) The 12-Bit D/A Converter (DAC12) converts data and includes an output amplifier. See section
36, 12-Bit D/A Converter (DAC12) in User’s Manual.
8-Bit D/A Converter (DAC8)
for ACMPLP
The 8-Bit D/A Converter (DAC8) converts data and does not include an output amplifier
(DAC8). The DAC8 is used only as the reference voltage for ACMPLP. See section 40, 8-Bit D/
A Converter (DAC8) in User’s Manual.
Temperature Sensor (TSN) The on-chip Temperature Sensor (TSN) determines and monitors the die temperature for
reliable operation of the device. The sensor outputs a voltage directly proportional to the die
temperature, and the relationship between the die temperature and the output voltage is linear.
The output voltage is provided to the ADC14 for conversion and can be further used by the end
application. See section 37, Temperature Sensor (TSN) in User’s Manual.
Low-Power Analog Comparator
(ACMPLP)
The Low-Power Analog Comparator (ACMPLP) compares the reference input voltage and
analog input voltage. The comparison result can be read through software and also be output
externally. The reference voltage can be selected from an input to the CMPREFi(i = 0,1) pin,
an internal 8-bit D/A converter output, or the internal reference voltage (Vref) generated
internally in the MCU.
The ACMPLP response speed can be set before starting an operation. Setting the high-speed
mode decreases the response delay time, but increases current consumption. Setting the low-
speed mode increases the response delay time, but decreases current consumption. See
section 39, Low-Power Analog Comparator (ACMPLP) in User’s Manual.
Operational Amplifier (OPAMP) The Operational Amplifier (OPAMP) amplifies small analog input voltages and outputs the
amplified voltages. A total of four differential operational amplifier units with two input pins and
one output pin are provided. See section 38, Operational Amplifier (OPAMP) in User’s Manual.
Table 1.9 Human machine interfaces
Feature Functional description
Segment LCD Controller (SLCDC) The Segment LCD Controller (SLCDC) provides the following functions:
Waveform A or B selectable
The LCD driver voltage generator can switch between an internal voltage boosting method,
a capacitor split method, and an external resistance division method
Automatic output of segment and common signals based on automatic display data register
read
The reference voltage generated when operating the voltage boost circuit can be selected in
16 steps (contrast adjustment)
The LCD can be made to blink.
See section 45, Segment LCD Controller (SLCDC) in User’s Manual.
Capacitive Touch Sensing Unit
(CTSU)
The Capacitive Touch Sensing Unit (CTSU) measures the electrostatic capacitance of the
touch sensor. Changes in the electrostatic capacitance are determined by software, which
enables the CTSU to detect whether a finger is in contact with the touch sensor. The electrode
surface of the touch sensor is usually enclosed within an electrical insulator so that fingers do
not come into direct contact with the electrode. See section 41, Capacitive Touch Sensing Unit
(CTSU) in User’s Manual.
Table 1.7 Communication interfaces (2 of 2)
Feature Functional description
R01DS0308EU0110 Rev.1.10 Page 8 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
Table 1.10 Data processing
Feature Functional description
Cyclic Redundancy Check (CRC)
calculator
The Cyclic Redundancy Check (CRC) calculator generates CRC codes to detect errors in the
data. The bit order of CRC calculation results can be switched for LSB-first or MSB-first
communication. Additionally, various CRC generation polynomials are available. The snoop
function allows monitoring reads from and writes to specific addresses. This function is useful
in applications that require CRC code to be generated automatically in certain events, such as
monitoring writes to the serial transmit buffer and reads from the serial receive buffer. See
section 32, Cyclic Redundancy Check (CRC) Calculator in User’s Manual.
Data Operation Circuit (DOC) The Data Operation Circuit (DOC) compares, adds, and subtracts 16-bit data. See section 42,
Data Operation Circuit (DOC) in User’s Manual.
Table 1.11 Security
Feature Functional description
Secure Crypto Engine 5 (SCE5) Security algorithm
- Symmetric algorithm: AES.
Other support features
- TRNG (True Random Number Generator)
- Hash-value generation: GHASH.
R01DS0308EU0110 Rev.1.10 Page 9 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
1.2 Block Diagram
Figure 1.1 shows a block diagram of the MCU superset. Some individual devices within the group have a subset of the
features.
Figure 1.1 Block diagram
Memory
256 KB Code Flash
8 KB Data Flash
32 KB SRAM
DMA
DMAC × 4
System
Mode Control
Power Control
ICU
MOSC/SOSC
Clocks
(HOCO/
MOCO/
LOCO)
PLL
Battery Backup
GPT32 × 2
Timers
AGT × 2
RTC
CTSU
Arm Cortex-M4
DSP FPU
MPU
NVIC
System Timer
Test and DBG Interface
Bus
MPU
DTC
WDT/IWDT
CAC
POR/LVD
Reset
Human machine interfaces
SLCDC
ELC
Event Link
SCE5
Security
Analog
CRC
Data processing
DOC
Communication interfaces
IIC × 2
SPI × 2
CAN × 1
SSIE × 1
USBFS
with Battery
Charging
revision 1.2
SCI × 4
TSN
DAC12 ACMPLP × 2
ADC14 OPAMP × 4
GPT16 × 6
DAC8
KINT Register Write
Protection
R01DS0308EU0110 Rev.1.10 Page 10 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
1.3 Part Numbering
Figure 1.2 shows the product part number information, including memory capacity, and package type. Table 1.12 shows
a product list.
Figure 1.2 Part numbering scheme
Table 1.12 Product list
Product part number Orderable part number Package code Code flash Data flash SRAM
Operating
temperature
R7FS3A6783A01CFP R7FS3A6783A01CFP#AA0 PLQP0100KB-B 256 KB 8 KB 32 KB -40 to +105°C
R7FS3A6782A01CLJ R7FS3A6782A01CLJ#AC0 PTLG0100JA-A -40 to +85°C
R7FS3A6783A01CFM R7FS3A6783A01CFM#AA0 PLQP0064KB-C -40 to +105°C
R7FS3A6783A01CNB R7FS3A6783A01CNB#AC0 PWQN0064LA-A -40 to +105°C
R7FS3A6783A01CFL R7FS3A6783A01CFL#AA0 PLQP0048KB-B -40 to +105°C
R7FS3A6783A01CNE R7FS3A6783A01CNE#AC0 PWQN0048KB-A -40 to +105°C
R7FS3A6783A01CNF R7FS3A6783A01CNF#AC0 PWQN0040KC-A -40 to +105°C
R 7 F S 3 A 6 7
Package type
FP: LQFP 100 pins
FM: LQFP 64 pins
FL: LQFP 48 pins
LJ: LGA 100 pins
NB: QFN 64 pins
NE: QFN 48 pins
NF: QFN 40 pins
Quality ID
Software ID
Operating temperature
2: -40° C to +85° C
3: -40° C to +105° C
Code flash memory size
8: 256 KB
Feature set
7: Superset
Group name
A6: S3A6 Group, Arm Cortex-M4, 48 MHz
Series name
3: High efficiency
Renesas Synergy family
Flash memory
Renesas microcontroller
Renesas
8 3 A 0 1 C F P #AA 0
Production identification code
Packing, terminal material (Pb-free)
#AA: Tray/Sn (Tin) only
#AC: Tray/others
R01DS0308EU0110 Rev.1.10 Page 11 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
1.4 Function Comparison
Table 1.13 Function comparison
Part numbers R7FS3A6783A01CFP R7FS3A6782A01CLJ
R7FS3A6783A01CFM/
R7FS3A6783A01CNB
R7FS3A6783A01CFL/
R7FS3A6783A01CNE R7FS3A6783A01CNF
Pin count 100 100 64 48 40
Package LQFP LGA LQFP/QFN LQFP/QFN QFN
Code flash memory 256 KB
Data flash memory 8 KB
SRAM 32 KB
Parity 16 KB
ECC 16 KB
System CPU clock 48 MHz
Backup
registers 512 bytes
ICU Yes
KINT 853
Event control ELC Yes
DMA DTC Yes
DMAC 4
Bus External bus No
Timers GPT32 2
GPT16 642
AGT 2No
RTC Yes
WDT/IWDT Yes
Communication SCI 4
IIC 2
SPI 21
SSIE 1No
QSPI No
SDHI No
CAN 1
USBFS Yes
Analog ADC14 25 18 14 11
DAC12 1
DAC8 2
ACMPLP 21
OPAMP 4431No
TSN Yes
HMI SLCDC 4 com × 38 seg or 8 com × 34 seg 4 com × 21 seg or
8 com × 17 seg
No
CTSU 27 24 15 10
Data
processing
CRC Yes
DOC Yes
Security SCE5
R01DS0308EU0110 Rev.1.10 Page 12 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
1.5 Pin Functions
Table 1.14 Pin functions (1 of 4)
Function Signal I/O Description
Power supply VCC Input Power supply pin. Connect this pin to the system power supply. Connect it to
VSS through a 0.1-μF capacitor. The capacitor should be placed close to the
pin.
VCL I/O Connect this pin to the VSS pin through the smoothing capacitor used to
stabilize the internal power supply. Place the capacitor close to the pin.
VSS Input Ground pin. Connect to the system power supply (0 V).
VBATT Input Backup power supply pin
Clock XTAL Output Pins for a crystal resonator. An external clock signal can be input through the
EXTAL pin.
EXTAL Input
XCIN Input Input/output pins for the sub-clock oscillator. Connect a crystal resonator
between XCOUT and XCIN.
XCOUT Output
CLKOUT Output Clock output pin
Operating mode
control
MD Input Pins for setting the operating mode. The signal levels on these pins must not
be changed during operation mode transition on release from the reset state.
System control RES Input Reset signal input pin. The MCU enters the reset state when this signal goes
low.
CAC CACREF Input Measurement reference clock input pin
Interrupt NMI Input Non-maskable interrupt request pin
IRQ0 to IRQ12,
IRQ14, IRQ15
Input Maskable interrupt request pins
KINT KR00 to KR07 Input Key interrupt input pins.
A key interrupt (KINT) can be generated by inputting a falling edge to the key
interrupt input pins.
On-chip debug TMS I/O On-chip emulator or boundary scan pins
TDI Input
TCK Input
TDO Output
SWDIO I/O Serial wire debug data input/output pin
SWCLK Input Serial wire clock pin
SWO Output Serial wire trace output pin
Battery Backup VBATWIO0 to
VBATWIO2
I/O Output wakeup signal for the VBATT wakeup control function.
External event input for the VBATT wakeup control function.
GPT GTETRGA,
GTETRGB
Input External trigger input pin
GTIOC0A to
GTIOC7A,
GTIOC0B to
GTIOC7B
I/O Input capture, output capture, or PWM output pin
GTIU Input Hall sensor input pin U
GTIV Input Hall sensor input pin V
GTIW Input Hall sensor input pin W
GTOUUP Output 3-phase PWM output for BLDC motor control (positive U phase)
GTOULO Output 3-phase PWM output for BLDC motor control (negative U phase)
GTOVUP Output 3-phase PWM output for BLDC motor control (positive V phase)
GTOVLO Output 3-phase PWM output for BLDC motor control (negative V phase)
GTOWUP Output 3-phase PWM output for BLDC motor control (positive W phase)
GTOWLO Output 3-phase PWM output for BLDC motor control (negative W phase)
R01DS0308EU0110 Rev.1.10 Page 13 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
AGT AGTEE0, AGTEE1 Input External event input enable signals
AGTIO0, AGTIO1 I/O External event input and pulse output pins
AGTO0, AGTO1 Output Pulse output pins
AGTOA0, AGTOA1 Output Output compare match A output pins
AGTOB0, AGTOB1 Output Output compare match B output pins
RTC RTCOUT Output Output pin for 1-Hz/64-Hz clock
RTCIC0 to RTCIC2 Input Time capture event input pins
SCI SCK0 to SCK2,
SCK9
I/O Clock (clock synchronous mode) input/output pins
RXD0 to RXD2,
RXD9
Input Received data (asynchronous mode/clock synchronous mode) input pins
TXD0 to TXD2,
TXD9
Output Transmitted data (asynchronous mode/clock synchronous mode) output pins
CTS0_RTS0 to
CTS2_RTS2,
CTS9_RTS9
I/O Input/output pins for controlling the start of transmission and reception
(asynchronous mode/clock synchronous mode), active-low
SCL0 to SCL2,
SCL9
I/O I2C clock (simple IIC) input/output pins
SDA0 to SDA2,
SDA9
I/O I2C data (simple IIC) input/output pins
SCK0 to SCK2,
SCK9
I/O Clock (simple SPI) input/output pins
MISO0 to MISO2,
MISO9
I/O Slave transmission of data (simple SPI) input/output pins
MOSI0 to MOSI2,
MOSI9
I/O Master transmission of data (simple SPI) input/output pins
SS0 to SS2, SS9 Input Slave-select input pins (simple SPI), active-low
IIC SCL0, SCL1 I/O Clock input/output pins
SDA0, SDA1 I/O Data input/output pins
SSIE SSIBCK0 I/O SSIE serial bit clock pin
SSILRCK0/SSIFS0 I/O Word select pins
SSITXD0 Output Serial data output pin
SSIRXD0 Input Serial data input pin
AUDIO_CLK Input External clock pin for audio (input oversampling clock)
SPI RSPCKA, RSPCKB I/O Clock input/output pin
MOSIA, MOSIB I/O Input/output pins for data output from the master
MISOA, MISOB I/O Input/output pins for data output from the slave
SSLA0, SSLB0 I/O Input/output pins for slave selection
SSLA1, SSLA2,
SSLA3, SSLB1,
SSLB2, SSLB3
Output Output pins for slave selection
CAN CRX0 Input Receive data
CTX0 Output Transmit data
Table 1.14 Pin functions (2 of 4)
Function Signal I/O Description
R01DS0308EU0110 Rev.1.10 Page 14 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
USBFS VSS_USB Input Ground pin
VCC_USB_LDO Input Power supply pin for USB LDO regulator
VCC_USB I/O Input: USB transceiver power supply pin.
Output: USB LDO regulator output pin. This pin should be connected to an
external capacitor.
USB_DP I/O D+ I/O pin of the USB on-chip transceiver. This pin should be connected to the
D+ pin of the USB bus.
USB_DM I/O D- I/O pin of the USB on-chip transceiver. This pin should be connected to the
D- pin of the USB bus.
USB_VBUS Input USB cable connection monitor pin. This pin should be connected to VBUS of
the USB bus. The VBUS pin status (connected or disconnected) can be
detected when the USB module is operating as a device controller.
USB_EXICEN Output Low power control signal for external power supply (OTG) chip
USB_VBUSEN Output VBUS (5 V) supply enable signal for external power supply chip
USB_OVRCURA,
USB_OVRCURB
Input Connect the external overcurrent detection signals to these pins. Connect the
VBUS comparator signals to these pins when the OTG power supply chip is
connected.
USB_ID Input Connect the MicroAB connector ID input signal to this pin during operation in
OTG mode
Analog power
supply
AVCC0 Input Analog voltage supply pin
AVSS0 Input Analog voltage supply ground pin
VREFH0 Input Analog reference voltage supply pin
VREFL0 Input Reference power supply ground pin
VREFH Input Analog reference voltage supply pin for D/A converter
VREFL Input Analog reference ground pin for D/A converter
ADC14 AN000 to AN014,
AN016 to AN025
Input Input pins for the analog signals to be processed by the A/D converter
ADTRG0 Input Input pins for the external trigger signals that start the A/D conversion, active-
low
DAC12 DA0 Output Output pins for the analog signals to be processed by the D/A converter
Comparator
output
VCOUT Output Comparator output pin
ACMPLP CMPREF0,
CMPREF1
Input Reference voltage input pin
CMPIN0, CMPIN1 Input Analog voltage input pins
OPAMP AMP0+ to AMP3+ Input Analog voltage input pins
AMP0- to AMP3- Input Analog voltage input pins
AMP0O to AMP3O Output Analog voltage output pins
CTSU TS00 to TS13,
TS17 to TS22,
TS27 to TS31,
TS34, TS35
Input Capacitive touch detection pins (touch pins)
TSCAP - Secondary power supply pin for the touch driver
Table 1.14 Pin functions (3 of 4)
Function Signal I/O Description
R01DS0308EU0110 Rev.1.10 Page 15 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
I/O ports P000 to P008,
P010 to P015
I/O General-purpose input/output pins
P100 to P115 I/O General-purpose input/output pins
P200 Input General-purpose input pin
P201 to P206,
P212, P213
I/O General-purpose input/output pins
P214, P215 Input General-purpose input pins
P300 to P307 I/O General-purpose input/output pins
P400 to P415 I/O General-purpose input/output pins
P500 to P505 I/O General-purpose input/output pins
P600 to P603,
P608 to P610
I/O General-purpose input/output pins
P708 I/O General-purpose input/output pins
P808, P809 I/O General-purpose input/output pins
P914, P915 I/O General-purpose input/output pins
SLCDC VL1, VL2, VL3, VL4 I/O Voltage pin for driving the LCD
CAPH, CAPL I/O Capacitor connection pin for the LCD controller/driver
COM0 to COM7 Output Common signal output pins for the LCD controller/driver
SEG00 to SEG37 Output Segment signal output pins for the LCD controller/driver
Table 1.14 Pin functions (4 of 4)
Function Signal I/O Description
R01DS0308EU0110 Rev.1.10 Page 16 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
1.6 Pin Assignments
Figure 1.3 to Figure 1.6 show the pin assignments.
