SIEMENS FEATURES * High Current Transfer Ratio, 75% to 450% * Minimum Current Transfer Ratio, 10% Guaranteed at |; = 1mA * High Collector-Emitter Voltage, Bce, = 70V * Long Term Stability * Industry Standard DIP Package * Underwriters Lab File #E52744 + 2) VDE 0884 Available with Option 1 DESCRIPTION The 1L201/202/203 are optically coupled pairs employing a Gallium Arsenide infrared LED and a Silicon NPN phototransistor. Signal information, including a DC level, can be transmitted by the device while maintaining a high degree of electrical isolation between [nput and output. The IL201/202/203 can be used to replace relays and transformers in many digital interface applications, as well as analog applications such as CRT modulation. Maximum Ratings Emitter Peak Reverse Voltage oo... ccc reteeeeene Continuous Forward Current... ie Power Dissipation at 25C .... Derate Linearly from 25C Detector Collector-Emitter Breakdown Voltage, BYpeg...... 7OV Emitter-Collector Breakdown Voitage, BYecg........ 7 Collector-Base Breakdown Voltage, BVcpo ........ TOV Power Dissipation 200 mW Derate Linearly from 25C .... 2.6 mWwiPC Package Isolation Test Voltage (t=1 sec.} ........ 5308 VACams Total Package Dissipation at 25C A (LED + Detector} Derate Linearly from 25C 3.3 MWC Creepage ... .7 minmm Clearance............. wo? min mm Storage Temperature wo... 58C ta +150C Operating Temperature ....00 0... ~55C to +100C Lead Soldering Time at 260C eee 10 sec, IL201/IL202/IL203 PHOTOTRANSISTOR OPTOCOUPLER Package Dimensions in Inches (mm) Pin One ID. __.. fs] 210 \ Anode [7 | Basa 248 ean) 256 (6.50 Cathode [2 | [8 |Callector 1 [47 TEI Tl ne GB] [4 | Emitter 35 (8.50) | 343 (8.70) : 7 089 ny ja. eh (1.00) 4 mn. {130 (3.30} 4 150 (3.81) t all =! ey. W/L a0 (79 020 (.051) min, 160 (3.81 010 (25) WA, 8 (04s _||f_..031 (0.80) HF od (35) t 018 (0.45) i) 035 (0.90) 400 (7 (022 (0.55) .. 200 (7.62) _ 100 (2.54) typ. 447 (BBD) Characteristics (0C to 70C unless otherwise specified) Symbol Min. Typ. Max. Unit Emitter Forward Voltage Ve 12 1.5 Vv [p=20 mA Forward Voltage Ve 10 12 Ip=1 mA Breakdown Voltage Vp 6 20 Vv Ip=10 pA Reverse Current lp 0.1 10 pA Va=6V Ta=26C Detector HFE 100 = 200 Voeah V Ip=100 pA BVceg 70 Vv le= 100 A, BVecg 7 10 Vv le= 100 pA Bcpq 70 90 v Ie=10 pA lego 5 50 nA Voe=10 V, Ta=25C Package Base Current [-=10 mA Transfer Ratic CTReg 0.15 % Veq=10 Veesat 04 Vo ip=lOmA Ig=2 mA DC Current Transfer Ratio L201 CTR 75 100 150% Ip=10 MA Lace CTR 125 200 250% Vp = 10 V IL203 CTR 225 300 450 % OC Current Transfer Ratio IL2ot cmR 8610 % ig=tmA IL202 cTR 30 % = Vee=10 (L203 CTR 50 % 5-77 Opwcoupkirs (Optoisolators} o1 NCTA - Normalized CTR Iceo - Collector-Emitter - nA VF - Forward Voltage - Figure 1. Forward voltage veraue forward currant 14 1.4 12 11 10 09 08 07 a =-55C Ta = 25C a 1 10 IF - Forward Current - mA 160 Figure 3. Normalized non-saturated and saturated CTA at Ta = 50C versus LED cu F rer Normalized to: | fe Vee = 10V, IF = 10mA, Ta = 28C 3 . CTAca(sat) Vee = 0.4V 1.0 : r Ta = 50C LY Bos Lom 10 u fe =a) NCTA (SAT) moon NIC TAL oo veo a4 10 100 1 F- LED Current- mA Figure 5. Normalized non-saturated and saturated CTR at Ta = 65C versue LED current 15 Normalized bo Vce = 10V,NF = 10mA, Ta = 25C 10 CTRee(sat)Vce = 0.4V ae 05 La Ta 4 85C *- NCTR(SAT) - t NCTR 0.0 ae ee feeb Pare A 1 10 100 IF - LED Current - mA Figure 7, Collector-emitter leakage current versus temperature 10-2 -20 oO 20 40 60 ao = 100 Ta- Amblent Temperature - C Figure 2. Normalized non-saturated and saturated CTA at Ta = 25C versus LED earfent 1 Nor malized to: Vee = 10V,1F =10mA Ta= 26C CT Ree(sat) Vea = 0.4V ON _ > 2 in NCT AY SAT) NCTR NCTR -Normalized CTR # 4 2 > Oo 100 F - LED Current- mA Figure 4. Normalized non-saturated and satu- rated CTR at Ta = 70C versus LED current 1.5 Normalized to: E Vee= 10V,F = 10mA 9 Ta = 25C ia B 1.0 3 CTHox{sat) Voo= 0.4 | 7 5 Zas E 5 8 f 00 doi A 100 F - LED Current- mA Figura 6. Collector-emitter current versus temperature and LED current 35 #30 25 B 20 5 16 8 10 8 5 g 0 = 0 10 20 30 40 50 60 lF -LEO Current - mA Figure 8. Normalized CTRcb versus LED currant and temperature 1.5 T 2 Normalized to: E IF =10 mA 10 Veb = 9.3 V a rer _ Oy 3 Ta = 25C aa 05 Al | = p 25C Le 4 50C oi E 7oG g 0.0 a Lies sass A 1 10 100 IF - LED Current - mA 5-78 1L201/202/203 Figure 9. Collector base photocurrent versus Figure 10. Normalized photocurrent versus LED current Wt and temperature 1000 OE T = DRS, E Nom alized to: ge 100 Ta = 25C E E lt= 10ma, Ta= 35C je gs Ieb = 1.0357 *1F 41.3631 g [ a . 1 rn Se 10 B OE gE 5 & g 1 & _ .. NB T=20C 7 8 a tE NioTa=25C go 4 5g NibTa=50C Nib,ta=70C .O1 AO a Ta 1 pe a 1 10 100 J 1 10 100 IF - LED Currant - mA It-LED Curent mA Figure 11. Normatized saturated HFE versus Figure 12. Propagation delay versus base current and temperature collector load resistor 2.0 5 # 1000 T 25 4 ? I > 1 c| Normalized to: = F Ta= 25C, IF = 10mA 7 q 50C Ib = 20nA = b Woo = SV, Vth= 1.54 1 r gw Sp 2 Vee = 10V RB ioo(~ He Joo 8 = \ Ta = 26C e E L } & 2 B10 : E ] 43 = 3 r ge 5 2 Vee =0.4V N z 10 a 15 f 8 $F 05 F 83 4 fF tpl 8S z z(t 143 oo 4 pe err 3 1 Parr a_eorrn sum! t.0 5 1 10 100 1000 J 1 1a 100 Ib - Base Currant - yA RL- Collector Load Real stor - KQ Figure 13. Normalized non-saturated and Figure 14, Normalized non-saturated HFE saturated CTRce versus LED current versus base current and temperature 2.0 12 8 . Normalized to: Vee =5'V w Normalized to: F tr Ta=25C = Ib = 20LA 1.5 --Vea=5 1.0 Vee = 10V 3 r iF=1mA \ 3 Ta 25C sf Nw = E 1.0 E 08 N 6 2 z = af 0.6 a 6.5 i wl Vee =.4 = 2 oo L bo es bas a 0.4 4 1 10 100 1 10 100 1000 Ib - Base Current - pA IF - LED Current - mA 1201/202/203 5-79