TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H – NOVEMBER 1996 – REVISED MARCH 2001
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
D
Output Swing Includes Both Supply Rails
D
Extended Common-Mode Input Voltage
Range ...0 V to 4.25 V (Min) at 5-V Single
Supply
D
No Phase Inversion
D
Low Noise . . . 16 nV/Hz Typ at f = 1 kHz
D
Low Input Offset Voltage
950 µV Max at TA = 25°C (TLV244xA)
D
Low Input Bias Current ...1 pA Typ
D
600- Output Drive
D
High-Gain Bandwidth . . . 1.8 MHz Typ
D
Low Supply Current . . . 750 µA Per Channel
Typ
D
Macromodel Included
D
Available in Q-Temp Automotive
HighRel Automotive Applications
Configuration Control/Print Support
Qualification to Automotive Standards
description
The TLV244x and TLV244xA are low-voltage
operational amplifiers from Texas Instruments.
The common-mode input voltage range of these
devices has been extended over typical standard
CMOS amplifiers, making them suitable for a wide
range of applications. In addition, these devices
do not phase invert when the common-mode input
is driven to the supply rails. This satisfies most
design requirements without paying a premium
for rail-to-rail input performance. They also exhibit
rail-to-rail output performance for increased
dynamic range in single- or split-supply
applications. This family is fully characterized at
3-V and 5-V supplies and is optimized for
low-voltage operation. Both devices offer
comparable ac performance while having lower
noise, input offset voltage, and power dissipation
than existing CMOS operational amplifiers. The
TLV244x has increased output drive over
previous rail-to-rail operational amplifiers and can
drive 600- loads for telecommunications
applications.
The other members in the TLV244x family are the low-power , TLV243x, and micro-power , TLV2422, versions.
The TLV244x, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for
high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and
low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In
addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when
interfacing with analog-to-digital converters (ADCs). For precision applications, the TL V244xA is available with
a maximum input offset voltage of 950 µV.
If the design requires single operational amplifiers, see the TI TLV2211/21/31. This is a family of rail-to-rail output
operational amplifiers in the SOT-23 package. Their small size and low power consumption make them ideal
for high density, battery-powered equipment.
Copyright 2001, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments.
Figure 1
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
– High-Level Output Voltage – V
VOH
3
2.5
2
1.5
1
0.5
0024 681012
IOH – High-Level Output Current – mA
VDD = 3 V
TA = 125°C
TA = 85°C TA = 25°C
TA = –40°C
On products compliant to MIL-PRF-38535, all parameters are tested
unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TLV2442 AVAILABLE OPTIONS
PACKAGED DEVICES
TAVIOmax
AT 25°CSMALL
OUTLINE
(D)
CHIP CARRIER
(FK) CERAMIC DIP
(JG) TSSOP
(PW)
CERAMIC FLAT
PACK
(U)
0°C to 70°C2.5 mV TLV2442CD TLV2442CPW
40°Cto85°C
950
µ
V TLV2442AID TLV2442AIPW
40°C
to
85°C
µ
2.5 mV TLV2442ID
40°Cto125°C
950
µ
V TLV2442AQD TLV2442AQPW
40°C
to
125°C
µ
2.5 mV TLV2442QD TLV2442QPW
55°Cto125°C
950 µVTLV2442AMFK TLV2442AMJG TLV2442AMU
55°C
to
125°C
µ
2.5 mV TLV2442MFK TLV2442MJG TLV2442MU
The D and PW packages are available taped and reeled. Add R suffix to device type (e.g., TLV2442CDR).
TLV2444 A VAILABLE OPTIONS
PACKAGED DEVICES
TAVIOmax
AT 25°CSMALL
OUTLINE
(D)
TSSOP
(PW)
0°C to 70°C2.5 mV TLV2444CD TLV2444CPW
40
°
Cto125
°
C
950
µ
V TLV2444AID TLV2444AIPW
40°C
to
125°C
µ
2.5 mV TLV2444ID TLV2444IPW
The D and PW packages are available taped and reeled. Add R suffix to device type (e.g., TLV2444CDR).
1
2
3
4
8
7
6
5
1OUT
1IN
1IN+
VDD /GND
VDD+
2OUT
2IN
2IN+
1
2
3
4
8
7
6
5
1OUT
1IN
1IN+
VDD/GND
VDD+
2OUT
2IN
2IN+
NC
VDD +
2OUT
2IN
2IN +
NC
1OUT
1IN
1IN +
VDD/GND
1
2
3
4
5
10
9
8
7
6
3 2 1 20 19
910111213
4
5
6
7
8
18
17
16
15
14
NC
2OUT
NC
2IN
NC
NC
1IN
NC
1IN+
NC
NC
1OUT
NC
2IN+
NC NC
NC
NC VDD+
VDD
TLV2442
FK PACKAGE
(TOP VIEW)
/GND
NC No internal connection
1
2
3
4
5
6
7
14
13
12
11
10
9
8
1OUT
1IN
1IN+
VDD+
2IN+
2IN
2OUT
4OUT
4IN
4IN+
VDD/GND
3IN+
3IN
3OUT
(TOP VIEW)
TLV2444
D OR PW PACKAGE
TLV2442
U PACKAGE
(TOP VIEW)
TLV2442
D OR JG PACKAGE
(TOP VIEW)
TLV2442
PW PACKAGE
(TOP VIEW)
TLV2442, TLV2442A, TLV2444, TLV2444A
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
RAIL-TO-RAIL OUTPUTAdvanced LinCMOS
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
equivalent schematic (each amplifier)
Q27
R9
Q29Q22
Q23
Q26
Q25
Q24
Q31 Q34 Q36
Q32
Q33 Q35
Q37
D1
Q30
R10
VB3
VB2
VB4
VDD+
VDD/GND
OUT
R8
R1 R2
Q2 Q5
Q1 Q4
Q3
Q12
Q11
Q10Q6
Q7
Q8
Q9
VB3
VB4
C1
C2
C3
R5
R6
Q13 Q15
Q16
Q17
Q14
Q19
Q18
Q20
Q21
R7
R3 R4
V
B2
IN+
IN
VB1
COMPONENT
COUNT
Transistors
Diodes
Resistors
Capacitors
69
5
26
6
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) 12 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±VDD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage, VI (any input, see Note 1) 0.3 V to VDD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II (any input) ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into VDD+ ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of VDD ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, TA: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix (dual) 40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix (quad) 40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Q suffix 40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix 55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg 65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only , and
functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may af fect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD .
2. Differential voltages are at IN+ with respect to IN. Excessive current will flow if input is brought below VDD 0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
T
25°CDERATING F ACTOR T
= 70°C T
= 85°C T
= 125°C
PACKAGE
POWER RATING ABOVE TA = 25°C
POWER RATING
POWER RATING
POWER RATING
D (8)
D (14)
FK
JG
PW (8)
PW (14)
U
725 mW
1022 mW
1375 mW
1050 mW
525 mW
720 mW
675 mW
5.8 mW/°C
7.6 mW/°C
11.0 mW/°C
8.4 mW/°C
4.2 mW/°C
5.6 mW/°C
5.4 mW/°C
464 mW
900 mW
880 mW
672 mW
336 mW
634 mW
432 mW
377 mW
777 mW
715 mW
546 mW
273 mW
547 mW
350 mW
145 mW
450 mW
275 mW
210 mW
105 mW
317 mW
135 mW
recommended operating conditions
C SUFFIX I SUFFIX Q SUFFIX M SUFFIX
UNIT
MIN MAX MIN MAX MIN MAX MIN MAX
UNIT
Supply voltage, VDD 2.7 10 2.7 10 2.7 10 2.7 10 V
Input voltage range, VIVDDVDD+ 1 VDDVDD+ 1 VDDVDD+ 1.3 VDDVDD+ 1.3 V
Common-mode input voltage,
VIC VDDVDD+ 1 VDDVDD+ 1 VDD + 2 VDD+ 1.3 VDD + 2 VDD+ 1.3 V
Operating free-air temperature,
TA0 70 40 125 40 125 55 125 °C
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
TLV2442
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX
UNIT
TLV244xC 25°C 300 2000
TLV244xI Full range 2500
VIO
In
p
ut offset voltage
TLV244xAI
25°C 300 950
µV
V
IO
Input
offset
voltage
TLV244xAI
Full range 1500 µ
V
TLV2442AQ 25°C 300 950
TLV2442AM Full range 1600
αVIO
Temperature coefficient of input 25°C
2
µV/°C
αVIO offset voltage
VIC =15V
to 85°C
2
µ
V/°C
Input offset voltage long-term drift
(see Note 4)
V
IC =
1
.
5
V
,
VO = 1.5 V,
R
S
= 50 25°C 0.002 µV/mo
IIO
In
p
ut offset current
RS
50
25°C 0.5 60 p
A
I
IO
Input
offset
current
Full range 150
pA
25°C 1 60
IIB
In
p
ut bias current
40°C to
85°C150 p
A
I
IB
Input
bias
current
125°C 350
pA
TLV2442Q/AQ
TLV2442M/AM Full range 260
25°C0
to
2.25
0.25
to
2.5
VICR
Common-mode input volta
g
e
|VIO|5mV
RS=50
Full range 0
to
2
V
V
ICR
g
range
|V
IO
|
5
mV
,
R
S =
50
25°C to
55°C
0
to
2.25
0.25
to
2.5
V
125°C0
to
2
IO = 100 µA 25°C 2.98
VOH High-level output voltage
IO=3mA
25°C 2.5 V
I
O =
3
mA
Full range 2.25
VIC = 1.5 V, IO = 100 µA 25°C 0.02
VOL Low-level output voltage
VIC =15V
IO3
m
A
25°C 0.63 V
V
IC =
1
.
5
V
,
I
O =
3
m
A
Full range 1
L i l diff ti l
RL= 600
25°C 0.7 1
AVD Large-signal differential
voltage am
p
lification
VO = 1 V to 2 V
R
L =
600
Full range 0.4 V/mV
voltage
am lification
RL = 1 M25°C 750
rid Differential input resistance 25°C 1000 G
riCommon-mode input resistance 25°C 1000 G
ciCommon-mode input capacitance f = 10 kHz 25°C 8 pF
zoClosed-loop output impedance f = 1 MHz, AV = 10 25°C 130
Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is 40°C to 85°C. Full range for the quad I suffix is 40°C to 125°C. Full
range for the Q suf fix is 40°C to 125°C. Full range for the M suffix is 55°C to 125°C.
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
(continued)
PARAMETER
TEST CONDITIONS
TA
TLV2442
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX
UNIT
V 0 t 2 25 V
25°C 65 75
CMRR
Common-mode rejection ratio
VIC = 0 to 2.25 V,
VO=15V
Full range 55
dB
CMRR
Common
-
mode
rejection
ratio
VO
=
1
.
5
V
,
RS = 50 TLV2442Q/AQ
TLV2442M/AM Full range 50
dB
kSVR
Suppl
y
-volta
g
e rejection ratio V
DD
= 2.7 V to 8 V, V
IC
= V
DD
/2, 25°C 80 95
dB
k
SVR
ygj
(VDD±/VIO)
DD ,IC DD ,
No load Full range 80
dB
IDD
Su
pp
ly current (
p
er channel)
VO = 1.5 V, 25°C 725 1100
µA
I
DD
Supply
current
(per
channel)
O
No load Full range 1100 µ
A
Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is 40°C to 85°C. Full range for the quad I suffix is 40°C to 125°C. Full
range for the Q suf fix is 40°C to 125°C. Full range for the M suffix is 55°C to 125°C.
operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER
TEST CONDITIONS
TA
TLV244x
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX
UNIT
25°C 0.65 1.3
SR Slew rate at unity gain VO = 1 V to 2 V,
RL = 600 ,Full
range 0.65 V/µs
CL = 100 pF TLV2442Q/AQ
TLV2442M/AM Full
range 0.4
V
Equivalent in
p
ut noise voltage
f = 10 Hz 25°C 170
nV/Hz
V
n
Equivalent
input
noise
voltage
f = 1 kHz 25°C 18 n
V/H
z
VN(PP)
Peak to
p
eak equivalent in
p
ut noise voltage
f = 0.1 Hz to 1 Hz 25°C 2.6
µV
V
N(PP)
Peak
-
to
-
peak
equivalent
input
noise
voltage
f = 0.1 Hz to 10 Hz 25°C 5.1 µ
V
InEquivalent input noise current 25°C 0.6 fA/Hz
VO
=
0.5 V to 2.5 V,
AV = 1 0.08%
THD + N Total harmonic distortion plus noise
VO
=
0
.
5
V
to
2
.
5
V
,
RL = 600 Ω, AV = 10 25°C0.3%
f = 1 kHz AV = 100 2%
Gain bandwidth
p
roduct
f =10 kHz, R
L
= 600 ,
25°C
175
MHz
Gain
-
bandwidth
product
,
CL = 100 pF
L,
25°C
1
.
75
MHz
BOM
Maximum out
p
ut swing bandwidth
V
O(PP)
= 1 V, R
L
= 600 ,
25°C
09
MHz
B
OM
Maximum
output
-
swing
bandwidth
O(PP) ,
AV = 1,
L,
CL = 100 pF
25°C
0
.
9
MHz
AV
=
1,
To 0 1%
15
t
Settling time
AV
=
1
,
Step = 2.3 V to 2.3 V,
To
0
.