Figure 1.3 Pin assignment for 100-pin LQFP (top view)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
75
74
73
72
71
70
69
68
67
66
65
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
P502
P503
P504
P505
VCC
VSS
P015
P014
P013/VREFL
P012/VREFH
AVCC0
AVSS 0
P010/VREFH0
P008
P007
P006
P005
P004
P003
P002
P001
P501
P011/VREFL0
P300/TCK/SWCLK
P302
P303
P809
P808
P304
P305
P306
P307
P200
P201/MD
RES
VCC
P202
P203
P204
P205
P206
VCC_ USB_LDO
VCC_ USB
P914/USB_DP
P915/USB_DM
VSS _USB
P301
VSS
P100
P102
P103
P104
P105
P106
P107
P600
P601
P602
P603
VSS
VCC
P609
P608
P115
P114
P113
P112
P111
P110/TDI
P109/TDO/SWO
P108/TMS/SWDIO
P101
P610
P400
P402
P403
P404
P405
P406
VBATT
VCL
P215/XCIN
P214/XCOUT
VSS
P213/X TA L
VCC
P708
P415
P414
P413
P412
P411
P410
P409
P407
P401
P212/EXTAL
P500
P000
P408
R7FS3A6783A01CFP
R01DS0308EU0110 Rev.1.10 Page 17 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
Figure 1.4 Pin assignment for 100-pin LGA (upper perspective view)
R7FS3A6782A01CLJ
P407
P915/
USB_DM
VCC_
USB
P205
VSS
P200
P305
P809
P300/
TCK/
SWCLK
P108/
TMS/
SWDIO
P409 P412 VCC P212/
EXTAL
P215/
XCIN VCL P403 P400 P000
P914/
USB_DP P413 VSS P213/
XTAL
P214/
XCOUT VBATT P405 P401 P001
VSS _
USB
VCC_US
B_LDO P411 P415 P708 P404 P003 P004 P002
P204 P206 P408 P414 P406 P006 P007 P008 P005
P201/MD P307 RES P113 P600 P504 AVCC0 P013/
VREFL
P012/
VREFH
P304 P808 P306 P115 P601 P503 P100 P015 P014
P303 P110/TDI P111 P609 P602 P107 P103 VSS VCC
P302 P301 P114 P610 P603 P106 P101 P501 P502
P109/
TDO/
SWO
P112 P608 VCC VSS P105 P104 P102 P500
VCC P202 P203 P410 P402 P505 AVSS 0 P011/
VREFL0
P010/
VREFH 0
10
9
8
7
6
5
4
3
2
1
10
9
8
7
6
5
4
3
2
1
ABCDE FGHJK
ABCDE FGHJK
R01DS0308EU0110 Rev.1.10 Page 18 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
Figure 1.5 Pin assignment for 64-pin LQFP (top view)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
48
47
46
45
44
43
42
41
40
39
38
37
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
P501
P502
P015
P014
P012/VREFH
AVCC0
AVSS0
P011/VREFL0
P010/VREFH0
P004
P003
P002
P001
P013/VREFL
P300/TCK/SWCLK
P301
P302
P303
P304
P201/MD
RES
P204
P205
P206
VCC_USB_LDO
VCC_USB
P914/USB_DP
P915/USB_DM
VSS_USB
P200
P100
P102
P103
P104
P105
P106
P107
VSS
VCC
P113
P112
P111
P110/TDI
P108/TMS/SWDIO
P101
P109/TDO/SWO
P400
P402
VBATT
VCL
P215/XCIN
P214/XCOUT
VSS
P213 /X TA L
P212/EXTA L
VCC
P411
P410
P408
P407
P401
P409
P000
R7FS3A6783 A01CFM
P500
R01DS0308EU0110 Rev.1.10 Page 19 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
Figure 1.6 Pin assignment for 64-pin QFN (upper perspective view)
P300/TCK/SWCLK
P301
P302
P303
P304
P201/MD
RES
P204
P205
P206
VCC_USB_LDO
VCC_USB
P914/USB_DP
P915/USB_DM
VSS_USB
P200
P100
P102
P103
P104
P105
P106
P107
VSS
VCC
P113
P112
P111
P110/TDI
P108/TMS/SWDIO
P101
P109/TDO/SWO
P400
P402
VBATT
VCL
P215/XCIN
P214/XCOUT
VS S
P213/XTAL
P 212/EXTAL
VCC
P411
P410
P408
P407
P401
P409
R7FS3A6783A01CNB
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
16
15
14
13
12
11
10
9
8
7
6
5
4
3
2
1
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
P500
P501
P502
P015
P014
P012/VREFH
AVCC0
AVSS0
P011/VREFL0
P010/VREFH0
P004
P003
P002
P001
P000
P013/VREFL
R01DS0308EU0110 Rev.1.10 Page 20 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
Figure 1.7 Pin assignment for 48-pin LQFP (top view)
1
2
3
4
5
6
7
8
9
10
11
12
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
18
17
16
15
14
13
37
38
39
40
41
42
43
44
45
46
47
48
P500
P014
P013/VREFL
P012/VREFH
AVCC0
AVSS0
P011/VREFL0
P010/VREFH0
P002
P001
P015
P300/TCK/SWCLK
P302
P200
P201/MD
RES
P206
VCC_USB_LDO
VCC_USB
P914/USB_DP
P915/USB_DM
VSS_USB
P301
P100
P101
P102
P103
P104
VSS
VCC
P112
P111
P110/TDI
P108/TMS/SWDIO
P109/TDO/SWO
P400
VCL
P215/XCIN
P214/XCOUT
VSS
P213/XTAL
P212/EXTAL
VCC
P408
P407
VBATT
P409
P000
R7FS3A6783A01CFL
R01DS0308EU0110 Rev.1.10 Page 21 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
Figure 1.8 Pin assignment for 48-pin QFN (top view)
P300/TCK/SWCLK
P302
P200
P201/MD
RES
P206
VCC_USB_LDO
VCC_USB
P914/USB_DP
P915/USB_DM
VSS_USB
P301
P100
P102
P103
P104
VSS
VCC
P112
P111
P110/TDI
P109/TDO/SWO
P108/TMS/SWDIO
P101
P400
VCL
P215/XCIN
P2 14 /X COUT
VSS
P213 /XTAL
P212/EXTAL
VCC
P409
P408
P407
VB ATT
R7FS3A6783A01CNE
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
12
11
10
9
8
7
6
5
4
3
2
1
48
47
46
45
44
43
42
41
40
39
38
37
P500
P014
P013/VREFL
P012/VREFH
AVCC0
AVSS0
P011/VREFL0
P010/VREFH0
P002
P001
P000
P015
R01DS0308EU0110 Rev.1.10 Page 22 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
Figure 1.9 Pin assignment for 40-pin QFN (top view)
R01DS0308EU0110 Rev.1.10 Page 23 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
1.7 Pin Lists
Pin number
Power, System, Clock,
Debug, CAC, VBATT
Interrupt
I/O ports
Timers Communication interfaces Analogs HMI
LQFP100
LGA100
LQFP64
QFN64
LQFP48
QFN48
QFN40
AGT
GPT_OPS, POEG
GPT
RTC
USBFS,CAN
SCI
IIC
SPI
SSIE
ADC14
DAC12, OPAMP
ACMPLP
SLCDC
CTSU
1 J10 1 1 1 1 CACREF IRQ0 P400 AGTIO1 GTIOC6A SCK0
SCK1
SCL0 AUDIO_CL
K
SEG04 TS20
2 J9 2 2 IRQ5 P401 GTETRGA GTIOC6B CTX0 CTS0_
RTS0/
SS0
TXD1/
MOSI1/
SDA1
SDA0 SEG05 TS19
3 F6 3 3 VBATWIO0 IRQ4 P402 AGTIO0/
AGTIO1
RTCIC0 CRX0 RXD1/
MISO1/
SCL1
SEG06 TS18
4 H10 VBATWIO1 P403 AGTIO0/
AGTIO1
GTIOC3A RTCIC1 CTS1_
RTS1/
SS1
SSIBCK0 TS17
5 G8 VBATWIO2 P404 GTIOC3B RTCIC2 SSILRCK0/
SSIFS0
6 H9 P405 GTIOC1A SSITXD0
7 F7 P406 GTIOC1B SSIRXD0
8G94 4 221VBATT
9G105 5 332VCL
10F106 6 443XCIN P215
11 F9 7 7 5 5 4 XCOUT P214
12D98 8 665VSS
13 E9 9 9 7 7 6 XTAL IRQ2 P213 GTETRGA GTIOC0A TXD1/
MOSI1/
SDA1
14 E10 10 10 8 8 7 EXTAL IRQ3 P212 AGTEE1 GTETRGB GTIOC0B RXD1/
MISO1/
SCL1
15 D10 11 11 9 9 8 VCC
16 F8 P708 RXD1/
MISO1/
SCL1
SSLA3
17 E8 IRQ8 P415 GTIOC0A SSLA2
18 E7 IRQ9 P414 GTIOC0B SSLA1
19 C9 P413 CTS0_
RTS0/
SS0
SSLA0
20 C10 P412 SCK0 RSPCKA
21 D8 12 12 IRQ4 P411 AGTOA1 GTOVUP GTIOC6A TXD0/
MOSI0/
SDA0
MOSIA SEG07 TS07
22 E6 13 13 IRQ5 P410 AGTOB1 GTOVLO GTIOC6B RXD0/
MISO0/
SCL0
MISOA SEG08 TS06
23 B10 14 14 10 10 IRQ6 P409 GTOWUP GTIOC5A USB_EXI
CEN
TXD9/
MOSI9/
SDA9
SEG09 TS05
24 D7 15 15 11 11 9 IRQ7 P408 GTOWLO GTIOC5B USB_ID CTS1_
RTS1/
SS1
RXD9/
MISO9/
SCL9
SCL0 SEG10 TS04
25 A10 16 16 12 12 10 P407 AGTIO0 RTCOUT USB_VB
US
CTS0_
RTS0/
SS0
SDA0 SSLB3 ADTRG0 SEG11 TS03
26 B8 17 17 13 13 11 VSS_USB
27 A9 18 18 14 14 12 P915 USB_DM
28 B9 19 19 15 15 13 P914 USB_DP
R01DS0308EU0110 Rev.1.10 Page 24 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
29 A8 20 20 16 16 14 VCC_USB
30 C8 21 21 17 17 15 VCC_USB_
LDO
31 C7 22 22 18 18 IRQ0 P206 GTIU USB_VB
USEN
RXD0/
MISO0/
SCL0
SDA1 SSLB1 SEG12 TS01
32 A7 23 23 CLKOUT IRQ1 P205 AGTO1 GTIV GTIOC4A USB_OV
RCURA
TXD0/
MOSI0/
SDA0
CTS9_
RTS9/
SS9
SCL1 SSLB0 SEG13 TSCAP
33 B7 24 24 CACREF P204 AGTIO1 GTIW GTIOC4B USB_OV
RCURB
SCK0
SCK9
SCL0 RSPCKB SEG14 TS00
34 D6 P203 GTIOC5A CTS2_
RTS2/
SS2
TXD9/
MOSI9/
SDA9
MOSIB SEG15 TSCAP
35 C6 P202 GTIOC5B SCK2
RXD9/
MISO9/
SCL9
MISOB SEG16
36 A6 VSS
37 B6 VCC
38 D5 25 25 19 19 16 RES
39 B5 26 26 20 20 17 MD P201
40 A5 27 27 21 21 18 NMI P200
41 C5 P307 SEG17
42 D4 P306 SEG18
43 A4 IRQ8 P305 SEG19
44 B4 28 28 IRQ9 P304 GTIOC7A SEG20 TS11
45 C4 P808 SEG21
46 A3 P809 SEG22
47 B3 29 29 P303 GTIOC7B SEG03/
COM7
TS02
48 B2 30 30 22 22 IRQ5 P302 GTOUUP GTIOC4A TXD2/
MOSI2/
SDA2
SSLB3 SEG02/
COM6
TS08
49 C2 31 31 23 23 19 IRQ6 P301 AGTIO0 GTOULO GTIOC4B RXD2/
MISO2/
SCL2
CTS9_
RTS9/
SS9
SSLB2 SEG01/
COM5
TS09
50 A2 32 32 24 24 20 TCK/
SWCLK
P300 GTOUUP GTIOC0A SSLB1
51 A1 33 33 25 25 21 TMS/
SWDIO
P108 GTOULO GTIOC0B CTS9_
RTS9/
SS9
SSLB0
52 B1 34 34 26 26 22 TDO/SWO/
CLKOUT
P109 GTOVUP GTIOC1A CTX0 SCK1
TXD9/
MOSI9/
SDA9
MOSIB SEG23 TS10
53 C3 35 35 27 27 23 TDI IRQ3 P110 GTOVLO GTIOC1B CRX0 CTS2_
RTS2/
SS2
RXD9/
MISO9/
SCL9
MISOB VCOUT SEG24
Pin number
Power, System, Clock,
Debug, CAC, VBATT
Interrupt
I/O ports
Timers Communication interfaces Analogs HMI
LQFP100
LGA100
LQFP64
QFN64
LQFP48
QFN48
QFN40
AGT
GPT_OPS, POEG
GPT
RTC
USBFS,CAN
SCI
IIC
SPI
SSIE
ADC14
DAC12, OPAMP
ACMPLP
SLCDC
CTSU
R01DS0308EU0110 Rev.1.10 Page 25 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
54 D3 36 36 28 28 24 IRQ4 P111 GTIOC3A SCK2
SCK9
RSPCKB CAPH TS12
55 C1 37 37 29 29 25 P112 GTIOC3B TXD2/
MOSI2/
SDA2
SCK1
SSLB0 SSIBCK0 CAPL TSCAP
56 E5 38 38 P113 GTIOC2A SSILRCK0/
SSIFS0
SEG00/
COM4
TS27
57 D2 P114 GTIOC2B SSIRXD0 SEG25 TS29
58 E4 P115 GTIOC4A SSITXD0 SEG26 TS35
59 D1 P608 GTIOC4B SEG27
60 E3 P609 GTIOC5A SEG28
61 E2 P610 GTIOC5B SEG29
62 E1 39 39 30 30 26 VCC
63 F1 40 40 31 31 27 VSS
64 F2 P603 GTIOC7A CTS9_
RTS9/
SS9
SEG30
65 F3 P602 GTIOC7B TXD9/
MOSI9/
SDA9
SEG31
66 F4 P601 GTIOC6A RXD9/
MISO9/
SCL9
SEG32
67 F5 P600 GTIOC6B SCK9 SEG33
68 G3 41 41 KR07 P107 GTIOC0A COM3
69 G2 42 42 KR06 P106 GTIOC0B SSLA3 COM2
70 G1 43 43 KR05/
IRQ0
P105 GTETRGA GTIOC1A SSLA2 COM1 TS34
71 H1 44 44 32 32 KR04/
IRQ1
P104 GTETRGB GTIOC1B RXD0/
MISO0/
SCL0
SSLA1 COM0 TS13
72 H3 45 45 33 33 KR03 P103 GTOWUP GTIOC2A CTX0 CTS0_
RTS0/
SS0
SSLA0 AN019 CMPREF1 VL4
73 J1 46 46 34 34 28 KR02 P102 AGTO0 GTOWLO GTIOC2B CRX0 SCK0
TXD2/
MOSI2/
SDA2
RSPCKA AN020/
ADTRG0
CMPIN1 VL3
74 H2 47 47 35 35 29 KR01/
IRQ1
P101 AGTEE0 GTETRGB GTIOC5A TXD0/
MOSI0/
SDA0
CTS1_
RTS1/
SS1
SDA1 MOSIA AN021 CMPREF0 VL2
75 H4 48 48 36 36 30 KR00/
IRQ2
P100 AGTIO0 GTETRGA GTIOC5B RXD0/
MISO0/
SCL0
SCK1
SCL1 MISOA AN022 CMPIN0 VL1
76 K1 49 49 37 37 P500 AGTOA0 GTIU GTIOC2A USB_VB
USEN
AN016 CMPREF1 SEG34
77 J2 50 50 IRQ11 P501 AGTOB0 GTIV GTIOC2B USB_OV
RCURA
TXD1/
MOSI1/
SDA1
AN017 CMPIN1 SEG35
78 K2 51 51 IRQ12 P502 GTIW GTIOC3B USB_OV
RCURB
RXD1/
MISO1/
SCL1
AN018 CMPREF0 SEG36
79 G4 P503 USB_EXI
CEN
SCK1 AN023 CMPIN0 SEG37
80 G5 P504 USB_ID CTS1_
RTS1/
SS1
AN024
81 G6 IRQ14 P505 AN025
82 K3 VCC
Pin number
Power, System, Clock,
Debug, CAC, VBATT
Interrupt
I/O ports
Timers Communication interfaces Analogs HMI
LQFP100
LGA100
LQFP64
QFN64
LQFP48
QFN48
QFN40
AGT
GPT_OPS, POEG
GPT
RTC
USBFS,CAN
SCI
IIC
SPI
SSIE
ADC14
DAC12, OPAMP
ACMPLP
SLCDC
CTSU
R01DS0308EU0110 Rev.1.10 Page 26 of 130
Jun 25, 2018
S3A6 Datasheet 1. Overview
83 J3 VSS
84 J4 52 52 38 38 31 IRQ7 P015 AN010 TS28
85 K4 53 53 39 39 32 P014 AN009 DA0
86 J5 54 54 40 40 33 VREFL P013 AN008 AMP1+
87 K5 55 55 41 41 34 VREFH P012 AN007 AMP1-
88 H5 56 56 42 42 35 AVCC0
89 H6 57 57 43 43 36 AVSS0
90 J6 58 58 44 44 37 VREFL0 IRQ15 P011 AN006 AMP2+ TS31
91 K6 59 59 45 45 38 VREFH0 P010 AN005 AMP2- TS30
92 J7 P008 AN014
93 H7 P007 AN013 AMP3O
94 G7 P006 AN012 AMP3-
95 K7 IRQ10 P005 AN011 AMP3+
96 J8 60 60 IRQ3 P004 AN004 AMP2O
97 H8 61 61 P003 AN003 AMP1O
98 K8 62 62 46 46 IRQ2 P002 AN002 AMP0O
99 K9 63 63 47 47 39 IRQ7 P001 AN001 AMP0- TS22
100 K10 64 64 48 48 40 IRQ6 P000 AN000 AMP0+ TS21
Pin number
Power, System, Clock,
Debug, CAC, VBATT
Interrupt
I/O ports
Timers Communication interfaces Analogs HMI
LQFP100
LGA100
LQFP64
QFN64
LQFP48
QFN48
QFN40
AGT
GPT_OPS, POEG
GPT
RTC
USBFS,CAN
SCI
IIC
SPI
SSIE
ADC14
DAC12, OPAMP
ACMPLP
SLCDC
CTSU
R01DS0308EU0110 Rev.1.10 Page 27 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2. Electrical Characteristics
Unless otherwise specified, the electrical characteristics of the MCU are defined under the following conditions:
VCC*1 = AVCC0 = VCC_USB*2 = VCC_USB_LDO*2 = 1.6 to 5.5V, VREFH = VREFH0 = 1.6 to AVCC0, VBATT =
1.6 to 3.6V, VSS = AVSS0 = VREFL = VREFL0 = VSS_USB = 0V, Ta = Topr.
Note 1. The typical condition is set to VCC = 3.3V.
Note 2. When USBFS is not used.
Figure 2.1 shows the timing conditions.
Figure 2.1 Input or output timing measurement conditions
The recommended measurement conditions for the timing specification of each peripheral provided are for the best
peripheral operation. Make sure to adjust the driving abilities of each pin to meet your conditions.
Each function pin used for the same function must select the same drive ability. If the I/O drive ability of each function
pin is mixed, the AC specification of each function is not guaranteed.
For example P100
C
VOH = VCC × 0.7, VOL = VCC × 0.3
VIH = VCC × 0.7, VIL = VCC × 0.3
Load capacitance C = 30 pF
R01DS0308EU0110 Rev.1.10 Page 28 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.1 Absolute Maximum Ratings
Caution: Permanent damage to the MCU may result if absolute maximum ratings are exceeded.
To preclude any malfunctions due to noise interference, insert capacitors of high frequency characteristics
between the VCC and VSS pins, between the AVCC0 and AVSS0 pins, between the VCC_USB and VSS_USB pins,
between the VREFH0 and VREFL0 pins, and between the VREFH and VREFL pins. Place capacitors of about 0.1 μF
as close as possible to every power supply pin and use the shortest and heaviest possible traces. Also, connect
capacitors as stabilization capacitance.
Connect the VCL pin to a VSS pin by a 4.7 µF capacitor. The capacitor must be placed close to the pin.
Do not input signals or an I/O pull-up power supply while the device is not powered. The current injection that
results from input of such a signal or I/O pull-up might cause malfunction and the abnormal current that passes in
the device at this time might cause degradation of internal elements.
Note 1. Ports P205, P206, P400 to P404, P407, P408 are 5 V tolerant.
Note 2. See section 2.2.1, Tj/Ta Definition.
Note 3. Contact a Renesas Electronics sales office for information on derating operation under Ta = +85°C to +105°C. Derating is the
systematic reduction of load for improved reliability.
Note 4. The upper limit of operating temperature is +85°C or +105°C, depending on the product. For details, see section 1.3, Part
Numbering.
Table 2.1 Absolute maximum ratings
Parameter Symbol Value Unit
Power supply voltage VCC -0.5 to +6.5 V
Input voltage 5 V-tolerant ports*1Vin -0.3 to +6.5 V
P000 to P008, P010 to P015 Vin -0.3 to AVCC0 + 0.3 V
Others Vin -0.3 to VCC + 0.3 V
Reference power supply voltage VREFH0 -0.3 to +6.5 V
VREFH V
VBATT power supply voltage VBATT -0.5 to +6.5 V
Analog power supply voltage AVCC0 -0.5 to +6.5 V
USB power supply voltage VCC_USB -0.5 to +6.5 V
VCC_USB_LDO -0.5 to +6.5 V
Analog input voltage When AN000 to AN014 are
used
VAN -0.3 to AVCC0 + 0.3 V
When AN016 to AN025 are
used
-0.3 to VCC + 0.3 V
LCD voltage VL1 voltage VL1 -0.3 to +2.8 V
VL2 voltage VL2 -0.3 to +6.5 V
VL3 voltage VL3 -0.3 to +6.5 V
VL4 voltage VL4 -0.3 to +6.5 V
Operating temperature*2,*3,*4Topr -40 to +105 °C
-40 to +85
Storage temperature Tstg -55 to +125 °C
R01DS0308EU0110 Rev.1.10 Page 29 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note 1. Use AVCC0 and VCC under the following conditions:
AVCC0 and VCC can be set individually within the operating range when VCC ≥ 2.2 V and AVCC0 ≥ 2.2 V.
AVCC0 = VCC when VCC < 2.2 V or AVCC0 < 2.2 V.
Note 2. When powering on the VCC and AVCC0 pins, power them on at the same time, or power the VCC pin first and then the AVCC0
pin.
Table 2.2 Recommended operating conditions
Parameter Symbol Value Min Typ Max Unit
Power supply voltages VCC*1, *2 When USBFS is not
used
1.6 - 5.5 V
When USBFS is used
USB Regulator
Disable
VCC_USB - 3.6 V
When USBFS is used
USB Regulator
Enable
VCC_USB
_LDO
-5.5V
VSS -0-V
USB power supply voltages VCC_USB When USBFS is not
used
-VCC-V
When USBFS is used
USB Regulator
Disable
(Input)
3.0 3.3 3.6 V
VCC_USB_LDO When USBFS is not
used
-VCC-V
When USBFS is used
USB Regulator
Disable
-VCC-V
When USBFS is used
USB Regulator
Enable
3.8 - 5.5 V
VSS_USB - 0 - V
VBATT power supply voltage VBATT When the battery
backup function is not
used
-VCC-V
When the battery
backup function is
used
1.6 - 3.6 V
Analog power supply voltages AVCC0*1, *2 1.6 - 5.5 V
AVSS0 - 0 - V
VREFH0 When used as
ADC14 Reference
1.6 - AVCC0 V
VREFL0 - 0 - V
VREFH When used as
DAC12 Reference
1.6 - AVCC0 V
VREFL - 0 - V
R01DS0308EU0110 Rev.1.10 Page 30 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.2 DC Characteristics
2.2.1 Tj/Ta Definition
Note: Make sure that Tj = Ta + θja × total power consumption (W),
where total power consumption = (VCC - VOH) × ΣIOH + VOL × ΣIOL + ICCmax × VCC.
Note 1. The upper limit of operating temperature is +85°C or +105°C, depending on the product. For details, see section 1.3, Part
Numbering. If the part number shows the operation temperature at 85°C, then the maximum value of Tj is +105°C, otherwise, it
is +125°C.
2.2.2 I/O VIH, VIL
Note 1. P205, P206, P400, P401, P407, P408 (total 6 pins).
Note 2. P100, P101, P204, P205, P206, P400, P401, P407, P408 (total 9 pins).
Note 3. P205, P206, P400 to P404, P407, P408 (total 9 pins).
Table 2.3 DC Characteristics
Conditions: Products with operating temperature (Ta) -40 to +105°C
Parameter Symbol Typ Max Unit Test conditions
Permissible junction temperature Tj - 125 °C High-speed mode
Middle-speed mode
Low-voltage mode
Low-speed mode
Subosc-speed mode
105*1
Table 2.4 I/O VIH, VIL (1)
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LDO = 2.7 to 5.5V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0 V
Parameter Symbol Min Typ Max Unit Test conditions
Schmitt trigger
input voltage
IIC*1 (except for SMBus) VIH VCC × 0.7 - 5.8 V -
VIL --VCC × 0.3
ΔVTVCC × 0.05 - -
RES, NMI
Other peripheral input pins
excluding IIC
VIH VCC × 0.8 - -
VIL - - VCC × 0.2
ΔVTVCC × 0.1 - -
Input voltage
(except for
Schmitt trigger
input pin)
IIC (SMBus)*2VIH 2.2 - - VCC = 3.6 to 5.5 V
VIH 2.0 - - VCC = 2.7 to 3.6 V
VIL --0.8 -
5 V-tolerant ports*3VIH VCC × 0.8 - 5.8
VIL - - VCC × 0.2
P914, P915 VIH VCC_USB × 0.8 - VCC_USB + 0.3
VIL - - VCC_USB × 0.2
P000 to P008, P010 to P015 VIH AVCC0 × 0.8 - -
VIL --AVCC0 × 0.2
EXTAL
Input ports pins except for
P000 to P008, P010 to
P015, P914, P915
VIH VCC × 0.8 - -
VIL - - VCC × 0.2
When VBATT
power supply is
selected
P402, P403, P404 VIH VBATT × 0.8 - VBATT + 0.3
VIL --V
BATT × 0.2
ΔVTVBATT × 0.05 - -
R01DS0308EU0110 Rev.1.10 Page 31 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note 1. P205, P206, P400 to P404, P407, P408 (total 9 pins)
Table 2.5 I/O VIH, VIL (2)
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LDO = 1.6 to 2.7 V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0 V
Parameter Symbol Min Typ Max Unit
Test
conditions
Schmitt trigger
input voltage
RES, NMI
Peripheral input pins
VIH VCC × 0.8 - - V -
VIL - - VCC × 0.2
ΔVTVCC × 0.01 - -
Input voltage
(except for
Schmitt trigger
input pin)
5 V-tolerant ports*1VIH VCC × 0.8 - 5.8
VIL - - VCC × 0.2
P914, P915 VIH VCC_USB × 0.8 - VCC_USB + 0.3
VIL - - VCC_USB × 0.2
P000 to P008, P010 to P015 VIH AVCC0 × 0.8 - -
VIL - - AVCC0 × 0.2
EXTAL
Input ports pins except for
P000 to P008, P010 to P015,
P914, P915
VIH VCC × 0.8 - -
VIL - - VCC × 0.2
When VBATT
power supply is
selected
P402, P403, P404 VIH VBATT × 0.8 - VBATT + 0.3
VIL --V
BATT × 0.2
ΔVTVBATT × 0.01 - -
R01DS0308EU0110 Rev.1.10 Page 32 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.2.3 I/O IOH, IOL
Table 2.6 I/O IOH, IOL (1 of 2)
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 1.6 to 5.5 V
Parameter Symbol Min Typ Max Unit
Permissible output current
(average value per pin)
Ports P212, P213 - IOH ---4.0mA
IOL --4.0mA
Port P408 Low drive*1IOH ---4.0mA
IOL --4.0mA
Middle drive for IIC
Fast-mode*4
VCC = 2.7 to 5.5 V
IOH ---8.0mA
IOL --8.0mA
Middle drive*2
VCC = 3.0 to 5.5 V IOH ---20.0mA
IOL --20.0mA
Port P409 Low drive*1IOH ---4.0mA
IOL --4.0mA
Middle drive*2
VCC = 2.7 to 3.0 V IOH ---8.0mA
IOL --8.0mA
Middle drive*2
VCC = 3.0 to 5.5 V IOH ---20.0mA
IOL --20.0mA
Ports P100 to P115,
P201 to P204, P300 to P307,
P500 to P503, P600 to P603,
P608 to P610, P808, P809
(total 41 pins)
Low drive*1IOH ---4.0mA
IOL --4.0mA
Middle drive*2IOH ---4.0mA
IOL --8.0mA
Ports P914, P915 - IOH ---4.0mA
IOL --4.0mA
Other output pin*3 Low drive*1IOH ---4.0mA
IOL --4.0mA
Middle drive*2IOH ---8.0mA
IOL --8.0mA
R01DS0308EU0110 Rev.1.10 Page 33 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Caution: To protect the reliability of the MCU, the output current values should not exceed the values in this table. The
average output current indicates the average value of current measured during 100 μs.
Note 1. This is the value when low driving ability is selected with the Port Drive Capability bit in PmnPFS register.
Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register.
Note 3. Except for ports P200, P214, P215, which are input ports.
Note 4. This is the value when middle driving ability for IIC Fast-mode is selected with the Port Drive Capability bit in PmnPFS register.
Note 5. For details on the permissible output current used with CTSU, see section 2.11, CTSU Characteristics.
Permissible output current
(Max value per pin)
Ports P212, P213 - IOH ---4.0mA
IOL --4.0mA
Port P408 Low drive*1IOH ---4.0mA
IOL --4.0mA
Middle drive for IIC
Fast-mode*4
VCC = 2.7 to 5.5 V
IOH ---8.0mA
IOL --8.0mA
Middle drive*2
VCC = 3.0 to 5.5 V IOH ---20.0mA
IOL --20.0mA
Port P409 Low drive*1IOH ---4.0mA
IOL --4.0mA
Middle drive*2
VCC = 2.7 to 3.0 V IOH ---8.0mA
IOL --8.0mA
Middle drive*2
VCC = 3.0 to 5.5 V IOH ---20.0mA
IOL --20.0mA
Ports P100 to P115,
P201 to P204, P300 to P307,
P500 to P503, P600 to P603,
P608 to P610, P808, P809
(total 41 pins)
Low drive*1IOH ---4.0mA
IOL --4.0mA
Middle drive*2IOH ---4.0mA
IOL --8.0mA
Ports P914, P915 - IOH ---4.0mA
IOL --4.0mA
Other output pin*3Low drive*1IOH ---4.0mA
IOL --4.0mA
Middle drive*2IOH ---8.0mA
IOL --8.0mA
Permissible output current
(max value total pins)
Total of ports P000 to P008, P010 to P015 ΣIOH (max) ---30mA
ΣIOL (max) --30mA
Ports P914, P915 ΣIOH (max) ---2.0mA
ΣIOL (min) --2.0mA
Total of all output pin*5ΣIOH (max) ---60mA
ΣIOL (max) --60mA
Table 2.6 I/O IOH, IOL (2 of 2)
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 1.6 to 5.5 V
Parameter Symbol Min Typ Max Unit
R01DS0308EU0110 Rev.1.10 Page 34 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.2.4 I/O VOH, VOL, and Other Characteristics
Note 1. P100, P101, P204, P205, P206, P400, P401, P407, P408 (total 9 pins).
Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register.
Note 3. Based on characterization data, not tested in production.
Note 4. Except for ports P200, P214, P215, which are input ports.
