AMMP-6442
37- 40 GHz, 1W Linear Power Ampli er
in SMT Package
Data Sheet
Description
The AMMP-6442 MMIC is a 1W linear power ampli er in
a surface mount package designed for use in transmit-
ters that operate at frequencies between 37GHz and
40GHz. In the operational band, it provides 30dBm of
output power (P-1dB) and 23dB of small-signal gain.This
PA is also designed for high linear applications with typical
performance of 36dBm OIP3 at 18dBm SCL output.
Applications
 Point-to-Point Radio Systems
 mmW Communications
Package Diagram
Features
 5x5mm SMT package
 1 watt output power
 50 match on input and output
 ESD protection (50V MM, and 250V HBM)
Typical Performance (Vd = 5V, Id(q) = 0.7A)
 Frequency range 37 to 40 GHz
 Small signal Gain of 23dB (Typ.)
 Output power @P-1 of 30dBm (Typ.)
 Input and Output return losses -8dB
 OIP3 of 35dBm @Po=18dBm (scl)
Functional Block Diagram
Attention: Observe Precautions for
handling electrostatic sensitive devices.
ESD Machine Model (Class A): 50V
ESD Human Body Model (Class 1A): 250V
Refer to Avago Application Note A004R:
Electrostatic Discharge Damage and Control.
Pin Function
1Vd1
2Vd2
3Vd3
4 RF OUT
5Vd3
6Vg2
7Vg1
8 RF IN
8
1 2 3
4
567
Note:
1. This MMIC uses depletion mode pHEMT devices.
Negative supply is used for DC gate biasing.
123
756
4
8RF IN RF OUT
Vd2Vd1 Vd3
Vg2Vg1 Vd3
RoHS-Exemption
Please refer to hazardous substances table on page 7. Note: MSL Rating = Level 2A
2
Electrical Specifications
1. Small/Large -signal data measured in a fully de-embedded test  xture form TA = 25°C.
2. Pre-assembly into package performance veri ed 100% on-wafer per AMMC-6442 published speci cations.
3. This nal package part performance is veri ed by a functional test correlated to actual performance at one or more
frequencies.
4. Speci cations are derived from measurements in a 50 Ω test environment. Aspects of the ampli er performance may
be improved over a more narrow bandwidth by application of additional conjugate, linearity, or low noise (Гopt)
matching.
Table 1. RF Electrical Characteristics
TA=25°C, Vd=5.0V, Idq=0.7V, Vg=-1V, Zo=50 Ω
Parameter Min Typ. Max Unit
Operational Frequency, Freq 37 40 GHz
Small-signal Gain, Gain 20 23 dB
Output Power at 1dB Gain Compression, P-1dB 28 30 dBm
Relative Third Order Inter-modulation level (Δf=10MHz, Po=+12dBm, SCL), IM3 36 dBc
Input Return Loss, Rlin 8 dB
Output Return Loss, Rlout 8 dB
Reverse Isolation, Isolation 45 dB
Table 2. Recommended Operating Range
1. Ambient operational temperature TA = 25°C unless otherwise noted.
2. Channel-to-backside Thermal Resistance (Tchannel (Tc) = 34°C) as measured using infrared microscopy. Thermal
Resistance at backside temperature (Tb) = 25°C calculated from measured data.
Description Min. Typical Max. Unit Comments
Drain Supply Current, Idq 700 mA Vd = 5V, Vg set for Id Typical
Gate Supply Operating Voltage, Vg -1.3 -1 -0.7 V Idq=700mA
Table 3. Thermal Properties
Parameter Test Conditions Value
Channel Temperature, Tch Tch=150 °C
Thermal Resistance [1]
(Channel-to-Base Plate), ch-bs
Channel-to-backside Thermal Resistance Tchannel(Tc)=34°C
Thermal Resistance at backside temperature Tb=25°C
Jc = 12 °C/W
Note:
