File Number 1585 Standard Power MOSFETs IRF640, IRF641, IRF642, IRF643 Power MOS Field-Effect Transistors N-Channel Enhancement-Mode Power Field-Effect Transistors 16 A and 18 A, 150 V - 200 V osion = 0.18 Q and 0.22 O Features: a SOA is power-dissipation limited ma Nanosecond switching speeds w Linear transfer characteristics a High input impedance a Majority carrier device The IRF640, IRF641, IRF642, and IRF643 are n-channel enhancement-mode silicon-gate power field-effect transis- tors designed for applications such as switching regula- tors, switching converters, motor drivers, relay drivers, and drivers for high-power bipolar switching transistors requir- ing high speed and low gate-drive power. These types can be operated directly from integrated circuits. N-CHANNEL ENHANCEMENT MODE D 6 $s 92CS -33741 TERMINAL DIAGRAM TERMINAL DESIGNATION SOURCE RAIN jade = DRAIN Dl (FLANGE) QO ; i The IRF-types are supplied in the JEDEC TO-220AB plastic TOP VIEW GATE package. 92cs-39528 JEDEC TO-220AB Absolute Maximum Ratings Parameter IRF640 IRF641 IRF642 IRF643 Units Vos Drain - Source Voltage 200 150 200 150 Vv VOGR Drain - Gate Voltage (Res = 20K0) 200 150 200 150 Vv Ip @ Tc = 25C Continuous Orain Current 18 18 16 16 A tp @ Tc = 100C Continuous Drain Current 11 11 10 10 A lpm Pulsed Drain Current @ 72 72 64 64 A Ves Gate - Source Voltage +20 Vv Pp @ Tc = 25C Max. Power Dissipation 125 (See Fig. 14) Ww Linear Derating Factor 1.0 (See Fig. 14) wc 'LM inductive Current, Clamped (See Fig. 15 and 16) L = 100zH A 72 | 64 L 64 Ty Operating Junction and 7 Tstg Storage Temperature Range -55 to 150 c Lead Temperature 300 {0.064 in. (1.6mm) from case for 10s) C 3-169Standard IRF640, IRF641, IRF642, IRF643 Power MOSFETs Electrical Characteristics @Tc = 25C (Unless Otherwise Specified) Parameter Type Min. | Typ. | Max. Units Test Conditions BVpss_ Drain - Source Breakdown Voltage IRF640 200 _ _ Vv Veg = OV IRF642 IRF641 = - Ip = 2 A inreag | 15 b = 250n : = . v Ves. Ip = 250uA Vgsith) Gate Threshold Voltage ALL 2.0 4.0 Ds GS. 'D ia lass Gate-Source Leakage Forward ALL - > 500 nA Vo6g = 20V less _ Gate-Source Leakage Reverse ALL = |-500 nA Veg = -20V Ipss Zero Gate Voltage Drain Current ALL _ = 250 BA Vps = Max. Rating, Veg = OV _ =~ 1000 BA Vos = Max, Rating x 0.8, Vag = OV. Tc = 125C Ipion} _On-State Drain Current @ IRF640 inreai | 18 | 7 | 4 Vos >? R Vgg = 10V DS ? 'Dion) * "DS(on} max. *GS IRF642 | 1g _ _ A IRF643 Rpsi{on) Static Drain-Source On-State IRF640 _ Resistance 18F641 0.14) 0.18 | 9 TAFESD Vgg = 10V, ip = 10A IRF643 _ 0.20 | 0.22 a dts Forward Transconductance @ ALL 6.0 10 = S$ (0) Vos > 'pion) * Fosiont max.: 'p = 10A Ciss Input Capacitance ALL _ 1275 pF Veg = OV, Vog = 28V, f = 1.0 MHz Coss Output Capacitance ALL = 500 _ pF See Fig. 10 Cres Reverse Transfer Capacitance ALL = 160 _ pF tdion) __ Turn-On Delay Time ALL = 16 30 ns Vop * 75M. tp = 10A,2Z, = 4.72 ty Rise Time ALL = 27 60 ns See Fig. 17 tdfoff) _Turn-Off Delay Time ALL _ 40 80 ns (MOSFET switching times are essentially t Fall Time ALL 31 60 ns independent of operating temperature.) Q Total Gate Charge Veg 2 10V, Ip = 224, Vag = 0.8 Max. Rating. 