General Description
The MAX4012 single, MAX4016 dual, MAX4018 triple,
and MAX4020 quad op amps are unity-gain-stable
devices that combine high-speed performance with Rail-
to-Rail outputs. The MAX4018 has a disable feature that
reduces power-supply current to 400µA and places its
outputs into a high-impedance state. These devices
operate from a 3.3V to 10V single supply or from ±1.65V
to ±5V dual supplies. The common-mode input voltage
range extends beyond the negative power-supply rail
(ground in single-supply applications).
These devices require only 5.5mA of quiescent supply
current while achieving a 200MHz -3dB bandwidth and
a 600V/µs slew rate. These parts are an excellent solu-
tion in low-power/low-voltage systems that require wide
bandwidth, such as video, communications, and instru-
mentation. In addition, when disabled, their high-output
impedance makes them ideal for multiplexing
applications.
The MAX4012 comes in a miniature 5-pin SOT23 and 8-
pin SO package, while the MAX4016 comes in 8-pin
µMAX®and SO packages. The MAX4018/MAX4020 are
available in a space-saving 16-pin QSOP, as well as a
14-pin SO.
Applications
Set-Top Boxes
Surveillance Video Systems
Battery-Powered Instruments
Video Line Driver
Analog-to-Digital Converter Interface
CCD Imaging Systems
Video Routing and Switching Systems
____________________________Features
Low-Cost
High Speed:
200MHz -3dB Bandwidth (MAX4012)
150MHz -3dB Bandwidth
(MAX4016/MAX4018/MAX4020)
30MHz 0.1dB Gain Flatness
600V/µs Slew Rate
Single 3.3V/5.0V Operation
Rail-to-Rail Outputs
Input Common-Mode Range Extends Beyond VEE
Low Differential Gain/Phase: 0.02%/0.02°
Low Distortion at 5MHz:
-78dBc SFDR
-75dB Total Harmonic Distortion
High-Output Drive: ±120mA
400µA Shutdown Capability (MAX4018)
High-Output Impedance in Off State (MAX4018)
Space-Saving SOT23, SO, µMAX, or QSOP
Packages
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, Single-Supply
Op Amps with Rail-to-Rail Outputs
________________________________________________________________ Maxim Integrated Products 1
VEE
IN-
IN+
15VCC
OUT
MAX4012
SOT23-5
TOP VIEW
2
34
OUT
IN+
N.C.
VEE
1
2
8
7
N.C.
VCC
IN-
N.C.
SO
3
4
6
5
MAX4012
Pin Configurations
RO
50
IN
VOUT
ZO = 50
UNITY-GAIN LINE DRIVER
(RL = RO + RTO)
RF
24
RTO
50
RTIN
50
MAX4012
Typical Operating Circuit
19-1246; Rev 3; 8/04
Ordering Information
Ordering Information continued at end of data sheet.
Pin Configurations continued at end of data sheet.
µMAX is a registered trademark of Maxim Integrated Products, Inc.
PART TEMP
RANGE
PIN-
PACKAGE
5 SOT23-5
MAX4012EUK-T -40°C to +85°C
TOP
MARK
ABZP
8 SOMAX4012ESA -40°C to +85°C
8 SO
MAX4016ESA -40°C to +85°C
8 µMAXMAX4016EUA -40°C to +85°C
For pricing, delivery, and ordering information, please contact Maxim/Dallas Direct! at
1-888-629-4642, or visit Maxim’s website at www.maxim-ic.com.
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, Single-Supply
Op Amps with Rail-to-Rail Outputs
2_______________________________________________________________________________________
ABSOLUTE MAXIMUM RATINGS
DC ELECTRICAL CHARACTERISTICS
(VCC = 5V, VEE = 0, EN_ = 5V, RL= to VCC/2, VOUT = VCC/2, TA= TMIN to TMAX, unless otherwise noted. Typical values are at TA
= +25°C.) (Note 1)
Supply Voltage (VCC to VEE)..................................................12V
IN_-, IN_+, OUT_, EN_ .....................(VEE - 0.3V) to (VCC + 0.3V)
Output Short-Circuit Duration to VCC or VEE ............. Continuous
Continuous Power Dissipation (TA= +70°C)
5-Pin SOT23 (derate 7.1mW/°C above +70°C) ...........571mW
8-Pin SO (derate 5.9mW/°C above +70°C) .................471mW
8-Pin µMAX (derate 4.1mW/°C above +70°C) ............330mW
14-Pin SO (derate 8.3mW/°C above +70°C) ...............667mW
16-Pin QSOP (derate 8.3mW/°C above +70°C) ..........667mW
Operating Temperature Range ...........................-40°C to +85°C
Storage Temperature Range .............................-65°C to +150°C
Lead Temperature (soldering, 10s) .................................+300°C
Guaranteed by CMRR test
(VEE - 0.2V) VCM (VCC - 2.25V)
Any channels for MAX4016/MAX4018/
MAX4020
(Note 2)
(Note 2)
Differential mode (-1V VIN +1V)
CONDITIONS
µV/°C8TCVOS
Input Offset Voltage
Temperature Coefficient
mV420VOS
V
VEE -V
CC -
0.20 2.25
VCM
Input Common-Mode
Voltage Range
Input Offset Voltage (Note 2)
dBAVOL
Open-Loop Gain (Note 2)
dB70 100CMRRCommon-Mode Rejection Ratio
mV±1Input Offset Voltage Matching
µA5.4 20IB
Input Bias Current
µA0.1 20IOS
Input Offset Current
k
70
RIN
Input Resistance
UNITSMIN TYP MAXSYMBOLPARAMETER
Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional
operation of the device at these or at any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure
to absolute maximum rating conditions for extended periods may affect device reliability.