1. Assume AnPb soldering to an evaluation RF module at 90.5 °C base plate temperatures.
Absolute Minimum and Maximum Ratings
Table 4. Minimum and Maximum Ratings [1]
Description Pin Min. Max. Unit Comments
Drain Supply Voltage, Vd 5.5 V
Gate Supply Voltage, Vg -2 0
Power Dissipation, P¬D 6
CW Input Power, Pin 20 dBm CW
Channel Temperature +150 °C
Storage Temperature -65 +155 °C
Maximum Assembly Temperature +260 °C 30 second maximum
Notes:
1. Operation in excess of any one of these conditions may result in permanent damage to this device.
3
Figure 1. Typical gain and reverse Isolation
Figure 3. Typical output power (P-1 and P-3) vs. frequency
Typical Performance (Data was obtained from a 2.4mm connector based test fixture and includes connector and
board losses. Connector and board loss is approximately 0.75dB at input and output ports for an approximate total
of 1.5dB.)
(T
A = 25°C, Vdd = 5V, Id(q) = 0.7 A, Vg = -1 V, Zin = Zout = 50 )
Figure 4. Typical noise  gure
Figure 5. Typical third order inter-modulation product level vs. frequency at
di erent single carrier output level (SCL)
Figure 6. Typical output power, PAE, and total drain current versus Input
power at 38GHz
Figure 2. Typical return Loss (input and output)
0
5
10
15
20
25
30
3032 34 36 38 4042 44 46 48 50
Frequency [GHz]
S21[dB]
-60
-55
-50
-45
-40
-35
-30
S12 [dB]
S21[dB]
S12[dB]
S11[dB]
S22[dB]
Frequency [GHz]
Frequency [GHz]
Relative IM3 Level [dBm]
-25
-20
-15
-10
-5
0
3032 34 36 38 4042 44 46 48 50
Frequency [GHz]
Return Loss [dB]
0
2
4
6
8
10
35 37 394143 45
Frequency [GHz]
Noise Figure [dB]
-5
0
5
10
15
20
25
30
35
40
-15-10 -50510 15
Pin [dBm]
Po[dBm], and, PAE[%]
500
600
700
800
900
1000
1100
1200
1300
1400
Ids [mA]
Pout(dBm)
PAE[%]
Id(total)
-70
-60
-50
-40
-30
-20
-10
0
35 36 37 38 3940
SCL=10[dBc]
SCL=15[dBc]
SCL=18.5[dBc]
0
5
10
15
20
25
30
35
35 36 37 38 3940
Gain[dB], P-1[dBm], PAE[%]
P-1
PAE@P-1
P-3
PAE@P-3
4
Figure 7. Typical S11 over temperature
Figure 9. Typical S22 over temperature
Figure 8. Typical Gain over temperature
Figure 10. Typical P1 over temperature
Figure 11. Typical K-factor over temperature Figure 12. Typical IM3 level over temperature at Po=18dBm, SCL
Typical over temperature dependencies
(T
A = 25°C, Vdd = 5V, Idq = 0.7 A, Vg = -1 V, Zin = Zout = 50 )
-20
-15
-10
-5
0
2025 3035 4045 50
Frequency[GHz]
S11[dB]
S21[dB]
-20
-15
-10
-5
0
2025 3035 4045 50
Frequency[GHz]
S22[dB]
2025 3035 4045 50
Frequency (GHz)
K_factor
0
5
10
15
20
10
12
14
16
18
20
22
24
26
28
30
2025 3035 4045 50
Frequency[GHz]
23
24
25
26
27
28
29
30
31
32
33
34 35 36 37 38 39404142
Frequency [GHz]
P-1 [dBm]
S11_25
S11_-40
S11_85
S21_25
S21_-40
S21_85
P-1_-40deg
P-1_25deg
P-1_85deg
S22_25
S22_-40
S22_85
K() Meas_25C
K() Meas_85C
K() Meas_n40C
0
5
10
15
20
25
30
35
40
45
34 35 36 37 38 39404142
Frequency [GHz]
OIP3 [dBm]
-55
-50
-45
-40
-35
-30
-25
-20
-15
-10
IM3 Level [dBc]
OIP3(-40C) OIP3(25C)
OIP3(85C) IM3(-40C)
IM3(25C) IM3(85C)
5
Typical Scattering Parameters [1], (T
A = 25°C, Vd =5 V, ID = 0.7A, Zin = Zout = 50 )
Freq
S11
[dB]
S11
Mag.