9 . L - 4 Cc Gs D DS {Gate-Source Plus Gate-Drain} AU 3 60 " See Fig. 18 for test circuit. (Gate charge is essentially Ogg Gate-Source Charge ALL _ 16 24 nc independent of operating temperature.) Qga Gate-Drain ("Miller") Charge ALL - 27 41 nc Lp Internal Drain inductance _ 3.5 ~ nH Measured from the Modified MOSFET contact screw on tab symbol showing the to center of die. internal device ALL inductances. - 4.5 - nH Measured from the drain lead, 6mm (0.25 in.} from package to D center of die. ls Internal Source inductance ALL - 75 _ oH Measured from the source lead, 6mm (0.265 in.} from package to source bonding pad. Thermal Resistance Rihuc Juncticn-to-Case ALL _ > 1.0 C/W Rihcs Case-to-Sink ALL _ 1.0 = C/W Mounting surface flat, smooth, and greased. RinJA Juncticn-to-Ambient ALL = ~ 80 C/W Free Air Operation Source-Drain Diode Ratings and Characteristics Is Continuous Source Current IRF640 _ 18 A Modified MOSFET symbol (Body Diode} IRF641 7 showing the integral IRF642 reverse P-N junction rectifier. (RF643 ~ 16 A . 'sm Pulse Source Current IRF640 (Body Diode) @ IRF641 - ~ 4 72 A , IRF642 inre4g | ~ | ~ | & | A Vsp Diode Forward Voltage @ IRF640 _ _ . IRF641 ~ ~ 2.0 v Te = 28C, Ig = 18A, Vag = OV IRF642 . _ _ iaFe43 - ~ 1.9 v To = 28C, ig = 16A, Vag = OV ter Reverse Recovery Time ALL = 650 - ns Ty = 150C, tp = 18A, dig/dt = 100 A/ps QaR _ Reverse Recovered Charge ALL - 44 - uC Ty = 150C, ip = 18A, dip/dt = 100 Alps ton Forward Turn-on Time ALL Intrinsic turn-on time is negligible. Turn-on speed is substantially controllad by ls + Lp. @Ty = 26C to 150C. 3-170 @ Pulse Test: Pulse width < 300s, Duty Cycle < 2%. @ Repetitive Rating: Pulse width limited by max. junction temperature. See Transient Trarmai Impedance Curve (Fig. 5).Standard Power MOSFETs 80 ys PULSE Ig, DRAIN CURRENT (AMPERES) 0 10 20 30 40 Vos, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 1 Typical Output Characteristics 80 zs PULSE TEST Ip, DRAIN CURRENT (AMPERES) Q 1 2 3 4 Vos. ORAIN-TO-SQURCE VOLTAGE (VOLTS) Fig. 3 Typical Saturation Characteristics b a 3 2 z = KE 10 wz 22D Be 05 Ld Oe ve ww az 0.2 a 5 ues Ze z= 01 SZ *E 0.05 om SINGLE PULSE (TRANSIENT er THERMAL IMPEDANCE) = 0.02 o 2 N 0.01 19-5 2 5 10-4 2 5 10-3 0 2 ip, DRAIN CURRENT (AMPERES) |p, DRAIN CURRENT (AMPERES) 10-2 IRF640, IRF641, IRF642, IRF643 80 us PULSE TEST I I I Vos > !n{on) x Roston} 2 4 6 8 10 Vas, GATE-TO-SQURCE VOLTAGE (VOLTS) Fig. 2 Typical Transfer Characteristics BY Rpsion) 10 100 jes Te = 25C Ty= 150C MAX, Rin = 1.0 KAW SINGLE PULSE IRF641,3 10 2 5 10 20 50 100 200 500 Vp, DRAIN-TO-SOURCE VOLTAGE (VOLTS) Fig. 4 Maximum Safe Operating Area td 1. OUTY FACTOR, D= + . 