148/149 248/249 348/349 DESCRIPTION The LM148 series is a true quad 741. It consists of four independent, high gain, internally compensated, low power operational amplifiers which have been designed to provide functional characteristics identical to those of the familiar 741 operational * amplifier. In addition, the total supply current for all four amplifiers is comparable to the supply current of a single 741 type op amp. Other features include input offset currents and input bias current which are much less than those of a standard 741. Also, excellent isolation between amplifiers has been achieved by independently biasing each amplifier and using layout techniques which minimize thermal coupling. The LM149 series has the same features as the LM148 plus a gain bandwidth product of 4 MHz at a gain of 5 or greater. The LM148 can be used anywhere multiple 741 or 1558 SCHEMATIC DIAGRAM (1/4 Shown) Low Power Quad 741 Operational Amplifiers type amplifiers are being used and in applications where amplifier matching or high packing density is required. FEATURES 741 op amp operating characteristics Low supply current drain (0.6 mA/Amplifier) Class AB output stage ~ no crossover distortion Pin compatible with the LM124 Low input offset voltage (1 mV) Low input offset current (4 nA) Low input bias current (30 nA) Gain bandwidth product: LM148 (unity gain) (1.0 MHz) LM149 (A, 2 5) (4 MHz) High degree of isolation between amplifiers (120 dB) @ Overload protection for inputs and outputs 280k vec J 10k ee _____ 9-4) ARK 15k 71 pF om ihe LM 14g 40k Voc tk A Vv 100k 340 oO Vee CONNECTION INFORMATION LM149J, LM249J, LM349J, LM149N, LM349N CJ Flatpak DC and DB Dual In-Line PIN FUNCTION (Top View) Packages 1 OUTPUT A Part Number Screening (Top View) 2 -ViInNA 3 +VIN A LM148J03 MIL-STD-883 Class B 4 4 \s Li24gu03* \ Raytheon A+3 screening inctuding ir : vin B LM348J03 Burn-in and tightened AQL Q 7 OUTPUT B LM248N02* Raytheon A+2 screening including @ 8 OUTPUT C LM348N02 temp cycles, Burn-in, Hot Rail a 9 -Vinc testing and tightened AQL LM248NO01 aytheon A+1 screening including tMtage, LM1a9F mH yINe zaenor" Wl oa LM348NOT temp cycles, Hot Rail testing and + cMoaen LM288 1 L348, 2 vin C tightened AQL . 1 14 OUTPUT O HIGH RELIABILITY OPTIONS *Complete details are shown in the quatity section of this catalog. 1-14Low Power Quad 741 Operational Amplifiers 148/149 248/249 348/349 (errr renee errr ABSOLUTE MAXIMUM RATINGS LM148/LM149 LM248/LM249 LM348/LM349 Supply Voltage +22V +18V +18V Differential Input Voltage +44V +36V +36V Input Voltage +22V +18V +18V Output Short Circuit Duration (Note 1) Continuous Continuous Continuous Power Dissipation (Py at 25C) and Thermal Resistance (8ja) (Note 2) Molded DIP (N) Pq _ - 500 mW OA - - 150C/W Cavity DIP (D) (J) Pg 900 mw 900 mw 900 