Philips Semiconductors Product specification
Triacs BT137S series
BT137M series
GENERAL DESCRIPTION QUICK REFERENCE DATA
Glass passivated triacs in a plastic SYMBOL PARAMETER MAX. MAX. MAX. UNIT
envelope, suitable for surface
mounting, intended for use in BT137S (or BT137M)- 500 600 800
applications requiring high BT137S (or BT137M)- 500F 600F 800F
bidirectional transient and blocking BT137S (or BT137M)- 500G 600G 800G
voltage capability and high thermal VDRM Repetitive peak off-state 500 600 800 V
cycling performance. Typical voltages
applications include motor control, IT(RMS) RMS on-state current 8 8 8 A
industrial and domestic lighting, ITSM Non-repetitive peak on-state 65 65 65 A
heating and static switching. current
PINNING - SOT428 PIN CONFIGURATION SYMBOL
PIN Standard Alternative
NUMBER S M
1 MT1 gate
2 MT2 MT2
3 gate MT1
tab MT2 MT2
LIMITING VALUES
Limiting values in accordance with the Absolute Maximum System (IEC 134).
SYMBOL PARAMETER CONDITIONS MIN. MAX. UNIT
-500 -600 -800
VDRM Repetitive peak off-state - 50016001800 V
voltages
IT(RMS) RMS on-state current full sine wave; Tmb 102 ˚C - 8 A
ITSM Non-repetitive peak full sine wave; Tj = 25 ˚C prior to
on-state current surge
t = 20 ms - 65 A
t = 16.7 ms - 71 A
I2tI
2
t for fusing t = 10 ms - 21 A2s
dIT/dt Repetitive rate of rise of ITM = 12 A; IG = 0.2 A;
on-state current after dIG/dt = 0.2 A/µs
triggering T2+ G+ - 50 A/µs
T2+ G- - 50 A/µs
T2- G- - 50 A/µs
T2- G+ - 10 A/µs
IGM Peak gate current - 2 A
VGM Peak gate voltage - 5 V
PGM Peak gate power - 5 W
PG(AV) Average gate power over any 20 ms period - 0.5 W
Tstg Storage temperature -40 150 ˚C
TjOperating junction - 125 ˚C
temperature
1
2
3
tab
T1T2
G
1 Although not recommended, off-state voltages up to 800V may be applied without damage, but the triac may
switch to the on-state. The rate of rise of current should not exceed 6 A/µs.
October 1997 1 Rev 1.200
Philips Semiconductors Product specification
Triacs BT137S series
BT137M series
THERMAL RESISTANCES
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
Rth j-mb Thermal resistance full cycle - - 2.0 K/W
junction to mounting base half cycle - - 2.4 K/W
Rth j-a Thermal resistance pcb (FR4) mounted; footprint as in Fig.14 - 75 - K/W
junction to ambient
STATIC CHARACTERISTICS
Tj = 25 ˚C unless otherwise stated
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
BT137S-(or BT137M) ... ...F ...G
IGT Gate trigger current VD = 12 V; IT = 0.1 A
T2+ G+ - 5 35 25 50 mA
T2+ G- - 8 35 25 50 mA
T2- G- - 11 35 25 50 mA
T2- G+ - 30 70 70 100 mA
ILLatching current VD = 12 V; IGT = 0.1 A
T2+ G+ - 7 30 30 45 mA
T2+ G- - 16 45 45 60 mA
T2- G- - 5 30 30 45 mA
T2- G+ - 7 45 45 60 mA
IHHolding current VD = 12 V; IGT = 0.1 A - 5 20 20 40 mA
VTOn-state voltage IT = 10 A - 1.3 1.65 V
VGT Gate trigger voltage VD = 12 V; IT = 0.1 A - 0.7 1.5 V
VD = 400 V; IT = 0.1 A; 0.25 0.4 - V
Tj = 125 ˚C
IDOff-state leakage current VD = VDRM(max); - 0.1 0.5 mA
Tj = 125 ˚C
DYNAMIC CHARACTERISTICS
Tj = 25 ˚C unless otherwise stated
SYMBOL PARAMETER CONDITIONS MIN. TYP. MAX. UNIT
BT137S-(or BT137M) ... ...F ...G
dVD/dt Critical rate of rise of VDM = 67% VDRM(max); 100 50 200 250 - V/µs
off-state voltage Tj = 125 ˚C; exponential
waveform; gate open
circuit
dVcom/dt Critical rate of change of VDM = 400 V; Tj = 95 ˚C; - - 10 20 - V/µs
commutating voltage IT(RMS) = 8 A;
dIcom/dt = 3.6 A/ms; gate
open circuit
tgt Gate controlled turn-on ITM = 12 A; VD = VDRM(max);- - - 2 - µs
time IG = 0.1 A; dIG/dt = 5 A/µs
October 1997 2 Rev 1.200
Philips Semiconductors Product specification
Triacs BT137S series
BT137M series
Fig.1. Maximum on-state dissipation, P
tot
, versus rms
on-state current, I
T(RMS)
, where
α
= conduction angle.
Fig.2. Maximum permissible non-repetitive peak
on-state current I
TSM
, versus pulse width t
p
, for
sinusoidal currents, t
p
20ms.
Fig.3. Maximum permissible non-repetitive peak
on-state current I
TSM
, versus number of cycles, for
sinusoidal currents, f = 50 Hz.