Note 5. This is the value when middle driving ability for IIC is selected in the Port Drive Capability bit in PmnPFS register for P408.
Note 6. Except for P212, P213.
Note 1. P100, P101, P204, P205, P206, P400, P401, P407, P408 (total 9 pins).
Note 2. This is the value when middle driving ability is selected with the Port Drive Capability bit in PmnPFS register.
Note 3. Based on characterization data, not tested in production.
Note 4. Except for ports P200, P214, P215, which are input ports.
Note 5. This is the value when middle driving ability for IIC is selected in the Port Drive Capability bit in PmnPFS register for P408.
Note 6. Except for P212, P213.
Table 2.7 I/O VOH, VOL (1)
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 4.0 to 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
Output voltage IIC*1VOL --0.4VI
OL = 3.0 mA
VOL*2,*5--0.6I
OL = 6.0 mA
Ports P408, P409*2, *3VOH VCC - 1.0 - - IOH = -20 mA
VOL --1.0I
OL = 20 mA
Ports P000 to P008,
P010 to P015
Low drive VOH AVCC0 - 0.8 - - IOH = -2.0 mA
VOL --0.8I
OL = 2.0 mA
Middle drive VOH AVCC0 - 0.8 - - IOH = -4.0 mA
VOL --0.8I
OL = 4.0 mA
Ports P914, P915 VOH VCC_USB - 0.8 - - IOH = -2.0 mA
VOL --0.8I
OL = 2.0 mA
Other output pins*4Low drive VOH VCC - 0.8 - - IOH = -2.0 mA
VOL --0.8I
OL = 2.0 mA
Middle
drive*6
VOH VCC - 0.8 - - IOH = -4.0 mA
VOL --0.8I
OL = 4.0 mA
Table 2.8 I/O VOH, VOL (2)
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 2.7 to 4.0 V
Parameter Symbol Min Typ Max Unit Test conditions
Output voltage IIC*1VOL --0.4VI
OL = 3.0 mA
VOL*2,*5--0.6I
OL = 6.0 mA
Ports P408, P409*2, *3VOH VCC - 1.0 - - IOH = -20 mA
VCC = 3.3 V
VOL --1.0I
OL = 20 mA
VCC = 3.3 V
Ports P000 to P008,
P010 to P015
Low drive VOH AVCC0 - 0.5 - - IOH = -1.0 mA
VOL --0.5I
OL = 1.0 mA
Middle drive VOH AVCC0 - 0.5 - - IOH = -2.0 mA
VOL --0.5I
OL = 2.0 mA
Ports P914, P915 VOH VCC_USB - 0.5 - - IOH = -1.0 mA
VOL --0.5I
OL = 1.0 mA
Other output pins*4Low drive VOH VCC - 0.5 - - IOH = -1.0 mA
VOL --0.5I
OL = 1.0 mA
Middle
drive*6
VOH VCC - 0.5 - - IOH = -2.0 mA
VOL --0.5I
OL = 2.0 mA
R01DS0308EU0110 Rev.1.10 Page 35 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note 1. Except for ports P200, P214, P215, which are input ports.
Note 2. Except for P212, P213.
Table 2.9 I/O VOH, VOL (3)
Conditions: VCC = AVCC0 = VCC_USB = VCC_USB_LCO = 1.6 to 2.7 V
Parameter Symbol Min Typ Max Unit Test conditions
Output voltage Ports P000 to P015 Low drive VOH AVCC0 - 0.3 - - V IOH = -0.5 mA
VOL --0.3I
OL = 0.5 mA
Middle drive VOH AVCC0 - 0.3 - - IOH = -1.0 mA
VOL --0.3I
OL = 1.0 mA
Ports P914, P915 VOH VCC_USB - 0.3 - - IOH = -0.5 mA
VOL --0.3I
OL = 0.5 mA
Other output pins*1Low drive VOH VCC - 0.3 - - IOH = -0.5 mA
VOL --0.3I
OL = 0.5 mA
Middle
drive*2
VOH VCC - 0.3 - - IOH = -1.0 mA
VOL --0.3I
OL = 1.0 mA
Table 2.10 I/O other characteristics
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
Input leakage current RES, P200, P214, P215 | Iin | - - 1.0 μA Vin = 0 V
Vin = VCC
Three-state leakage
current (off state)
5 V-tolerant ports | ITSI | - - 1.0 μA Vin = 0 V
Vin = 5.8 V
Other ports
(except for ports P200, P214,
P215 and 5 V tolerant)
--1.0 V
in = 0 V
Vin = VCC
Input pull-up resistor All ports
(except for ports P200, P214,
P215, P914, P915)
RU10 20 50 Vin = 0 V
Input capacitance P914, P915,
P100 to P103, P111, P112,
P200
Cin - - 30 pF Vin = 0 V
f = 1 MHz
Ta = 25°C
Other input pins - - 15
R01DS0308EU0110 Rev.1.10 Page 36 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.2.5 I/O Pin Output Characteristics of Low Drive Capacity
Figure 2.2 VOH/VOL and IOH/IOL Voltage Characteristics at Ta = 25°C when low drive output is selected
(reference data)
Figure 2.3 VOH/VOL and IOH/IOL temperature characteristics at VCC = 1.6 V when low drive output is selected
(reference data)
0123456
-60
-50
-40
-30
-20
-10
0
10
20
30
40
50
60
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
VCC = 5.5 V
VCC = 3.3 V
VCC = 2.7 V
VCC = 1.6 V
VCC = 1.6 V
VCC = 2.7 V
VCC = 3.3 V
VCC = 5.5 V
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-3
-2
-1
0
1
2
3
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
R01DS0308EU0110 Rev.1.10 Page 37 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.4 VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when low drive output is selected
(reference data)
Figure 2.5 VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when low drive output is selected
(reference data)
00.511.522.53
-20
-15
-10
-5
0
5
10
15
20
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
0 0.5 1 1.5 2 2.5 3 3.5
-30
-20
-10
0
10
20
30
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
R01DS0308EU0110 Rev.1.10 Page 38 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.6 VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when low drive output is selected
(reference data)
2.2.6 I/O Pin Output Characteristics of Middle Drive Capacity
Figure 2.7 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when middle drive output is selected
(reference data)
0123456
-60
-40
-20
0
20
40
60
I
OH
/I
OL
vs V
OH
/V
OL
V
OH
/V
OL
[V]
I
OH
/I
OL
[mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
0123456
-140
-120
-100
-80
-60
-40
-20
0
20
40
60
80
100
120
140
I
OH
/I
OL
vs V
OH
/V
OL
V
OH
/V
OL
[V]
I
OH
/I
OL
[mA]
VCC = 5.5 V
VCC = 3.3 V
VCC = 2.7 V
VCC = 1.6 V
VCC = 1.6 V
VCC = 2.7 V
VCC = 3.3 V
VCC = 5.5 V
R01DS0308EU0110 Rev.1.10 Page 39 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.8 VOH/VOL and IOH/IOL temperature characteristics at VCC = 1.6 V when middle drive output is
selected (reference data)
Figure 2.9 VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when middle drive output is
selected (reference data)
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-6
-4
-2
0
2
4
6
IOH/IOL vs VOH/VOL
VOH/VOL [V]
IOH/IOL [mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
00.511.522.53
-40
-30
-20
-10
0
10
20
30
40
I
OH
/I
OL
vs V
OH
/V
OL
V
OH
/V
OL
[V]
I
OH
/I
OL
[mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
R01DS0308EU0110 Rev.1.10 Page 40 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.10 VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when middle drive output is
selected (reference data)
Figure 2.11 VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when middle drive output is
selected (reference data)
00.511.522.533.5
-60
-40
-20
0
20
40
60
I
OH
/I
OL
vs V
OH
/V
OL
V
OH
/V
OL
[V]
I
OH
/I
OL
[mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
0123456
-140
-120
-100
-80
-60
-40
-20
0
20
40
60
80
100
120
140
I
OH
/I
OL
vs V
OH
/V
OL
V
OH
/V
OL
[V]
I
OH
/I
OL
[mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
R01DS0308EU0110 Rev.1.10 Page 41 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.2.7 P408, P409 I/O Pin Output Characteristics of Middle Drive Capacity
Figure 2.12 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C when middle drive output is selected
(reference data)
Figure 2.13 VOH/VOL and IOH/IOL temperature characteristics at VCC = 2.7 V when middle drive output is
selected (reference data)
0123456
I
OH
/I
OL
vs V
OH
/V
OL
V
OH
/V
OL
[V]
I
OH
/I
OL
[mA]
VCC = 5.5 V
VCC = 3.3 V
VCC = 2.7 V
VCC = 2.7 V
VCC = 3.3 V
VCC = 5.5 V
-140
-120
-100
-80
-60
-40
-20
20
40
60
80
100
120
140
200
180
160
0
-160
-180
-200
0 0.5 1 1.5 2 2.5 3
-60
-40
-20
0
20
40
60
I
OH
/I
OL
vs V
OH
/V
OL
V
OH
/V
OL
[V]
I
OH
/I
OL
[mA]
Ta = -4C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
R01DS0308EU0110 Rev.1.10 Page 42 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.14 VOH/VOL and IOH/IOL temperature characteristics at VCC = 3.3 V when middle drive output is
selected (reference data)
Figure 2.15 VOH/VOL and IOH/IOL temperature characteristics at VCC = 5.5 V when middle drive output is
selected (reference data)
0 0.5 1 1.5 2 2.5 3 3.5
-100
-80
-60
-40
-20
0
20
40
60
80
100
I
OH
/I
OL
vs V
OH
/V
OL
V
OH
/V
OL
[V]
I
OH
/I
OL
[mA]
Ta = -4C
Ta = 10C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
0123456
-220
-180
-140
-100
-60
-20
20
60
100
140
180
220
I
OH
/I
OL
vs V
OH
/V
OL
V
OH
/V
OL
[V]
I
OH
/I
OL
[mA]
Ta = -40°C
Ta = 105°C
Ta = 25°C
Ta = 105°C
Ta = -40°C
Ta = 25°C
R01DS0308EU0110 Rev.1.10 Page 43 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.2.8 IIC I/O Pin Output Characteristics
Figure 2.16 VOH/VOL and IOH/IOL voltage characteristics at Ta = 25°C
0123456
0
10
20
30
40
50
60
70
80
90
100
110
120
IOL vs VOL
VOL [V]
IOL [mA]
VCC = 2.7V (Low drive)
VCC = 3.3V (Low drive)
VCC = 5.5V (Low drive)
VCC = 5.5 V (Middle drive)
VCC = 3.3V (Middle drive)
VCC = 2.7V (Middle drive)
R01DS0308EU0110 Rev.1.10 Page 44 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.2.9 Operating and Standby Current
Table 2.11 Operating and standby current (1) (1 of 2)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter Symbol Typ*10 Max Unit
Test
conditions
Supply
current*1High-speed
mode*2 Normal mode All peripheral clock
disabled, while (1) code
executing from flash*5
ICLK = 48 MHz ICC 8.3 - mA *7
ICLK = 32 MHz 5.8 -
ICLK = 16 MHz 3.5 -
ICLK = 8 MHz 2.2 -
All peripheral clock
disabled, CoreMark code
executing from flash*5
ICLK = 48 MHz 16.4 -
ICLK = 32 MHz 11.3 -
ICLK = 16 MHz 6.4 -
ICLK = 8 MHz 4.0 -
All peripheral clock
enabled, while (1) code
executing from flash*5
ICLK = 48 MHz 18.5 - *9
ICLK = 32 MHz 13.8 - *8
ICLK = 16 MHz 7.7 -
ICLK = 8 MHz 4.5 -
All peripheral clock
enabled, code executing
from SRAM*5
ICLK = 48 MHz - 50.0 *9
Sleep mode All peripheral clock
disabled*5ICLK = 48 MHz 3.3 - *7
ICLK = 32 MHz 2.4 -
ICLK = 16 MHz 1.8 -
ICLK = 8 MHz 1.4 -
All peripheral clock
enabled*5ICLK = 48 MHz 13.4 - *9
ICLK = 32 MHz 10.4 - *8
ICLK = 16 MHz 6.0 -
ICLK = 8 MHz 3.6 -
Increase during BGO operation*62.5 - -
Middle-speed
mode*2Normal mode All peripheral clock
disabled, while (1) code
executing from flash*5
ICLK = 12 MHz ICC 2.5 - mA *7
ICLK = 8 MHz 2.0 -
ICLK = 1 MHz 0.9 -
All peripheral clock
disabled, CoreMark code
executing from flash*5
ICLK = 12 MHz 4.7 -
ICLK = 8 MHz 3.7 -
ICLK = 1 MHz 1.2 -
All peripheral clock
enabled, while (1) code
executing from flash*5
ICLK = 12 MHz 5.7 - *8
ICLK = 8 MHz 4.3 -
ICLK = 1 MHz 1.5 -
All peripheral clock
enabled, code executing
from SRAM*5
ICLK = 12 MHz - 20.0
Sleep mode All peripheral clock
disabled*5ICLK = 12 MHz 1.2 - *7
ICLK = 8 MHz 1.2 -
ICLK = 1 MHz 0.8 -
All peripheral clock
enabled*5ICLK = 12 MHz 4.4 - *8
ICLK = 8 MHz 3.4 -
ICLK = 1 MHz 1.4 -
Increase during BGO operation*62.5 - -
R01DS0308EU0110 Rev.1.10 Page 45 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up
MOSs are in the off state.
Note 2. The clock source is HOCO.
Note 3. The clock source is MOCO.
Note 4. The clock source is the sub-clock oscillator.
Note 5. This does not include BGO operation.
Note 6. This is the increase for programming or erasure of the flash memory for data storage during program execution.
Note 7. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are set to divided by 64.
Note 8. FCLK, PCLKA, PCLKB, PCLKC, and PCLKD are the same frequency as that of ICLK.
Note 9. FCLK and PCLKB are set to divided by 2 and PCLKA, PCLKC, and PCLKD are the same frequency as that of ICLK.
Note 10. VCC = 3.3 V.
Supply
current*1Low-speed
mode*3Normal mode All peripheral clock
disabled, while (1) code
executing from flash*5
ICLK = 1 MHz ICC 0.4 - mA *7
All peripheral clock
disabled, CoreMark code
executing from flash*5
ICLK = 1 MHz 0.6 -
All peripheral clock
enabled, while (1) code
executing from flash*5
ICLK = 1 MHz 1.0 - *8
All peripheral clock
enabled, code executing
from SRAM*5
ICLK = 1 MHz - 2.2
Sleep mode All peripheral clock
disabled*5ICLK = 1 MHz 0.3 - *7
All peripheral clock
enabled*5ICLK = 1 MHz 0.9 - *8
Low-voltage
mode*3Normal mode All peripheral clock
disabled, while (1) code
executing from flash*5
ICLK = 4 MHz ICC 1.7 - mA *7
All peripheral clock
disabled, CoreMark code
executing from flash*5
ICLK = 4 MHz 2.8 -
All peripheral clock
enabled, while (1) code
executing from flash*5
ICLK = 4 MHz 3.0 - *8
All peripheral clock
enabled, code executing
from SRAM*5
ICLK = 4 MHz - 8.0
Sleep mode All peripheral clock
disabled*5ICLK = 4 MHz 1.3 - *7
All peripheral clock
enabled*5ICLK = 4 MHz 2.5 - *8
Subosc-
speed
mode*4
Normal mode All peripheral clock
disabled, while (1) code
executing from flash*5
ICLK = 32.768 kHz ICC 8.5 - μA *8
All peripheral clock
enabled, while (1) code
executing from flash*5
ICLK = 32.768 kHz 14.9 -
All peripheral clock
enabled, code executing
from SRAM*5
ICLK = 32.768 kHz - 83.0
Sleep mode All peripheral clock
disabled*5ICLK = 32.768 kHz 5.0 -
All peripheral clock
enabled*5ICLK = 32.768 kHz 11.4 -
Table 2.11 Operating and standby current (1) (2 of 2)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter Symbol Typ*10 Max Unit
Test
conditions
R01DS0308EU0110 Rev.1.10 Page 46 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.17 Voltage dependency in high-speed operating mode (reference data)
0
5
10
15
20
25
30
35
40
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
ICC (mA)
VCC (V)
Ta = 105 C
Ta = 105 C
Ta = 105 C
, IC LK = 48 M H z
, IC LK = 8 M H z
, IC LK = 4 8 M H z *1
T a = 25 C , IC LK = 32 M H z *1
T a = 25 C , IC LK = 1 6 M H z *1
T a = 25 C
T a = 25 C , IC L K = 4 M H z *1
Ta = 25 C
Ta = 25 C
*1
, IC LK = 3 2 M H z
Ta = 25 C
T a = 1 0 5 C
, IC LK = 16 M H z *2
, IC LK = 4 8 M H z *2
T a = 1 0 5 C
, IC LK = 32 M H z *2
Ta = 105 C
Ta = 10 5 C
*2
Ta = 10 5 C
*1
, IC LK = 1 6 M H z*1
Ta = 25 C
, IC LK = 4 M H z *2
, IC LK = 8 M H z *1
Ta = 25 C
, IC LK = 4 M H z *1
Ta = 25 C
, ICLK = 48 MHz *2
, IC LK = 3 2 M H z *2
, IC LK = 1 6 M H z *2
, IC LK = 8 M H z *2
, IC LK = 4 M H z *2
Ta = 105 C
T a = 105 C
, IC LK = 8 M H z *1
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual
measurements of the sample cores during product evaluation.
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the
actual measurements for the upper limit samples during product evaluation.
R01DS0308EU0110 Rev.1.10 Page 47 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.18 Voltage dependency in middle-speed operating mode (reference data)
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the actual
measurements of the sample cores during product evaluation.
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the
actual measurements for the upper limit samples during product evaluation.
0
2
4
6
8
10
12
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
ICC (mA)
VCC (V)
, ICLK = 12 MHz*2
Ta = 105 C
, ICLK = 8 MHz*2
Ta = 105 C
, ICLK = 12 MHzTa = 25 C
*1
Ta = 105 C
, ICLK = 4 MHz*2
, ICLK = 8 MHz *1
Ta = 25 C
, ICLK = 4 MHz*1
Ta = 25 C
, ICLK = 1 MHz*2
Ta = 105 C
Ta = 25 C, ICLK = 1 MHz *1
Ta = 105 C
Ta = 105 C
Ta = 25 C
Ta = 25 C
Ta = 25 C, ICLK = 4 MHz *1
Ta = 25 C, ICLK = 1 MHz *1
, ICLK = 12 MHz *2
, ICLK = 8 MHz *2
, ICLK = 4 MHz *2
, ICLK = 1 MHz *2
Ta = 105 C
Ta = 105 C
, ICLK = 12 MHz *1
, ICLK = 8 MHz *1
R01DS0308EU0110 Rev.1.10 Page 48 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.19 Voltage dependency in Low-speed mode (reference data)
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
ICC (mA)
VCC (V)
, ICLK = 1 MHz*2
Ta = 105 C
, ICLK = 1 MHzTa = 25 C
*1
, ICLK = 1 MHz *1
Ta = 25 C
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the
actual measurements of the sample cores during product evaluation.
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the
actual measurements for the upper limit samples during product evaluation.
R01DS0308EU0110 Rev.1.10 Page 49 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.20 Voltage dependency in low-voltage mode (reference data)
0
1
2
3
4
5
6
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
ICC (mA)
VCC (V)
Ta = 105 C
, ICLK = 4 MHz*2
, ICLK = 4 MHz*1
Ta = 25 C
, ICLK = 1 MHz
*2
Ta = 105 C
Ta = 25 C, ICLK = 1 MHz*1
Ta = 25 C
, ICLK = 1 MHz *1
Ta = 25 C
, ICLK = 4 MHz *1 , ICLK = 4 MHz *2
Ta = 105 C
, ICLK = 1 MHz
Ta = 105 C *2
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the
actual measurements of the sample cores during product evaluation.
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the
actual measurements for the upper limit samples during product evaluation.
R01DS0308EU0110 Rev.1.10 Page 50 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.21 Voltage dependency in Subosc-speed mode (reference data)
Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up
MOSs are in the off state.
Note 2. The IWDT and LVD are not operating.
Note 3. Includes the current of sub-oscillation circuit or low-speed on-chip oscillator.
Note 4. VCC = 3.3 V.
Table 2.12 Operating and standby current (2)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter Symbol Typ*4Max Unit Test conditions
Supply
current*1
Software Standby
mode*2
Ta = 25°C ICC 0.8 4.5 μA -
Ta = 55°C 1.3 7.1
Ta = 85°C 3.5 20.2
Ta = 105°C 8.7 53.7
Increment for RTC operation with
low-speed on-chip oscillator*3
0.5 - -
Increment for RTC operation with
sub-clock oscillator*3
0.4 - SOMCR.SODRV[1:0] are 11b
(Low power mode 3)
1.2 - SOMCR.SODRV[1:0] are 00b
(Normal mode)
0.0
5.0
10.0
15.0
20.0
25.0
30.0
35.0
40.0
45.0
50.0
55.0
1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0
ICC (uA)
VCC (V)
, ICLK = 32 MHz*2
Ta = 105 C
Ta = 25 C, ICLK = 32 MHz*1
Ta = 25 C
, ICLK = 32 MHz *1 Ta = 105 C
, ICLK = 32 MHz *2
Note 1. All peripheral operations except any BGO operation are operating normally. This is the average of the
actual measurements of the sample cores during product evaluation.
Note 2. All peripheral operations except any BGO operation are operating at maximum. This is the average of the
actual measurements for the upper limit samples during product evaluation.
R01DS0308EU0110 Rev.1.10 Page 51 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.22 Temperature dependency in Software Standby mode all SRAM (reference data)
Note 1. Supply current values do not include output charge/discharge current from all pins. The values apply when internal pull-up
MOSs are in the off state.
Table 2.13 Operating and standby current (3)
Conditions: VCC = AVCC0 = 0V, VBATT = 1.6 to 3.6 V, VSS = AVSS0 = 0V
Parameter Symbol Typ Max Unit Test conditions
Supply
current*1
RTC operation
when VCC is off
Ta = 25°C ICC 0.8 - μA VBATT = 2.0 V
SOMCR.SORDRV[1:0] = 11b
(Low power mode 3)
Ta = 55°C 0.9 -
Ta = 85°C 1.0 -
Ta = 105°C 1.1 -
Ta = 25°C 0.9 - VBATT = 3.3 V
SOMCR.SORDRV[1:0] = 11b
(Low power mode 3)
Ta = 55°C 1.0 -
Ta = 85°C 1.1 -
Ta = 105°C 1.2 -
Ta = 25°C 1.5 - VBATT = 2.0 V
SOMCR.SORDRV[1:0] = 00b
(Normal mode)
Ta = 55°C 1.7 -
Ta = 85°C 2.0 -
Ta = 105°C 2.2 -
Ta = 25°C 1.6 - VBATT = 3.3 V
SOMCR.SORDRV[1:0] = 00b
(Normal mode)
Ta = 55°C 1.8 -
Ta = 85°C 2.1 -
Ta = 105°C 2.3 -
ICC (mA)
0.1
1
10
100
-40 -20 0 20 40 60 80 100
Ta ( C)
Average value of the tested middle samples during product evaluation.
Average value of the tested upper-limit samples during product evaluation.
ICC (uA)
R01DS0308EU0110 Rev.1.10 Page 52 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.23 Temperature dependency of RTC operation with VCC off (reference data)
R01DS0308EU0110 Rev.1.10 Page 53 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note 1. The reference power supply current is included in the power supply current value for D/A conversion.
Note 2. Current consumed only by the USBFS.
Note 3. Includes the current supplied from the pull-up resistor of the USB_DP pin to the pull-down resistor of the host device, in addition
to the current consumed by the MCU during the suspended state.
Note 4. When VCC = VCC_USB = 3.3 V.
Note 5. Current flowing only to the LCD controller. Not including the current that flows through the LCD panel.
Note 6. When the MCU is in Software Standby mode or the MSTPCRD.MSTPD16 (ADC140 module stop bit) is in the module-stop
state.