Common mode (-0.2V VCM +2.75V) M
3
0.25V VOUT 4.75V, RL= 2k61
0.5V VOUT 4.5V, RL= 15052 59
1.0V VOUT 4V, RL= 5057
VVOUT
Output Voltage Swing
(Note 2)
RL= 2k0.06
0.06
RL= 1500.30
0.30
0.6 1.5
0.6 1.5
VCC - VOH
VOL - VEE
VCC - VOH
VOL - VEE
VCC - VOH
VOL - VEE
RL= 75
RL= 75
to ground
1.1 2.0VCC - VOH
0.05 0.50VOL - VEE
±70 ±120
±150
8
Sinking or sourcing
ROUT
ISC
Open-Loop Output Resistance
Output Short-Circuit Current
mA
mAOutput Current ±60
RL= 20to VCC or
VEE
IOUT
TA= +25°C
TA= TMIN to TMAX
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, Single-Supply
Op Amps with Rail-to-Rail Outputs
_______________________________________________________________________________________ 3
DC ELECTRICAL CHARACTERISTICS (continued)
(VCC = 5V, VEE = 0, EN_ = 5V, RL= to VCC/2, VOUT = VCC/2, TA= TMIN to TMAX, unless otherwise noted. Typical values are at TA
= +25°C.) (Note 1)
VCC = 5V, VEE = 0, VCM = 2.0V
VCC = 5V, VEE = -5V, VCM = 0
VCC to VEE
CONDITIONS
dB
46 57
PSRR
Power-Supply Rejection Ratio
(Note 3) 54 66
V3.15 11.0VS
Operating Supply-Voltage
Range
UNITSMIN TYP MAXSYMBOLPARAMETER
VCC = 3.3V, VEE = 0, VCM = 0.90V 45
EN_ = 0, 0 VOUT 5V (Note 4) k
28 35ROUT (OFF)
Disabled Output Resistance
VVCC - 2.6VIL
EN_ Logic-Low Threshold
VVCC - 1.6VIH
EN_ Logic-High Threshold
0.5
EN_ = 5V µA0.5 10IIH
EN_ Logic Input High Current
Enabled mA
5.5 7.0
IS
Quiescent Supply Current
(per Amplifier) MAX4018, disabled (EN_ = 0) 0.40 0.65
(VEE + 0.2V) EN_ VCC µA
200 400
IIL
EN_ Logic Input Low Current EN_ = 0
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, Single-Supply
Op Amps with Rail-to-Rail Outputs
4_______________________________________________________________________________________
Note 1: The MAX4012EUT is 100% production tested at TA= +25°C. Specifications over temperature limits are guaranteed by
design.
Note 2: Tested with VCM = 2.5V.
Note 3: PSR for single 5V supply tested with VEE = 0, VCC = 4.5V to 5.5V; for dual ±5V supply with VEE = -4.5V to -5.5V,
VCC = 4.5V to 5.5V; and for single 3.3V supply with VEE = 0, VCC = 3.15V to 3.45V.
Note 4: Does not include the external feedback network’s impedance.
Note 5: Guaranteed by design.
AC ELECTRICAL CHARACTERISTICS
(VCC = 5V, VEE = 0, VCM = 2.5V, EN_ = 5V, RF= 24, RL= 100to VCC/2, VOUT = VCC/2, AVCL = 1, TA= +25°C, unless otherwise
noted.)
