IKB03N120H2
IFAG IPC TD VLS 1 Rev. 2.5 03.07.2013
HighSpeed 2-Technology with soft, fast recovery anti-parallel Emitter Controlled
HE diode
Designed for frequency inverters for washing
machines, fans, pumps and vacuum cleaners
2nd generation HighSpeed-Technology
for 1200V applications offers:
- loss reduction in resonant circuits
- temperature stable behavior
- parallel switching capability
- tight parameter distribution
-Eoff optimized for IC=3A
Qualified according to JEDEC2for target applications
Pb-free lead plating; RoHS compliant
Complete product spectrum and PSpice Models : http://www.infineon.com/igbt/
Type VCE ICEoff TjMarking Package
IKB03N120H2 1200V 3A 0.15mJ 150°C K03H1202 PG-TO263-3-2
Maximum Ratings
Parameter Symbol Value Unit
Collector-emitter voltage VCE 1200 V
Triangular collector current
TC= 25C, f= 140kHz
TC= 100C, f= 140kHz
IC9.6
3.9
A
Pulsed collector current, tplimited by Tjmax ICpuls 9.9
Turn off safe operating area
VCE 1200V, Tj150C-9.9
Diode forward current
TC= 25C
TC= 100C
IF9.6
3.9
Gate-emitter voltage VGE 20 V
Power dissipation
TC= 25CPtot 62.5 W
Operating junction and storage temperature Tj,Tstg -40...+150 C
Soldering temperature (reflow soldering, MSL1) - 260
2J-STD-020 and JESD-022
G
C
E
PG-TO263-3-2
IKB03N120H2
IFAG IPC TD VLS 2 Rev. 2.5 03.07.2013
Thermal Resistance
Parameter Symbol Conditions Max. Value Unit
Characteristic
IGBT thermal resistance,
junction case RthJC 2.0 K/W
Diode thermal resistance,
junction - case RthJCD 3.2
Thermal resistance,
junction ambient1) RthJA 40
Electrical Characteristic, at Tj= 25 C, unless otherwise specified
Parameter Symbol Conditions Value Unit
min. Typ. max.
Static Characteristic
Collector-emitter breakdown voltage V(BR)CES VGE=0V, IC=300A1200 - - V
Collector-emitter saturation voltage VCE(sat) VGE = 15V, IC=3A
Tj=25C
Tj=150C
VGE = 10V, IC=3A,
Tj=25C
-
-
-
2.2
2.5
2.4
2.8
-
-
Diode forward voltage VFVGE = 0, IF=2A
Tj=25C
Tj=150C-
-2.0
1.75 2.5
-
Gate-emitter threshold voltage VGE(th) IC=90A,VCE=VGE 2.1 3 3.9
Zero gate voltage collector current ICES VCE=1200V,VGE=0V
Tj=25C
Tj=150C
-
--
-20
80
A
Gate-emitter leakage current IGES VCE=0V,VGE=20V - - 100 nA
Transconductance gfs VCE=20V, IC=3A - 2 - S
Dynamic Characteristic
Input capacitance Ciss VCE=25V,
VGE=0V,
f=1MHz
- 205 - pF
Output capacitance Coss - 24 -
Reverse transfer capacitance Crss - 7 -
Gate charge QGate VCC=960V, IC=3A
VGE=15V - 22 - nC
Internal emitter inductance
measured 5mm (0.197 in.) from case LE- 7 - nH
1) Device on 50mm*50mm*1.5mm epoxy PCB FR4 with 6cm2(one layer, 70m thick) copper area for
collector connection. PCB is vertical without blown air.
IKB03N120H2
IFAG IPC TD VLS 3 Rev. 2.5 03.07.2013
Switching Characteristic, Inductive Load, at Tj=25 C
Parameter Symbol Conditions Value Unit
min. typ. max.
IGBT Characteristic
Turn-on delay time td(on) Tj=25C,
VCC=800V,IC=3A,
VGE=15V/0V,
RG=82,
L2)=180nH,
C2)=40pF
Energy losses include
“tail” and diode 4)
reverse recovery.