S11
Ang.
S21
[dB]
S21
Mag.
S21
Ang.
S12
[dB]
S12
Mag.
S12
Ang.
S22
[dB]
S22
Mag.
S22
Ang.
20 -2.90 0.72 164.53 -23.81 0.06 -141.01 -48.88 3.60E-03 -57.97 -2.69 0.73 21.40
21 -3.00 0.71 86.65 -15.74 0.16 115.71 -52.28 2.43E-03 -104.05 -2.41 0.76 -70.16
22 -3.08 0.70 4.08 -7.22 0.44 0.83 -45.40 5.37E-03 152.36 -2.25 0.77 -161.69
23 -3.18 0.69 -87.20 0.27 1.03 -131.23 -46.50 4.73E-03 103.80 -2.68 0.73 112.41
24 -3.62 0.66 176.98 4.45 1.67 92.82 -48.17 3.90E-03 -13.03 -3.39 0.68 32.65
25 -4.52 0.59 84.30 7.24 2.30 -36.02 -48.90 3.59E-03 -66.94 -3.55 0.66 -45.60
26 -5.00 0.56 -8.28 9.35 2.93 -154.65 -50.90 2.85E-03 -147.71 -2.98 0.71 -125.74
27 -4.11 0.62 -104.27 11.05 3.57 81.71 -48.42 3.79E-03 176.54 -2.72 0.73 155.15
28 -3.00 0.71 168.96 13.11 4.52 -26.13 -48.48 3.77E-03 100.75 -3.20 0.69 77.20
29 -2.20 0.78 90.69 16.36 6.57 -143.75 -44.95 5.66E-03 16.82 -4.92 0.57 -11.91
30 -3.25 0.69 7.32 21.27 11.57 95.82 -42.75 7.28E-03 -67.62 -7.33 0.43 -126.78
31 -5.62 0.52 -81.47 24.48 16.76 -48.77 -45.14 5.53E-03 -173.22 -7.23 0.44 132.40
32 -8.31 0.38 151.65 23.09 14.27 172.96 -48.44 3.78E-03 113.12 -5.77 0.51 54.23
33 -7.80 0.41 55.51 22.16 12.83 59.22 -48.10 3.94E-03 83.43 -6.33 0.48 -12.99
34 -6.69 0.46 -3.34 23.03 14.18 -64.46 -47.20 4.36E-03 14.73 -12.04 0.25 -100.71
35 -5.11 0.56 -64.50 23.07 14.25 169.26 -46.03 5.00E-03 -72.16 -13.67 0.21 6.05
36 -5.77 0.51 -136.84 22.91 13.97 48.13 -47.62 4.16E-03 -147.24 -8.21 0.39 -77.65
37 -10.68 0.29 144.16 24.12 16.07 -78.82 -50.37 3.03E-03 131.49 -7.25 0.43 -146.43
38 -32.53 0.02 70.22 23.59 15.11 148.85 -55.62 1.66E-03 37.70 -10.74 0.29 121.48
39 -16.09 0.16 123.23 23.65 15.23 12.30 -54.20 1.95E-03 -76.46 -15.37 0.17 -4.18
40 -29.19 0.03 44.21 20.79 10.95 -116.29 -43.80 6.46E-03 70.75 -13.01 0.22 -123.56
41 -13.30 0.22 -59.99 21.33 11.66 112.89 -44.57 5.91E-03 -75.57 -8.63 0.37 173.01
42 -11.59 0.26 149.87 20.57 10.68 -35.23 -43.90 6.39E-03 146.83 -6.41 0.48 75.90
43 -12.74 0.23 70.60 14.55 5.34 -173.04 -46.59 4.69E-03 7.19 -10.12 0.31 4.46
44 -10.80 0.29 4.51 12.27 4.10 48.86 -47.60 4.17E-03 -74.19 -15.97 0.16 -73.99
45 -7.28 0.43 -68.05 6.64 2.15 -95.90 -50.63 2.94E-03 175.00 -21.81 0.08 -64.83
46 -5.57 0.53 -149.37 -0.54 0.94 129.12 -45.96 5.04E-03 157.54 -11.06 0.28 -107.83
47 -5.11 0.56 128.69 -7.71 0.41 4.98 -43.66 6.56E-03 42.47 -7.63 0.42 164.84
48 -5.10 0.56 40.23 -14.75 0.18 -116.43 -47.75 4.10E-03 -27.21 -7.78 0.41 65.52
49 -5.16 0.55 -55.86 -21.51 0.08 127.74 -40.36 9.59E-03 -151.21 -7.59 0.42 -65.16
50 -4.69 0.58 -154.92 -33.07 0.02 27.73 -41.94 8.00E-03 170.09 -5.13 0.55 -177.64
Note:
1. Data obtained from 2.4-mm connecter based modules, and this data is including connecter loss, and board loss. The measurement reference plane
is at the RF connectors.