1%
25°C
1
.
5
µs
t
s
Settling
time
,
RL = 600 ,
To 0 01%
25°C
32
µ
s
L
CL = 100 pF
To
0
.
01%
3
.
2
φmPhase margin at unity gain
RL= 600
CL= 100
p
F
25°C 65°
Gain margin
R
L =
600
,
C
L =
100
pF
25°C 9 dB
Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is 40°C to 85°C. Full range for the quad I suffix is 40°C to 125°C. Full
range for the Q suf fix is 40°C to 125°C. Full range for the M suffix is 55°C to 125°C.
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
TA
TLV244x
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX
UNIT
TLV244xC 25°C 300 2000
TLV244xI Full range 2500
VIO
In
p
ut offset voltage
TLV244xA
25°C 300 950
µV
V
IO
Input
offset
voltage
TLV244xA
Full range 1500 µ
V
TLV2442AQ 25°C 300 950
TLV2442AM Full range 1600
αVIO
Temperature coefficient of input 25°C
2
µV/°C
αVIO offset voltage to 85°C
2
µ
V/°C
Input offset voltage long-term
drift (see Note 4) VDD± = ±2.5 V,
VO = 0, VIC = 0,
RS = 50 25°C0.002 µV/mo
IIO
In
p
ut offset current
25°C 0.5 60 p
A
I
IO
Input
offset
current
Full range 150
pA
25°C 1 60
IIB
In
p
ut bias current
40°C to
85°C150 p
A
I
IB
Input
bias
current
125°C 350
pA
TLV2442Q/AQ
TLV2442M/AM Full range 260
VICR
Common-mode input volta
g
e
|VIO|5mV
RS=50
25°C0
to
4.25
0.25
to
4.5
V
V
ICR
g
range
|V
IO
|
5
mV
,
R
S =
50
Full range 0
to
4
V
IOH = 100 µA 25°C 4.97
VOH High-level output voltage
IOH =5mA
25°C 4 4.35 V
I
OH =
5
mA
Full range 4
VIC = 2.5 V, IOL = 100 µA 25°C 0.01
VOL Low-level output voltage
VIC =25V
IOL =5
m
A
25°C 0.8 V
V
IC =
2
.
5
V
,
I
OL =
5
m
A
Full range 1.25
L i l diff ti l
V25V
R 600
25°C 0.9 1.3
AVD Large-signal differential
voltage am
p
lification
VIC = 2.5 V,
VO=1Vto4V
R
L =
600
Full range 0.5 V/mV
VD
voltage
am lification
VO
=
1
V
to
4
V
RL = 1 M25°C 950
rid Differential input resistance 25°C 1000 G
riCommon-mode input resistance 25°C 1000 G
ciCommon-mode input
capacitance f = 10 kHz 25°C 8 pF
zoClosed-loop output impedance f = 1 MHz, AV = 10 25°C 140
CMRR
Common mode rejection ratio
V
IC
= 0 to 4.25 V, V
O
= 2.5 V, 25°C 70 75
dB
CMRR
Common
-
mode
rejection
ratio
IC ,
RS = 50
O,
Full range 70
dB
Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is 40°C to 85°C. Full range for the quad I suffix is 40°C to 125°C. Full
range for the Q suf fix is 40°C to 125°C. Full range for the M suffix is 55°C to 125°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
(continued)
PARAMETER
TEST CONDITIONS
TA
TLV244x
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX
UNIT
kSVR
Su
pp
ly voltage rejection ratio (VDD/VIO)
V
DD
= 4.4 V to 8 V, 25°C 80 95
dB
k
SVR
Supply
-
voltage
rejection
ratio
(V
DD/
V
IO
)
DD ,
VIC = VDD/2, No load Full range 80
dB
IDD
Su
pp
ly current (
p
er channel)
VO=25V
No load
25°C 750 1100
µA
I
DD
Supply
current
(per
channel)
V
O =
2
.
5
V
,
No
load
Full range 1100 µ
A
Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is 40°C to 85°C. Full range for the quad I suffix is 40°C to 125°C. Full
range for the Q suf fix is 40°C to 125°C. Full range for the M suffix is 55°C to 125°C.
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER
TEST CONDITIONS
TA
TLV244x
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX
UNIT
V 05Vt 25V
25°C0.75 1.4
SR
Slew rate at unity gain
VO = 0.5 V to 2.5 V,
RL= 600
Full range 0.75
V/µs
SR
Slew
rate
at
unity
gain
RL
=
600
,
CL = 100 pFTLV2442Q/AQ
TLV2442M/AM Full range 0.5
V/µs
V
Equivalent in
p
ut noise voltage
f = 10 Hz 25°C 130
nV/Hz
V
n
Equivalent
input
noise
voltage
f = 1 kHz 25°C 16 n
V/H
z
VN(PP)
Peak-to-peak equivalent input noise f = 0.1 Hz to 1 Hz 25°C 1.8
µV
V
N(PP)
q
voltage f = 0.1 Hz to 10 Hz 25°C 3.6 µ
V
InEquivalent input noise current 25°C 0.6 fA/Hz
V
O
= 1.5 V to 3.5 V
,
AV = 1 0.017%
THD + N Total harmonic distortion plus noise
VO
1.5
V
to
3.5
V,
f = 1 kHz,
AV = 10 25°C0.17%
RL = 600
AV = 100 1.5%
Gain-bandwidth product f =10 kHz,
CL = 100 pFRL = 600 ,25°C 1.81 MHz
BOM Maximum output-swing bandwidth VO(PP) = 2 V,
RL = 600 ,AV = 1,
CL = 100 pF25°C 0.5 MHz
t
Settling time
AV = 1,
Step = 0.5 V to 2.5 V, To 0.1%
25
°
C
1.5
µs
t
s
Settling
time
,
RL = 600 ,
CL = 100 pFTo 0.01%
25°C
2.6 µ
s
φmPhase margin at unity gain
RL= 600
CL= 100
p
F
25°C 68°
Gain margin
R
L =
600
,
C
L =
100
pF
25°C 8 dB
Full range for the C suffix is 0°C to 70°C. Full range for the dual I suffix is 40°C to 85°C. Full range for the quad I suffix is 40°C to 125°C. Full
range for the Q suf fix is 40°C to 125°C. Full range for the M suffix is 55°C to 125°C.