- 9.2 - ns
Rise time tr- 5.2 -
Turn-off delay time td(off) - 281 -
Fall time tf- 29 -
Turn-on energy Eon - 0.14 - mJ
Turn-off energy Eoff - 0.15 -
Total switching energy Ets - 0.29 -
Anti-Parallel Diode Characteristic
Diode reverse recovery time trr Tj=25C,
VR=800V, IF=3A,
RG=82
- 42 - ns
Diode reverse recovery charge Qrr - 0.23 - µC
Diode peak reverse recovery current Irrm - 10.3 - A
Diode current slope diF/dt - 993 - A/s
Diode peak rate of fall of reverse
recovery current during tb
dirr/dt - 1180 -
Switching Characteristic, Inductive Load, at Tj=150 C
Parameter Symbol Conditions Value Unit
min. typ. max.
IGBT Characteristic
Turn-on delay time td(on) Tj=150C
VCC=800V,
IC=3A,
VGE=15V/0V,
RG=82,
L2)=180nH,
C2)=40pF
Energy losses include
“tail” and diode 3)
reverse recovery.
- 9.4 - ns
Rise time tr- 6.7 -
Turn-off delay time td(off) - 340 -
Fall time tf- 63 -
Turn-on energy Eon - 0.22 - mJ
Turn-off energy Eoff - 0.26 -
Total switching energy Ets - 0.48 -
Anti-Parallel Diode Characteristic
Diode reverse recovery time trr Tj=150C
VR=800V, IF=3A,
RG=82
- 125 - ns
Diode reverse recovery charge Qrr - 0.51 - µC
Diode peak reverse recovery current Irrm - 12 - A
Diode current slope diF/dt - 829 - A/s
Diode peak rate of fall of reverse
recovery current during tb
dirr/dt - 540 -
2) Leakage inductance Land stray capacity Cdue to dynamic test circuit in figure E
4) Commutation diode from device IKP03N120H2
IKB03N120H2
IFAG IPC TD VLS 4 Rev. 2.5 03.07.2013
Switching Energy ZVT, Inductive Load
Parameter Symbol Conditions Value Unit
min. typ. max.
IGBT Characteristic
Turn-off energy Eoff VCC=800V,
IC=3A,
VGE=15V/0V,
RG=82,
Cr2)=4nF
Tj=25C
Tj=150C
-
-0.05
0.09 -
-
mJ
IKB03N120H2
IFAG IPC TD VLS 5 Rev. 2.5 03.07.2013
IC,COLLECTOR CURRENT
10Hz 100Hz 1kHz 10kHz 100kHz
0A
2A
4A
6A
8A
10A
12A
TC=110°C
TC=80°C
IC,COLLECTOR CURRENT
1V
10V
100V
1000V
0,01A
0,1A
1A
10A
100s
DC
500s
10s
5s
50s
tp=1s
f,SWITCHING FREQUENCY VCE,COLLECTOR-EMITTER VOLTAGE
Figure 1. Collector current as a function of
switching frequency
(Tj150C, D = 0.5, VCE = 800V,
V
GE
= +15V/0V, R
G
= 82)
Figure 2. Safe operating area
(D = 0, TC= 25C, Tj150C)
Ptot,POWER DISSIPATION
25°C 50°C 75°C 100°C 125°C
0W
10W
20W
30W
40W
50W
60W
IC,COLLECTOR CURRENT
25°C 50°C 75°C 100°C 125°C 150°C
0A
2A
4A
6A
8A
10A
12A
TC,CASE TEMPERATURE TC,CASE TEMPERATURE
of case temperature
(T
j
150C)
Figure 4. Collector current as a function of
case temperature
(V
GE
15V, T
j
150C)
I
c
I
c
IKB03N120H2
IFAG IPC TD VLS 6 Rev. 2.5 03.07.2013
IC,COLLECTOR CURRENT
0V 1V 2V 3V 4V 5V
0A
2A
4A
6A
8A
10A
12V
10V
8V
6V
VGE=15V
IC,COLLECTOR CURRENT
0V 1V 2V 3V 4V 5V
0A
1A
2A
3A
4A
5A
6A
7A
8A
9A
10A
12V
10V
8V
6V
VGE=15V
VCE,COLLECTOR-EMITTER VOLTAGE VCE,COLLECTOR-EMITTER VOLTAGE