Table 2.14 Operating and standby current (4)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V, VREFH0 = 2.7 V to AVCC0
Parameter Symbol Min Typ Max Unit
Test
conditions
Analog power
supply current
During A/D conversion (at high-speed conversion) IAVCC -- 3.0 mA-
During A/D conversion (at low-power conversion) - - 1.0 mA -
During D/A conversion (per channel)*1-0.4 0.8 mA-
Waiting for A/D and D/A conversion (all units)*6-- 1.0 μA-
Reference
power supply
current
During A/D conversion IREFH0 -- 150μA-
Waiting for A/D conversion (all units) - - 60 nA -
During D/A conversion IREFH -50 100μA-
Waiting for D/A conversion (all units) - - 100 μA -
Temperature sensor ITNS -75 - μA-
Low-Power
Analog
Comparator
operating
current
Window mode ICMPLP -15 - μA-
Comparator High-speed mode - 10 - μA -
Comparator Low-speed mode - 2 - μA -
Comparator Low-speed mode using DAC8 - 820 - μA -
Operational
Amplifier
operating
current
Low power mode 1 unit operating IAMP -2.5 4.0 μA-
2 units operating - 4.5 8.0 μA -
3 units operating - 6.5 11.0 μA -
4 units operating - 8.5 14.0 μA -
High-speed mode 1 unit operating - 140 220 μA -
2 units operating - 280 410 μA -
3 units operating - 420 600 μA -
4 units operating - 560 780 μA -
LCD operating
current
External resistance division method
fLCD = fSUB = 128 Hz, 1/3 bias, and 4-time slice
ILCD1*5-0.34 - μA-
Internal voltage boosting method (VLCD.VLCD = 04)
fLCD = fSUB = 128 Hz, 1/3 bias, and 4-time slice
ILCD2*5-0.92 - μA-
Capacitor split method
fLCD = fSUB = 128 Hz, 1/3 bias, and 4-time slice
ILCD3*5-0.19 - μA-
USB operating
current
During USB communication operation under the
following settings and conditions:
Host controller operation is set to full-speed mode
Bulk OUT transfer (64 bytes) × 1,
bulk IN transfer (64 bytes) × 1
Connect peripheral devices via a 1-meter USB
cable from the USB port.
IUSBH*2- 4.3 (VCC)
0.9 (VCC_USB)*4-mA-
During USB communication operation under the
following settings and conditions:
Device controller operation is set to full-speed mode
Bulk OUT transfer (64 bytes) × 1,
bulk IN transfer (64 bytes) × 1
Connect the host device via a 1-meter USB cable
from the USB port.
IUSBF*2- 3.6 (VCC)
1.1 (VCC_USB)*4-mA-
During suspended state under the following setting
and conditions:
Device controller operation is set to full-speed mode
(pull up the USB_DP pin)
Software standby mode
Connect the host device via a 1-meter USB cable
from the USB port.
ISUSP*3- 0.35 (VCC)
170 (VCC_USB)*4A-
R01DS0308EU0110 Rev.1.10 Page 54 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.2.10 VCC Rise and Fall Gradient and Ripple Frequency
Note 1. When OFS1.LVDAS = 0.
Note 2. At boot mode, the reset from voltage monitor 0 is disabled regardless of the value of OFS1.LVDAS bit.
Figure 2.24 Ripple waveform
Table 2.15 Rise and fall gradient characteristics
Conditions: VCC = AVCC0 = 0 to 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
Power-on VCC
rising gradient
Voltage monitor 0 reset disabled at startup (normal
startup)
SrVCC 0.02 - 2 ms/V -
Voltage monitor 0 reset enabled at startup*1 0.02--
SCI/USB boot mode*20.02 - 2
Table 2.16 Rising and falling gradient and ripple frequency characteristics
Conditions: VCC = AVCC0 = VCC_USB = 1.6 to 5.5 V
The ripple voltage must meet the allowable ripple frequency fr(VCC) within the range between the VCC upper limit (5.5 V) and lower limit
(1.6 V).
When VCC change exceeds VCC ±10%, the allowable voltage change rising/falling gradient dt/dVCC must be met.
Parameter Symbol Min Typ Max Unit Test conditions
Allowable ripple frequency fr (VCC) --10kHzFigure 2.24
Vr (VCC) ≤ VCC × 0.2
--1MHzFigure 2.24
Vr (VCC) ≤ VCC × 0.08
--10MHzFigure 2.24
Vr (VCC) ≤ VCC × 0.06
Allowable voltage change rising and
falling gradient
dt/dVCC 1.0 - - ms/V When VCC change exceeds VCC ±10%
Vr(VCC)
VCC
1/fr(VCC)
R01DS0308EU0110 Rev.1.10 Page 55 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.3 AC Characteristics
2.3.1 Frequency
Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for
programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer
frequency such as 1.5 MHz cannot be set.
Note 2. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency
accuracy of the clock source.
Note 3. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in
use.
Note 4. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB,
PCLKC, PCLKD, and FCLK.
Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed
operation, see Table 2.22, Clock timing.
Table 2.17 Operation frequency value in high-speed operating mode
Conditions: VCC = AVCC0 = 2.4 to 5.5 V
Parameter Symbol Min Typ Max*5Unit
Operation
frequency
System clock (ICLK)*42.7 to 5.5 V f 0.032768 - 48 MHz
2.4 to 2.7 V 0.032768 - 16
Flash interface clock (FCLK)*1, *2, *42.7 to 5.5 V 0.032768 - 32
2.4 to 2.7 V 0.032768 - 16
Peripheral module clock (PCLKA)*42.7 to 5.5 V - - 48
2.4 to 2.7 V - - 16
Peripheral module clock (PCLKB)*42.7 to 5.5 V - - 32
2.4 to 2.7 V - - 16
Peripheral module clock (PCLKC)*3, *42.7 to 5.5 V - - 64
2.4 to 2.7 V - - 16
Peripheral module clock (PCLKD)*42.7 to 5.5 V - - 64
2.4 to 2.7 V - - 16
Table 2.18 Operation frequency value in Middle-speed mode
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Parameter Symbol Min Typ Max*5Unit
Operation
frequency
System clock (ICLK)*42.7 to 5.5 V f 0.032768 - 12 MHz
2.4 to 2.7 V 0.032768 - 12
1.8 to 2.4 V 0.032768 - 8
Flash interface clock (FCLK)*1, *2, *42.7 to 5.5 V 0.032768 - 12
2.4 to 2.7 V 0.032768 - 12
1.8 to 2.4 V 0.032768 - 8
Peripheral module clock (PCLKA)*42.7 to 5.5 V - - 12
2.4 to 2.7 V - - 12
1.8 to 2.4 V - - 8
Peripheral module clock (PCLKB)*42.7 to 5.5 V - - 12
2.4 to 2.7 V - - 12
1.8 to 2.4 V - - 8
Peripheral module clock (PCLKC)*3, *42.7 to 5.5 V - - 12
2.4 to 2.7 V - - 12
1.8 to 2.4 V - - 8
Peripheral module clock (PCLKD)*42.7 to 5.5 V - - 12
2.4 to 2.7 V - - 12
1.8 to 2.4 V - - 8
R01DS0308EU0110 Rev.1.10 Page 56 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for
programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer
frequency such as 1.5 MHz cannot be set.
Note 2. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency
accuracy of the clock source.
Note 3. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-bit A/D converter is in use.
Note 4. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB,
PCLKC, PCLKD, FCLK.
Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed
operation, see Table 2.22, Clock timing.
Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory.
Note 2. The lower-limit frequency of PCLKC is 1 MHz when the A/D converter is in use.
Note 3. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB,
PCLKC, PCLKD, FCLK.
Note 4. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed
operation, see Table 2.22, Clock timing.
Note 1. The lower-limit frequency of FCLK is 1 MHz while programming or erasing the flash memory. When using FCLK for
programming or erasing the flash memory at below 4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer
frequency such as 1.5 MHz cannot be set.
Note 2. The frequency accuracy of FCLK must be ±3.5% while programming or erasing the flash memory. Confirm the frequency
accuracy of the clock source.
Note 3. The lower-limit frequency of PCLKC is 4 MHz at 2.4 V or above and 1 MHz at below 2.4 V when the 14-Bit A/D converter is in
use.
Note 4. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB,
PCLKC, PCLKD, FCLK.
Note 5. The maximum value of operation frequency does not include internal oscillator errors. For details on the range of guaranteed
operation, see Table 2.22, Clock timing.
Table 2.19 Operation frequency value in Low-speed mode
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Parameter Symbol Min Typ Max*4Unit
Operation
frequency
System clock (ICLK)*31.8 to 5.5 V f 0.032768 - 1 MHz
Flash interface clock (FCLK)*1, *31.8 to 5.5 V 0.032768 - 1
Peripheral module clock (PCLKA)*31.8 to 5.5 V - - 1
Peripheral module clock (PCLKB)*31.8 to 5.5 V - - 1
Peripheral module clock (PCLKC)*2, *31.8 to 5.5 V - - 1
Peripheral module clock (PCLKD)*31.8 to 5.5 V - - 1
Table 2.20 Operation frequency value in low-voltage mode
Conditions: VCC = AVCC0 = 1.6 to 5.5 V
Parameter Symbol Min Typ Max*5Unit
Operation
frequency
System clock (ICLK)*41.6 to 5.5 V f 0.032768 - 4 MHz
Flash interface clock (FCLK)*1, *2, *41.6 to 5.5 V 0.032768 - 4
Peripheral module clock (PCLKA)*41.6 to 5.5 V - - 4
Peripheral module clock (PCLKB)*41.6 to 5.5 V - - 4
Peripheral module clock (PCLKC)*3, *41.6 to 5.5 V - - 4
Peripheral module clock (PCLKD)*41.6 to 5.5 V - - 4
R01DS0308EU0110 Rev.1.10 Page 57 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note 1. Programming and erasing the flash memory is not possible.
Note 2. The 14-bit A/D converter cannot be used.
Note 3. See section 8, Clock Generation Circuit in User’s Manual for the relationship of frequencies between ICLK, PCLKA, PCLKB,
PCLKC, PCLKD, FCLK.
2.3.2 Clock Timing
Table 2.21 Operation frequency value in Subosc-speed mode
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Parameter Symbol Min Typ Max Unit
Operation
frequency
System clock (ICLK)*31.8 to 5.5 V f 27.8528 32.768 37.6832 kHz
Flash interface clock (FCLK)*1, *31.8 to 5.5 V 27.8528 32.768 37.6832
Peripheral module clock (PCLKA)*31.8 to 5.5 V - - 37.6832
Peripheral module clock (PCLKB)*31.8 to 5.5 V - - 37.6832
Peripheral module clock (PCLKC)*2, *31.8 to 5.5 V - - 37.6832
Peripheral module clock (PCLKD)*31.8 to 5.5 V - - 37.6832
Table 2.22 Clock timing (1 of 2)
Parameter Symbol Min Typ Max Unit Test conditions
EXTAL external clock input cycle time tXcyc 50 - - ns Figure 2.25
EXTAL external clock input high pulse width tXH 20 - - ns
EXTAL external clock input low pulse width tXL 20 - - ns
EXTAL external clock rising time tXr --5ns
EXTAL external clock falling time tXf --5ns
EXTAL external clock input wait time*1tEXWT 0.3 - - μs -
EXTAL external clock input frequency fEXTAL - - 20 MHz 2.4 ≤ VCC ≤ 5.5
- - 8 1.8 ≤ VCC < 2.4
- - 1 1.6 ≤ VCC < 1.8
Main clock oscillator oscillation frequency fMAIN 1 - 20 MHz 2.4 ≤ VCC ≤ 5.5
1 - 8 1.8 ≤ VCC < 2.4
1 - 4 1.6 ≤ VCC < 1.8
Main clock oscillation stabilization wait time (crystal)*9tMAINOSCWT ---*
9ms -
LOCO clock oscillation frequency fLOCO 27.8528 32.768 37.6832 kHz -
LOCO clock oscillation stabilization time tLOCO --100μsFigure 2.26
IWDT-dedicated clock oscillation frequency fILOCO 12.75 15 17.25 kHz -
MOCO clock oscillation frequency fMOCO 6.88 9.2MHz-
MOCO clock oscillation stabilization time tMOCO --1μs-
R01DS0308EU0110 Rev.1.10 Page 58 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note 1. Time until the clock can be used after the Main Clock Oscillator Stop bit (MOSCCR.MOSTP) is set to 0 (operating) when the
external clock is stable.
Note 2. The VCC range that the PLL can be used is 2.4 to 5.5 V.
Note 3. After changing the setting of the SOSCCR.SOSTP bit so that the sub-clock oscillator operates, only start using the sub-clock
after the sub-clock oscillation stabilization wait time elapses, that is greater than or equal to the value recommended by the
oscillator manufacturer.
Note 4. The 48-MHz HOCO can be used within a VCC range of 1.8 V to 5.5 V.
Note 5. The 64-MHz HOCO can be used within a VCC range of 2.4 V to 5.5 V.
Note 6. This is a characteristic when HOCOCR.HCSTP bit is set to 0 (oscillation) in MOCO stop state.
When HOCOCR.HCSTP bit is set to 0 (oscillation) during MOCO oscillation, this specification is shortened by 1 μs.
Note 7. Whether stabilization time has elapsed can be confirmed by OSCSF.HOCOSF.
Note 8. This is a characteristic when PLLCR.PLLSTP bit is set to 0 (operation) in MOCO stop state.
When PLLCR.PLLSTP bit is set to 0 (operation) during MOCO oscillation, this specification is shortened by 1 μs.
Note 9. When setting up the main clock, ask the oscillator manufacturer for an oscillation evaluation and use the results as the
recommended oscillation stabilization time. Set the MOSCWTCR register to a value equal to or greater than the recommended
stabilization time. After changing the setting of the MOSCCR.MOSTP bit so that the main clock oscillator operates, read the
OSCSF.MOSCSF flag to confirm that it is 1, then start using the main clock.
HOCO clock oscillation frequency fHOCO24 23.64 24 24.36 MHz Ta = -40 to -20°C
1.8 ≤ VCC ≤ 5.5
22.68 24 25.32 Ta = -40 to 85°C
1.6 ≤ VCC < 1.8
23.76 24 24.24 Ta = -20 to 85°C
1.8 ≤ VCC ≤ 5.5
23.52 24 24.48 Ta = 85 to 105°C
2.4 ≤ VCC ≤ 5.5
fHOCO32 31.52 32 32.48 Ta = -40 to -20°C
1.8 ≤ VCC ≤ 5.5
30.24 32 33.76 Ta = -40 to 85°C
1.6 ≤ VCC < 1.8
31.68 32 32.32 Ta = -20 to 85°C
1.8 ≤ VCC ≤ 5.5
31.36 32 32.64 Ta = 85 to 105°C
2.4 ≤ VCC ≤ 5.5
fHOCO48*447.28 48 48.72 Ta = -40 to -20°C
1.8 ≤ VCC ≤ 5.5
47.52 48 48.48 Ta = -20 to 85°C
1.8 ≤ VCC ≤ 5.5
47.04 48 48.96 Ta = 85 to 105°C
2.4 ≤ VCC ≤ 5.5
fHOCO64*563.04 64 64.96 Ta = -40 to -20°C
2.4 ≤ VCC ≤ 5.5
63.36 64 64.64 Ta = -20 to 85°C
2.4 ≤ VCC ≤ 5.5
62.72 64 65.28 Ta = 85 to 105°C
2.4 ≤ VCC ≤ 5.5
HOCO clock oscillation
stabilization time*6, *7Except Low-Voltage
mode
tHOCO24
tHOCO32
--37.1μsFigure 2.27
tHOCO48 --43.3
tHOCO64 --80.6
Low-Voltage mode tHOCO24
tHOCO32
tHOCO48
tHOCO64
- - 100.9
PLL input frequency*2fPLLIN 4- 12.5MHz-
PLL circuit oscillation frequency*2fPLL 24 - 64 MHz -
PLL clock oscillation stabilization time*8tPLL --55.5μsFigure 2.29
PLL free-running oscillation frequency fPLLFR -8-MHz-
Sub-clock oscillator oscillation frequency fSUB - 32.768 - kHz -
Sub-clock oscillation stabilization time*3 t
SUBOSC ---*
3sFigure 2.30
Table 2.22 Clock timing (2 of 2)
Parameter Symbol Min Typ Max Unit Test conditions
R01DS0308EU0110 Rev.1.10 Page 59 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.25 EXTAL external clock input timing
Figure 2.26 LOCO clock oscillation start timing
Figure 2.27 HOCO clock oscillation start timing (started by setting HOCOCR.HCSTP bit)
Figure 2.28 Main clock oscillation start timing
Figure 2.29 PLL clock oscillation start timing (PLL is operated after main clock oscillation has settled)
tXH
tXcyc
EXTAL external clock input VCC × 0.5
tXL
tXr tXf
LOCO clock oscillator output
LOCOCR.LCSTP
t
LOCO
Note 1. x = 24, 32, 48, 64
HOCO clock
HOCOCR.HCSTP
tHOCOx*1
Main clock oscillator output
MOSCCR.MOSTP
Main clock
t
MAINOSCWT
PLLCR.PLLSTP
PLL clock
tPLL
R01DS0308EU0110 Rev.1.10 Page 60 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.30 Sub-clock oscillation start timing
Figure 2.31 MOCO clock oscillation start timing
Sub-clock oscillator output
SOSCCR.SOSTP
t
SUBOSC
MOCO clock oscillator output
MOCOCR.MCSTP
t
MOCO
R01DS0308EU0110 Rev.1.10 Page 61 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.3.3 Reset Timing
Note 1. When OFS1.LVDAS = 0.
Note 2. When OFS1.LVDAS = 1.
Figure 2.32 Reset input timing at power-on
Figure 2.33 Reset input timing
Table 2.23 Reset timing
Parameter Symbol Min Typ Max Unit
Test
conditions
RES pulse width At power-on tRESWP 3--ms Figure 2.32
Other than above tRESW 30 - sFigure 2.33
Wait time after RES cancellation
(at power-on)
LVD0: enable*1tRESWT -0.7 -msFigure 2.32
LVD0: disable*2-0.3 -
Wait time after RES cancellation
(during powered-on state)
LVD0: enable*1tRESWT2 -0.5 -msFigure 2.33
LVD0: disable*2-0.05 -
Internal reset cancellation time (Watchdog
timer reset, SRAM parity error reset,
SRAM ECC error reset, Bus master MPU
error reset, Bus slave MPU error reset,
Stack pointer error reset, Software reset)
LVD0: enable*1tRESWT3 -0.6 -ms
-
LVD0: disable*2-0.15 -
VCC
RES
tRESWP
Internal reset
tRESWT
RES
Internal reset
tRESWT2
tRESW
R01DS0308EU0110 Rev.1.10 Page 62 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.3.4 Wakeup Time
Note 1. The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time
is determined by the system clock source.
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.
Note 4. The HOCO Clock Wait Control Register (HOCOWTCR) is set to 05h.
Note 5. The HOCO Clock Wait Control Register (HOCOWTCR) is set to 06h.
Note 1. The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time
is determined by the system clock source.
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.
Table 2.24 Timing of recovery from low power modes (1)
Parameter Symbol Min Typ Max Unit
Test
conditions
Recovery time
from Software
Standby mode*1
High-speed
mode
Crystal
resonator
connected to
main clock
oscillator
System clock source is
main clock oscillator
(20 MHz)*2
tSBYMC -23msFigure 2.34
System clock source is
PLL (48 MHz) with main
clock oscillator*2
tSBYPC -23ms
External clock
input to main
clock oscillator
System clock source is
main clock oscillator
(20 MHz)*3
tSBYEX -1425μs
System clock source is
PLL (48 MHz) with main
clock oscillator*3
tSBYPE -5376μs
System clock source is HOCO*4
(HOCO clock is 32 MHz)
tSBYHO -4352μs
System clock source is HOCO*4
(HOCO clock is 48 MHz)
tSBYHO -4452μs
System clock source is HOCO*5
(HOCO clock is 64 MHz)
tSBYHO -82110μs
System clock source is MOCO tSBYMO -1625μs
Table 2.25 Timing of recovery from low power modes (2)
Parameter Symbol Min Typ Max Unit
Test
conditions
Recovery time
from Software
Standby mode*1
Middle-speed
mode
Crystal
resonator
connected to
main clock
oscillator
System clock source is
main clock oscillator
(12 MHz)*2
tSBYMC -23msFigure 2.34
System clock source is
PLL (24 MHz) with main
clock oscillator*2
tSBYPC -23ms
External clock
input to main
clock oscillator
System clock source is
main clock oscillator
(12 MHz)*3
tSBYEX -2.910μs
System clock source is
PLL (24 MHz) with main
clock oscillator*3
tSBYPE -4976μs
System clock source is HOCO (24 MHz) tSBYHO -3850μs
System clock source is MOCO tSBYMO -3.55.5μs
R01DS0308EU0110 Rev.1.10 Page 63 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note 1. The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time
is determined by the system clock source.
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.
Note 1. The division ratio of ICK, FCK, and PCKx is the minimum division ratio within the allowable frequency range. The recovery time
is determined by the system clock source. When multiple oscillators are active, the recovery time can be determined by the
following expression.
Note 2. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 05h.
Note 3. The Main Clock Oscillator Wait Control Register (MOSCWTCR) is set to 00h.
Note 1. The sub-clock oscillator or LOCO itself continues to oscillate in Software Standby mode during Subosc-speed mode.
Table 2.26 Timing of recovery from low power modes (3)
Parameter Symbol Min Typ Max Unit
Test
conditions
Recovery time
from Software
Standby mode*1
Low-speed
mode
Crystal
resonator
connected to
main clock
oscillator
System clock source is
main clock oscillator
(1 MHz)*2
tSBYMC -23msFigure 2.34
External clock
input to main
clock oscillator
System clock source is
main clock oscillator
(1 MHz)*3
tSBYEX -2850μs
System clock source is MOCO tSBYMO -2535μs
Table 2.27 Timing of recovery from low power modes (4)
Parameter Symbol Min Typ Max Unit
Test
conditions
Recovery time
from Software
Standby mode*1
Low-voltage
mode
Crystal
resonator
connected to
main clock
oscillator
System clock source is
main clock oscillator
(4 MHz)*2
tSBYMC -23msFigure 2.34
External clock
input to main
clock oscillator
System clock source is
main clock oscillator
(4 MHz)*3
tSBYEX - 108 130 μs
System clock source is HOCO tSBYHO - 108 130 μs
Table 2.28 Timing of recovery from low power modes (5)
Parameter Symbol Min Typ Max Unit
Test
conditions
Recovery time
from Software
Standby mode*1
Subosc-speed mode System clock source is sub-clock
oscillator (32.768 kHz)
tSBYSC -0.851msFigure 2.34
System clock source is LOCO
(32.768 kHz)
tSBYLO -0.851.2ms
R01DS0308EU0110 Rev.1.10 Page 64 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.34 Software Standby mode cancellation timing
Table 2.29 Timing of recovery from low power modes (6)
Parameter Symbol Min Typ Max Unit Test conditions
Recovery time from
Software Standby
mode to Snooze
mode
High-speed mode
System clock source is HOCO
tSNZ - 364sFigure 2.35
Middle-speed mode
System clock source is MOCO
tSNZ -1.33.6μs
Low-speed mode
System clock source is MOCO
tSNZ - 101s
Low-voltage mode
System clock source is HOCO
tSNZ -87110μs
Oscillator
ICLK
IRQ
Software Standby mode
t
SBYSC
, t
SBYLO
Oscillator
ICLK
IRQ
Software Standby mode
t
SBYMC,
t
SBYPC,
t
SBYEX,
t
SBYPE
, t
SBYMO
, t
SBYHO
R01DS0308EU0110 Rev.1.10 Page 65 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.35 Software Standby mode to Snooze mode recovery timing
tSNZ
IRQ
ICLK (to DTC, SRAM)*1
PCLK
ICLK (except DTC, SRAM)
Oscillator
Software Standby mode Snooze mode
Note 1. When SNZCR.SNZDTCEN is set to 1, ICLK is supplied to DTC and SRAM.
R01DS0308EU0110 Rev.1.10 Page 66 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.3.5 NMI and IRQ Noise Filter
Note: 200 ns minimum in Software Standby mode.
Note 1. tPcyc indicates the cycle of PCLKB.
Note 2. tNMICK indicates the cycle of the NMI digital filter sampling clock.
Note 3. tIRQCK indicates the cycle of the IRQi digital filter sampling clock (i = 0 to 12, 14, 15).