Referenced to 2.5 V
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
In
p
ut offset voltage
Distribution 2, 3
V
IO
Input
offset
voltage
vs Common-mode input voltage
,
4, 5
αVIO Input offset voltage temperature coef ficient Distribution 6, 7
IIB/IIO Input bias and input offset currents vs Free-air temperature 8
VOH High-level output voltage vs High-level output current 9, 10
VOL Low-level output voltage vs Low-level output current 11, 12
VO(PP) Maximum peak-to-peak output voltage vs Frequency 13
IOS
Short circuit out
p
ut current
vs Suppl
y
volta
g
e 14
I
OS
Short
-
circuit
output
current
yg
vs Free-air temperature 15
VOOutput voltage vs Differential Input voltage 16, 17
AVD Differential voltage amplification vs Load resistance 18
Large signal differential voltage am
p
lification and
p
hase margin
vs Frequency
19 20
AVD
Large
-
signal
differential
v
oltage
amplification
and
phase
margin
v
s
Freq
u
enc
y
19
,
20
A
VD
Large signal differential voltage am
p
lification
vs Free air tem
p
erature
21 22
Large
-
signal
differential
v
oltage
amplification
v
s
Free
-
air
temperat
u
re
21
,
22
zoOutput impedance vs Frequency 23, 24
CMRR
Common mode rejection ratio
vs Frequenc
y
25
CMRR
Common
-
mode
rejection
ratio
qy
vs Free-air temperature 26
kSVR
Su
pp
ly voltage rejection ratio
vs Frequenc
y
27, 28
k
SVR
Supply
-
voltage
rejection
ratio
qy
vs Free-air temperature
,
29
IDD Supply current vs Supply voltage 30
SR
Slew rate
vs Load capacitance 31
SR
Slew
rate
vs Free-air temperature 32
Inverting large-signal pulse response 33, 34
VO
Voltage-follower large-signal pulse response 35, 36
V
OInverting small-signal pulse response 37, 38
Voltage-follower small-signal pulse response 39, 40
VnEquivalent input noise voltage vs Frequency 41, 42
Noise voltage Over a 10-second period 43
THD + N Total harmonic distortion plus noise vs Frequency 44, 45
Gain bandwidth
p
roduct
vs Free-air temperature 46
Gain
-
bandwidth
product
vs Supply voltage 47
φ
Phase margin
vs Frequenc
y
19, 20
φ
m
Phase
margin
qy
vs Load capacitance
,
48
Gain margin vs Load capacitance 49
B1Unity-gain bandwidth vs Load capacitance 50
For all graphs where VDD = 5 V, all loads are referenced to 2.5 V.
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 2
VIO Input Offset Voltage µV
Percentage of Amplifiers %
DISTRIBUTION OF TLV2442
INPUT OFFSET VOLTAGE
700
16
14
12
10
8
6
4
2
0
20
18
500
300
100
100
300
500
700
900
868 Amplifiers From
1 W afer Lot
VDD = ±1.5 V
TA = 25°C
0
200
400
600
200
400
600
800
Figure 3
VIO Input Offset Voltage µV
Percentage of Amplifiers %
DISTRIBUTION OF TLV2442
INPUT OFFSET VOLTAGE
700
16
14
12
10
8
6
4
2
0
20
18
500
300
100
100
300
500
700
900
868 Amplifiers From
1 W afer Lot
VDD = ±2.5 V
TA = 25°C
0
200
400
600
200
400
600
800
Figure 4
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
2
1.5
1
0.5
0
0.5
1
1.5
2
0.5 0 0.5 1 1.5 2 2.5 3
VIC Common-Mode Input Voltage V
VDD = 3 V
TA = 25°C
Input Offset Voltage mV
VIO
Figure 5
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
Input Offset Voltage mV
VIO
2
1.5
1
0.5
0
0.5
1
1.5
2
0.5 0 0.5 1 1.5 2 2.5 3
VIC Common-Mode Input Voltage V
VDD = 5 V
TA = 25°C
3.5 4 4.5 5
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 6
9
6
3
0
Percentage of Amplifiers %
12
15
DISTRIBUTION OF TLV2442 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
αVIO Temperature Coefficient µV/°C
876543210123 4
32 Amplifiers From 1
W afer Lot
VDD = ±1.5 V
P Package
25°C to 125°C
Figure 7
9
6
3
0
Percentage of Amplifiers %
12
15
DISTRIBUTION OF TLV2442 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
αVIO Temperature Coefficient µV/°C
76543210123 48
18 32 Amplifiers From 2
W afer Lots
VDD = ±2.5 V
P Package
25°C to 125°C
Figure 8
15
10
5
025 45 65 85
20
25
30
105 125
INPUT BIAS AND INPUT OFFSET CURRENTS
vs
FREE-AIR TEMPERATURE
TA Free-Air Temperature °C
35 VDD = ±2.5 V
VIC = 0
VO = 0
RS = 50
IIB
IIO
IIB and IIO Input Bias and Input Offset Currents pA
IB
IIIO
Figure 9
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
High-Level Output Voltage V
VOH
3
2.5
2
1.5
1
0.5
0024 681012
IOH High-Level Output Current mA
VDD = 3 V
TA = 125°C
TA = 85°C TA = 25°C
TA = 40°C
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 10
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
High-Level Output Voltage V
VOH
3
2.5
2
1.5
1
0.5
00 5 10 15 20 25
IOH High-Level Output Current mA
VDD = 5 V
TA = 85°C
TA = 125°C
5
4.5
4
3.5
TA = 40°C
TA = 25°C
Figure 11
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
Low-Level Output Voltage V
VOL
3
2.5
2
1.5
1
0.5
00246810
IOL Low-Level Output Current mA
VDD = 3 V
TA = 25°C
TA = 125°C
TA = 85°C
TA = 40°C
Figure 12
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
Low-Level Output Voltage V
VOL
2.5
2
1.5
1
0.5
00246810
IOL Low-Level Output Current mA
VDD = 5 V
TA = 25°C
TA = 125°C
TA = 85°C
TA = 40°C
Figure 13
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
Maximum Peak-to-Peak Output Voltage V
VO(PP)
5
4
3
2
1
0
100 1 k 10 k 100 k 1 M 10 M