Figure 5. Typical output characteristics
(T
j
= 25C)
Figure 6. Typical output characteristics
(T
j
= 150C)
IC,COLLECTOR CURRENT
3V 5V 7V 9V
0A
2A
4A
6A
8A
10A
12A
Tj=+150°C
Tj=+25°C
VCE(sat),COLLECTOR-EMITTER SATURATION VOLTAGE
-50°C 0°C 50°C 100°C
0V
1V
2V
3V IC=6A
IC=3A
IC=1.5A
VGE,GATE-EMITTER VOLTAGE Tj,JUNCTION TEMPERATURE
Figure 7. Typical transfer characteristics
(VCE = 20V)
Figure 8. Typical collector
-
emitter
saturation voltage as a function of junction
temperature
(V
GE
= 15V)
IKB03N120H2
IFAG IPC TD VLS 7 Rev. 2.5 03.07.2013
t,SWITCHING TIMES
0A 2A 4A
1ns
10ns
100ns
1000ns
tr
td(on)
tf
td(off)
t,SWITCHING TIMES
050100150
1ns
10ns
100ns
1000ns
tr
td(on)
tf
td(off)
IC,COLLECTOR CURRENT RG,GATE RESISTOR
Figure 9. Typical switching times as a
function of collector current
(inductive load, Tj= 150C,
VCE = 800V, VGE = +15V/0V, RG= 82,
dynamic test circuit in Fig.E)
Figure 10. Typical switching times as a
function of gate resistor
(inductive load, Tj= 150C,
VCE = 800V, VGE = +15V/0V, IC= 3A,
dynamic test circuit in Fig.E)
t,SWITCHING TIMES
25°C 50°C 75°C 100°C 125°C 150°C
1ns
10ns
100ns
1000ns
tr
td(on)
tf
td(off)
VGE(th),GATE-EMITTER THRESHOLD VOLTAGE
-50°C 0°C 5C 100°C 150°C
0V
1V
2V
3V
4V
5V
typ.
min.
max.
Tj,JUNCTION TEMPERATURE Tj,JUNCTION TEMPERATURE
Figure 11. Typical switching times as a
function of junction temperature
(inductive load, VCE = 800V,
VGE = +15V/0V, IC= 3A, RG= 82,
dynamic test circuit in Fig.E)
Figure 12. Gate
-
emitter threshold voltage
as a function of junction temperature
(IC= 0.09mA)
IKB03N120H2
IFAG IPC TD VLS 8 Rev. 2.5 03.07.2013
E,SWITCHING ENERGY LOSSES
0A 2A 4A
0.0mJ
0.5mJ
1.0mJ
Eon1
Eoff
Ets1
E,SWITCHING ENERGY LOSSES
050100150200250
0.2mJ
0.3mJ
0.4mJ
0.5mJ
0.6mJ
0.7mJ
Eon1
Ets1
Eoff
IC,COLLECTOR CURRENT RG,GATE RESISTOR
Figure 13. Typical switching energy losses
as a function of collector current
(inductive load, Tj= 150C,
VCE = 800V, VGE = +15V/0V, RG= 82,
dynamic test circuit in Fig.E )
Figure 14. Typical switching energy losses
as a function of gate resistor
(inductive load, Tj= 150C,
VCE = 800V, VGE = +15V/0V, IC= 3A,
dynamic test circuit in Fig.E )
E,SWITCHING ENERGY LOSSES
25°C 80°C 125°C 150°C
0.1mJ
0.2mJ
0.3mJ
0.4mJ
0.5mJ Ets1
Eon1
Eoff
Eoff,TURN OFF SWITCHING ENERGY LOSS
0V/us 1000V/us 2000V/us 3000V/us
0.00mJ
0.04mJ
0.08mJ
0.12mJ
0.16mJ
IC=1A, TJ=150°C
IC=1A, TJ=2C
IC=3A, TJ=150°C
IC=3A, TJ=2C
Tj,JUNCTION TEMPERATURE dv/dt, VOLTAGE SLOPE
Figure 15. Typical switching energy losses
as a function of junction temperature
(inductive load, VCE = 800V,
VGE = +15V/0V, IC= 3A, RG= 82,
dynamic test circuit in Fig.E )
Figure 16. Typical turn off switching energy
loss for soft switching
(dynamic test circuit in Fig. E)
1
)Eon and Ets include losses
due to diode recovery.