PARAMETER SYMBOL MIN TYP MAX UNITS
Bandwidth for 0.1dB Gain
Flatness BW0.1dB 630 MHz
Large-Signal -3dB Bandwidth BWLS 140 MHz
Slew Rate SR 600 V/µs
Settling Time to 0.1% tS45 ns
Rise/Fall Time tR, tF1ns
-78 dBc
Small-Signal -3dB Bandwidth BWSS
200
MHz
150
Harmonic Distortion HD -82
-75 dB
Two-Tone, Third-Order
Intermodulation Distortion IP3 35 dBc
Input 1dB Compression Point 11 dBm
Differential Phase Error DP 0.02 degrees
Differential Gain Error DG 0.02 %
Input Noise-Voltage Density en10 nV/Hz
Input Noise-Current Density in1.3 pA/Hz
Input Capacitance CIN 1pF
Disabled Output Capacitance COUT (OFF) 2pF
Output Impedance ZOUT 6
Amplifier Enable Time tON 100 ns
CONDITIONS
VOUT = 2VP-P
VOUT = 2V step
VOUT = 2V step
f1 = 10.0MHz, f2 = 10.1MHz, VOUT = 1VP-P
VOUT = 100mVP-P
fC= 5MHz,
VOUT = 2VP-P
fC= 10MHz, AVCL = 2
NTSC, RL= 150
NTSC, RL= 150
VOUT = 20mVP-P
f = 10kHz
f = 10kHz
MAX4018, EN_ = 0
f = 10MHz
MAX4018
MAX4012
MAX4016/MAX4018/
MAX4020
VOUT = 20mVP-P (Note 5)
2nd harmonic
3rd harmonic
Total harmonic
distortion
Spurious-Free Dynamic
Range SFDR -78 dBcfC= 5MHz, VOUT = 2VP-P
Amplifier Disable Time tOFF 1µsMAX4018
Amplifier Gain Matching 0.1 dB
MAX4016/MAX4018/MAX4020,
f = 10MHz, VOUT = 20mVP-P
Amplifier Crosstalk XTALK -95 dB
MAX4016/MAX4018/MAX4020,
f = 10MHz, VOUT= 2VP-P, RS= 50to ground
4
-6
100k 1M 10M 100M 1G
MAX4012
SMALL-SIGNAL GAIN vs. FREQUENCY
(AVCL = 1)
-4
MAX4012-01
FREQUENCY (Hz)
GAIN (dB)
-2
0
2
3
-5
-3
-1
1
AVCL = 1
VOUT = 20mVP-P
3
-7
100k 1M 10M 100M 1G
MAX4016/MAX4018/MAX4020
SMALL-SIGNAL GAIN vs. FREQUENCY
(AVCL = 1)
-5
MAX4012-02
FREQUENCY (Hz)
GAIN (dB)
-3
-1
1
2
-6
-4
-2
0
AVCL = 1
VOUT = 20mVP-P
9
-1
100k 1M 10M 100M 1G
MAX4012
SMALL-SIGNAL GAIN vs. FREQUENCY
(AVCL = 2)
1
MAX4012-03
FREQUENCY (Hz)
GAIN (dB)
3
5
7
8
0
2
4
6
AVCL = 2
VOUT = 20mVP-P
9
-1
100k 1M 10M 100M 1G
MAX4016/MAX4018/MAX4020
SMALL-SIGNAL GAIN vs. FREQUENCY
(AVCL = 2)
1
MAX4012-04
FREQUENCY (Hz)
GAIN (dB)
3
5
7
8
0
2
4
6
AVCL = 2
VOUT = 20mVP-P
0.5
-0.5
0.1M 1M 10M 100M 1G
MAX4016/MAX4018/MAX4020
GAIN FLATNESS vs. FREQUENCY
-0.3
MAX4012-07
FREQUENCY (Hz)
GAIN (dB)
-0.1
0.1
0.3
0.4
-0.4
-0.2
0
0.2
AVCL = 1
VOUT = 20mVP-P
4
-6
100k 1M 10M 100M 1G
LARGE-SIGNAL GAIN vs. FREQUENCY
-4
MAX4012-05
FREQUENCY (Hz)
GAIN (dB)
-2
0
2
3
-5
-3
-1
1
VOUT = 2VP-P
VOUT BIAS = 1.75V
0.7
-0.3
0.1M 1M 10M 100M 1G
MAX4012
GAIN FLATNESS vs. FREQUENCY
-0.1
MAX4012-06
FREQUENCY (Hz)
GAIN (dB)
0.1
0.3
0.5
0.6
-0.2
0
0.2
0.4
AVCL = 1
VOUT = 20mVP-P
50
-150
100k 1M 10M 100M 1G
MAX4016/MAX4018/MAX4020
CROSSTALK vs. FREQUENCY
-110
MAX4212-08
FREQUENCY (Hz)
CROSSTALK (dB)
-70
-30
10
30
-130
-90
-50
-10
RS = 50
1000
0.1
0.1M 1M 10M 100M
CLOSED-LOOP OUTPUT IMPEDANCE
vs. FREQUENCY
MAX4012-09
FREQUENCY (Hz)
IMPEDANCE ()
100
1
10
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, Single-Supply
Op Amps with Rail-to-Rail Outputs
_______________________________________________________________________________________ 5
Typical Operating Characteristics
(VCC = 5V, VEE = 0, AVCL = 1, RF= 24, RL= 100to VCC/2, TA = +25°C, unless otherwise noted.)