f Frequency Hz
RL = 600
VDD = 3 V
VDD = 5 V
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 14
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
Short-Circuit Output Current mA
IOS
15
10
5
0
5
10
15
20
25 23456789
VDD Supply Voltage V
VO = VDD/2
VIC = VDD/2
TA = 25°C
25
20
10
VID = 100 mV
VID = 100 mV
Figure 15
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
Short-Circuit Output Current mA
IOS
15
10
5
0
5
10
15
20
25
75 50 25 0 25 50 75 100
TA Free-Air Temperature °C
VDD = 5 V
VO = 2.5 V
25
20
125
VID = 100 mV
VID = 100 mV
Figure 16
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
VDD = 3 V
VIC = 1.5 V
RL = 600
TA = 25°C
1000 750 500 250 0
VID Differential Input Voltage µV
250 500 750 1000
Output Voltage VVO
2.5
2
1.5
1
0.5
0
3
Figure 17
OUTPUT VOLTAGE
vs
DIFFERENTIAL INPUT VOLTAGE
Output Voltage VVO
5
4
3
2
1
0
1000 750 500 250 0
VID Differential Input Voltage µV
VDD = 5 V
VIC = 2.5 V
RL = 600
TA = 25°C
250 500 750 1000
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
LOAD RESISTANCE
Differential Voltage Amplification V/mV
AVD
100
10
1
0.1 1 10 100 1000
RL Load Resistance k
VO(PP) = 2 V
TA = 25°C
VDD = 3 V
VDD = 5 V
Figure 18
0
20
10 k 100 k 1 M
40
60
80
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
f Frequency Hz 10 M
VDD = 3 V
RL = 600
CL = 600 pF
TA = 25°C
20
40 90°
45°
0°
45°
90°
135°
180°
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
V oltage Amplification dB
m
φ Phase Margin
Figure 19
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
60
40
20
0
20
40
10 k 100 k 1 M 10 M
f Frequency Hz
VDD = 5 V
RL = 600
CL = 600 pF
TA = 25°C
80 180°
135°
90°
45°
0°
45°
90°
m
φ Phase Margin
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
V oltage Amplification dB
Figure 20
Figure 21
10
1
0.1
1000
100
75 25 25 75 125
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
VDD = 3 V
VIC = 2.5 V
VO = 1 V to 4 V
RL = 1 M
RL = 600
50 0 50 100
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
TA Free-Air Temperature °C
V oltage Amplification V/mV
Figure 22
10
1
0.1
1000
100
75 25 25 75 125
LARGE-SIGNAL DIFFERENTIAL
VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
VDD = 5 V
VIC = 2.5 V
VO = 1 V to 4 V
RL = 1 M
RL = 600
50 0 50 100
AVD Large-Signal Differential
ÁÁ
ÁÁ
ÁÁ
AVD
TA Free-Air Temperature °C
V oltage Amplification V/mV
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 23
10
1
0.1
1000
100
100 1 k 10 k 100 k 1 M
zo Output Impedance O
f Frequency Hz
zo
OUTPUT IMPEDANCE
vs
FREQUENCY
VDD = 3 V
TA = 25°C
AV = 100
AV = 10
AV = 1
Figure 24
10
1
0.1
100
100 1 k 10 k 100 k 1 M
zo Output Impedance O
f Frequency Hz
zo
OUTPUT IMPEDANCE
vs
FREQUENCY
VDD = 5 V
TA = 25°C
AV = 100
AV = 10
AV = 1
Figure 25
60
40
20
010 100 1 k 10 k
CMRR Common-Mode Rejection Ratio dB
80
100
100 k 1 M
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
f Frequency Hz 10 M
VDD = 5 V
VIC = 2.5 V
VDD = 3 V
VIC = 1.5 V
TA = 25°C
Figure 26
TA Free-Air Temperature °C
CMRR Common-Mode Rejection Ratio dB
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
90
80
70
60
100
75 50 25 0 25 50 75 100 125
VDD = 5 V
VDD = 3 V
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 27
40
20
010 100 1 k
kSVR Supply-Voltage Rejection Ratio dB
60
80
f Frequency Hz
100
10 k 100 k 1 M 10 M
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
kSVR
VDD = 3 V
TA = 25°C
kSVR+
kSVR
Figure 28
40
20
010 100 1 k
kSVR Supply-Voltage Rejection Ratio dB
60
80
f Frequency Hz
100
10 k 100 k 1 M 10 M
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
kSVR
VDD = 5 V
TA = 25°C
kSVR+
kSVR
Figure 29
TA Free-Air Temperature °C
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
96
94
92
90
100
75 50 25 0 25 50 75 100 125
VDD = 2.5 V to 8 V
98
kSVR Supply-Voltage Rejection Ratio dB
kSVR
Figure 30
02468
0
0.5
1
1.5
2
2.5
IDD Supply Current mA
DD
I
VDD Supply Voltage V
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
TA = 25°C
TA = 85°C
TA = 40°C
10
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
18 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 31
µs
SR Slew Rate V/
0
1
1.5
2
CL Load Capacitance pF
SLEW RATE
vs
LOAD CAPACITANCE
100 k1 k10010
2.5
3
10 k
SR +
VDD = 5 V
AV = 1
TA = 25°C
SR
0.5
Figure 32
1.5
1
0.5
2
µs
SR Slew Rate V/
75 50 25 0 25 50 75 100 125
TA Free-Air Temperature °C
SLEW RATE
vs
FREE-AIR TEMPERATURE
SR +
SR
0
2.5
3VDD = 5 V
RL = 600
CL = 100 pF
AV = 1
Figure 33
2
1
012345
3
6789
VO Output Voltage V
VO
t Time µs
INVERTING LARGE-SIGNAL PULSE RESPONSE
0
VDD = 3 V
RL = 2 k
CL = 100 pF
AV = 1
TA = 25°C
10
Figure 34
0
4
12345
2
1
3
5
6789
VO Output Voltage V
VO
t Time µs
VDD = 5 V
RL = 2 k
CL = 100 pF
AV = 1
TA = 25°C
INVERTING LARGE-SIGNAL PULSE RESPONSE
010
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 35
3
2
1
0123456789
VO Output Voltage V
VO
t Time µs
VDD = 3 V
RL = 600
CL = 100 pF
AV = 1
TA = 25°C
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
0 10
Figure 36
VOLTAGE-FOLLOWER
LARGE-SIGNAL PULSE RESPONSE
4
0.5 1 1.5 2 2.5
2
1
3
5