1
)Eon and Ets include losses
due to diode recovery.
1
)Eon and Ets include losses
due to diode recovery.
IKB03N120H2
IFAG IPC TD VLS 9 Rev. 2.5 03.07.2013
VGE,GATE-EMITTER VOLTAGE
1µs 10µs 100µs 1ms 10ms 100ms
10-2K/W
10-1K/W
100K/W
0.01
0.02
0.05
0.1
0.2
singlepulse
D=0.5
VGE,GATE-EMITTER VOLTAGE
0nC 10nC 20nC 30nC
0V
5V
10V
15V
20V
UCE=240V
UCE=960V
Q
GE
,GATE CHARGE Q
GE
,GATE CHARGE
Figure 17. Typical gate charge
(I
C
= 3A)
Figure 17. Typi
cal gate charge
(I
C
= 3A)
C,CAPACITANCE
0V 10V 20V 30V
10pF
100pF
1nF
Crss
Coss
Ciss
VCE,COLLECTOR-EMITTER VOLTAGE
0.0 0.2 0.4 0.6 0.8 1.0 1.2
0V
200V
400V
600V
800V
1000V
0A
1A
2A
3A
ICE COLLECTOR CURRENT
V
CE
,COLLECTOR-EMITTER VOLTAGE t
p
,PULSE WIDTH
Figure 18. Typical capacitance as a
function of collector-emitter voltage
(VGE = 0V, f= 1MHz)
Figure 20.
Typical turn off behavior
, hard
switching
(VGE=15/0V, RG=82Ω, Tj= 150C,
Dynamic test circuit in Figure E)
R,(K /W )
,(s)
1.082517 0.000795
0.328671 0.000179
0.588811 0.004631
C1=
1/R1
R1R2
C2=
2/R2
IKB03N120H2
IFAG IPC TD VLS 10 Rev. 2.5 03.07.2013
VGE,GATE-EMITTER VOLTAGE
0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8
0V
200V
400V
600V
800V
0A
1A
2A
3A
ICE COLLECTOR CURRENT
ZthJC,TRANSIENT THERMAL RESISTANCE
10µs 100µs 1ms 10ms
10-2K/W
10-1K/W
100K/W
single pulse
0.01
0.02
0.05
0.1
0.2
D=0.5
tp,PULSE WIDTH tP,PULSE WIDTH
Figure 21.
Typical turn off behavior
, soft
switching
(VGE=15/0V, RG=82Ω, Tj= 150C,
Dynamic test circuit in Figure E)
Figure 22. Diode transient thermal
impedance as a function of pulse width
(D=tP/T)
trr,REVERSE RECOVERY TIME
0Ohm 100Ohm 200Ohm 300Ohm
40ns
60ns
80ns
100ns
120ns
140ns
160ns
180ns
TJ=150°C
TJ=25°C
Qrr,REVERSE RECOVERY CHARGE
0Ohm 100Ohm 200Ohm 300Ohm
0.2uC
0.3uC
0.4uC
0.5uC
0.6uC
TJ=150°C
TJ=25°C
RG,GATE RESISTANCE RG,GATE RESISTANCE
Figure 23.
T
ypical reverse recovery time
as a function of diode current slope
VR=800V, IF=3A,
Dynamic test circuit in Figure E)
Figure 24.