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, Single-Supply
Op Amps with Rail-to-Rail Outputs
6_______________________________________________________________________________________
0
-100
100k 1M 10M 100M
HARMONIC DISTORTION
vs. FREQUENCY (AVCL = 1)
-80
MAX4012-10
FREQUENCY (Hz)
HARMONIC DISTORTION (dBc)
-60
-40
-20
-10
-90
-70
-50
-30
VOUT = 2VP-P
AVCL = 1
2ND HARMONIC
3RD HARMONIC
0
-100
100k 1M 10M 100M
HARMONIC DISTORTION
vs. FREQUENCY (AVCL = 2)
-80
MAX4012-11
FREQUENCY (Hz)
HARMONIC DISTORTION (dBc)
-60
-40
-20
-10
-90
-70
-50
-30
VOUT = 2VP-P
AVCL = 2
2ND HARMONIC
3RD HARMONIC
0
-100
100k 1M 10M 100M
HARMONIC DISTORTION
vs. FREQUENCY (AVCL = 5)
-80
MAX4012-12
FREQUENCY (Hz)
HARMONIC DISTORTION (dBc)
-60
-40
-20
-10
-90
-70
-50
-30
VOUT = 2VP-P
AVCL = 5
2ND HARMONIC
3RD
HARMONIC
0
-10
-20
-30
-60
-70
-90
-80
-40
-50
-100
MAX4012-13
LOAD ()
0200 400 600 800 1000
HARMONIC DISTORTION
vs. LOAD
HARMONIC DISTORTION (dBc)
f = 5MHz
VOUT = 2VP-P
3rd HARMONIC
2rd HARMONIC
0
-100
100k 1M 10M 100M
COMMON-MODE REJECTION
vs. FREQUENCY
-80
MAX4012-16
FREQUENCY (Hz)
CMR (dB)
-60
-40
-20
-10
-90
-70
-50
-30
0
-10
-20
-30
-60
-70
-90
-80
-40
-50
-100
MAX4012-14
OUTPUT SWING (Vp-p)
0.5 1.0 1.5 2.0
HARMONIC DISTORTION
vs. OUTPUT SWING
HARMONIC DISTORTION (dBc)
fO = 5MHz
3RD HARMONIC
2ND HARMONIC
-0.01
0100
0100
DIFFERENTIAL GAIN AND PHASE
-0.01
0.00
0.00
0.01
0.01
0.02
0.02
0.03
0.03
IRE
IRE
DIFF. PHASE (deg) DIFF. GAIN (%)
MAX4012-15
VCM = 1.35V
VCM = 1.35V
20
-80
100k 1M 10M 100M
POWER-SUPPLY REJECTION
vs. FREQUENCY
-60
MAX4012-17
FREQUENCY (Hz)
POWER-SUPPLY REJECTION (dB)
-40
-20
0
10
-70
-50
-30
-10
Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0, AVCL = 1, RF= 24, RL= 100to VCC/2, TA = +25°C, unless otherwise noted.)
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, Single-Supply
Op Amps with Rail-to-Rail Outputs
_______________________________________________________________________________________ 7
IN
(50mV/
div)
OUT
(25mV/
div)
VOLTAGE
SMALL-SIGNAL PULSE RESPONSE
(AVCL = 1)
MAX4012-19
20ns/div
VCM = 2.5V, RL = 100 to GROUND
IN
(25mV/
div)
OUT
(25mV/
div)
VOLTAGE
SMALL-SIGNAL PULSE RESPONSE
(AVCL = 2)
MAX4012-20
20ns/div
VCM = 1.25V, RL = 100 to GROUND
IN
(50mV/
div)
OUT
(25mV/
div)
VOLTAGE
SMALL-SIGNAL PULSE RESPONSE
(CL = 5pF, AVCL = 1)
MAX4012-21
20ns/div
VCM = 1.75V, RL = 100 to GROUND
IN
(1V/div)
OUT
(1V/div)
VOLTAGE
LARGE-SIGNAL PULSE RESPONSE
(AVCL = 1)
MAX4012-22
20ns/div
VCM = 1.75V, RL = 100 to GROUND
100
10
1
110 1k 10M1M
VOLTAGE-NOISE DENSITY
vs. FREQUENCY
MAX4012-25
FREQUENCY (Hz)
VOLTAGE-NOISE DENSITY
100 10k 100k
IN
(500mV/
div)
OUT
(500mV/
div)
VOLTAGE
LARGE-SIGNAL PULSE RESPONSE
(AVCL = 2)
MAX4012-23
20ns/div
VCM = 0.9V, RL = 100 to GROUND
IN
(1V/
div)
OUT
(500mV/
div)
VOLTAGE
LARGE-SIGNAL PULSE RESPONSE
(CL = 5pF, AVCL = 2)
MAX4012-24
20ns/div
VCM = 1.75V, RL = 100 to GROUND
10
1
110 1k 10M1M
CURRENT-NOISE DENSITY
vs. FREQUENCY
MAX4012-26
FREQUENCY (Hz)
CURRENT-NOISE DENSITY
100 10k 100k
EN_
5.0V
(ENABLE)
0
(DISABLE)
1V
0
OUT
ENABLE RESPONSE TIME
MAX4012-27
1µs/div
VIN = 1.0V
Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0, AVCL = 1, RF= 24, RL= 100to VCC/2, TA = +25°C, unless otherwise noted.)