3 3.5 4 4.5
t Time µs
VDD = 5 V
RL = 600
CL = 100 pF
AV = 1
TA = 25°C
0
05
VO Output Voltage V
VO
Figure 37
1.48
1.46
1.44 12345
1.52
1.56
1.58
7910
VO Output Voltage V
VO
t Time µs
VDD = 3 V
RL = 600
CL = 100 pF
AV = 1
TA = 25°C
INVERTING SMALL-SIGNAL PULSE RESPONSE
06
8
1.5
1.54
Figure 38
012345678
t Time µs
INVERTING SMALL-SIGNAL PULSE RESPONS
E
VDD = 5 V
RL = 600
CL = 100 pF
AV = 1
TA = 25°C
2.44
2.46
2.48
2.5
2.52
2.54
2.56
2.58
910
VO Output Voltage V
VO
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
20 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 39
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
1.44 0 0.5 1 1.5
VO Output Voltage V
VO
t Time µs
VDD = 3 V
RL = 600
CL = 100 pF
AV = 1
TA = 25°C
1.46
1.48
1.5
1.52
1.54
1.56
1.58
2 2.5 3 3.5 44.5 5
Figure 40
VOLTAGE-FOLLOWER
SMALL-SIGNAL PULSE RESPONSE
2.44 0 0.5 1 1.5 t Time µs
VDD = 5 V
RL = 600
CL = 100 pF
AV = 1
TA = 25°C
2.46
2.48
2.5
2.52
2.54
2.56
2.58
2 2.5 3 3.5 4 4.5 5
VO Output Voltage V
VO
Figure 41
100
80
40
0
160
180
200
10 100 1 k
Vn Equivalent Input Noise Voltage nV Hz
f Frequency Hz 10 k
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
VnnV/ Hz
140
120
60
20
VDD = 3 V
RS = 20
TA = 25°C
Figure 42
60
40
0
10 100 1 k
Vn Equivalent Input Noise Voltage nV Hz
80
f Frequency Hz
100
10
k
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
120
140
VnnV/ Hz
VDD = 5 V
RS = 20
TA = 25°C
20
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 43
1500
2000 246
0
500
810
Noise Voltage nV
t Time s
NOISE VOLTAGE
OVER A 10-SECOND PERIOD
0
VDD = 5 V
f = 0.1 Hz to 10
Hz TA = 25°C
1000
1500
2000
500
1000
1357 9
Figure 44
10 1 k 10 k 100 k
THD + N Total Harmonic Distortion Plus Noise %
f Frequency Hz
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
0.01
0.1
10 VDD = 3 V
RL = 600
TA = 25°C
AV = 100
AV = 10
AV = 1
1
100
Figure 45
10 1 k 10 k 100 k
THD + N Total Harmonic Distortion Plus Noise %
f Frequency Hz
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
0.01
0.1
10 VDD = 5 V
RL = 600
TA = 25°C
AV = 100
AV = 10
AV = 1
1
100
Figure 46
50 25 0 25 50 75 100 125
TA Free-Air Temperature °C
Gain-Bandwidth Product MHz
GAIN-BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
1.5
1
2
2.5
3RL = 600
CL = 100 pF
f = 10 kHz
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
22 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 47
Gain-Bandwidth Product MHz
1.6
1.5012345
1.7
1.8
678
|VDD±| Supply Voltage V
1.9
2
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
RL = 600
CL = 100 pF
f = 10 kHz
TA = 25°C
Figure 48
10
om Phase Margin
100 k
CL Load Capacitance pF
φm
PHASE MARGIN
vs
LOAD CAPACITANCE
1 k100
RL = 600
TA = 25°C
75°
60°
45°
30°
15°
0°
Rnull = 0
Rnull = 100
Rnull = 50
Rnull = 20
10 k
Figure 49
5
010
Gain Margin dB
10
15
100 K
CL Load Capacitance pF
20
25
GAIN MARGIN
vs
LOAD CAPACITANCE
1 K100
RL = 600
TA = 25°C
10 K
Rnull = 100
Rnull = 50
Rnull = 20
Rnull = 0
Figure 50
0.5
010
1
100 k
CL Load Capacitance pF
1.5
2
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
1 k100
RL = 600
TA = 25°C
10 k
Unity-Gain Bandwidth kHz
ÁÁ
ÁÁ
B1
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
APPLICATION INFORMATION
macromodel information
Macromodel information provided was derived using PSpice Parts model generation software. The Boyle
macromodel (see Note 5) and subcircuit in Figure 51 were generated using the TLV244x typical electrical and
operating characteristics at TA = 25°C. Using this information, output simulations of the following key parameters
can be generated to a tolerance of 20% (in most cases):
D
Maximum positive output voltage swing
D
Maximum negative output voltage swing
D
Slew rate
D
Quiescent power dissipation
D
Input bias current
D
Open-loop voltage amplification
D
Unity gain frequency
D
Common-mode rejection ratio
D
Phase margin
D
DC output resistance
D
AC output resistance
D
Short-circuit output current limit
NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, Macromodeling of Integrated Circuit Operational Amplifiers, IEEE Journal
of Solid-State Circuits, SC-9, 353 (1974).
OUT
+
+
+
+
+
+
+
+
+
.SUBCKT TLV2442 1 2 3 4 5
C1 11 12 14E12
C2 6 7 60.00E12
DC 5 53 DX
DE 54 5 DX
DLP 90 91 DX
DLN 92 90 DX
DP 4 3 DX
EGND 99 0 POLY (2) (3,0) (4,) 0 .5 .5
FB 7 99 POLY (5) VB VC VE VLP VLN 0
+ 984.9E3 1E6 1E6 1E6 1E6
GA 6 0 1 1 12 377.0E6
GCM 0 6 10 99 134E9
ISS 3 10 DC 216.0E6
HLIM 90 0 VLIM 1K
J1 11 2 10 JX
J2 12 1 10 JX
R2 6 9 100.OE3
RD1 60 11 2.653E3
RD2 60 12 2.653E3
R01 8 5 50
R02 7 99 50
RP 3 4 4.310E3
RSS 10 99 925.9E3
VAD 60 4 .5
VB 9 0 DC 0
VC 3 53 DC .78
VE 54 4 DC .78
VLIM 7 8 DC 0
VLP 91 0 DC 1.9
VLN 0 92 DC 9.4
.MODEL DX D (IS=800.0E18)
.MODEL JX PJF (IS=1.500E12BETA=1.316E-3
+ VTO=.270)
.ENDS
VCC+
RP
IN 2
IN+ 1
VCC
VAD
RD1
11
J1 J2
10
RSS ISS
3
12
RD2
60
VE
54 DE
DP
VC
DC
4
C1
53
R2 6
9
EGND
VB
FB
C2
GCM GA VLIM
8
5RO1
RO2
HLIM
90 DLP
91
DLN
92
VLNVLP
99
7
Figure 51. Boyle Macromodel and Subcircuit
PSpice and Parts are registered trademarks of MicroSim Corporation.