Typical reverse recovery
charge as a function of diode current
slope
(VR=800V, IF=3A,
Dynamic test circuit in Figure E)
R,(K /W )
,(s)
1.9222 7.04E-04
0.5852 2.02E-04
0.7168 4.39E-03
C
1
=
1
/
R
1
R
1
R
2
C
2
=
2
/
R
2
IKB03N120H2
IFAG IPC TD VLS 11 Rev. 2.5 03.07.2013
Irr,REVERSE RECOVERY CURRENT
0Ohm 100Ohm 200Ohm 300Ohm
8A
10A
12A
14A
16A
TJ=150°C
TJ=25°C
di
rr
/dt
,
DIODE PEAK RATE OF FALL
OF REVERSE RECOVERY
CURRENT
0Ohm 100Ohm 200Ohm 300Ohm
-1800A/us
-1600A/us
-1400A/us
-1200A/us
-1000A/us
-800A/us
-600A/us TJ=150°C
TJ=25°C
RG,GATE RESISTANCE RG,GATE RESISTANCE
Figure 25.
Typical reverse recovery
current as a function of diode current
slope
(VR=800V, IF=3A,
Dynamic test circuit in Figure E)
Figure 26.
Typical diode peak rate of fall
of reverse recovery current as a
function of diode current slope
(VR=800V, IF=3A,
Dynamic test circuit in Figure E)
IF,FORWARD CURRENT
0V 1V 2V 3V
0A
2A
4A
TJ=150°C
TJ=25°C
VF,FORWARD VOLTAGE
-50°C 0°C 50°C 100°C 150°C
1.0V
1.5V
2.0V
2.5V
3.0V IF=4A
IF=2A
IF=1A
VF,FORWARD VOLTAGE TJ,JUNCTION TEMPERATURE
Figure 27.
Typical diode forward current
as a function of forward voltage
Figure 28.
Typical diode forward
voltage as a function of junction
temperature
IKB03N120H2
IFAG IPC TD VLS 12 Rev. 2.5 03.07.2013
PG
-
TO263
-
3
-
2
IKB03N120H2
IFAG IPC TD VLS 13 Rev. 2.5 03.07.2013
I
r
r
m
90%
Ir r m
10%
Ir r m
di /dt
F
tr r
IF
i,v
t
QSQF
tStF
VR
di /dt
r r
Q =Q Q
r r S F
+
t =t t
r r S F
+
Figure C. Definition of diodes
switching characteristics
p(t)
1
2
n
T
(
t
)
j
1
1
2
2
n
n
T
C
r r
r
r
rr
Figure D. Thermal equivalent
circuit
Figure E. Dynamic test circuit
Leakage inductance L= 180nH,
Stray capacitor C= 40pF,
Relief capacitor Cr= 4nF (only for
ZVT switching)
Figure A. Definition of switching times
Figure B. Definition of switching losses
öö
VDC
DUT
(Diode)
½L
RGDUT
(IGBT)
L
½L
CCr
IKB03N120H2
IFAG IPC TD VLS 14 Rev. 2.5 03.07.2013
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2013 Infineon Technologies AG
All Rights Reserved.
Legal Disclaimer
The information given in this document shall in no event be regarded as a guarantee of conditions or
characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or
any information regarding the application of the device, Infineon Technologies hereby disclaims any and all
warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual
property rights of any third party.
Information
For further information on technology, delivery terms and conditions and prices, please contact the nearest
Infineon Technologies Office (www.infineon.com).
Warnings
Due to technical requirements, components may contain dangerous substances. For information on the
types in question, please contact the nearest Infineon Technologies Office.
The Infineon Technologies component described in this Data Sheet may be used in life-support devices or
systems and/or automotive, aviation and aerospace applications or systems only with the express written
approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the
failure of that life-support, automotive, aviation and aerospace device or system or to affect the safety or
effectiveness of that device or system. Life support devices or systems are intended to be implanted in the
human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable
to assume that the health of the user or other persons may be endangered.