mW ja 100C /W 100C /w 100C/w Flat Pack (CJ) Pq 675 mW - - iA 185C/W - - Maximum Junction Temperature (Tj MAX) 150C 110C 100C Operating Temperature Range -5BC 120 z = 25 = aS Ta = 8c 2 io0 a2s = zz 2- eo z= 2 VOLTAGE ze $ 5 6a ge % 3 ow CURRENT = z Ve = +1 3 z Ss 2 20 5B CC: Ta: 2 Ta = 26C 58 C- Ta: +125 C a 5 20 40 60 80 100 120 140 180 190 200 0 100 1k 10K 5 10 18 20 TIME ipa} inverting Large Signal Pulse Response (LM148} Yo VOLTS (Vv) qa 20 40 60 80100 TIME {us} Large Signal Pulse Response (LM149) FREQUENDY {Hz} Input Noise Voltage and Noise Current vo VOLTS ivi 0 20 a 80 go 100 TIME (us) Inverting Large Signal Pulse Response (LM149}) GAIN (0B) 1 FREQUENCY (MHz) Bode Piot LM149 PHASE (DEGREES) MILLIVOLTS (my) POSITIVE SUPPLY YOLTS (vi Positive Common-Mode input Voltage Limit 5 Vg = +18V Ta = 26C 2 3 4 5 TIME (us) Small Signal Pulse Response (LM149)Low Power Quad 741 Operational Amplifiers 148/149 248/249 348/349 TYPICAL APPLICATIONSLM148 Low Drift Peak Detector with Bias Currant Compensation Adjust R for minimum drift D3 tow leakage diode D1 added to improve speed Vg = 215V Universal State-Space Filter RS 100k ct 0.901 02 a0! a y R2 4 L148 > + + 1/4 LM148 Vip - th = Ry Ra Ay 1/4 LM148 Vea Tune QO through RO, For predictable results: fg Q< 4x 104 = Use Band Pass output to tune for 0 Vis) Nis) Sw = , Dis)= 82+" + wy? Vinis} Ds) Q 2 atone Nupis) = S7HOHP.NePis)=- NLP = Wo Hop 1 + R4IR3 + R4IRO RE 1/2 =R,Cj, O= 2 4 +R6IR5 R5 1 Ry \ 2 1+ REIRS 1+ RAIR3 + RAIRO fNOTCH = Houp = ___.. Hoge = _ an \RALy te 1 +R3IRO + R3IR4 1+R3IRO + R3IRA 1+ RSIR6 Hoip = 1 + R3IRO + R3IR4 1-19148/149 248/249 348/349 TYPICAL APPLICATIONS LM148 (CONT) Low Power Quad 741 Operational Amplifiers A 1 kHz 4 Pole Butterworth 100k 0.001uF V4 M148 A 50.3k V4 L148 O.001.F 39.4k 44 LM148 OVouTI 100k 100k 190k }{ 3 if 0.001uF 14 LM148 v - 50.3k 0.001uF + 1/4 M148 AA 50.3k + 144 LM148 PO Yourz 100k Use general equations, and tune each section separately Q1stSECTION = 0-541, QandSECTION = 1.306 The response should have 0 cB peaking A 3 Amplifier Bi-Quad Notch Filter w Re a | L we : a Re | } 1/4 L148 AAA - 4 ct L v 1/4 LM148 A > RES OUTIs} RB * > Reg 4 L 1/4 L148 4 n> = + Vinis) = R8 RiC1 1 RS 1 1 R6 a= eee fo Of .. fNOTCHS TF R7 / R3C2R2C1 2n/ Az R2R3C1C2 2n R3R5R7C1C2 1 AI Necessary condition for notch: = RE R4A7 Ex: (NOTCH = 3 kHz, Q = 5, R1 = 270k, R2 = R3 = 20k, A4 = 27k, AS = 20k, RG = RB = 10k, R7 = 100k, C1 = C2 = 0.001uF Better noise performance than the state-space approach 1-20Low Power Quad 741 Operational Amplifiers 148/149 248/249 348/349 TYPICAL APPLICATIONS LM148 (CONT) A 4th Order 1 kHz Elliptic Filter (4 Poles, 4 Zeros) Lowpass Response RS 100k | Cor oo , C1 | oe abt tt 4 tMias nN I = oe NTT vin 2 CUT aS $ ary Re ig A TT Ro 5 FH a Lag oe UT = ne UT Aa = AA 1 oe CLE MT TTT Ra