6
Biasing and Operation
Recommended quiescent DC bias condition for optimum
power and linearity performances is Vd=5 volts with Vg
(-1V) set for Id=700 mA. Minor improvements in perfor-
mance are possible depending on the application. The
drain bias voltage range is 3 to 5V. A single DC gate supply
connected to Vg will bias all gain stages. Muting can be
accomplished by setting Vg to the pinch-o voltage Vp
(-2V).
Figure 13. Schematic and recommended assemble example
RF_IN RF_OUT
Vdd
> 0.1 F
8
1 2 3
4
567
100 pF > 0.1 F
100 pF> 0.1 F
Note:
Vd3 may be biased
from either side.
Vgg 100 pF
Note: No RF performance degradation is seen due to ESD up to 250V HBM and 50V MM. The DC characteristics in general show increased leakage at
lower ESD discharge voltages. The user is reminded that this device is ESD sensitive and needs to be handled with all necessary ESD protocols.
A typical DC bias con guration is shown in Figure 13. Vd3
may be biased from either side (Pin 3 or Pin 5). The RF
input and output ports are DC decoupled internally. No
ground wires are needed since ground connections are
made with plated through-holes to the backside of the
device.
For product information and a complete list of distributors, please go to our web site: www.avagotech.com
Avago, Avago Technologies, and the A logo are trademarks of Avago Technologies in the United States and other countries.
Data subject to change. Copyright © 2005-2011 Avago Technologies. All rights reserved.
AV02-2399EN - September 30, 2011
AMMP-64xx Part Number Ordering Information
Part Number
Devices Per
Container Container
AMMP-64xx-BLK 10 Antistatic bag
AMMP-64xx-TR1 100 7” Reel
AMMP-64xx-TR2 500 7” Reel
Package Dimension, PCB Layout and Tape and Reel information
Please refer to Avago Technologies Application Note 5521, AMxP-xxxx production Assembly Process (Land Pattern B).
Names and Contents of the Toxic and Hazardous Substances or Elements in the Products
Part Name
Lead
(Pb)
(Pb)
Mercury
(Hg)
Hg
Cadmium
(Cd)
Cd
Hexavalent
(Cr(VI))
Cr(VI)
Polybrominated
biphenyl (PBB)
PBB
Polybrominated
diphenylether (PBDE)
PBDE
100pF capacitor
: indicates that the content of the toxic and hazardous substance in all the homogeneous materials of the part is
below the concentration limit requirement as described in SJ/T 11363-2006.
: indicates that the content of the toxic and hazardous substance in at least one homogeneous material of the part
exceeds the concentration limit requirement as described in SJ/T 11363-2006.
(The enterprise may further explain the technical reasons for the “x” indicated portion in the table in accordance with
the actual situations.)
SJ/T 11363-2006
SJ/T 11363-2006
“×”
Note: EU RoHS compliant under exemption clause of “lead in electronic ceramic parts (e.g. piezoelectronic devices)”
Toxic and Hazardous Substances or Elements