2. PER UNIT BASE = Ainge = 1.0 DEG. C/W. 3. Tym - Te = Pom Zthsclv. 5 jot 2 5 10 2 5 10 ty, SQUARE WAVE PULSE DURATION (SECONDS) Fig. 5 Maximum Effective Transient Thermal Impedance, Junction-to-Case Vs. Pulse Duration 3-171Standard Power MOSFETs IRF640, IRF641, IRF642, IRF643 19.0 a w Ty = -559C Ty = 25C . Ty = 1259 x n Oty. TRANSCONDUCTANCE (SIEMENS) 80 us PULSE TEST 4 1 1 Vos > 'p(on) * Ras(an) max. wo oo 16 24 2 Ip, DRAIN CURRENT (AMPERES) Fig. 6 Typical Transconductance Vs. Drain Current 1.25 an (NORMALIZED) z 2 om a S 2 a BVgss, DRAIN-TO-SOURCE BREAKDOWN VOLTAGE 0.75 -40 40 80 Ty, JUNCTION TEMPERATURE (C) 120 18 Fig. 8 Breakdown Voltage Vs. Temperature 2000 Cisg = Cog + Coa, Cos Crss = Cog Cos Coa 1600 Com > Cas * To + Cog = Cys + Cog S oS 1200 o 2 < Ee uo = S 900 o 400 5 10 15 20 23 630 35 40 Vps, DRAIN-TO-SOURCE VOLTAGE (VOLTS) 45 Fig. 10 Typical Capacitance Vs. Drain-to-Source Volta 3-172 40 50 ~ 3 S on Ty= 15000 Ty = 2500 log, REVERSE DRAIN CURRENT (AMPERES) nN 04 0.8 12 1.6 Vsp, SOURCE-TO-DRAIN VOLTAGE (VOLTS) 2.0 Fig. 7 Typical Source-Drain Diode Forward Voltage 25 = > ~ o w 2 (NORMALIZEO) = wn Ros(on}. ORAIN-TO-SOUACE ON-STATE RESISTANCE 0 0 -40 9 40 80 Ty, JUNCTION TEMPERATURE (C) 129 180 Fig. 9 Normalized On-Resistance Vs. Temperature 20 os = t { Vos = 100V. t 1 Vpg = 180V, 19640, 642 10 Vgg. GATE-TO-SOURCE VOLTAGE (VOLTS) Ip = 22A FOR TEST CIRCUIT SEE FIGURE 18 50 20 ag 60 Qg, TOTAL GATE CHARGE inC) 80 ge Fig. 11 ~ Typical Gate Charge Vs. Gate-to-Source VoltageRos(on) MEASURED WITH CURRENT PULSE OF 2.0 us DURATION. INITIAL Ty = 25C. (HEATING EFFECT OF 2.0 us PULSE IS MINIMAL.) Rpston}). ORAIN-TO-SOURCE ON RESISTANCE (OHMS) 0 20 40 60 \p, ORAIN CURRENT (AMPERES) 80 Fig. 12 Typical On-Resistance Vs. Drain Current Pg, POWER DISSIPATION (WATTS} & e 8 & 8 & ny S 0 20 40 Tc, CASE TEMPERATURE (C) 60 80 100 120 140 Fig. 14 Power Vs. Temperature Derating Curve 75V ADJUST R, TO OBTAIN SPECIFIED tp 852 Ves Fruse g, | GENERATOR 42 SOURCE am | IMPEDANCE Fig. 17 Switching Time Test Circuit Standard Power MOSFETs IRF640, IRF641, IRF642, IRF643 20 16 a a # Go 2 Zz 12 IRFG4O, 641 L 2 w IRF642, x > 3 z 8 = = a 2 4 Q 100 2B 50 5 100 125 150 Tc, CASE TEMPERATURE (C) Fig. 13 Maximum Drain Current Vs. Case Temperature VARY ty TO OBTAIN REQUIRED PEAK 1, ,= 0.5 BVgss Ec = 0.78 BVpss Fig. 15 -- Clamped Inductive Test Circuit Fig. 16 Clamped Inductive Waveforms o *Yos USOLATED SUPPLY) CURRENT REGULATOR SAME TYPE Vos CURRENT CURRENT SAMPLING SAMPLING RESISTOR RESISTOR Fig. 18 Gate Charge Test Circuit 3-173