Ry = 100 tk 10h 100k AA FREQUENCY (Hz) R1C1=R2C2=t RIC 1ER2C'2=t' Rt Vig = 1 kHz, fg = 2 kHz, fp = 0.543, fz = 2.14, Q = 0.841, fp = 0.987, fz = 4.92, O' = 4.403, normalized to ripple BW 1 R61 1 Ry 1 (1+R4IR3+R4IRO R6 RG 1+ R4IR'O fp= x-,fg= x- ={| ________- ae 2n RS ot Qn AL, ot 1+ RGEIRS R5 R'5 14 R'GIR'S + RGIRp BHR. Rp= Ry + Re Use the 8P outputs to tune Q, QO, tune the 2 sections separately R1 = R2 = 92.6k, R3 = R4 = R5 = 100k, R6 = 10k, RO = 107.8k, Ry = 100k, Ry = 155.1k, R'1 = R'2 = 50.9k, R'4 = B'S = 100k, RG = 10k, R'0 = 5.78k, R'L = 100k, R} = 248.12k, Rf = 100k. All capacitors are 0.001uF. TYPICAL APPLICATIONSLM149 Minimum Gain to Insure LM149 Stability wy, a R Vin invwr The LM149 as a Unity Gain Inverter oO Vout aS bO Vout VouT 4 VouT ot Actis) * 2 , = -4 Actis) = - =>{ s A VIN 5 Vin 8 1+ 14+ AOLIs) Aokis) Vo Vo = +5 Vos = +5 Vos Vin=0 Vin =0 Power BW = 40 kHz Smati signal BW = G BW/5 Small Signal BW = G BW/5. 121Low Power Quad 741 148/149 248/249 348/349 Operational Amplifiers TYPICAL APPLICATIONSLM149 (CONT) Non-inverting Integrator Bandpass Filter RA Re Ay unas | nr c ~ RB R uMn4g oar = iP For stability purposes. A7 = RG/4, 10R6 - RB, Cc = 106 1 RS 1 Ra RS Rg tor ~ x a: Hoge = 2n R6 RC R R6 Rin (oimax). Max! = 20 kez, 10 Better Q sensitivity with respect to open loop gain variations than the state variable filter. R7, Cc added for compensation Active Tone Control with Full Output Swing (No Slew Limiting at 20 kHz) 100k BOOST cut y a aan Bs Vs = 15V. VouTimax) > 9.7 Vams. w : : 4 we a jax. a fMAx * 20 kHz, THO < 1% oan } Duplicate the above circuit tor stereo Suk ci ct 1 1 O.05uF 0.05 ,F f= . fugpe= + \ 2nR2C1 2nR1CI nT 1 1 AS tk tHe soo. ft = 28k L 2nR5C3 2niR1 + 2A7) C3 150 Lo vgy, Max Bass Gain = (AY + R2U/R1 Max Treble Gain > (R1 + 2R7}/R5 as shown: {, > 32 Hz, f,g > 320 Hz ad O005uF + fy 2 11 kHz, fy > 1.1 He Ra RG 500k 36k TREBLE Triangular, Scjuarewave Generator ct 0.001 uF Ji qf R2 10k 1/4 Lag WW OO1MF TT MM 174 Lag JUL R2 10k aig 7 gm t 102 z = Vin at a2 ot vw 20% 20k 20k Pr 01 02 = 03 pa Kx Vin 2, + = , K=R2R'2, << 28V, V4 = V7, Vg = 2 18V 8vtciR1 K Use LM125 for +15V supply The circuit can be used as a low frequency V/F for process control. Q1, Q3: KE4393, Q2, 4: P1087E,D1D4 = 1N914Low Power Quad 741 Operational Amplifiers 148/149 248/249 348/349 TYPICAL SIMULATION LM148, LM149, M741 Macramodel for Computer Simulation cr ct $ AC2 > 3k 548 PF y P 5:3k ct 03 v, s00F Rot +O if VW oV, | 01 02 04 Ve > Vb AAA @ _ a, NS Va 4 R2 > Roz Gem Gs 3 ) Gp > Ret ne? D 180.8n07 100k aarsmoy 287% | AC ev 2.712k 2.712k $213.0 698 21.30 46.960 ==_ 2.803V Ve + qT l 1 ~v EE fo $ RE ge Bo1 = 112 Ig =8 + 19-16 26uA 2a ai 987M 20-260 144 *C2 = 6 pF for LM149 -V EE For more details, see IEEE Journal of Solid-State Circuits, Vol. SC-9, No. 6, December 1974