Figure 2.36 NMI interrupt input timing
Figure 2.37 IRQ interrupt input timing
Table 2.30 NMI and IRQ noise filter
Parameter Symbol Min Typ Max Unit Test conditions
NMI pulse width tNMIW 200 --ns NMI digital filter disabled tPcyc × 2 ≤ 200 ns
tPcyc × 2*1-- tPcyc × 2 > 200 ns
200 -- NMI digital filter enabled tNMICK × 3 ≤ 200 ns
tNMICK × 3.5*2-- tNMICK × 3 > 200 ns
IRQ pulse width tIRQW 200 --ns IRQ digital filter disabled tPcyc × 2 ≤ 200 ns
tPcyc × 2*1-- tPcyc × 2 > 200 ns
200 -- IRQ digital filter enabled tIRQCK × 3 ≤ 200 ns
tIRQCK × 3.5*3-- tIRQCK × 3 > 200 ns
tNMIW
NMI
t
IRQW
IRQ
R01DS0308EU0110 Rev.1.10 Page 67 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.3.6 I/O Ports, POEG, GPT, AGT, KINT, and ADC14 Trigger Timing
Note 1. Constraints on AGTIO input: tPcyc × 2 < tACYC
Note: tPcyc: PCLKB cycle, tPDcyc: PCLKD cycle
Figure 2.38 I/O ports input timing
Figure 2.39 POEG input trigger timing
Table 2.31 I/O Ports, POEG, GPT, AGT, KINT, and ADC14 trigger timing
Parameter Symbol Min Max Unit
Test
conditions
I/O ports Input data pulse width tPRW 1.5 - tPcyc Figure 2.38
Input/output data cycle (P002, P003, P004, P007) tPOcyc 10 - us
POEG POEG input trigger pulse width tPOEW 3- t
Pcyc Figure 2.39
GPT Input capture pulse width Single edge tGTICW 1.5 - tPDcyc Figure 2.40
Dual edge 2.5 -
AGT AGTIO, AGTEE input cycle 2.7 V ≤ VCC ≤ 5.5 V tACYC*1250 - ns Figure 2.41
2.4 V ≤ VCC < 2.7 V 500 - ns
1.8 V ≤ VCC < 2.4 V 1000 - ns
1.6 V ≤ VCC < 1.8 V 2000 - ns
AGTIO, AGTEE input high level
width, low-level width
2.7 V ≤ VCC ≤ 5.5 V tACKWH,
tACKWL
100 - ns
2.4 V ≤ VCC < 2.7 V 200 - ns
1.8 V ≤ VCC < 2.4 V 400 - ns
1.6 V ≤ VCC < 1.8 V 800 - ns
AGTIO, AGTO, AGTOA, AGTOB
output cycle
2.7 V ≤ VCC ≤ 5.5 V tACYC2 62.5 - ns Figure 2.41
2.4 V ≤ VCC < 2.7 V 125 - ns
1.8 V ≤ VCC < 2.4 V 250 - ns
1.6 V ≤ VCC < 1.8 V 500 - ns
ADC14 14-bit A/D converter trigger input pulse width tTRGW 1.5 - tPcyc Figure 2.42
KINT KRn (n = 00 to 07) pulse width tKR 250 - ns Figure 2.43
Port
tPRW
POEG input trigger
t
POEW
R01DS0308EU0110 Rev.1.10 Page 68 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.40 GPT input capture timing
Figure 2.41 AGT I/O timing
Figure 2.42 ADC14 trigger input timing
Figure 2.43 Key interrupt input timing
2.3.7 CAC Timing
Table 2.32 CAC timing
Parameter Symbol Min Typ Max Unit
Test
conditions
CAC CACREF input pulse width tPBcyc*1 ≤ tcac*2tCACREF 4.5 × tcac + 3 × tPBcyc*1--ns-
tPBcyc*1 > tcac*25 × tcac + 6.5 × tPBcyc*1--ns
Input capture
t
GTICW
t
ACYC2
AGTIO, AGTEE
(input)
t
ACYC
t
ACKWL
t
ACKWH
AGTIO, AGTO,
AGTOA, AGTOB
(output)
ADTRG0
tTRGW
KR00 to KR07
t
KR
R01DS0308EU0110 Rev.1.10 Page 69 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note 1. tPBcyc: PCLKB cycle.
Note 2. tcac: CAC count clock source cycle.
2.3.8 SCI Timing
Note 1. tPcyc: PCLKA cycle.
Figure 2.44 SCK clock input timing
Table 2.33 SCI timing (1)
Parameter Symbol Min Max Unit*1
Test
conditions
SCI Input clock cycle Asynchronous tScyc 4- t
Pcyc Figure 2.44
Clock synchronous 6 -
Input clock pulse width tSCKW 0.4 0.6 tScyc
Input clock rise time tSCKr -20ns
Input clock fall time tSCKf -20ns
Output clock cycle Asynchronous tScyc 6- t
Pcyc
Clock synchronous 4 -
Output clock pulse width tSCKW 0.4 0.6 tScyc
Output clock rise time 1.8 V or above tSCKr -20ns
1.6 V or above - 30
Output clock fall time 1.8 V or above tSCKf -20ns
1.6 V or above - 30
Transmit data delay
(master)
Clock
synchronous
1.8 V or above tTXD -40nsFigure 2.45
1.6 V or above - 45
Transmit data delay
(slave)
Clock
synchronous
2.7 V or above - 55 ns
2.4 V or above - 60
1.8 V or above - 100
1.6 V or above - 125
Receive data setup
time (master)
Clock
synchronous
2.7 V or above tRXS 45 - ns
2.4 V or above 55 -
1.8 V or above 90 -
1.6 V or above 110 -
Receive data setup
time (slave)
Clock
synchronous
2.7 V or above 40 - ns
1.6 V or above 45 -
Receive data hold
time (master)
Clock synchronous tRXH 5- ns
Receive data hold
time (slave)
Clock synchronous tRXH 40 - ns
tSCKW tSCKr tSCKf
tScyc
SCKn
(n = 0 to 2, 9)
R01DS0308EU0110 Rev.1.10 Page 70 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.45 SCI input/output timing in clock synchronous mode
Table 2.34 SCI timing (2) (1 of 2)
Parameter Symbol Min Max Unit Test conditions
Simple
SPI
SCK clock cycle output (master) tSPcyc 4 65,536 tPcyc Figure 2.46
SCK clock cycle input (slave) 6 65,536
SCK clock high pulse width tSPCKWH 0.4 0.6 tSPcyc
SCK clock low pulse width tSPCKWL 0.4 0.6 tSPcyc
SCK clock rise and fall time 1.8 V or above tSPCKr,
tSPCKf
-20ns
1.6 V or above - 30
Data input setup
time
Master 2.7 V or above tSU 45 - ns Figure 2.47 to
Figure 2.50
2.4 V or above 55 -
1.8 V or above 80 -
1.6 V or above 110 -
Slave 2.7 V or above 40 -
1.6 V or above 45 -
Data input hold time Master tH33.3 - ns
Slave 40 -
SS input setup time tLEAD 1- t
SPcyc
SS input hold time tLAG 1- t
SPcyc
Data output delay Master 1.8 V or above tOD -40ns
1.6 V or above - 50
Slave 2.4 V or above - 65
1.8 V or above - 100
1.6 V or above - 125
Data output hold
time
Master 2.7 V or above tOH -10 - ns
2.4 V or above -20 -
1.8 V or above -30 -
1.6 V or above -40 -
Slave -10 -
Data rise and fall
time
Master 1.8 V or above tDr, tDf -20ns
1.6 V or above - 30
Slave 1.8 V or above - 20
1.6 V or above - 30
t
TXD
t
RXS
t
RXH
TXDn
RXDn
SCKn
(n = 0 to 2, 9)
R01DS0308EU0110 Rev.1.10 Page 71 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.46 SCI simple SPI mode clock timing
Figure 2.47 SCI simple SPI mode timing for master when CKPH = 1
Simple
SPI
Slave access time tSA - 10 (PCLKA >
32 MHz),
6 (PCLKA ≤
32 MHz)
tPcyc Figure 2.49 and
Figure 2.50
Slave output release time tREL - 10 (PCLKA >
32 MHz),
6 (PCLKA ≤
32 MHz)
tPcyc
Table 2.34 SCI timing (2) (2 of 2)
Parameter Symbol Min Max Unit Test conditions
t
SPCKWH
V
OH
V
OH
V
OL
V
OL
V
OH
V
OH
t
SPCKWL
t
SPCKr
t
SPCKf
V
OL
t
SPcyc
t
SPCKWH
V
IH
V
IH
V
IL
V
IL
V
IH
V
IH
t
SPCKWL
t
SPCKr
t
SPCKf
V
IL
t
SPcyc
V
OH
= 0.7 × VCC, V
OL
= 0.3 × VCC, V
IH
= 0.7 × VCC, V
IL
= 0.3 × VCC
(n = 0 to 2, 9)
SCKn
master select
output
SCKn
slave select input
tDr, tDf
tSU tH
tOH tOD
MSB IN DATA LSB IN MSB IN
MSB OUT DATA LSB OUT IDLE MSB OUT
SCKn
CKPOL = 0
output
SCKn
CKPOL = 1
output
MISOn
input
MOSIn
output
(n = 0 to 2, 9)
R01DS0308EU0110 Rev.1.10 Page 72 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.48 SCI simple SPI mode timing for master when CKPH = 0
Figure 2.49 SCI simple SPI mode timing for slave when CKPH = 1
tSU tH
tOH tOD
MSB IN DATA LSB IN MSB IN
MSB OUT DATA LSB OUT IDLE MSB OUT
SCKn
CKPOL = 1
output
SCKn
CKPOL = 0
output
MISOn
input
MOSIn
output
(n = 0 to 2, 9)
tDr, tDf
tDr, tDf
tSU tH
tLEAD
tTD
tLAG
tSA
MSB IN DATA LSB IN MSB IN
MSB OUT DATA LSB OUT MSB IN MSB OUT
tOH tOD tREL
SSn
input
SCKn
CKPOL = 0
input
SCKn
CKPOL = 1
input
MISOn
output
MOSIn
input
(n = 0 to 2, 9)
R01DS0308EU0110 Rev.1.10 Page 73 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.50 SCI simple SPI mode timing for slave when CKPH = 0
Note 1. tIICcyc: Clock cycle selected by the SMR.CKS[1:0] bits.
Note 2. Cb indicates the total capacity of the bus line.
Table 2.35 SCI timing (3)
Conditions: VCC = 2.7 to 5.5 V
Parameter Symbol Min Max Unit Test conditions
Simple I2C
(Standard mode)
SDA input rise time tSr - 1000 ns Figure 2.51
SDA input fall time tSf - 300 ns
SDA input spike pulse removal time tSP 0 4 × tIICcyc*1ns
Data input setup time tSDAS 250 - ns
Data input hold time tSDAH 0- ns
SCL, SDA capacitive load Cb*2- 400 pF
Simple I2C
(Fast mode)
SDA input rise time tSr - 300 ns Figure 2.51
For all ports
except P408, use
PmnPFS.DSCR
of middle drive.
For port P408,
use
PmnPFS.DSCR1
/DSCR of middle
drive for IIC
fast-mode.
SDA input fall time tSf - 300 ns
SDA input spike pulse removal time tSP 0 4 × tIICcyc*1ns
Data input setup time tSDAS 100 - ns
Data input hold time tSDAH 0- ns
SCL, SDA capacitive load Cb*1- 400 pF
tDr, tDf
tSA tOH
tLEAD
tTD
tLAG
tH
LSB OUT
(Last data) DATA MSB OUT
MSB IN DATA LSB IN MSB IN
LSB OUT
tSU
tOD tREL
MSB OUT
SSn
input
SCKn
CKPOL = 1
input
SCKn
CKPOL = 0
input
MISOn
output
MOSIn
input
(n = 0 to 2, 9)
R01DS0308EU0110 Rev.1.10 Page 74 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.51 SCI simple IIC mode timing
SDAn
SCLn
V
IH
V
IL
P*
1
S*
1
t
Sf
t
Sr
t
SDAH
t
SDAS
t
SP
P*
1
Test conditions:
V
IH
= VCC × 0.7, V
IL
= VCC × 0.3
V
OL
= 0.6 V, I
OL
= 6 mA
Sr*
1
Note 1. S, P, and Sr indicate the following:
S: Start condition
P: Stop condition
Sr: Restart condition
(n = 0 to 2, 9)
R01DS0308EU0110 Rev.1.10 Page 75 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.3.9 SPI Timing
Table 2.36 SPI timing (1 of 2)
Conditions: Middle drive output is selected in the Port Drive Capability bit in PmnPFS register
Parameter Symbol Min Max Unit*1 Test conditions
SPI RSPCK clock cycle Master tSPcyc 2*44096 tPcyc Figure 2.52
Slave 6 4096
RSPCK clock high
pulse width
Master tSPCKWH (tSPcyc -
tSPCKr-
tSPCKf) / 2 -
3
-ns
Slave 3 × tPcyc -
RSPCK clock low
pulse width
Master tSPCKWL (tSPcyc -
tSPCKr -
tSPCKf) / 2 -
3
-ns
Slave 3 × tPcyc -
RSPCK clock rise
and fall time
Output 2.7 V or above tSPCKr,
tSPCKf
-10 ns
2.4 V or above - 15
1.8 V or above - 20
1.6 V or above - 30
Input - 1 µs
Data input setup time Master tSU 10 - ns Figure 2.53 to
Figure 2.58
Slave 2.4 V or above 10 -
1.8 V or above 15 -
1.6 V or above 20 -
Data input hold time Master
(RSPCK is PCLKA/2)
tHF 0- ns
Master
(RSPCK is other than
above.)
tHtPcyc -
Slave tH20 -
SSL setup time Master 1.8 V or above tLEAD -30 + N ×
tSpcyc*2
-ns
1.6 V or above -50 + N ×
tSpcyc*2
-
Slave 6 × tPcyc -
SSL hold time Master tLAG -30 + N ×
tSpcyc*3
-
Slave 6 × tPcyc -
R01DS0308EU0110 Rev.1.10 Page 76 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note 1. tPcyc: PCLKA cycle.
Note 2. N is set as an integer from 1 to 8 by the SPCKD register.
Note 3. N is set as an integer from 1 to 8 by the SSLND register.
Note 4. The upper limit of RSPCK is 16 MHz.
SPI Data output delay Master 2.7 V or above tOD -14 nsFigure 2.53 to
Figure 2.58
2.4 V or above - 20
1.8 V or above - 25
1.6 V or above - 30
Slave 2.7 V or above - 50
2.4 V or above - 60
1.8 V or above - 85
1.6 V or above - 110
Data output hold time Master tOH 0- ns
Slave 0 -
Successive
transmission delay
Master tTD tSPcyc + 2 ×
tPcyc
8 × tSPcyc
+ 2 × tPcyc
ns
Slave 6 × tPcyc -
MOSI and MISO rise
and fall time
Output 2.7 V or above tDr, tDf -10 ns
2.4 V or above - 15
1.8 V or above - 20
1.6 V or above - 30
Input - 1 µs
SSL rise and fall time Output 2.7 V or above tSSLr,
tSSLf
-10 ns
2.4 V or above - 15
1.8 V or above - 20
1.6 V or above - 30
Input - 1 µs
Slave access time 2.4 V or above tSA - 2 × tPcyc + 100 ns Figure 2.57 and
Figure 2.58
1.8 V or above - 2 × tPcyc + 140
1.6 V or above - 2 × tPcyc + 180
Slave output release time 2.4 V or above tREL - 2 × tPcyc + 100 ns
1.8 V or above - 2 × tPcyc + 140
1.6 V or above - 2 × tPcyc + 180
Table 2.36 SPI timing (2 of 2)
Conditions: Middle drive output is selected in the Port Drive Capability bit in PmnPFS register
Parameter Symbol Min Max Unit*1 Test conditions
R01DS0308EU0110 Rev.1.10 Page 77 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.52 SPI clock timing
Figure 2.53 SPI timing for master when CPHA = 0 and the bit rate is set to any value other than PCLKA/2
RSPCKA
master select
output
RSPCKA
slave select input
tSPCKWH
VOH VOH
VOL VOL
VOH VOH
tSPCKWL
tSPCKr tSPCKf
VOL
tSPcyc
tSPCKWH
VIH VIH
VIL VIL
VIH VIH
tSPCKWL
tSPCKr tSPCKf
VIL
tSPcyc
VOH = 0.7 × VCC, VOL = 0.3 × VCC, VIH = 0.7 × VCC, VIL = 0.3 × VCC
tDr, tDf
tSU tH
tLEAD
tTD
tLAG
tSSLr, tSSLf
tOH tOD
MSB IN DATA LSB IN MSB IN
MSB OUT DATA LSB OUT IDLE MSB OUT
SSLn0 to
SSLn3
output
RSPCKn
CPOL = 0
output
RSPCKn
CPOL = 1
output
MISOn
input
MOSIn
output
n = A or B
R01DS0308EU0110 Rev.1.10 Page 78 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.54 SPI timing for master when CPHA = 0 and the bit rate is set to PCLKA/2
Figure 2.55 SPI timing for master when CPHA = 1 and the bit rate is set to any value other than PCLKA/2
SSLA0 to
SSLA3
output
RSPCKA
CPOL = 0
output
RSPCKA
CPOL = 1
output
MISOA
input
MOSIA
output
LSB IN
tDr, tDf
tSU tHF
tLEAD
tTD
tLAG
tSSLr, tSSLf
tOH tOD
MSB IN
MSB OUT DATA LSB OUT IDLE MSB OUT
MSB IN DATA
tHF
tSU tH
tLEAD
tTD
tLAG
tSSLr, tSSLf
tOH tOD
MSB IN DATA LSB IN MSB IN
MSB OUT DATA LSB OUT IDLE MSB OUT
SSLA0 to
SSLA3
output
RSPCKA
CPOL = 0
output
RSPCKA
CPOL = 1
output
MISOA
input
MOSIA
output
tDr, tDf
R01DS0308EU0110 Rev.1.10 Page 79 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.56 SPI timing for master when CPHA = 1 and the bit rate is set to PCLKA/2
Figure 2.57 SPI timing for slave when CPHA = 0
tSU tHF
tLEAD
tTD
tLAG
tSSLr, tSSLf
tOH tOD
MSB IN DATA LSB IN MSB IN
MSB OUT DATA LSB OUT IDLE MSB OUT
SSLA0 to
SSLA3
output
RSPCKA
CPOL = 0
output
RSPCKA
CPOL = 1
output
MISOA
input
MOSIA
output
tDr, tDf
tH
tDr, tDf
tSU tH
tLEAD
tTD
tLAG
tSA
MSB IN DATA LSB IN MSB IN
MSB OUT DATA LSB OUT MSB IN MSB OUT
tOH tOD tREL
SSLA0
input
RSPCKA
CPOL = 0
input
RSPCKA
CPOL = 1
input
MISOA
output
MOSIA
input
R01DS0308EU0110 Rev.1.10 Page 80 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.58 SPI timing for slave when CPHA = 1
2.3.10 IIC Timing
Table 2.37 IIC timing (1 of 2)
Conditions: VCC = 2.7 to 5.5 V
Parameter Symbol Min*1Max Unit
Test
conditions
IIC
(standard mode,
SMBus)
SCL input cycle time tSCL 6 (12) × tIICcyc +
1300
-nsFigure 2.59
SCL input high pulse width tSCLH 3 (6) × tIICcyc +
300
-ns
SCL input low pulse width tSCLL 3 (6) × tIICcyc +
300
-ns
SCL, SDA input rise time tSr - 1,000 ns
SCL, SDA input fall time tSf -300ns
SCL, SDA input spike pulse removal
time
tSP 0 1 (4) × tIICcyc ns
SDA input bus free time
(When wakeup function is disabled)
tBUF 3 (6) × tIICcyc +
300
-ns
SDA input bus free time
(When wakeup function is enabled)
tBUF 3 (6) × tIICcyc +
4 × tPcyc + 300
-ns
START condition input hold time
(When wakeup function is disabled)
tSTAH tIICcyc + 300 - ns
START condition input hold time
(When wakeup function is enabled)
tSTAH 1 (5) × tIICcyc +
tPcyc + 300
-ns
Repeated START condition input setup
time
tSTAS 1,000 - ns
STOP condition input setup time tSTOS 1,000 - ns
Data input setup time tSDAS tIICcyc + 50 - ns
Data input hold time tSDAH 0-ns
SCL, SDA capacitive load Cb-400pF
SSLA0
input
RSPCKA
CPOL = 0
input
RSPCKA
CPOL = 1
input
MISOA
output
MOSIA
input
tDr, tDf
tSA tOH
tLEAD
tTD
tLAG
tH
LSB OUT
(Last data) DATA MSB OUT
MSB IN DATA LSB IN MSB IN
LSB OUT
tSU
tOD tREL
MSB OUT
R01DS0308EU0110 Rev.1.10 Page 81 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note: tIICcyc: IIC internal reference clock (IICφ) cycle, tPcyc: PCLKB cycle
Note 1. The value in parentheses apply when ICMR3.NF[1:0] is set to 11b while the digital filter is enabled with ICFER.NFE set to 1.
Figure 2.59 IIC bus interface input/output timing
IIC
(Fast mode)
SCL input cycle time tSCL 6 (12) × tIICcyc +
600
-nsFigure 2.59
For all ports
except P408,
use
PmnPFS.DSC
R of middle
drive.
For port P408,
use
PmnPFS.DSC
R1/DSCR of
middle drive
for IIC fast-
mode.
SCL input high pulse width tSCLH 3 (6) × tIICcyc +
300
-ns
SCL input low pulse width tSCLL 3 (6) × tIICcyc +
300
-ns
SCL, SDA input rise time tSr -300ns
SCL, SDA input fall time tSf -300ns
SCL, SDA input spike pulse removal
time
tSP 0 1 (4) × tIICcyc ns
SDA input bus free time
(When wakeup function is disabled)
tBUF 3 (6) × tIICcyc +
300
-ns
SDA input bus free time
(When wakeup function is enabled)
tBUF 3 (6) × tIICcyc +
4 × tPcyc + 300
-ns
START condition input hold time
(When wakeup function is disabled)
tSTAH tIICcyc + 300 - ns
START condition input hold time
(When wakeup function is enabled)
tSTAH 1(5) × tIICcyc +
tPcyc + 300
-ns
Repeated START condition input setup
time
tSTAS 300 - ns
STOP condition input setup time tSTOS 300 - ns
Data input setup time tSDAS tIICcyc + 50 - ns
Data input hold time tSDAH 0-ns
SCL, SDA capacitive load Cb-400pF
Table 2.37 IIC timing (2 of 2)
Conditions: VCC = 2.7 to 5.5 V
Parameter Symbol Min*1Max Unit
Test
conditions
SDA0 to SDA3
SCL0 to SCL3
VIH
VIL
tSTAH
tSCLH
tSCLL
P*1S*1
tSf tSr
tSCL tSDAH
tSDAS
tSTAS tSP tSTOS
P*1
tBUF
Sr*1
Note 1. S, P, and Sr indicate the following conditions.
S: Start condition
P: Stop condition
Sr: Restart condition.
R01DS0308EU0110 Rev.1.10 Page 82 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.3.11 SSIE Timing
Figure 2.60 SSIE clock input/output timing
Table 2.38 SSIE timing
Conditions: VCC = 1.6 to 5.5 V
Parameter Symbol Min Max Unit Test conditions
SSIE AUDIO_CLK input
frequency
2.7 V or above tAUDIO -25MHz-
1.6 V or above - 4
Output clock period tO250 - ns Figure 2.60
Input clock period tI250 - ns
Clock high pulse
width
1.8 V or above tHC 100 - ns
1.6 V or above 200 -
Clock low pulse
width
1.8 V or above tLC 100 - ns
1.6 V or above 200 -
Clock rise time tRC -25ns
Data delay 2.7 V or above tDTR -65nsFigure 2.61,
Figure 2.62
1.8 V or above - 105
1.6 V or above - 140
Set-up time 2.7 V or above tSR 65 - ns
1.8 V or above 90 -
1.6 V or above 140 -
Hold time tHTR 40 - ns
SSITXD0 output
delay from
SSILRCK0/SSIFS0
change time
1.8 V or above TDTRW - 105 ns Figure 2.63
1.6 V or above - 140
SSIBCK0
tHC
tLC
tRC
tI, tO
R01DS0308EU0110 Rev.1.10 Page 83 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.61 SSIE data transmit/receive timing (SSICR.BCKP = 0)
Figure 2.62 SSIE data transmit/receive timing (SSICR.BCKP = 1)
tSR tHTR
tDTR
SSISCKn
(Input or Output)
SSIWSn, SSIDATAn
(Input)
SSIWSn, SSIDATAn
(Output)
tSR tHTR
tDTR
SSISCKn
(Input or Output)
SSIWSn, SSIDATAn
(Input)
SSIWSn, SSIDATAn
(Output)
R01DS0308EU0110 Rev.1.10 Page 84 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.63 SSIE data output delay from SSILRCK0/SSIFS0 change time
2.3.12 CLKOUT Timing
Note 1. When the EXTAL external clock input or an oscillator is used with division by 1 (the CKOCR.CKOSEL[2:0] bits are 011b and
the CKOCR.CKODIV[2:0] bits are 000b) to output from CLKOUT, the above should be satisfied with an input duty cycle of 45 to
55%.
Note 2. When the MOCO is selected as the clock output source (the CKOCR.CKOSEL[2:0] bits are 001b), set the clock output division
ratio selection to be divided by 2 (the CKOCR.CKODIV[2:0] bits are 001b).