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, Single-Supply
Op Amps with Rail-to-Rail Outputs
8_______________________________________________________________________________________
70
50
60
40
30
20
MAX4012-28
LOAD RESISTANCE ()
0200 400 600 800 1k
OPEN-LOOP GAIN
vs. LOAD RESISTANCE
OPEN-LOOP GAIN (dB)
400
350
300
250
150
50
100
200
0
MAX4012-29
LOAD RESISTANCE ()
1000 200 500400300 600
CLOSED-LOOP BANDWIDTH
vs. LOAD RESISTANCE
CLOSED-LOOP BANDWIDTH (MHz)
10
-90
100k 10M 100M1M
OFF-ISOLATION vs. FREQUENCY
-80
MAX4012-30
FREQUENCY (Hz)
OFF-ISOLATION (dB)
-70
-60
-50
-40
-30
-20
-10
0
7
6
4
5
3
MAX4012-31
TEMPERATURE (°C)
-25-50 0 755025 100
SUPPLY CURRENT
vs. TEMPERATURE
SUPPLY CURRENT (mA)
10
8
6
4
2
0
MAX4012-34
SUPPLY VOLTAGE (V)
43 567891011
SUPPLY CURRENT
vs. SUPPLY VOLTAGE
SUPPLY CURRENT (mA)
6.0
5.5
4.5
5.0
4.0
MAX4012-32
TEMPERATURE (°C)
-25-50 0 755025 100
INPUT BIAS CURRENT
vs. TEMPERATURE
INPUT BIAS CURRENT (µA)
0.20
0.16
0.12
0.04
0.08
0
MAX4012-33
TEMPERATURE (°C)
-25-50 0 755025 100
INPUT OFFSET CURRENT
vs. TEMPERATURE
INPUT OFFSET VOLTAGE
5
4
3
1
2
0
MAX4012-35
TEMPERATURE (°C)
-25-50 0 755025 100
INPUT OFFSET VOLTAGE
vs. TEMPERATURE
INPUT OFFSET VOLTAGE (mV)
5.0
4.8
4.6
4.2
4.4
4.0
MAX4012-36
TEMPERATURE (°C)
-25-50 0 755025 100
OUTPUT VOLTAGE SWING
vs. TEMPERATURE
OUTPUT VOLTAGE SWING (Vp-p)
RL = 150 TO VCC/2
Typical Operating Characteristics (continued)
(VCC = 5V, VEE = 0, AVCL = 1, RF= 24, RL= 100to VCC/2, TA = +25°C, unless otherwise noted.)
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, Single-Supply
Op Amps with Rail-to-Rail Outputs
_______________________________________________________________________________________ 9
Pin Description
PIN
MAX4012 MAX4012
MAX4018 MAX4020
SO-8
SOT23
MAX4016
SO/µMAX
SO
QSOP
SO
QSOP
NAME
FUNCTION
1, 5, 8
8, 9
8, 9 N.C.
No Connection. Not internally connected. Tie
to ground or leave open.
61—
OUT
Amplifier Output
42 411131113V
EE Negative Power Supply or Ground (in single-
supply operation)
33—————IN+ Noninverting Input
24—————IN- Inverting Input
7584444
VCC
Positive Power Supply
—17711
OUTA
Amplifier A Output
—26622
INA-
Amplifier A Inverting Input
—35533
INA+
Amplifier A Noninverting Input
—781077
OUTB
Amplifier B Output
—691166
INB-
Amplifier B Inverting Input
—51012 5 5
INB+
Amplifier B Noninverting Input
——1416 8 10
OUTC
Amplifier C Output
——1315 9 11
INC-
Amplifier C Inverting Input
——1214 10 12
INC+
Amplifier C Noninverting Input
——14 16
OUTD
Amplifier D Output
——13 15
IND-
Amplifier D Inverting Input
——12 14
IND+
Amplifier D Noninverting Input
——————EN Enable Amplifier
——11
ENA
Enable Amplifier A
——33
ENB
Enable Amplifier B
——22
ENC
Enable Amplifier C
MAX4012/MAX4016/MAX4018/MAX4020
Detailed Description
The MAX4012/MAX4016/MAX4018/MAX4020 are sin-
gle-supply, rail-to-rail, voltage-feedback amplifiers that
employ current-feedback techniques to achieve
600V/µs slew rates and 200MHz bandwidths. Excellent
harmonic distortion and differential gain/phase perfor-
mance make these amplifiers an ideal choice for a wide
variety of video and RF signal-processing applications.