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
24 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
4040047/D 10/96
0.228 (5,80)
0.244 (6,20)
0.069 (1,75) MAX 0.010 (0,25)
0.004 (0,10)
1
14
0.014 (0,35)
0.020 (0,51)
A
0.157 (4,00)
0.150 (3,81)
7
8
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.010 (0,25)
PINS **
0.008 (0,20) NOM
A MIN
A MAX
DIM
Gage Plane
0.189
(4,80)
(5,00)
0.197
8
(8,55)
(8,75)
0.337
14
0.344
(9,80)
16
0.394
(10,00)
0.386
0.004 (0,10)
M
0.010 (0,25)
0.050 (1,27)
0°8°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
D. Falls within JEDEC MS-012
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
25
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER
4040140/D 10/96
28 TERMINAL SHOWN
B
0.358
(9,09)
MAX
(11,63)
0.560
(14,22)
0.560
0.458
0.858
(21,8)
1.063
(27,0)
(14,22)
A
NO. OF
MINMAX
0.358
0.660
0.761
0.458
0.342
(8,69)
MIN
(11,23)
(16,26)
0.640
0.739
0.442
(9,09)
(11,63)
(16,76)
0.962
1.165
(23,83)
0.938
(28,99)
1.141
(24,43)
(29,59)
(19,32)(18,78)
**
20
28
52
44
68
84
0.020 (0,51)
TERMINALS
0.080 (2,03)
0.064 (1,63)
(7,80)
0.307
(10,31)
0.406
(12,58)
0.495
(12,58)
0.495
(21,6)
0.850
(26,6)
1.047
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.035 (0,89)
0.010 (0,25)
121314151618 17
11
10
8
9
7
5
432
0.020 (0,51)
0.010 (0,25)
6
12826 27
19
21
B SQ
A SQ 22
23
24
25
20
0.055 (1,40)
0.045 (1,14)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
26 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE
0.310 (7,87)
0.290 (7,37)
0.014 (0,36)
0.008 (0,20)
Seating Plane
4040107/C 08/96
5
4
0.065 (1,65)
0.045 (1,14)
8
1
0.020 (0,51) MIN
0.400 (10,20)
0.355 (9,00)
0.015 (0,38)
0.023 (0,58)
0.063 (1,60)
0.015 (0,38)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.245 (6,22)
0.280 (7,11)
0.100 (2,54)
0°15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification on press ceramic glass frit seal only.
E. Falls within MIL-STD-1835 GDIP1-T8
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
4040064/E 08/96
14 PIN SHOWN
Seating Plane
1,20 MAX
1
A
7
14
0,19
4,50
4,30
8
6,20
6,60
0,30
0,75
0,50
0,25
Gage Plane
0,15 NOM
0,65 M
0,10
0°8°
0,10
PINS **
A MIN
A MAX
DIM
2,90
3,10
8
4,90
5,10
14
6,60
6,404,90
5,10
16
7,70
20
7,90
24
9,60
9,80
28
0,15
0,05
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153
TLV2442, TLV2442A, TLV2444, TLV2444A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE OPERATIONAL AMPLIFIERS
SLOS169H NOVEMBER 1996 REVISED MARCH 2001
28 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
U (S-GDFP-F10) CERAMIC DUAL FLATPACK
4040179/B 03/95
1.000 (25,40)
0.080 (2,03)
0.250 (6,35)
0.250 (6,35)
0.019 (0,48)
0.025 (0,64)
0.300 (7,62)
0.045 (1,14)
0.006 (0,15)
0.050 (1,27)
0.015 (0,38)
0.005 (0,13)
0.026 (0,66)
0.004 (0,10)
0.246 (6,10)
0.750 (19,05)
110
56
0.250 (6,35)
0.350 (8,89)0.350 (8,89)
0.250 (6,35)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 1
PACKAGING INFORMATION
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
5962-9751101Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9751101QHA ACTIVE CFP U 10 1 TBD Call TI Call TI
5962-9751101QPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
5962-9751102Q2A ACTIVE LCCC FK 20 1 TBD Call TI Call TI
5962-9751102QHA ACTIVE CFP U 10 1 TBD Call TI Call TI
5962-9751102QPA ACTIVE CDIP JG 8 1 TBD Call TI Call TI
TLV2442AID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442AIDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442AIDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442AIDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442AIPW ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442AIPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442AIPWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI
TLV2442AIPWR ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442AIPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442AMFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
TLV2442AMJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLV2442AMUB ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type
TLV2442AQD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442AQDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442AQDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 2
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLV2442AQDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442AQPW ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442AQPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442AQPWR ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442AQPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442CD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442CDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442CDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442CDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442CPW ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442CPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442CPWLE OBSOLETE TSSOP PW 8 TBD Call TI Call TI
TLV2442CPWR ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442CPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442ID ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442IDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442IDR ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442IDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442MFKB ACTIVE LCCC FK 20 1 TBD POST-PLATE N / A for Pkg Type
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 3
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLV2442MJGB ACTIVE CDIP JG 8 1 TBD A42 N / A for Pkg Type
TLV2442MUB ACTIVE CFP U 10 1 TBD A42 N / A for Pkg Type
TLV2442QD ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442QDG4 ACTIVE SOIC D 8 75 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442QDR ACTIVE SOIC D 8 TBD Call TI Call TI
TLV2442QDRG4 ACTIVE SOIC D 8 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442QPW ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442QPWG4 ACTIVE TSSOP PW 8 150 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442QPWR ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2442QPWRG4 ACTIVE TSSOP PW 8 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444AID ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444AIDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444AIPW ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444AIPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444AIPWR ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444AIPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444CD ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444CDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444CDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 4
Orderable Device Status (1) Package Type Package
Drawing Pins Package Qty Eco Plan (2) Lead/
Ball Finish MSL Peak Temp (3) Samples
(Requires Login)
TLV2444CDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444CPW ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444CPWG4 ACTIVE TSSOP PW 14 90 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444CPWR ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444CPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444ID ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444IDG4 ACTIVE SOIC D 14 50 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444IDR ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444IDRG4 ACTIVE SOIC D 14 2500 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444IPWR ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
TLV2444IPWRG4 ACTIVE TSSOP PW 14 2000 Green (RoHS
& no Sb/Br) CU NIPDAU Level-1-260C-UNLIM
(1) The marketing status values are defined as follows:
ACTIVE: Product device recommended for new designs.
LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.
NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.
PREVIEW: Device has been announced but is not in production. Samples may or may not be available.
OBSOLETE: TI has discontinued the production of the device.
(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability
information and additional product content details.
TBD: The Pb-Free/Green conversion plan has not been defined.
Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that
lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between
the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.
PACKAGE OPTION ADDENDUM
www.ti.com 17-Aug-2012
Addendum-Page 5
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight
in homogeneous material)
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
Important Information and Disclaimer:The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information
provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and
continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals.
TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.
In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.