Figure 2.64 CLKOUT output timing
Table 2.39 CLKOUT timing
Parameter Symbol Min Max Unit*1Test conditions
CLKOUT CLKOUT pin output cycle*1 VCC = 2.7 V or above tCcyc 62.5 - ns Figure 2.64
VCC = 1.8 V or above 125 -
VCC = 1.6 V or above 250 -
CLKOUT pin high pulse width*2 VCC = 2.7 V or above tCH 15 - ns
VCC = 1.8 V or above 30 -
VCC = 1.6 V or above 150 -
CLKOUT pin low pulse width*2 VCC = 2.7 V or above tCL 15 - ns
VCC = 1.8 V or above 30 -
VCC = 1.6 V or above 150 -
CLKOUT pin output rise time VCC = 2.7 V or above tCr -12ns
VCC = 1.8 V or above - 25
VCC = 1.6 V or above - 50
CLKOUT pin output fall time VCC = 2.7 V or above tCf -12ns
VCC = 1.8 V or above - 25
VCC = 1.6 V or above - 50
tDTRW
SSILRCK0/SSIFS0
(Input)
SSITXD0 (Output)
MSB bit output delay from SSILRCK0/SSIFS0 change time for
slave transmitter when DEL = 1, SDTA = 0 or DEL = 1, SDTA = 1, SWL[2:0] = DWL[2:0]
tCf
tCH
tCcyc
tCr
tCL
CLKOUT pin output
Test conditions: VOH = VCC × 0.7, VOL = VCC × 0.3, IOH = -1.0 mA, IOL = 1.0 mA, C = 30 pF
R01DS0308EU0110 Rev.1.10 Page 85 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.4 USB Characteristics
2.4.1 USBFS Timing
Figure 2.65 USB_DP and USB_DM output timing
Table 2.40 USB characteristics
Conditions: VCC = VCC_USB = 3.0 to 3.6 V, Ta = -20 to +85°C (USBCLKSEL = 1), Ta = -40 to +105°C (USBCLKSEL = 0)
Parameter Symbol Min Max Unit Test conditions
Input
characteristics
Input high level voltage VIH 2.0 - V -
Input low level voltage VIL -0.8V-
Differential input sensitivity VDI 0.2 - V |USB_DP - USB_DM |
Differential common mode
range
VCM 0.8 2.5 V -
Output
characteristics
Output high level voltage VOH 2.8 VCC_USB V IOH = -200 μA
Output low level voltage VOL 0.0 0.3 V IOL = 2 mA
Cross-over voltage VCRS 1.3 2.0 V Figure 2.65,
Figure 2.66,
Figure 2.67
Rise time FS tr420ns
LS 75 300
Fall time FS tf420ns
LS 75 300
Rise/fall time ratio FS tr/tf90 111.11 %
LS 80 125
Output resistance ZDRV 28 44 Ω (Adjusting the resistance
of external elements is not
necessary.)
VBUS
characteristics
VBUS input voltage VIH VCC × 0.8 - V -
VIL - VCC × 0.2 V -
Pull-up,
pull-down
Pull-down resistor RPD 14.25 24.80 -
Pull-up resistor RPUI 0.9 1.575 During idle state
RPUA 1.425 3.09 During reception
Battery Charging
Specification
Ver 1.2
D + sink current IDP_SINK 25 175 μA -
D - sink current IDM_SINK 25 175 μA -
DCD source current IDP_SRC 713μA-
Data detection voltage VDAT_REF 0.25 0.4 V -
D + source voltage VDP_SRC 0.5 0.7 V Output current = 250 μA
D - source voltage VDM_SRC 0.5 0.7 V Output current = 250 μA
USB_DP,
USB_DM
t
f
t
r
90%
10%10%
90%
V
CRS
R01DS0308EU0110 Rev.1.10 Page 86 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.66 Test circuit for Full-Speed (FS) connection
Figure 2.67 Test circuit for Low-Speed (LS) connection
2.4.2 USB External Supply
Table 2.41 USB regulator
Parameter Min Typ Max Unit Test conditions
VCC_USB supply current VCC_USB_LDO ≥ 3.8V - - 50 mA -
VCC_USB_LDO ≥ 4.5V - - 100 mA -
VCC_USB supply voltage 3.0 - 3.6 V -
Observation
point
50 pF
DP
DM
50 pF
Observation
point
200 pF to
600 pF
DP
DM
200 pF to
600 pF
1.5 K
3.6 V
Observation
point
R01DS0308EU0110 Rev.1.10 Page 87 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.5 ADC14 Characteristics
Figure 2.68 AVCC0 to VREFH0 voltage range
Table 2.42 A/D conversion characteristics (1) in high-speed A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
Frequency 1 - 64 MHz -
Analog input capacitance*2Cs - - 8 (reference data) pF High-precision channel
- - 9 (reference data) pF Normal-precision channel
Analog input resistance Rs - - 2.5 (reference
data)
High-precision channel
- - 6.7 (reference
data)
Normal-precision channel
Analog input voltage range Ain 0 - VREFH0 V -
12-bit mode
Resolution - - 12 Bit -
Conversion time*1
(Operation at
PCLKC = 64 MHz)
Permissible signal
source impedance
Max. = 0.3 kΩ
0.70 - - μs High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
1.13 - - μs Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
Offset error - ±0.5 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Full-scale error - ±0.75 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel
±8.0 LSB Other than above
DNL differential nonlinearity error - ±1.0 - LSB -
INL integral nonlinearity error - ±1.0 ±3.0 LSB -
14-bit mode
Resolution - - 14 Bit -
VREFH0
5.0
4.0
3.0
2.0
1.0
1.0 2.0 3.0 4.0 5.0
A/D Conversion
Characteristics (2)
ADCSR.ADHSC = 0
5.5
2.7
2.4
2.4 2.7 5.5 AVCC0
VREFH0
5.0
4.0
3.0
2.0
1.0
1.0 2.0 3.0 4.0 5.0
ADCSR.ADHSC = 1
5.5
2.7
2.4
2.4 2.7 5.5 AVCC0
1.8
1.8
A/D Conversion
Characteristics (1)
A/D Conversion
Characteristics (3)
A/D Conversion
Characteristics (4)
A/D Conversion
Characteristics (5)
A/D Conversion
Characteristics (6)
A/D Conversion
Characteristics (7)
1.6
1.6
R01DS0308EU0110 Rev.1.10 Page 88 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
Conversion time*1
(Operation at
PCLKC = 64 MHz)
Permissible signal
source impedance
Max. = 0.3 kΩ
0.80 - - μs High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
1.22 - - μs Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
Offset error - ±2.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Full-scale error - ±3.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±5.0 ±20 LSB High-precision channel
±32.0 LSB Other than above
DNL differential nonlinearity error - ±4.0 - LSB -
INL integral nonlinearity error - ±4.0 ±12.0 LSB -
Table 2.43 A/D conversion characteristics (2) in high-speed A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
Frequency 1 - 48 MHz -
Analog input capacitance*2Cs - - 8 (reference data) pF High-precision channel
- - 9 (reference data) pF Normal-precision channel
Analog input resistance Rs - - 2.5 (reference data) High-precision channel
- - 6.7 (reference data) Normal-precision channel
Analog input voltage range Ain 0 - VREFH0 V -
12-bit mode
Resolution - - 12 Bit -
Conversion time*1
(Operation at
PCLKC = 48 MHz)
Permissible signal
source impedance
Max. = 0.3 kΩ
0.94 - - μs High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
1.50 - - μs Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
Offset error - ±0.5 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Full-scale error - ±0.75 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel
±8.0 LSB Other than above
DNL differential nonlinearity error - ±1.0 - LSB -
INL integral nonlinearity error - ±1.0 ±3.0 LSB -
Table 2.42 A/D conversion characteristics (1) in high-speed A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 4.5 to 5.5 V, VREFH0 = 4.5 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
R01DS0308EU0110 Rev.1.10 Page 89 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
14-bit mode
Resolution - - 14 Bit -
Conversion time*1
(Operation at
PCLKC = 48 MHz)
Permissible signal
source impedance
Max. = 0.3 kΩ
1.06 - - μs High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
1.63 - - μs Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
Offset error - ±2.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Full-scale error - ±3.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±5.0 ±20 LSB High-precision channel
±32.0 LSB Other than above
DNL differential nonlinearity error - ±4.0 - LSB -
INL integral nonlinearity error - ±4.0 ±12.0 LSB -
Table 2.44 A/D conversion characteristics (3) in high-speed A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
Frequency 1 - 32 MHz -
Analog input capacitance*2Cs - - 8 (reference data) pF High-precision channel
- - 9 (reference data) pF Normal-precision channel
Analog input resistance Rs - - 2.5 (reference data) High-precision channel
- - 6.7 (reference data) Normal-precision channel
Analog input voltage range Ain 0 - VREFH0 V -
12-bit mode
Resolution - - 12 Bit -
Conversion time*1
(Operation at
PCLKC = 32 MHz)
Permissible signal
source impedance
Max. = 1.3 kΩ
1.41 - - μs High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
2.25 - - μs Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
Offset error - ±0.5 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Full-scale error - ±0.75 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel
±8.0 LSB Other than above
Table 2.43 A/D conversion characteristics (2) in high-speed A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
R01DS0308EU0110 Rev.1.10 Page 90 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
DNL differential nonlinearity error - ±1.0 - LSB -
INL integral nonlinearity error - ±1.0 ±3.0 LSB -
14-bit mode
Resolution - - 14 Bit -
Conversion time*1
(Operation at
PCLKC = 32 MHz)
Permissible signal
source impedance
Max. = 1.3 kΩ
1.59 - - μs High-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 0Dh
2.44 - - μs Normal-precision channel
ADCSR.ADHSC = 0
ADSSTRn.SST[7:0] = 28h
Offset error - ±2.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Full-scale error - ±3.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±5.0 ±20 LSB High-precision channel
±32.0 LSB Other than above
DNL differential nonlinearity error - ±4.0 - LSB -
INL integral nonlinearity error - ±4.0 ±12.0 LSB -
Table 2.45 A/D conversion characteristics (4) in low power A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
Frequency 1 - 24 MHz -
Analog input capacitance*2Cs - - 8 (reference data) pF High-precision channel
- - 9 (reference data) pF Normal-precision channel
Analog input resistance Rs - - 2.5 (reference data) High-precision channel
- - 6.7 (reference data) Normal-precision channel
Analog input voltage range Ain 0 - VREFH0 V -
12-bit mode
Resolution - - 12 Bit -
Conversion time*1
(Operation at
PCLKC = 24 MHz)
Permissible
signal source
impedance Max.
= 1.1 kΩ
2.25 - - μs High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
3.38 - - μs Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
Offset error - ±0.5 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Full-scale error - ±0.75 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Table 2.44 A/D conversion characteristics (3) in high-speed A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
R01DS0308EU0110 Rev.1.10 Page 91 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel
±8.0 LSB Other than above
DNL differential nonlinearity error - ±1.0 - LSB -
INL integral nonlinearity error - ±1.0 ±3.0 LSB -
14-bit mode
Resolution - - 14 Bit -
Conversion time*1
(Operation at
PCLKC = 24 MHz)
Permissible
signal source
impedance Max.
= 1.1 kΩ
2.50 - - μs High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
3.63 - - μs Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
Offset error - ±2.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Full-scale error - ±3.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±5.0 ±20 LSB High-precision channel
±32.0 LSB Other than above
DNL differential nonlinearity error - ±4.0 - LSB -
INL integral nonlinearity error - ±4.0 ±12.0 LSB -
Table 2.46 A/D conversion characteristics (5) in low power A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
Frequency 1 - 16 MHz -
Analog input capacitance*2Cs - - 8 (reference data) pF High-precision channel
- - 9 (reference data) pF Normal-precision channel
Analog input resistance Rs - - 2.5 (reference data) High-precision channel
- - 6.7 (reference data) Normal-precision channel
Analog input voltage range Ain 0 - VREFH0 V -
12-bit mode
Resolution --12 Bit-
Conversion time*1
(Operation at
PCLKC = 16 MHz)
Permissible signal
source impedance
Max. = 2.2 kΩ
3.38 - - μs High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
5.06 - - μs Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
Offset error - ±0.5 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Table 2.45 A/D conversion characteristics (4) in low power A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 2.7 to 5.5 V, VREFH0 = 2.7 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
R01DS0308EU0110 Rev.1.10 Page 92 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
Full-scale error - ±0.75 ±4.5 LSB High-precision channel
±6.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±1.25 ±5.0 LSB High-precision channel
±8.0 LSB Other than above
DNL differential nonlinearity error - ±1.0 - LSB -
INL integral nonlinearity error - ±1.0 ±3.0 LSB -
14-bit mode
Resolution --14 Bit-
Conversion time*1
(Operation at
PCLKC = 16 MHz)
Permissible signal
source impedance
Max. = 2.2 kΩ
3.75 - - μs High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
5.44 - - μs Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
Offset error - ±2.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Full-scale error - ±3.0 ±18 LSB High-precision channel
±24.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±5.0 ±20 LSB High-precision channel
±32.0 LSB Other than above
DNL differential nonlinearity error - ±4.0 - LSB -
INL integral nonlinearity error - ±4.0 ±12.0 LSB -
Table 2.47 A/D conversion characteristics (6) in low power A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
Frequency 1 - 8 MHz -
Analog input capacitance*2Cs - - 8 (reference data) pF High-precision channel
- - 9 (reference data) pF Normal-precision channel
Analog input resistance Rs - - 3.8 (reference data) High-precision channel
- - 8.2 (reference data) Normal-precision channel
Analog input voltage range Ain 0 - VREFH0 V -
12-bit mode
Resolution --12 Bit-
Conversion time*1
(Operation at
PCLKC = 8 MHz)
Permissible signal
source
impedance Max.
= 5 kΩ
6.75 - - μs High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
10.13 - - μs Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
Table 2.46 A/D conversion characteristics (5) in low power A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 2.4 to 5.5 V, VREFH0 = 2.4 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
R01DS0308EU0110 Rev.1.10 Page 93 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
Offset error - ±1.0 ±7.5 LSB High-precision channel
±10.0 LSB Other than above
Full-scale error - ±1.5 ±7.5 LSB High-precision channel
±10.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±3.0 ±8.0 LSB High-precision channel
±12.0 LSB Other than above
DNL differential nonlinearity error - ±1.0 - LSB -
INL integral nonlinearity error - ±1.0 ±3.0 LSB -
14-bit mode
Resolution --14 Bit-
Conversion time*1
(Operation at
PCLKC = 8 MHz)
Permissible signal
source
impedance Max.
= 5 kΩ
7.50 - - μs High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
10.88 - - μs Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
Offset error - ±4.0 ±30.0 LSB High-precision channel
±40.0 LSB Other than above
Full-scale error - ±6.0 ±30.0 LSB High-precision channel
±40.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±12.0 ±32.0 LSB High-precision channel
±48.0 LSB Other than above
DNL differential nonlinearity error - ±4.0 - LSB -
INL integral nonlinearity error - ±4.0 ±12.0 LSB -
Table 2.48 A/D conversion characteristics (7) in low power A/D conversion mode (1 of 2)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
Frequency 1 - 4 MHz -
Analog input capacitance*2Cs - - 8 (reference data) pF High-precision channel
- - 9 (reference data) pF Normal-precision channel
Analog input resistance Rs - - 13.1 (reference data) High-precision channel
- - 14.3 (reference data) Normal-precision channel
Analog input voltage range Ain 0 - VREFH0 V -
12-bit mode
Resolution - - 12 Bit -
Table 2.47 A/D conversion characteristics (6) in low power A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.8 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
R01DS0308EU0110 Rev.1.10 Page 94 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note: The characteristics apply when no pin functions other than 14-bit A/D converter input are used. Absolute accuracy does not
include quantization errors. Offset error, full-scale error, DNL differential nonlinearity error, and INL integral nonlinearity error do
not include quantization errors.
Note 1. The conversion time is the sum of the sampling time and the comparison time. The number of sampling states is indicated for
the test conditions.
Note 2. Except for I/O input capacitance (Cin), see section 2.2.4, I/O VOH, VOL, and Other Characteristics.
Conversion time*1
(Operation at
PCLKC = 4 MHz)
Permissible
signal source
impedance Max.
= 9.9 kΩ
13.5 - - μs High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
20.25 - - μs Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
Offset error - ±1.0 ±7.5 LSB High-precision channel
±10.0 LSB Other than above
Full-scale error - ±1.5 ±7.5 LSB High-precision channel
±10.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±3.0 ±8.0 LSB High-precision channel
±12.0 LSB Other than above
DNL differential nonlinearity error - ±1.0 - LSB -
INL integral nonlinearity error - ±1.0 ±3.0 LSB -
14-bit mode
Resolution - - 14 Bit -
Conversion time*1
(Operation at
PCLKC = 4 MHz)
Permissible
signal source
impedance Max.
= 9.9 kΩ
15.0 - - μs High-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 0Dh
21.75 - - μs Normal-precision channel
ADCSR.ADHSC = 1
ADSSTRn.SST[7:0] = 28h
Offset error - ±4.0 ±30.0 LSB High-precision channel
±40.0 LSB Other than above
Full-scale error - ±6.0 ±30.0 LSB High-precision channel
±40.0 LSB Other than above
Quantization error - ±0.5 - LSB -
Absolute accuracy - ±12.0 ±32.0 LSB High-precision channel
±48.0 LSB Other than above
DNL differential nonlinearity error - ±4.0 - LSB -
INL integral nonlinearity error - ±4.0 ±12.0 LSB -
Table 2.48 A/D conversion characteristics (7) in low power A/D conversion mode (2 of 2)
Conditions: VCC = AVCC0 = 1.6 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V), VREFH0 = 1.6 to 5.5 V
Reference voltage range applied to the VREFH0 and VREFL0.
Parameter Min Typ Max Unit Test conditions
R01DS0308EU0110 Rev.1.10 Page 95 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.69 Equivalent circuit for analog input
Note 1. The internal reference voltage cannot be selected for input channels when AVCC0 < 2.0 V.
Note 2. The 14-bit A/D internal reference voltage indicates the voltage when the internal reference voltage is input to the 14-bit A/D
converter.
Note 3. This is a parameter for ADC14 when the internal reference voltage is used as the high-potential reference voltage.
Note 4. This is a parameter for ADC14 when the internal reference voltage is selected for an analog input channel in ADC14.
Table 2.49 14-Bit A/D converter channel classification
Classification Channel Conditions Remarks
High-precision channel AN000 to AN014 AVCC0 = 1.6 to 5.5 V Pins AN000 to AN014 cannot be used
as general I/O, IRQ2, IRQ3 inputs,
and TS transmission, when the A/D
converter is in use
Normal-precision channel AN016 to AN025
Internal reference voltage
input channel
Internal reference voltage AVCC0 = 2.0 to 5.5 V -
Temperature sensor input
channel
Temperature sensor output AVCC0 = 2.0 to 5.5 V -
Table 2.50 A/D internal reference voltage characteristics
Conditions: VCC = AVCC0 = VREFH0 = 2.0 to 5.5 V*1
Parameter Min Typ Max Unit Test conditions
Internal reference voltage input
channel*2
1.36 1.43 1.50 V -
Frequency*31- 2MHz-
Sampling time*45.0--μs-
Rs
Cin
Rs
Cin
Cs
ADC
MCU
Analoginput
Analoginput
Sensor ANn
ANn
R01DS0308EU0110 Rev.1.10 Page 96 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.70 Illustration of 14-bit A/D converter characteristic terms
Absolute accuracy
Absolute accuracy is the difference between output code based on the theoretical A/D conversion characteristics, and the
actual A/D conversion result. When measuring absolute accuracy, the voltage at the midpoint of the width of analog
input voltage (1-LSB width), which can meet the expectation of outputting an equal code based on the theoretical A/D
conversion characteristics, is used as the analog input voltage. For example, if 12-bit resolution is used and the reference
voltage VREFH0 = 3.072 V, then 1-LSB width becomes 0.75 mV, and 0 mV, 0.75 mV, and 1.5 mV are used as the analog
input voltages. If analog input voltage is 6 mV, an absolute accuracy of ±5 LSB means that the actual A/D conversion
result is in the range of 003h to 00Dh, though an output code of 008h can be expected from the theoretical A/D
conversion characteristics.
Integral nonlinearity error (INL)
Integral nonlinearity error is the maximum deviation between the ideal line when the measured offset and full-scale
errors are zeroed, and the actual output code.
Differential nonlinearity error (DNL)
Differential nonlinearity error is the difference between 1-LSB width based on the ideal A/D conversion characteristics
and the width of the actually output code.
Offset error
Offset error is the difference between the transition point of the ideal first output code and the actual first output code.
Full-scale error
Full-scale error is the difference between the transition point of the ideal last output code and the actual last output code.
Integral nonlinearity
error (INL)
Actual A/D conversion
characteristic
Ideal A/D conversion
characteristic
Analog input voltage
Offset error
Absolute accuracy
Differential nonlinearity error (DNL)
Full-scale error
3FFFh
0000h
0
Ideal line of actual A/D
conversion characteristic
1-LSB width for ideal A/D
conversion characteristic
Differential nonlinearity error (DNL)
1-LSB width for ideal A/D
conversion characteristic
VREFH0
(full-scale)
A/D converter
output code
R01DS0308EU0110 Rev.1.10 Page 97 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.6 DAC12 Characteristics
Table 2.51 D/A conversion characteristics (1)
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Reference voltage = VREFH or VREFL selected
Parameter Min Typ Max Unit Test conditions
Resolution - - 12 bit -
Resistive load 30 - - -
Load capacitance - - 50 pF -
Output voltage range 0.35 - AVCC0 - 0.47 V -
DNL differential nonlinearity error - ±0.5 ±1.0 LSB -
INL integral nonlinearity error - ±2.0 ±8.0 LSB -
Offset error - - ±20 mV -
Full-scale error - - ±20 mV -
Output impedance - 5 - Ω -
Conversion time - - 30 μs -
Table 2.52 D/A conversion characteristics (2)
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Reference voltage = AVCC0 or AVSS0 selected
Parameter Min Typ Max Unit Test conditions
Resolution - - 12 bit -
Resistive load 30 - - -
Load capacitance - - 50 pF -
Output voltage range 0.35 - AVCC0 - 0.47 V -
DNL differential nonlinearity error - ±0.5 ±2.0 LSB -
INL integral nonlinearity error - ±2.0 ±8.0 LSB -
Offset error - - ±30 mV -
Full-scale error - - ±30 mV -
Output impedance - 5 - Ω -
Conversion time - - 30 μs -
Table 2.53 D/A conversion characteristics (3)
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Reference voltage = internal reference voltage selected
Parameter Min Typ Max Unit Test conditions
Resolution - - 12 bit -
Internal reference voltage (Vbgr) 1.36 1.43 1.50 V -
Resistive load 30 - - -
Load capacitance - - 50 pF -
Output voltage range 0.35 - Vbgr V -
DNL differential nonlinearity error - ±2.0 ±16.0 LSB -
INL integral nonlinearity error - ±8.0 ±16.0 LSB -
Offset error - - ±30 mV -
Output impedance - 5 - Ω -
Conversion time - - 30 μs -
R01DS0308EU0110 Rev.1.10 Page 98 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.71 Illustration of D/A converter characteristic terms
Integral nonlinearity error (INL)
Integral nonlinearity error is the maximum deviation between the ideal output voltage based on the ideal conversion
characteristic when the measured offset and full-scale errors are zeroed, and the actual output voltage.
Differential nonlinearity error (DNL)
Differential nonlinearity error is the difference between 1-LSB voltage width based on the ideal D/A conversion
characteristics and the width of the actual output voltage.
Offset error
Offset error is the difference between the highest actual output voltage that falls below the lower output limit and the
ideal output voltage based on the input code.
Full-scale error
Full-scale error is the difference between the lowest actual output voltage that exceeds the upper output limit and the
ideal output voltage based on the input code.
000h D/A converter input code FFFh
Output analog voltage
Upper output limit
Lower output limit
Offset error
Ideal output voltage
1-LSB width for ideal D/A conversion
characteristic
Differential nonlinearity error
(DNL)
Actual D/A conversion characteristic
*1
Integral nonlinearity error (INL)
Full-scale error Gain error
Offset error
Ideal output voltage
Note 1. Ideal D/A conversion output voltage that is adjusted so that offset and full scale errors are zeroed.
R01DS0308EU0110 Rev.1.10 Page 99 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.7 TSN Characteristics
2.8 OSC Stop Detect Characteristics
Figure 2.72 Oscillation stop detection timing
Table 2.54 TSN characteristics
Conditions: VCC = AVCC0 = 2.0 to 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
Relative accuracy - - ±1.5 - °C 2.4 V or above
- - ±2.0 - °C Below 2.4 V
Temperature slope - - -3.65 - mV/°C -
Output voltage (at 25°C) - - 1.05 - V VCC = 3.3 V
Temperature sensor start time tSTART --5μs-
Sampling time - 5 - - μs -
Table 2.55 Oscillation stop detection circuit characteristics
Parameter Symbol Min Typ Max Unit Test conditions
Detection time tdr --1msFigure 2.72
tdr
Main clock
OSTDSR.OSTDF
MOCO clock
ICLK
PLL clock
tdr
Main clock
OSTDSR.OSTDF
MOCO clock
ICLK
When the main clock is selected
When the PLL clock is selected
R01DS0308EU0110 Rev.1.10 Page 100 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.9 POR and LVD Characteristics
Note 1. These characteristics apply when noise is not superimposed on the power supply. When a setting causes this voltage detection
level to overlap with that of the voltage detection circuit, it cannot be specified whether LVD1 or LVD2 is used for voltage
detection.