The output voltage swing comes to within 50mV of each
supply rail. Local feedback around the output stage
assures low open-loop output impedance to reduce
gain sensitivity to load variations. This feedback also
produces demand-driven current bias to the output
transistors for ±120mA drive capability, while constrain-
ing total supply current to less than 7mA. The input
stage permits common-mode voltages beyond the nega-
tive supply and to within 2.25V of the positive supply rail.
Applications Information
Choosing Resistor Values
Unity-Gain Configuration
The MAX4012/MAX4016/MAX4018/MAX4020 are inter-
nally compensated for unity gain. When configured for
unity gain, the devices require a 24resistor (RF) in
series with the feedback path. This resistor improves
AC response by reducing the Q of the parallel LC cir-
cuit formed by the parasitic feedback capacitance and
inductance.
Inverting and Noninverting Configurations
Select the gain-setting feedback (RF) and input (RG)
resistor values to fit your application. Large resistor val-
ues increase voltage noise and interact with the amplifi-
er’s input and PC board capacitance. This can
generate undesirable poles and zeros and decrease
bandwidth or cause oscillations. For example, a nonin-
verting gain-of-two configuration (RF= RG) using 1k
resistors, combined with 1pF of amplifier input capaci-
tance and 1pF of PC board capacitance, causes a pole
at 159MHz. Since this pole is within the amplifier band-
width, it jeopardizes stability. Reducing the 1kresis-
tors to 100extends the pole frequency to 1.59GHz,
but could limit output swing by adding 200in parallel
with the amplifier’s load resistor. Table 1 shows sug-
gested feedback, gain resistors, and bandwidth for
several gain values in the configurations shown in
Figures 1a and 1b.
Layout and Power-Supply Bypassing
These amplifiers operate from a single 3.3V to 11V power
supply or from dual supplies to ±5.5V. For single-supply
operation, bypass VCC to ground with a 0.1µF capacitor
as close to the pin as possible. If operating with dual sup-
plies, bypass each supply with a 0.1µF capacitor.
Low-Cost, High-Speed, Single-Supply
Op Amps with Rail-to-Rail Outputs
10 ______________________________________________________________________________________
IN
RG
VOUT = [1+ (RF / RG)] VIN
RF
RTO
RTIN
RO
VOUT
MAX40_ _
IN
RG
VOUT = -(RF / RG) VIN
RF
RTO
RS
RTIN
RO
VOUT
MAX40_ _
Figure 1a. Noninverting Gain Configuration Figure 1b. Inverting Gain Configuration
Maxim recommends using microstrip and stripline tech-
niques to obtain full bandwidth. To ensure that the PC
board does not degrade the amplifier’s performance,
design it for a frequency greater than 1GHz. Pay care-
ful attention to inputs and outputs to avoid large para-
sitic capacitance. Whether or not you use a constant-
impedance board, observe the following guidelines
when designing the board:
Don’t use wire-wrap boards because they are too
inductive.
Don’t use IC sockets because they increase parasitic
capacitance and inductance.
Use surface-mount instead of through-hole compo-
nents for better high-frequency performance.
Use a PC board with at least two layers; it should be
as free from voids as possible.
Keep signal lines as short and as straight as possi-
ble. Do not make 90° turns; round all corners.
Rail-to-Rail Outputs,
Ground-Sensing Input
The input common-mode range extends from
(VEE - 200mV) to (VCC - 2.25V) with excellent common-
mode rejection. Beyond this range, the amplifier output
is a nonlinear function of the input, but does not under-
go phase reversal or latchup.
The output swings to within 60mV of either power-
supply rail with a 2kload. The input ground-sensing
and the rail-to-rail output substantially increase the
dynamic range. With a symmetric input in a single 5V
application, the input can swing 2.95VP-P, and the out-
put can swing 4.9VP-P with minimal distortion.
Enable Input and Disabled Output
The enable feature (EN_) allows the amplifier to be
placed in a low-power, high-output-impedance state.
Typically, the EN_ logic low input current (IIL) is small.
However, as the EN voltage (VIL) approaches the nega-
tive supply rail, IIL increases (Figure 2). A single resis-
tor connected as shown in Figure 3 prevents the rise in
the logic-low input current. This resistor provides a
feedback mechanism that increases VIL as the logic
input is brought to VEE. Figure 4 shows the resulting
input current (IIL).