OTHER QUALIFIED VERSIONS OF TLV2442, TLV2442A, TLV2442AM, TLV2442M, TLV2444A :
Catalog: TLV2442A, TLV2442
Automotive: TLV2442-Q1, TLV2442A-Q1, TLV2442A-Q1, TLV2442-Q1, TLV2444A-Q1
Military: TLV2442M, TLV2442AM
NOTE: Qualified Version Definitions:
Catalog - TI's standard catalog product
Automotive - Q100 devices qualified for high-reliability automotive applications targeting zero defects
Military - QML certified for Military and Defense Applications
TAPE AND REEL INFORMATION
*All dimensions are nominal
Device Package
Type Package
Drawing Pins SPQ Reel
Diameter
(mm)
Reel
Width
W1 (mm)
A0
(mm) B0
(mm) K0
(mm) P1
(mm) W
(mm) Pin1
Quadrant
TLV2442AIDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLV2442AIPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1
TLV2442AQPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1
TLV2442CDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLV2442CPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1
TLV2442IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLV2442IDR SOIC D 8 2500 330.0 12.4 6.4 5.2 2.1 8.0 12.0 Q1
TLV2442QPWR TSSOP PW 8 2000 330.0 12.4 7.0 3.6 1.6 8.0 12.0 Q1
TLV2444AIPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
TLV2444CDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
TLV2444CPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
TLV2444IDR SOIC D 14 2500 330.0 16.4 6.5 9.0 2.1 8.0 16.0 Q1
TLV2444IPWR TSSOP PW 14 2000 330.0 12.4 6.9 5.6 1.6 8.0 12.0 Q1
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 1
*All dimensions are nominal
Device Package Type Package Drawing Pins SPQ Length (mm) Width (mm) Height (mm)
TLV2442AIDR SOIC D 8 2500 340.5 338.1 20.6
TLV2442AIPWR TSSOP PW 8 2000 367.0 367.0 35.0
TLV2442AQPWR TSSOP PW 8 2000 367.0 367.0 35.0
TLV2442CDR SOIC D 8 2500 340.5 338.1 20.6
TLV2442CPWR TSSOP PW 8 2000 367.0 367.0 35.0
TLV2442IDR SOIC D 8 2500 367.0 367.0 35.0
TLV2442IDR SOIC D 8 2500 340.5 338.1 20.6
TLV2442QPWR TSSOP PW 8 2000 367.0 367.0 35.0
TLV2444AIPWR TSSOP PW 14 2000 367.0 367.0 35.0
TLV2444CDR SOIC D 14 2500 367.0 367.0 38.0
TLV2444CPWR TSSOP PW 14 2000 367.0 367.0 35.0
TLV2444IDR SOIC D 14 2500 367.0 367.0 38.0
TLV2444IPWR TSSOP PW 14 2000 367.0 367.0 35.0
PACKAGE MATERIALS INFORMATION
www.ti.com 14-Jul-2012
Pack Materials-Page 2
MECHANICAL DATA
MCER001A – JANUARY 1995 – REVISED JANUAR Y 1997
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE
0.310 (7,87)
0.290 (7,37)
0.014 (0,36)
0.008 (0,20)
Seating Plane
4040107/C 08/96
5
4
0.065 (1,65)
0.045 (1,14)
8
1
0.020 (0,51) MIN
0.400 (10,16)
0.355 (9,00)
0.015 (0,38)
0.023 (0,58)
0.063 (1,60)
0.015 (0,38)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.245 (6,22)
0.280 (7,11)
0.100 (2,54)
0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification.
E. Falls within MIL STD 1835 GDIP1-T8
IMPORTANT NOTICE
Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, enhancements, improvements and other
changes to its semiconductor products and services per JESD46C and to discontinue any product or service per JESD48B. Buyers should
obtain the latest relevant information before placing orders and should verify that such information is current and complete. All
semiconductor products (also referred to herein as “components”) are sold subject to TI’s terms and conditions of sale supplied at the time
of order acknowledgment.
TI warrants performance of its components to the specifications applicable at the time of sale, in accordance with the warranty in TI’s terms
and conditions of sale of semiconductor products. Testing and other quality control techniques are used to the extent TI deems necessary
to support this warranty. Except where mandated by applicable law, testing of all parameters of each component is not necessarily
performed.
TI assumes no liability for applications assistance or the design of Buyers’ products. Buyers are responsible for their products and
applications using TI components. To minimize the risks associated with Buyers’ products and applications, Buyers should provide
adequate design and operating safeguards.
TI does not warrant or represent that any license, either express or implied, is granted under any patent right, copyright, mask work right, or
other intellectual property right relating to any combination, machine, or process in which TI components or services are used. Information
published by TI regarding third-party products or services does not constitute a license to use such products or services or a warranty or
endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from TI under the patents or other intellectual property of TI.
Reproduction of significant portions of TI information in TI data books or data sheets is permissible only if reproduction is without alteration
and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such altered
documentation. Information of third parties may be subject to additional restrictions.
Resale of TI components or services with statements different from or beyond the parameters stated by TI for that component or service
voids all express and any implied warranties for the associated TI component or service and is an unfair and deceptive business practice.
TI is not responsible or liable for any such statements.
Buyer acknowledges and agrees that it is solely responsible for compliance with all legal, regulatory and safety-related requirements
concerning its products, and any use of TI components in its applications, notwithstanding any applications-related information or support
that may be provided by TI. Buyer represents and agrees that it has all the necessary expertise to create and implement safeguards which
anticipate dangerous consequences of failures, monitor failures and their consequences, lessen the likelihood of failures that might cause
harm and take appropriate remedial actions. Buyer will fully indemnify TI and its representatives against any damages arising out of the use
of any TI components in safety-critical applications.
In some cases, TI components may be promoted specifically to facilitate safety-related applications. With such components, TI’s goal is to
help enable customers to design and create their own end-product solutions that meet applicable functional safety standards and
requirements. Nonetheless, such components are subject to these terms.
No TI components are authorized for use in FDA Class III (or similar life-critical medical equipment) unless authorized officers of the parties
have executed a special agreement specifically governing such use.
Only those TI components which TI has specifically designated as military grade or “enhanced plastic” are designed and intended for use in
military/aerospace applications or environments. Buyer acknowledges and agrees that any military or aerospace use of TI components
which have not been so designated is solely at the Buyer's risk, and that Buyer is solely responsible for compliance with all legal and
regulatory requirements in connection with such use.
TI has specifically designated certain components which meet ISO/TS16949 requirements, mainly for automotive use. Components which
have not been so designated are neither designed nor intended for automotive use; and TI will not be responsible for any failure of such
components to meet such requirements.
Products Applications
Audio www.ti.com/audio Automotive and Transportation www.ti.com/automotive
Amplifiers amplifier.ti.com Communications and Telecom www.ti.com/communications
Data Converters dataconverter.ti.com Computers and Peripherals www.ti.com/computers
DLP® Products www.dlp.com Consumer Electronics www.ti.com/consumer-apps
DSP dsp.ti.com Energy and Lighting www.ti.com/energy
Clocks and Timers www.ti.com/clocks Industrial www.ti.com/industrial
Interface interface.ti.com Medical www.ti.com/medical
Logic logic.ti.com Security www.ti.com/security
Power Mgmt power.ti.com Space, Avionics and Defense www.ti.com/space-avionics-defense
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video
RFID www.ti-rfid.com
OMAP Mobile Processors www.ti.com/omap TI E2E Community e2e.ti.com
Wireless Connectivity www.ti.com/wirelessconnectivity
Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265
Copyright © 2012, Texas Instruments Incorporated