Note 2. # in the symbol Vdet0_# denotes the value of the OFS1.VDSEL1[2:0] bits.
Note 3. # in the symbol Vdet1_# denotes the value of the LVDLVLR.LVD1LVL[4:0] bits.
Note 4. # in the symbol Vdet2_# denotes the value of the LVDLVLR.LVD2LVL[2:0] bits.
Table 2.56 Power-on reset circuit and voltage detection circuit characteristics (1)
Parameter Symbol Min Typ Max Unit Test conditions
Voltage detection
level*1
Power-on reset (POR) VPOR 1.27 1.42 1.57 V Figure 2.73,
Figure 2.74
Voltage detection circuit (LVD0)*2Vdet0_0 3.68 3.85 4.00 V Figure 2.75
At falling edge
VCC
Vdet0_1 2.68 2.85 2.96
Vdet0_2 2.38 2.53 2.64
Vdet0_3 1.78 1.90 2.02
Vdet0_4 1.60 1.69 1.82
Voltage detection circuit (LVD1)*3Vdet1_0 4.13 4.29 4.45 V Figure 2.76
At falling edge
VCC
Vdet1_1 3.98 4.16 4.30
Vdet1_2 3.86 4.03 4.18
Vdet1_3 3.68 3.86 4.00
Vdet1_4 2.98 3.10 3.22
Vdet1_5 2.89 3.00 3.11
Vdet1_6 2.79 2.90 3.01
Vdet1_7 2.68 2.79 2.90
Vdet1_8 2.58 2.68 2.78
Vdet1_9 2.48 2.58 2.68
Vdet1_A 2.38 2.48 2.58
Vdet1_B 2.10 2.20 2.30
Vdet1_C 1.84 1.96 2.05
Vdet1_D 1.74 1.86 1.95
Vdet1_E 1.63 1.75 1.84
Vdet1_F 1.60 1.65 1.73
Voltage detection circuit (LVD2)*4Vdet2_0 4.11 4.31 4.48 V Figure 2.77
At falling edge
VCC
Vdet2_1 3.97 4.17 4.34
Vdet2_2 3.83 4.03 4.20
Vdet2_3 3.64 3.84 4.01
R01DS0308EU0110 Rev.1.10 Page 101 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note 1. When OFS1.LVDAS = 0.
Note 2. When OFS1.LVDAS = 1.
Note 3. The minimum VCC down time indicates the time when VCC is below the minimum value of voltage detection levels VPOR,
Vdet0, Vdet1, and Vdet2 for the POR/LVD.
Figure 2.73 Voltage detection reset timing
Table 2.57 Power-on reset circuit and voltage detection circuit characteristics (2)
Parameter Symbol Min Typ Max Unit Test conditions
Wait time after power-on
reset cancellation
LVD0:enable tPOR -1.7-ms-
LVD0:disable tPOR -1.3-ms-
Wait time after voltage
monitor 0,1,2 reset
cancellation
LVD0:enable*1tLVD0,1,2 -0.6-ms-
LVD0:disable*2tLVD1,2 -0.2-ms-
Response delay*3tdet - - 350 μs Figure 2.73,
Figure 2.74
Minimum VCC down time tVOFF 450 - - μs Figure 2.73,
VCC = 1.0 V or above
Power-on reset enable time tW (POR) 1- - msFigure 2.74,
VCC = below 1.0 V
LVD operation stabilization time (after LVD is
enabled)
Td (E-A) - - 300 μs Figure 2.76,
Figure 2.77
Hysteresis width (POR) VPORH -110-mV-
Hysteresis width (LVD0, LVD1 and LVD2) VLVH - 60 - mV LVD0 selected
- 100 - mV Vdet1_0 to Vdet1_2 selected.
-60- V
det1_3 to Vdet1_9 selected.
-50- V
det1_A or Vdet1_B selected.
-40- V
det1_C or Vdet1_F selected.
- 60 - LVD2 selected
Internal reset signal
(active-low)
VCC
t
VOFF
t
POR
t
det
V
POR
t
det
1.0 V
R01DS0308EU0110 Rev.1.10 Page 102 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.74 Power-on reset timing
Figure 2.75 Voltage detection circuit timing (Vdet0)
Note: tW(POR) is the time required for a power-on reset to be enabled while the external power VCC is being held
below the valid voltage (1.0 V).
When VCC turns on, maintain tW(POR) for 1.0 ms or more.
Internal reset signal
(active-low)
VCC
tPOR
VPOR
1.0 V
tW(POR)
*1
tdet
t
VOFF
t
LVD0
t
det
V
det0
VCC
Internal reset signal
(active-low)
t
det
V
LVH
R01DS0308EU0110 Rev.1.10 Page 103 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.76 Voltage detection circuit timing (Vdet1)
Figure 2.77 Voltage detection circuit timing (Vdet2)
t
VOFF
V
det1
VCC
t
det
t
det
t
LVD1
T
d(E-A)
LVCMPCR.LVD1E
LVD1
Comparator output
LVD1CR0.CMPE
LVD1SR.MON
Internal reset signal
(active-low)
When LVD1CR0.RN = 0
When LVD1CR0.RN = 1
V
LVH
t
LVD1
t
VOFF
V
det2
VCC
t
det
t
det
t
LVD2
T
d(E-A)
LVCMPCR.LVD2E
LVD2
Comparator output
LVD2CR0.CMPE
LVD2SR.MON
Internal reset signal
(active-low)
When LVD2CR0.RN = 0
When LVD2CR0.RN = 1
V
LVH
t
LVD2
R01DS0308EU0110 Rev.1.10 Page 104 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.10 VBATT Characteristics
Note: The VCC-off period for starting power supply switching indicates the period in which VCC is below the minimum value of the
voltage level for switching to battery backup (VDETBATT).
Figure 2.78 Power supply switching and LVD0 reset timing
Table 2.58 Battery backup function characteristics
Conditions: VCC = AVCC0 = 1.6V to 5.5V, VBATT = 1.6 to 3.6 V
Parameter Symbol Min Typ Max Unit Test conditions
Voltage level for switching to battery backup (falling) VDETBATT 1.99 2.09 2.19 V Figure 2.78,
Figure 2.79
Hysteresis width for switching to battery back up VVBATTH - 100 - mV
VCC-off period for starting power supply switching tVOFFBATT 300 - - μs -
Voltage detection level
VBATT_Power-on reset (VBATT_POR)
VVBATPOR 1.30 1.40 1.50 V Figure 2.78,
Figure 2.79
Wait time after VBATT_POR reset time cancellation tVBATPOR - - 3 mS-
Level for detection of voltage drop on
the VBATT pin (falling)
VBTLVDLVL[1:0] = 10b VDETBATLVD 2.11 2.2 2.29 V Figure 2.80
VBTLVDLVL[1:0] = 11b 1.92 2 2.08 V
Hysteresis width for VBATT pin LVD VVBATLVDTH - 50 - mV
VBATT pin LVD operation stabilization time td_vbat - - 300 μs Figure 2.80
VBATT pin LVD response delay time tdet_vbat - - 350 μs
Allowable voltage change rising/falling gradient dt/dVCC 1.0 - - ms/V -
VCC voltage level for access to the VBATT backup registers V_BKBATT 1.8- - V-
V
DETBATT
V
VBATH
VCC supplied
VBATT
VCC
V
VBATPOR
VBATT supplied VCC supplied
Backup power area
Internal reset signal
(active-low)
t
LVD0
V
det0
V
LVH
t
det
t
det
V
POR
R01DS0308EU0110 Rev.1.10 Page 105 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.79 VBATT_POR reset timing
Figure 2.80 VBATT pin voltage detection circuit timing
VDETBATT VVBATH
VCC supplied
VBATT
VCC
VVBATPOR
VBATT supplied VCC supplied
Backup power area
Not supplied
VBATT_POR
(active-low)
tVBATPOR
VDETBATLVD
VBATT
Td_vbat
VBTCR2.VBTLVDEN
VBATT pin LVD
Comparator output
VBTCMPCR.VBTCMPE
VBTSR.VBTBLDF
VVBATLVDTH
tdet_vbat tdet_vbat
R01DS0308EU0110 Rev.1.10 Page 106 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.11 CTSU Characteristics
Table 2.59 VBATT-I/O characteristics
Parameter Symbol Min Typ Max Unit Test conditions
VBATWIOn I/O
output
characteristics
(n = 0 to 2)
VCC > VDETBATT VCC = 4.0 to 5.5 V VOH VCC - 0.8 - - V IOH = -200 µA
VOL --0.8 I
OL = 200 µA
VCC = 2.7 to 4.0 V VOH VCC - 0.5 - - IOH = -100 µA
VOL --0.5 I
OL = 100 µA
VCC = VDETBATT to 2.7 V VOH VCC - 0.3 - - IOH = -50 µA
VOL --0.3 I
OL = 50 µA
VCC < VDETBATT VBATT = 2.7 to 3.6 V VOH VBATT - 0.5 - - IOH = -100 µA
VOL --0.5 I
OL = 100 µA
VBATT = 1.6 to 2.7 V VOH VBATT - 0.3 - - IOH = -50 µA
VOL --0.3 I
OL = 50 µA
Table 2.60 CTSU characteristics
Conditions: VCC = AVCC0 = 1.8 to 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
External capacitance connected to TSCAP pin Ctscap 91011nF-
TS pin capacitive load Cbase --50pF-
Permissible output high current ΣIoH - - -24 mA When the mutual
capacitance method
is applied
R01DS0308EU0110 Rev.1.10 Page 107 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.12 Segment LCD Controller Characteristics
2.12.1 Resistance Division Method
[Static Display Mode]
[1/2 Bias Method, 1/4 Bias Method]
[1/3 Bias Method]
2.12.2 Internal Voltage Boosting Method
[1/3 Bias Method]
Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
Table 2.61 Resistance division method LCD characteristics (1)
Conditions: VL4 ≤ VCC ≤ 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
LCD drive voltage VL4 2.0 - VCC V -
Table 2.62 Resistance division method LCD characteristics (2)
Conditions: VL4 ≤ VCC ≤ 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
LCD drive voltage VL4 2.7 - VCC V -
Table 2.63 Resistance division method LCD characteristics (3)
Conditions: VL4 ≤ VCC ≤ 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
LCD drive voltage VL4 2.5 - VCC V -
Table 2.64 Internal voltage boosting method LCD characteristics
Conditions: VCC = 1.8 V to 5.5 V
Parameter Symbol Conditions Min Typ Max Unit
Test
conditions
LCD output voltage
variation range
VL1 C1 to C4*1 = 0.47 μF VLCD = 04h 0.90 1.0 1.08 V -
VLCD = 05h 0.95 1.05 1.13 V -
VLCD = 06h 1.00 1.10 1.18 V -
VLCD = 07h 1.05 1.15 1.23 V -
VLCD = 08h 1.10 1.20 1.28 V -
VLCD = 09h 1.15 1.25 1.33 V -
VLCD = 0Ah 1.20 1.30 1.38 V -
VLCD = 0Bh 1.25 1.35 1.43 V -
VLCD = 0Ch 1.30 1.40 1.48 V -
VLCD = 0Dh 1.35 1.45 1.53 V -
VLCD = 0Eh 1.40 1.50 1.58 V -
VLCD = 0Fh 1.45 1.55 1.63 V -
VLCD = 10h 1.50 1.60 1.68 V -
VLCD = 11h 1.55 1.65 1.73 V -
VLCD = 12h 1.60 1.70 1.78 V -
VLCD = 13h 1.65 1.75 1.83 V -
Doubler output voltage VL2 C1 to C4*1 = 0.47 μF 2 × VL1 - 0.1 2 × VL1 2 × VL1 V-
Tripler output voltage VL4 C1 to C4*1 = 0.47 μF 3 × VL1 - 0.15 3 × VL1 3 × VL1 V-
Reference voltage
setup time*2
tVL1S 5 --msFigure 2.81
LCD output voltage
variation range*3
tVLWT C1 to C4*1 = 0.47 μF 500 - - ms
R01DS0308EU0110 Rev.1.10 Page 108 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL4 and GND
C1 = C2 = C3 = C4 = 0.47 μF ±30%.
Note 2. This is the time required to wait from when the reference voltage is specified using the VLCD register (or when the internal
voltage boosting method is selected (by setting the MDSET[1:0] bits in the LCDM0 register to 01b) if the default value reference
voltage is used) until voltage boosting starts (VLCON = 1).
Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).
[1/4 Bias Method]
Note 1. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL3 and GND
C5: A capacitor connected between VL4 and GND
C1 = C2 = C3 = C4 = C5 = 0.47 μF ± 30%
Note 2. This is the time required to wait from when the reference voltage is specified by using the VLCD register (or when the internal
voltage boosting method is selected (by setting the MDSET1 and MDSET0 bits in the LCDM0 register to 01b) if the default
value reference voltage is used) until voltage boosting starts (VLCON = 1).
Note 3. This is the wait time from when voltage boosting is started (VLCON = 1) until display is enabled (LCDON = 1).
Note 4. VL4 must be 5.5 V or lower.
Table 2.65 Internal voltage boosting method LCD characteristics
Conditions: VCC = 1.8 V to 5.5 V
Parameter Symbol Conditions Min Typ Max Unit
Test
conditions
LCD output voltage
variation range
VL1 C1 to C5*1 = 0.47 μF VLCD = 04h 0.90 1.0 1.08 V -
VLCD = 05h 0.95 1.05 1.13 V -
VLCD = 06h 1.00 1.10 1.18 V -
VLCD = 07h 1.05 1.15 1.23 V -
VLCD = 08h 1.10 1.20 1.28 V -
VLCD = 09h 1.15 1.25 1.33 V -
VLCD = 0Ah 1.20 1.30 1.38 V -
VLCD = 0Bh 1.25 1.35 1.43 V -
VLCD = 0Ch 1.30 1.40 1.48 V -
Doubler output voltage VL2 C1 to C5*1 = 0.47 μF 2VL1 - 0.08 2VL1 2VL1 V-
Tripler output voltage VL3 C1 to C5*1 = 0.47 μF 3VL1 - 0.12 3VL1 3VL1 V-
Quadruply output
voltage
VL4*4C1 to C5*1 = 0.47 μF 4VL1 - 0.16 4VL1 4VL1 V-
Reference voltage
setup time*2
tVL1S 5 --msFigure 2.81
LCD output voltage
variation range*3
tVLWT C1 to C5*1 = 0.47 μF 500 - - ms
R01DS0308EU0110 Rev.1.10 Page 109 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.12.3 Capacitor Split Method
[1/3 Bias Method]
Note 1. This is the wait time from when voltage bucking is started (VLCON = 1) until display is enabled (LCDON = 1).
Note 2. This is a capacitor that is connected between voltage pins used to drive the LCD.
C1: A capacitor connected between CAPH and CAPL
C2: A capacitor connected between VL1 and GND
C3: A capacitor connected between VL2 and GND
C4: A capacitor connected between VL4 and GND
C1 = C2 = C3 = C4 = 0.47 μF ± 30%.
Figure 2.81 LCD reference voltage setup time, voltage boosting wait time, and capacitor split wait time
Table 2.66 Internal voltage boosting method LCD characteristics
Conditions: VCC = 2.2 V to 5.5 V
Parameter Symbol Conditions Min Typ Max Unit
Test
conditions
VL4 voltage*1VL4 C1 to C4 = 0.47 μF*2-VCC- V-
VL2 voltage*1VL2 C1 to C4 = 0.47 μF*22/3 × VL4 - 0.07 2/3 × VL4 2/3 × VL4 + 0.07 V -
VL1 voltage*1VL1 C1 to C4 = 0.47 μF*21/3 × VL4 - 0.08 1/3 × VL4 1/3 × VL4 + 0.08 V -
Capacitor split wait time*1tWAIT 100 - - ms Figure 2.81
MDSET0,
MDSET1
VLCON
LCDON
01b or 10b00b
t
VL1S
t
VLWT,
t
WAIT
R01DS0308EU0110 Rev.1.10 Page 110 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.13 Comparator Characteristics
Note 1. When 8-bit DAC output is used as the reference voltage, the offset voltage increases up to 2.5 x VCC/256.
Note 2. In window mode, be sure to satisfy the following condition: IVREF1 - IVREF0 ≥ 0.2 V.
Table 2.67 ACMPLP characteristics
Conditions: VCC = 1.8 to 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
Reference voltage range Standard
mode
IVREFn (n= 0,1) VREF 0 - VCC-1.4 V -
Window
mode*2
IVREF1 VREFH 1.4 - VCC V -
IVREF0 VREFL 0 - VCC-1.4 V -
Input voltage range VI 0 - VCC V -
Internal reference voltage - 1.36 1.44 1.50 V -
Output delay High-speed mode Td - - 1.2 μs VCC = 3.0
Slew rate of input
signal > 50 mV/μs
Low-speed mode - - 5 μs
Window mode - - 2 μs
Offset voltage*1High-speed mode - - - 50 mV -
Low-speed mode - - - 40 mV -
Window mode - - - 60 mV -
Operation stabilization wait time Tcmp 100 - - μs -
R01DS0308EU0110 Rev.1.10 Page 111 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.14 OPAMP Characteristics
Note 1. When the operational amplifier reference current circuit is activated in advance.
Table 2.68 OPAMP characteristics
Conditions: VCC = AVCC0 = 1.8 to 5.5 V (AVCC0 = VCC when VCC < 2.0 V)
Parameter Symbol Conditions Min Typ Max Unit
Common mode input
range
Vicm1 Low power mode 0.2 - AVCC0 - 0.5 V
Vicm2 High-speed mode 0.3 - AVCC0 - 0.6 V
Output voltage range Vo1 Low power mode 0.1 - AVCC0 - 0.1 V
Vo2 High-speed mode 0.1 - AVCC0 - 0.1 V
Input offset voltage Vioff -10 - 10 mV
Open gain Av 60 120 - dB
Gain-bandwidth (GB)
product
GBW1 Low power mode - 0.04 - MHz
GBW2 High-speed mode - 1.7 - MHz
Phase margin PM CL = 20 pF 50 - - deg
Gain margin GM CL = 20 pF 10 - - dB
Equivalent input noise Vnoise1 f = 1 kHz Low power mode - 230 - nV/√Hz
Vnoise2 f = 10 kHz - 200 - nV/√Hz
Vnoise3 f = 1 kHz High-speed mode - 90 - nV/√Hz
Vnoise4 f = 2 kHz - 70 - nV/√Hz
Power supply
reduction ratio
PSRR -90- dB
Common mode signal
reduction ratio
CMRR - 90 - dB
Stabilization wait time Tstd1 CL = 20 pF
Only operational amplifier is
activated *1
Low power mode 650 - - μs
Tstd2 High-speed mode 13 - - μs
Tstd3 CL = 20 pF
Operational amplifier and
reference current circuit are
activated simultaneously
Low power mode 650 - - μs
Tstd4 High-speed mode 13 - - μs
Settling time Tset1 CL = 20 pF Low power mode - - 750 μs
Tset2 High-speed mode - - 13 μs
Slew rate Tslew1 CL = 20 pF Low power mode - 0.02 - V/μs
Tslew2 High-speed mode - 1.1 - V/μs
Load current Iload1 Low-power mode -100 - 100 μA
Iload2 High-speed mode -100 - 100 μA
Load capacitance CL --20 pF
R01DS0308EU0110 Rev.1.10 Page 112 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.15 Flash Memory Characteristics
2.15.1 Code Flash Memory Characteristics
Note 1. The reprogram/erase cycle is the number of erasures for each block. When the reprogram/erase cycle is n times (n = 1,000),
erasing can be done n times for each block. For instance, when 8-byte programming is performed 256 times for different
addresses in 2-KB blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,
programming the same address for several times as one erasure is not enabled (overwriting is prohibited).
Note 2. Characteristic when using the flash memory programmer and the self-programming library provided by Renesas Electronics.
Note 3. This result is obtained from reliability testing.
Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.
Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.
Note: The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.
Table 2.69 Code flash characteristics (1)
Parameter Symbol Min Typ Max Unit Test conditions
Reprogramming/erasure cycle*1NPEC 1000 - - Times -
Data hold time After 1000 times of NPEC tDRP 20*2, *3--YearT
a = +85°C
Table 2.70 Code flash characteristics (2)
High-speed operating mode
Conditions: VCC = 2.7 to 5.5 V
Parameter Symbol
FCLK = 1 MHz FCLK = 32 MHz
UnitMin Typ Max Min Typ Max
Programming time 8-byte tP8 - 116 998 - 54 506 μs
Erasure time 2-KB tE2K - 9.03 287 - 5.67 222 ms
Blank check time 8-byte tBC8 - - 56.8 - - 16.6 μs
2-KB tBC2K - - 1899 - - 140 μs
Erase suspended time tSED - - 22.5 - - 10.7 μs
Startup area switching setting time tSAS - 21.7 585 - 12.1 447 ms
Access window time tAWS - 21.7 585 - 12.1 447 ms
OCD/serial programmer ID setting time tOSIS - 21.7 585 - 12.1 447 ms
Flash memory mode transition wait
time 1
tDIS 2- - 2- - μs
Flash memory mode transition wait
time 2
tMS 5- - 5- - μs
R01DS0308EU0110 Rev.1.10 Page 113 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.
Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.
Note: The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.
2.15.2 Data Flash Memory Characteristics
Note 1. The reprogram/erase cycle is the number of erasure for each block. When the reprogram/erase cycle is n times (n = 100000),
erasing can be performed n times for each block. For instance, when 1-byte programming is performed 1000 times for different
addresses in 1-byte blocks, and then the entire block is erased, the reprogram/erase cycle is counted as one. However,
programming the same address for several times as one erasure is not enabled. Overwriting is prohibited.
Note 2. Characteristics when using the flash memory programmer and the self-programming library provided by Renesas Electronics.
Note 3. These results are obtained from reliability testing.
Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.
Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.
Note: The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.
Table 2.71 Code flash characteristics (3)
Middle-speed operating mode
Conditions: VCC = 1.8 to 5.5 V, Ta = -40 to +85°C
Parameter Symbol
FCLK = 1 MHz FCLK = 8 MHz
UnitMin Typ Max Min Typ Max
Programming time 8-byte tP8 - 157 1411 - 101 966 μs
Erasure time 2-KB tE2K - 9.10 289 - 6.10 228 ms
Blank check time 8-byte tBC8 - - 87.7 - - 52.5 μs
2-KB tBC2K - - 1930 - - 414 μs
Erase suspended time tSED - - 32.7 - - 21.6 μs
Startup area switching setting time tSAS - 22.5 592 - 14.0 464 ms
Access window time tAWS - 22.5 592 - 14.0 464 ms
OCD/serial programmer ID setting time tOSIS - 22.5 592 - 14.0 464 ms
Flash memory mode transition wait time 1 tDIS 2--2--μs
Flash memory mode transition wait time 2 tMS 720 - - 720 - - ns
Table 2.72 Data flash characteristics (1)
Parameter Symbol Min Typ Max Unit Test conditions
Reprogramming/erasure cycle*1NDPEC 100000 1000000 - Times -
Data hold time After 10000 times of NDPEC tDDRP 20*2, *3- - Year Ta = +85°C
After 100000 times of NDPEC 5*2, *3- - Year
After 1000000 times of NDPEC -1*
2, *3- Year Ta = +25°C
Table 2.73 Data flash characteristics (2)
High-speed operating mode
Conditions: VCC = 2.7 to 5.5 V
Parameter Symbol
FCLK = 4 MHz FCLK = 32 MHz
UnitMin Typ Max Min Typ Max
Programming time 1-byte tDP1 - 52.4 463 - 42.1 387 μs
Erasure time 1-KB tDE1K - 8.98 286 - 6.42 237 ms
Blank check time 1-byte tDBC1 - - 24.3 - - 16.6 μs
1-KB tDBC1K - - 1872 - - 512 μs
Suspended time during erasing tDSED - - 13.0 - - 10.7 μs
Data flash STOP recovery time tDSTOP 5- - 5- - μs
R01DS0308EU0110 Rev.1.10 Page 114 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Note: Does not include the time until each operation of the flash memory is started after instructions are executed by software.
Note: The lower-limit frequency of FCLK is 1 MHz during programming or erasing the flash memory. When using FCLK at below
4 MHz, the frequency can be set to 1 MHz, 2 MHz, or 3 MHz. A non-integer frequency such as 1.5 MHz cannot be set.
Note: The frequency accuracy of FCLK must be ±3.5%. Confirm the frequency accuracy of the clock source.