When the MAX4018 is disabled, the amplifier’s output
impedance is 35k. This high resistance and the low
2pF output capacitance make this part ideal in
RF/video multiplexer or switch applications. For larger
arrays, pay careful attention to capacitive loading. See
the Output Capacitive Loading and Stability section for
more information.
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, Single-Supply
Op Amps with Rail-to-Rail Outputs
______________________________________________________________________________________ 11
RF()24 500
RG()500
COMPONENT
RS() 0
RTIN ()49.9 56
Small-Signal -3dB Bandwidth (MHz) 200 90
RTO ()49.9 49.9
Table 1. Recommended Component Values
Note: RL= RO+ RTO; RTIN and RTO are calculated for 50applications. For 75systems, RTO = 75; calculate RTIN from the
following equation:
500
500
49.9
105
49.9
500
250
0
62
60
49.9
500
124
49.9
25
49.9
500
100
0
100
33
49.9
500
56
49.9
11
49.9
500
50
0
25
49.9
500
20
49.9
6
49.9
GAIN (V/V)
1200
50
0
10
49.9
+1 -1 +2 -2 +5 -5 +10 -10 +25 -25
R = 75
1- 75
R
TIN
G
MAX4012/MAX4016/MAX4018/MAX4020
To implement the mux function, the outputs of multiple
amplifiers can be tied together, and only the amplifier
with the selected input will be enabled. All of the other
amplifiers will be placed in the low-power shutdown
mode, with their high output impedance presenting
very little load to the active amplifier output. For gains
of +2 or greater, the feedback network impedance of
all the amplifiers used in a mux application must be
considered when calculating the total load on the
active amplifier output
Output Capacitive Loading and Stability
The MAX4012/MAX4016/MAX4018/MAX4020 are opti-
mized for AC performance. They are not designed to
drive highly reactive loads, which decreases phase
margin and may produce excessive ringing and oscilla-
tion. Figure 5 shows a circuit that eliminates this prob-
lem. Figure 6 is a graph of the optimal isolation resistor
(RS) vs. capacitive load. Figure 7 shows how a capaci-
tive load causes excessive peaking of the amplifier’s
frequency response if the capacitor is not isolated from
the amplifier by a resistor. A small isolation resistor
(usually 20to 30) placed before the reactive load
prevents ringing and oscillation. At higher capacitive
loads, AC performance is controlled by the interaction
of the load capacitance and the isolation resistor.
Figure 8 shows the effect of a 27isolation resistor on
closed-loop response.
Coaxial cable and other transmission lines are easily
driven when properly terminated at both ends with their
characteristic impedance. Driving back-terminated
transmission lines essentially eliminates the line’s
capacitance.
Low-Cost, High-Speed, Single-Supply
Op Amps with Rail-to-Rail Outputs
12 ______________________________________________________________________________________
OUT
IN- EN_
IN+
10k
ENABLE
MAX40_ _
20
-160
050100 150 300 350 500
-100
-120
0
mV ABOVE VEE
INPUT CURRENT (µA)
200 250 400 450
-60
-140
-20
-40
-80
0
-10
050100 150 300 350 500
-7
-8
-1
mV ABOVE VEE
INPUT CURRENT (µA)
200 250 400 450
-3
-5
-9
-2
-4
-6
Figure 2. Enable Logic-Low Input Current vs. VIL
Figure 4. Enable Logic-Low Input Current vs. VIL with 10k
Series Resistor
Figure 3. Circuit to Reduce Enable Logic-Low Input Current
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, Single-Supply
Op Amps with Rail-to-Rail Outputs
______________________________________________________________________________________ 13
RGRF
RISO
50
CL
VOUT
VIN
RTIN
MAX40_ _
Figure 5. Driving a Capacitive Load through an Isolation Resistor
30
25
20
5
10
15
0
CAPACITIVE LOAD (pF)
500 100 200150 250
ISOLATION RESISTANCE, RISO ()
Figure 6. Capacitive Load vs. Isolation Resistance
6
-4
100k 10M 100M1M 1G
-2
FREQUENCY (Hz)
GAIN (dB)
0
2
4
5
-3
-1
1
3
CL = 10pF
CL = 15pF
CL = 5pF
Figure 7. Small-Signal Gain vs. Frequency with Load
Capacitance and No Isolation Resistor
3
-7
100k 10M 100M1M 1G
-5
FREQUENCY (Hz)
GAIN (dB)
-3
-1
1
2
-6
-4
-2
0
CL = 68pF
RISO = 27
CL = 120pF
CL = 47pF
Figure 8. Small-Signal Gain vs. Frequency with Load
Capacitance and 27Isolation Resistor
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, Single-Supply
Op Amps with Rail-to-Rail Outputs
14 ______________________________________________________________________________________
TOP VIEW
14
13
12
11
10
9
8
1
2
3
4
5
6
7
OUTC
INC-
INC+
VEE
VCC
ENB
ENC
ENA
MAX4018
INB+
INB-
OUTB
OUTA
INA-
INA+
SO
14
13
12
11
10
9
8
1
2
3
4
5
6
7
OUTD
IND-
IND+
VEE
VCC
INA+
INA-
OUTA
MAX4020
INC+
INC-
OUTC
OUTB
INB-
INB+
SO
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
OUTC
INC-
INC+
VEE
INB+
INB-
OUTB
N.C.