Fig.4. Maximum permissible rms current I
T(RMS)
,
versus mounting base temperature T
mb
.
Fig.5. Maximum permissible repetitive rms on-state
current I
T(RMS)
, versus surge duration, for sinusoidal
currents, f = 50 Hz; T
mb
102˚C.
Fig.6. Normalised gate trigger voltage
V
GT
(T
j
)/ V
GT
(25˚C), versus junction temperature T
j
.
0246810
0
2
4
6
8
10
12 = 180
120
90
60
30
BT137
IT(RMS) / A
Ptot / W Tmb(max) / C
125
121
117
113
109
105
101
1
-50 0 50 100 150
0
2
4
6
8
10 BT137
102 C
Tmb / C
IT(RMS) / A
BT137
10us 100us 1ms 10ms 100ms
10
100
1000 BT137
T / s
ITSM / A
TITSM
time
I
Tj initial = 25 C max
T2- G+ quadrant
dI /dt limit
T
0.01 0.1 1 10
0
5
10
15
20
25 BT137
surge duration / s
IT(RMS) / A
1 10 100 1000
0
BT137
Number of cycles at 50Hz
ITSM / A
1
10
20
30
40
50
60
70
80
TITSM
time
I
Tj initial = 25 C max
T
-50 0 50 100 150
0.4
0.6
0.8
1
1.2
1.4
1.6 BT136
Tj / C
VGT(Tj)
VGT(25 C)
October 1997 3 Rev 1.200
Philips Semiconductors Product specification
Triacs BT137S series
BT137M series
Fig.7. Normalised gate trigger current
I
GT
(T
j
)/ I
GT
(25˚C), versus junction temperature T
j
.
Fig.8. Normalised latching current I
L
(T
j
)/ I
L
(25˚C),
versus junction temperature T
j
.
Fig.9. Normalised holding current I
H
(T
j
)/ I
H
(25˚C),
versus junction temperature T
j
.
Fig.10. Typical and maximum on-state characteristic.
Fig.11. Transient thermal impedance Z
th j-mb
, versus
pulse width t
p
.
Fig.12. Typical commutation dV/dt versus junction
temperature, parameter commutation dI
T
/dt. The triac
should commutate when the dV/dt is below the value
on the appropriate curve for pre-commutation dI
T
/dt.
-50 0 50 100 150
0
0.5
1
1.5
2
2.5
3BT137
Tj / C
IGT(Tj)
IGT(25 C) T2+ G+
T2+ G-
T2- G-
T2- G+
0 0.5 1 1.5 2 2.5 3
0
5
10
15
20
25 BT137
VT / V
IT / A
Tj = 125 C
Tj = 25 C typ max
Vo = 1.264 V
Rs = 0.0378 Ohms
-50 0 50 100 150
0
0.5
1
1.5
2
2.5
3TRIAC
Tj / C
IL(Tj)
IL(25 C)
10us 0.1ms 1ms 10ms 0.1s 1s 10s
0.01
0.1
1
10 BT137
tp / s
Zth j-mb (K/W)
tp
P
t
D
bidirectional
unidirectional
-50 0 50 100 150
0
0.5
1
1.5
2
2.5
3TRIAC
Tj / C
IH(Tj)
IH(25C)
0 50 100 150
1
10
100
1000
Tj / C
7.9 4.7
dV/dt (V/us)
2.8
dIcom/dt =
10 A/ms 6.1 3.6
off-state dV/dt limit
BT137...G SERIES
BT137 SERIES
BT137...F SERIES
October 1997 4 Rev 1.200
Philips Semiconductors Product specification
Triacs BT137S series
BT137M series
MECHANICAL DATA
Dimensions in mm
Net Mass: 1.1 g
Fig.13. SOT428 : centre pin connected to tab.
MOUNTING INSTRUCTIONS
Dimensions in mm
Fig.14. SOT428 : minimum pad sizes for surface mounting
.
Notes
1. Plastic meets UL94 V0 at 1/8".
6.22 max
2.38 max
0.93 max
6.73 max
0.3
10.4 max
0.5
0.8 max
(x2)
2.285 (x2)
0.5
seating plane
1.1
0.5 min
5.4
4 min
4.6
1
2
3
tab
7.0
7.0
2.15
2.5
4.57
1.5
October 1997 5 Rev 1.200
Philips Semiconductors Product specification
Triacs BT137S series
BT137M series
DEFINITIONS
Data sheet status
Objective specification This data sheet contains target or goal specifications for product development.
Preliminary specification This data sheet contains preliminary data; supplementary data may be published later.
Product specification This data sheet contains final product specifications.
Limiting values
Limiting values are given in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one
or more of the limiting values may cause permanent damage to the device. These are stress ratings only and
operation of the device at these or at any other conditions above those given in the Characteristics sections of
this specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information
Where application information is given, it is advisory and does not form part of the specification.
Philips Electronics N.V. 1997
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the
copyright owner.
The information presented in this document does not form part of any quotation or contract, it is believed to be
accurate and reliable and may be changed without notice. No liability will be accepted by the publisher for any
consequence of its use. Publication thereof does not convey nor imply any license under patent or other
industrial or intellectual property rights.
LIFE SUPPORT APPLICATIONS
These products are not designed for use in life support appliances, devices or systems where malfunction of these
products can be reasonably expected to result in personal injury. Philips customers using or selling these products
for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting
from such improper use or sale.
October 1997 6 Rev 1.200