2.16 Boundary Scan
Note 1. Boundary scan does not function until power-on-reset becomes negative.
Figure 2.82 Boundary scan TCK timing
Table 2.74 Data flash characteristics (3)
Middle-speed operating mode
Conditions: VCC = 1.8 to 5.5 V, Ta = -40 to +85°C
Parameter Symbol
FCLK = 4 MHz FCLK = 8 MHz
UnitMin Typ Max Min Typ Max
Programming time 1-byte tDP1 - 94.7 886 - 89.3 849 μs
Erasure time 1-KB tDE1K - 9.59 299 - 8.29 273 ms
Blank check time 1-byte tDBC1 - - 56.2 - - 52.5 μs
1-KB tDBC1K - - 2.17 - - 1.51 ms
Suspended time during erasing tDSED - - 23.0 - - 21.7 μs
Data flash STOP recovery time tDSTOP 720 - - 720 - - ns
Table 2.75 Boundary scan
Conditions: VCC = AVCC0 = 2.4 to 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
TCK clock cycle time tTCKcyc 100 - - ns Figure 2.82
TCK clock high pulse width tTCKH 45 - - ns
TCK clock low pulse width tTCKL 45 - - ns
TCK clock rise time tTCKr -- 5 ns
TCK clock fall time tTCKf -- 5 ns
TMS setup time tTMSS 20 - - ns Figure 2.83
TMS hold time tTMSH 20 - - ns
TDI setup time tTDIS 20 - - ns
TDI hold time tTDIH 20 - - ns
TDO data delay tTDOD - - 70 ns
Boundary Scan circuit start up time*1tBSSTUP tRESWP ---Figure 2.84
t
TCKcyc
t
TCKH
t
TCKf
t
TCKL
t
TCKr
TCK
R01DS0308EU0110 Rev.1.10 Page 115 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.83 Boundary scan input/output timing
Figure 2.84 Boundary scan circuit start up timing
2.17 Joint Test Action Group (JTAG)
Table 2.76 JTAG (debug) characteristics (1)
Conditions: VCC = 2.4 to 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
TCK clock cycle time tTCKcyc 80 - - ns Figure 2.85
TCK clock high pulse width tTCKH 35 - - ns
TCK clock low pulse width tTCKL 35 - - ns
TCK clock rise time tTCKr -- 5 ns
TCK clock fall time tTCKf -- 5 ns
TMS setup time tTMSS 16 - - ns Figure 2.86
TMS hold time tTMSH 16 - - ns
TDI setup time tTDIS 16 - - ns
TDI hold time tTDIH 16 - - ns
TDO data delay time tTDOD - - 70 ns
t
TMSS
t
TMSH
t
TDIS
t
TDIH
t
TDOD
TCK
TMS
TDI
TDO
tBSSTUP
(= tRESWP)
VCC
RES
Boundary scan
execute
R01DS0308EU0110 Rev.1.10 Page 116 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.85 JTAG TCK timing
Figure 2.86 JTAG input/output timing
Table 2.77 JTAG (debug) characteristics (2)
Conditions: VCC = 1.6 to 2.4 V
Parameter Symbol Min Typ Max Unit Test conditions
TCK clock cycle time tTCKcyc 250 - - ns Figure 2.85
TCK clock high pulse width tTCKH 120 - - ns
TCK clock low pulse width tTCKL 120 - - ns
TCK clock rise time tTCKr -- 5 ns
TCK clock fall time tTCKf -- 5 ns
TMS setup time tTMSS 50 - - ns Figure 2.86
TMS hold time tTMSH 50 - - ns
TDI setup time tTDIS 50 - - ns
TDI hold time tTDIH 50 - - ns
TDO data delay time tTDOD - - 150 ns
TCK
t
TCKcyc
t
TCKH
t
TCKf
t
TCKL
t
TCKr
TCK
TMS
TDI
TDO
t
TMSS
t
TMSH
t
TDIH
t
TDIS
t
TDOD
R01DS0308EU0110 Rev.1.10 Page 117 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
2.17.1 Serial Wire Debug (SWD)
Figure 2.87 SWD SWCLK timing
Table 2.78 SWD characteristics (1)
Conditions: VCC = 2.4 to 5.5 V
Parameter Symbol Min Typ Max Unit Test conditions
SWCLK clock cycle time tSWCKcyc 80 - - ns Figure 2.87
SWCLK clock high pulse width tSWCKH 35 - - ns
SWCLK clock low pulse width tSWCKL 35 - - ns
SWCLK clock rise time tSWCKr -- 5 ns
SWCLK clock fall time tSWCKf -- 5 ns
SWDIO setup time tSWDS 16 - - ns Figure 2.88
SWDIO hold time tSWDH 16 - - ns
SWDIO data delay time tSWDD 2 - 70 ns
Table 2.79 SWD characteristics (2)
Conditions: VCC = 1.6 to 2.4 V
Parameter Symbol Min Typ Max Unit Test conditions
SWCLK clock cycle time tSWCKcyc 250 - - ns Figure 2.87
SWCLK clock high pulse width tSWCKH 120 - - ns
SWCLK clock low pulse width tSWCKL 120 - - ns
SWCLK clock rise time tSWCKr -- 5 ns
SWCLK clock fall time tSWCKf -- 5 ns
SWDIO setup time tSWDS 50 - - ns Figure 2.88
SWDIO hold time tSWDH 50 - - ns
SWDIO data delay time tSWDD 2 - 150 ns
SWCLK
t
S W CK cyc
t
SWCKH
t
SWCKf
t
SWCKr
t
SWCKL
R01DS0308EU0110 Rev.1.10 Page 118 of 130
Jun 25, 2018
S3A6 Datasheet 2. Electrical Characteristics
Figure 2.88 SWD input/output timing
SWDIO
(Output)
SWDIO
(Output)
SWDIO
(Output)
tSWDD
tSWDD
tSWDD
SWCLK
SWDIO
(Input)
tSWDS tSWDH
R01DS0308EU0110 Rev.1.10 Page 119 of 130
Jun 25, 2018
S3A6 Datasheet Appendix 1. Package Dimensions
Appendix 1.Package Dimensions
Information on the latest version of the package dimensions or mountings is shown in “Packages” on the Renesas
Electronics Corporation website.
Figure 1.1 100-pin LGA
P-TFLGA100-7x7-0.65 0.1g
MASS[Typ.]
100F0GPTLG0100JA-A
RENESAS CodeJEITA Package Code Previous Code
0.15v
0.20w
0.08
0.4850.4350.385
MaxNomMin
Dimension in Millimeters
Symbol
Reference
7.0D
7.0E
1.05A
x
0.65
e
0.10y
b
1
b 0.31 0.35 0.39
0.575Z
D
Z
E
0.575
Index mark
B
w
S
wA
S
A
H
G
F
E
D
C
B
12345678
yS
S
A
v
×
4
(Laser mark)
Index mark
J
K
910
D
E
e
e
AZ
D
Z
E
B
φ b
φ b
1
φ
×
MS AB
φ
×
MS AB
R01DS0308EU0110 Rev.1.10 Page 120 of 130
Jun 25, 2018
S3A6 Datasheet Appendix 1. Package Dimensions
Figure 1.2 100-pin LQFP
MASS (Typ) [g]
0.6
Unit: mm
Previous CodeRENESAS Code
PLQP0100KB-B
JEITA Package Code
P-LFQFP100-14x14-0.50
© 2015 Renesas Electronics Corporation. All rights reserved.
D
E
A2
HD
HE
A
A1
bp
c
T
e
x
y
Lp
L1
13.9
13.9
15.8
15.8
0.05
0.15
0.09
0q
0.45
Min Nom
Dimensions in millimeters
Reference
Symbol
Max
14.0
14.0
1.4
16.0
16.0
0.20
3.5q
0.5
0.6
1.0
14.1
14.1
16.2
16.2
1.7
0.15
0.27
0.20
8q
0.08
0.08
0.75
NOTE)
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
LOCATED WITHIN THE HATCHED AREA.
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.
T
H
D
A
2
A
1
L
p
L
1
Detail F
A
c
0.25
D
75
76
100 26
251
50
51
F
NOTE 4
NOTE 3
Index area
*1
H
E
E
*2
*3bp
e
yS
S
M
R01DS0308EU0110 Rev.1.10 Page 121 of 130
Jun 25, 2018
S3A6 Datasheet Appendix 1. Package Dimensions
Figure 1.3 64-pin LQFP
MASS (Typ) [g]
0.3
Unit: mm
Previous CodeRENESAS Code
PLQP0064KB-C
JEITA Package Code
P-LFQFP64-10x10-0.50
© 2015 Renesas Electronics Corporation. All rights reserved.
D
E
A2
HD
HE
A
A1
bp
c
T
e
x
y
Lp
L1
9.9
9.9
11.8
11.8
0.05
0.15
0.09
0q
0.45
Min Nom
Dimensions in millimeters
Reference
Symbol Max
10.0
10.0
1.4
12.0
12.0
0.20
3.5q
0.5
0.6
1.0
10.1
10.1
12.2
12.2
1.7
0.15
0.27
0.20
8q
0.08
0.08
0.75
NOTE)
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
LOCATED WITHIN THE HATCHED AREA.
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.
HD
A2
A1
Lp
L1
Detail F
A
c
0.25
D
48 33
3249
17
161
64
F
NOTE 4
NOTE 3
Index area
*1
HE
E
*2
*3bp
e
yS
S
M
T
R01DS0308EU0110 Rev.1.10 Page 122 of 130
Jun 25, 2018
S3A6 Datasheet Appendix 1. Package Dimensions
Figure 1.4 64-pin QFN
2013 Renesas Electronics Corporation. All rights reserved.
S
y
e
Lp
SxbA B
M
A
D
E
48
32
33
16
17
1
64
A
S
B
A
D
E
49
DETAIL OF A PART
EXPOSED DIE PAD
JEITA Package code RENESAS code Previous code MASS(TYP.)[g]
P-HWQFN64-8x8-0.40 PWQN0064LA-A 0.16
16
1
17
32
49
64
INDEX AREA
2
2
D
A
Lp
0.20
6.50
0.40
8.00
8.00
6.50
Referance
Symbol Min Nom Max
Dimension in Millimeters
0.23
0.30 0.50
b0.17
x
A0.80
y0.05
0.00
0.20
e
Z
Z
c
D
E
1
D
E
2
2
2
E
0.40
0.05
1.00
1.00
0.15 0.25
A1c2
8.05
7.95
8.05
7.95
Z
Z
D
E
33
48
P64K8-40-9B5-3
R01DS0308EU0110 Rev.1.10 Page 123 of 130
Jun 25, 2018
S3A6 Datasheet Appendix 1. Package Dimensions
Figure 1.5 48-pin LQFP
MASS (Typ) [g]
0.2
Unit: mm
Previous CodeRENESAS Code
PLQP0048KB-B
JEITA Package Code
P-LFQFP48-7x7-0.50
D
E
A2
HD
HE
A
A1
bp
c
T
e
x
y
Lp
L1
6.9
6.9
8.8
8.8
0.05
0.17
0.09
0q
0.45
Min Nom
Dimensions in millimeters
Reference
Symbol
Max
7.0
7.0
1.4
9.0
9.0
0.20
3.5q
0.5
0.6
1.0
7.1
7.1
9.2
9.2
1.7
0.15
0.27
0.20
8q
0.08
0.08
0.75
NOTE)
1. DIMENSIONS “*1” AND “*2” DO NOT INCLUDE MOLD FLASH.
2. DIMENSION “*3” DOES NOT INCLUDE TRIM OFFSET.
3. PIN 1 VISUAL INDEX FEATURE MAY VARY, BUT MUST BE
LOCATED WITHIN THE HATCHED AREA.
4. CHAMFERS AT CORNERS ARE OPTIONAL, SIZE MAY VARY.
HD
A2
A1
Lp
L1
Detail F
A
c
0.25
HE
D
E
36 2525
24
13
37
48
112
F
NOTE 4
NOTE 3
Index area
*1
*2
*3
bp
e
yS
S
M
T
R01DS0308EU0110 Rev.1.10 Page 124 of 130
Jun 25, 2018
S3A6 Datasheet Appendix 1. Package Dimensions
Figure 1.6 48-pin QFN
2013 Renesas Electronics Corporation. All rights reserved.
S
y
e
Lp
SxbA B
M
A
D
E
36
24
25
12
13
1
48
A
S
B
A
D
E
37
DETAIL OF A PART
EXPOSED DIE PAD
JEITA Package code RENESAS code Previous code MASS(TYP.)[g]
P-HWQFN48-7x7-0.50 PWQN0048KB-A 48PJN-A 0.13
12
1
13
24
37
48
INDEX AREA
2
2
D
A
Lp
0.20
5.50
0.40
7.00
7.00
5.50
Referance
Symbol Min Nom Max
Dimension in Millimeters
0.30
0.30 0.50
b0.18
x
A0.80
y0.05
0.00
0.25
e
Z
Z
c
D
E
1
D
E
2
2
2
E
0.50
0.05
0.75
0.75
0.15 0.25
A1c2
7.05
6.95
7.05
6.95
Z
Z
D
E
25
36
P48K8-50-5B4-6
R01DS0308EU0110 Rev.1.10 Page 125 of 130
Jun 25, 2018
S3A6 Datasheet Appendix 1. Package Dimensions
Figure 1.7 40-pin QFN
S
y
e
Lp
SxbA B
M
A
D
E
30
20
21
10
11
1
40
A
S
B
A
D
E
31
DETAIL OF A PART
EXPOSED DIE PAD
JEITA Package code RENESAS code Previous code MASS(TYP.)[g]
P-HWQFN40-6x6-0.50 PWQN0040KC-A P40K8-50-4B4-5 0.09
10
1
11
20
31
40
INDEX AREA
2
2
D
A
Lp
0.20
4.50
0.40
6.00
6.00
4.50
Referance
Symbol Min Nom Max
Dimension in Millimeters
0.30
0.30 0.50
b0.18
x
A0.80
y0.05
0.00
0.25
e
Z
Z
c
D
E
1
D
E
2
2
2
E
0.50
0.05
0.75
0.75
0.15 0.25
A1c2
6.05
5.95
6.05
5.95
Z
Z
D
E
21
30
S3A6 Microcontroller Group Datasheet
Website and Support
Visit the following vanity URLs to learn about key elements of the Synergy Platform, download components and related
documentation, and get support.
Proprietary Notice
All text, graphics, photographs, trademarks, logos, artwork and computer code, collectively known as content, contained in
this document is owned, controlled or licensed by or to Renesas, and is protected by trade dress, copyright, patent and
trademark laws, and other intellectual property rights and unfair competition laws. Except as expressly provided herein, no
part of this document or content may be copied, reproduced, republished, posted, publicly displayed, encoded, translated,
transmitted or distributed in any other medium for publication or distribution or for any commercial enterprise, without prior
written consent from Renesas.
Arm® and Cortex® are registered trademarks of Arm Limited. CoreSight™ is a trademark of Arm Limited.
CoreMark® is a registered trademark of the Embedded Microprocessor Benchmark Consortium.
Magic Packet™ is a trademark of Advanced Micro Devices, Inc.
SuperFlash® is a registered trademark of Silicon Storage Technology, Inc. in several countries including the United States
and Japan.
Other brands and names mentioned in this document may be the trademarks or registered trademarks of their respective
holders.
Rev. Date Summary
1.00 Apr 4, 2017 1st release
1.10 Jun 25, 2018 2nd release
Synergy Software renesassynergy.com/software
Synergy Software Package renesassynergy.com/ssp
Software add-ons renesassynergy.com/addons
Software glossary renesassynergy.com/softwareglossary
Development tools renesassynergy.com/tools
Synergy Hardware renesassynergy.com/hardware
Microcontrollers renesassynergy.com/mcus
MCU glossary renesassynergy.com/mcuglossary
Parametric search renesassynergy.com/parametric
Kits renesassynergy.com/kits
Synergy Solutions Gallery renesassynergy.com/solutionsgallery
Partner projects renesassynergy.com/partnerprojects
Application projects renesassynergy.com/applicationprojects
Self-service support resources:
Documentation renesassynergy.com/docs
Knowledgebase renesassynergy.com/knowledgebase
Forums renesassynergy.com/forum
Training renesassynergy.com/training
Videos renesassynergy.com/videos
Chat and web ticket renesassynergy.com/support
Revision History
S3A6 Microcontroller Group Datasheet
Publication Date: Rev.1.10 Jun 25, 2018
Published by: Renesas Electronics Corporation
Colophon
Address List
General Precautions
1. Precaution against Electrostatic Discharge (ESD)
A strong electrical field, when exposed to a CMOS device, can cause destruction of the gate oxide and ultimately
degrade the device operation. Steps must be taken to stop the generation of static electricity as much as possible, and
quickly dissipate it when it occurs. Environmental control must be adequate. When it is dry, a humidifier should be used.
This is recommended to avoid using insulators that can easily build up static electricity. Semiconductor devices must be
stored and transported in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work benches and floors must be grounded. The operator must also be grounded using a wrist strap.
Semiconductor devices must not be touched with bare hands. Similar precautions must be taken for printed circuit
boards with mounted semiconductor devices.
2. Processing at power-on
The state of the product is undefined at the time when power is supplied. The states of internal circuits in the LSI are
indeterminate and the states of register settings and pins are undefined at the time when power is supplied. In a finished
product where the reset signal is applied to the external reset pin, the states of pins are not guaranteed from the time
when power is supplied until the reset process is completed. In a similar way, the states of pins in a product that is reset
by an on-chip power-on reset function are not guaranteed from the time when power is supplied until the power reaches
the level at which resetting is specified.
3. Input of signal during power-off state
Do not input signals or an I/O pull-up power supply while the device is powered off. The current injection that results
from input of such a signal or I/O pull-up power supply may cause malfunction and the abnormal current that passes in
the device at this time may cause degradation of internal elements. Follow the guideline for input signal during power-
off state as described in your product documentation.
4. Handling of unused pins
Handle unused pins in accordance with the directions given under handling of unused pins in the manual. The input pins
of CMOS products are generally in the high-impedance state. In operation with an unused pin in the open-circuit state,
extra electromagnetic noise is induced in the vicinity of the LSI, an associated shoot-through current flows internally,
and malfunctions occur due to the false recognition of the pin state as an input signal become possible.
5. Clock signals
After applying a reset, only release the reset line after the operating clock signal becomes stable. When switching the
clock signal during program execution, wait until the target clock signal is stabilized. When the clock signal is generated
with an external resonator or from an external oscillator during a reset, ensure that the reset line is only released after full
stabilization of the clock signal. Additionally, when switching to a clock signal produced with an external resonator or
by an external oscillator while program execution is in progress, wait until the target clock signal is stable.
6. Voltage application waveform at input pin
Waveform distortion due to input noise or a reflected wave may cause malfunction. If the input of the CMOS device
stays in the area between VIL (Max.) and VIH (Min.) due to noise, for example, the device may malfunction. Take care to
prevent chattering noise from entering the device when the input level is fixed, and also in the transition period when the
input level passes through the area between VIL (Max.) and VIH (Min.).
7. Prohibition of access to reserved addresses
Access to reserved addresses is prohibited. The reserved addresses are provided for possible future expansion of
functions. Do not access these addresses as the correct operation of the LSI is not guaranteed.
8. Differences between products
Before changing from one product to another, for example to a product with a different part number, confirm that the
change will not lead to problems. The characteristics of a microprocessing unit or microcontroller unit products in the
same group but having a different part number might differ in terms of internal memory capacity, layout pattern, and
other factors, which can affect the ranges of electrical characteristics, such as characteristic values, operating margins,
immunity to noise, and amount of radiated noise. When changing to a product with a different part number, implement a
system-evaluation test for the given product.
http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.
Renesas Electronics America Inc.
1001 Murphy Ranch Road, Milpitas, CA 95035, U.S.A.
Tel: +1-408-432-8888, Fax: +1-408-434-5351
Renesas Electronics Canada Limited
9251 Yonge Street, Suite 8309 Richmond Hill, Ontario Canada L4C 9T3
Tel: +1-905-237-2004
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-651-700, Fax: +44-1628-651-804
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709 Quantum Plaza, No.27 ZhichunLu, Haidian District, Beijing, 100191 P. R. China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, 200333 P. R. China
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HAL 2nd Stage, Indiranagar, Bangalore 560 038, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
17F, KAMCO Yangjae Tower, 262, Gangnam-daero, Gangnam-gu, Seoul, 06265 Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5338
SALES OFFICES
© 2018 Renesas Electronics Corporation. All rights reserved.
Colophon 7.0
(Rev.4.0-1 November 2017)
Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of semiconductor products and application examples. You are fully responsible for
the incorporation or any other use of the circuits, software, and information in the design of your product or system. Renesas Electronics disclaims any and all liability for any losses and damages incurred by
you or third parties arising from the use of these circuits, software, or information.
2. Renesas Electronics hereby expressly disclaims any warranties against and liability for infringement or any other claims involving patents, copyrights, or other intellectual property rights of third parties, by or
arising from the use of Renesas Electronics products or technical information described in this document, including but not limited to, the product data, drawings, charts, programs, algorithms, and application
examples.
3. No license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of Renesas Electronics or others.
4. You shall not alter, modify, copy, or reverse engineer any Renesas Electronics product, whether in whole or in part. Renesas Electronics disclaims any and all liability for any losses or damages incurred by
you or third parties arising from such alteration, modification, copying or reverse engineering.
5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The intended applications for each Renesas Electronics product depends on the
product’s quality grade, as indicated below.
"Standard": Computers; office equipment; communications equipment; test and measurement equipment; audio and visual equipment; home electronic appliances; machine tools; personal electronic
equipment; industrial robots; etc.
"High Quality": Transportation equipment (automobiles, trains, ships, etc.); traffic control (traffic lights); large-scale communication equipment; key financial terminal systems; safety control equipment; etc.
Unless expressly designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas Electronics document, Renesas Electronics products are
not intended or authorized for use in products or systems that may pose a direct threat to human life or bodily injury (artificial life support devices or systems; surgical implantations; etc.), or may cause
serious property damage (space system; undersea repeaters; nuclear power control systems; aircraft control systems; key plant systems; military equipment; etc.). Renesas Electronics disclaims any and all
liability for any damages or losses incurred by you or any third parties arising from the use of any Renesas Electronics product that is inconsistent with any Renesas Electronics data sheet, user’s manual or
other Renesas Electronics document.
6. When using Renesas Electronics products, refer to the latest product information (data sheets, user’s manuals, application notes, “General Notes for Handling and Using Semiconductor Devices” in the
reliability handbook, etc.), and ensure that usage conditions are within the ranges specified by Renesas Electronics with respect to maximum ratings, operating power supply voltage range, heat dissipation
characteristics, installation, etc. Renesas Electronics disclaims any and all liability for any malfunctions, failure or accident arising out of the use of Renesas Electronics products outside of such specified
ranges.
7. Although Renesas Electronics endeavors to improve the quality and reliability of Renesas Electronics products, semiconductor products have specific characteristics, such as the occurrence of failure at a
certain rate and malfunctions under certain use conditions. Unless designated as a high reliability product or a product for harsh environments in a Renesas Electronics data sheet or other Renesas
Electronics document, Renesas Electronics products are not subject to radiation resistance design. You are responsible for implementing safety measures to guard against the possibility of bodily injury, injury
or damage caused by fire, and/or danger to the public in the event of a failure or malfunction of Renesas Electronics products, such as safety design for hardware and software, including but not limited to
redundancy, fire control and malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation of microcomputer software alone is very difficult
and impractical, you are responsible for evaluating the safety of the final products or systems manufactured by you.
8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility of each Renesas Electronics product. You are responsible for carefully and
sufficiently investigating applicable laws and regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive, and using Renesas Electronics
products in compliance with all these applicable laws and regulations. Renesas Electronics disclaims any and all liability for damages or losses occurring as a result of your noncompliance with applicable
laws and regulations.
9. Renesas Electronics products and technologies shall not be used for or incorporated into any products or systems whose manufacture, use, or sale is prohibited under any applicable domestic or foreign laws
or regulations. You shall comply with any applicable export control laws and regulations promulgated and administered by the governments of any countries asserting jurisdiction over the parties or
transactions.
10. It is the responsibility of the buyer or distributor of Renesas Electronics products, or any other party who distributes, disposes of, or otherwise sells or transfers the product to a third party, to notify such third
party in advance of the contents and conditions set forth in this document.
11. This document shall not be reprinted, reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas Electronics.
12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document or Renesas Electronics products.
(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its directly or indirectly controlled subsidiaries.
(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.
Renesas Synergy™ Platform
S3A6 Microcontroller Group
R01DS0308EU0110
Back cover