ENA
ENC
ENB
VCC
INA+
INA-
OUTA
N.C.
MAX4018
QSOP
16
15
14
13
12
11
10
9
1
2
3
4
5
6
7
8
OUTD
IND-
IND+
VEE
INC+
INC-
OUTC
N.C.
OUTA
INA-
INA+
VCC
INB+
INB-
OUTB
N.C.
MAX4020
QSOP
INB-
INB+
VEE
1
2
8
7
VCC
OUTB
INA-
INA+
OUTA
SO/µMAX
3
4
6
5
MAX4016
Pin Configurations (continued)
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, Single-Supply
Op Amps with Rail-to-Rail Outputs
______________________________________________________________________________________ 15
___________________Chip InformationOrdering Information (continued)
PART TEMP
RANGE
TOP
MARK
PIN-
PACKAGE
14 SO
16 QSOP
14 SO
16 QSOP
MAX4018ESD -40°C to +85°C
MAX4018EEE -40°C to +85°C
MAX4020ESD -40°C to +85°C
MAX4020EEE -40°C to +85°C
MAX4012 TRANSISTOR COUNT: 95
MAX4016 TRANSISTOR COUNT: 190
MAX4018 TRANSISTOR COUNT: 299
MAX4020 TRANSISTOR COUNT: 362
SOT-23 5L .EPS
E1
1
21-0057
PACKAGE OUTLINE, SOT-23, 5L
Package Information
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, Single-Supply
Op Amps with Rail-to-Rail Outputs
16 ______________________________________________________________________________________
8LUMAXD.EPS
PACKAGE OUTLINE, 8L uMAX/uSOP
1
1
21-0036 J
REV.DOCUMENT CONTROL NO.APPROVAL
PROPRIETARY INFORMATION
TITLE:
MAX
0.043
0.006
0.014
0.120
0.120
0.198
0.026
0.007
0.037
0.0207 BSC
0.0256 BSC
A2 A1
c
eb
A
L
FRONT VIEW SIDE VIEW
E H
0.6±0.1
0.6±0.1
ÿ0.50±0.1
1
TOP VIEW
D
8
A2 0.030
BOTTOM VIEW
16∞
S
b
L
H
E
D
e
c
0∞
0.010
0.116
0.116
0.188
0.016
0.005
8
4X S
INCHES
-
A1
A
MIN
0.002
0.950.75
0.5250 BSC
0.25 0.36
2.95 3.05
2.95 3.05
4.78
0.41
0.65 BSC
5.03
0.66
6∞0∞
0.13 0.18
MAX
MIN
MILLIMETERS
-1.10
0.05 0.15
α
α
DIM
QSOP.EPS
E1
1
21-0055
PACKAGE OUTLINE, QSOP .150", .025" LEAD PITCH
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)
Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are
implied. Maxim reserves the right to change the circuitry and specifications without notice at any time.
17 ____________________Maxim Integrated Products, 120 San Gabriel Drive, Sunnyvale, CA 94086 408-737-7600
©2004 Maxim Integrated Products Printed USA is a registered trademark of Maxim Integrated Products.
MAX4012/MAX4016/MAX4018/MAX4020
Low-Cost, High-Speed, Single-Supply
Op Amps with Rail-to-Rail Outputs
SOICN .EPS
PACKAGE OUTLINE, .150" SOIC
1
1
21-0041 B
REV.DOCUMENT CONTROL NO.APPROVAL
PROPRIETARY INFORMATION
TITLE:
TOP VIEW
FRONT VIEW
MAX
0.010
0.069
0.019
0.157
0.010
INCHES
0.150
0.007
E
C
DIM
0.014
0.004
B
A1
MIN
0.053A
0.19
3.80 4.00
0.25
MILLIMETERS
0.10
0.35
1.35
MIN
0.49
0.25
MAX
1.75
0.050
0.016L0.40 1.27
0.3940.386D
D
MINDIM
D
INCHES
MAX
9.80 10.00
MILLIMETERS
MIN MAX
16 AC
0.337 0.344 AB8.758.55 14
0.189 0.197 AA5.004.80 8
NMS012
N
SIDE VIEW
H0.2440.228 5.80 6.20
e0.050 BSC 1.27 BSC
C
HE
eBA1
A
D
0∞-8∞
L
1
VARIATIONS:
Package Information (continued)
(The package drawing(s) in this data sheet may not reflect the most current specifications. For the latest package outline information
go to www.maxim-ic.com/packages.)