November 2008 Rev 3 1/26
26
VNQ600P-E
Quad channel high side driver
Features
DC short circuit current: 22A
CMOS compatible inputs
Proportional load current sense.
Undervoltage & overvoltage shutdown
Overvoltage clamp
Thermal shutdown
Current limitation
Very low standby power dissipation
Protection against:
Loss of ground & loss of VCC
Reverse battery protection (a)
In compliance with the 2002/95/EC european
directive
Description
The VNQ600P-E is a quad HSD formed by
assembling two VNQ600P-E chips in the same
SO-28 package. The VNQ600P-E is a monolithic
device designed in| STMicroelectronics VIPower
M0-3 Technology. The VNQ600P-E is intended for
driving any type of multiple loads with one side
connected to ground.
This device has four independent channels and
four analog sense outputs which deliver currents
proportional to the outputs currents.
Active current limitation combined with thermal
shutdown and automatic restart protect the device
against overload. Device automatically turns off in
case of ground pin disconnection.
Max supply voltage VCC 36V
Max On-state resistance RON 35m
(1)
1. Per each channel.
Current limitation (typ.) ILIM 25A
a. See Application schematic on page 17
SO-28 (double island)
Table 1. Device summary
Package
Order codes
Tube Tape and reel
SO-28 (double island) VNQ600P-E VNQ600PTR-E
www.st.com
Contents VNQ600P-E
2/26
Contents
1 Block diagram and pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3 Electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Application information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.1 GND protection network against reverse battery . . . . . . . . . . . . . . . . . . . 17
3.1.1 Solution 1: a resistor in the ground line (RGND only) . . . . . . . . . . . . . . 17
3.1.2 Solution 2: a diode (DGND) in the ground line . . . . . . . . . . . . . . . . . . . . 18
3.2 Load dump protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 MCU I/O protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Maximum demagnetization energy (VCC = 13.5V) . . . . . . . . . . . . . . . . . . 19
4 Package and PCB thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.1 SO-28 thermal data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Package and packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1 ECOPACK® packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 SO-28 packing information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
VNQ600P-E List of tables
3/26
List of tables
Table 1. Device summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Suggested connections for unused and not connected pins . . . . . . . . . . . . . . . . . . . . . . . . 6
Table 3. Absolute maximum rating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Table 4. Thermal data (per island) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Table 5. Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 6. Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
Table 7. Switching (VCC=13V; Tj = 25°C) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 8. Current sense (9V< VCC< 16V) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Table 9. Logic inputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 10. VCC - output diode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Table 11. Truth table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 12. Electrical transient requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Table 13. Thermal calculation according to the PCB heatsink area . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Table 14. Thermal parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Table 15. SO-28 mechanical data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Table 16. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
List of figures VNQ600P-E
4/26
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Figure 2. Configuration diagram (top view) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
Figure 3. Current and voltage conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
Figure 4. IOUT/ISENSE versus IOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. Switching characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 6. Waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 7. Off state output current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 8. Low level input current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 9. Input clamp voltage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 10. Turn-on voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 11. Overvoltage shutdown . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 12. Turn-off voltage slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 13. ILIM vs Tcase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 14. Input low level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 15. Input high level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 16. Input hysteresis voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 17. On state resistance vs Tcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Figure 18. Application schematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Figure 19. Maximum turn-off current versus load inductance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 20. SO-28 PC board . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 21. Rthj-amb Vs PCB copper area in open box free air condition . . . . . . . . . . . . . . . . . . . . . . 21
Figure 22. Thermal impedance junction ambient single pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 23. Thermal fitting model of a quad channel HSD in SO-28 . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Figure 24. SO-28 package dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 25. SO-28 tube shipment (no suffix) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 26. SO-28 tape and reel shipment (suffix “TR”) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
VNQ600P-E Block diagram and pin description
5/26
1 Block diagram and pin description
Figure 1. Block diagram
LOGIC
UNDERVOLTAGE
OVERVOLTAGE
OVERTEMP. 1
OVERTEMP. 2
ILIM2
DEMAG 2
K
IOUT2
ILIM1
DEMAG 1
K
IOUT1
INPUT 1
INPUT 2
GND 1,2
VCC 1,2
OUTPUT 1
CURRENT
SENSE 1
OUTPUT 2
CURRENT
SENSE 2
DRIVER 2
DRIVER 1
LOGIC
UNDERVOLTAGE
OVERVOLTAGE
OVERTEMP. 3
OVERTEMP. 4
ILIM4
DEMAG 4
K
IOUT4
ILIM3
DEMAG 3
K
IOUT3
INPUT 3
INPUT 4
GND 3,4
VCC 3,4
OUTPUT 3
CURRENT
SENSE 3
OUTPUT 4
CURRENT
SENSE 4
DRIVER 4
DRIVER 3
Block diagram and pin description VNQ600P-E
6/26
Figure 2. Configuration diagram (top view)
Table 2. Suggested connections for unused and not connected pins
Connection / pin Current sense N.C. Output Input
Floating X X X
To ground Through 1K
resistor XThrough 10K
resistor
V
CC
1,2
GND 1,2
INPUT2
INPUT1
CURRENT
V
CC
1,2
V
CC
3,4
GND 3,4
INPUT4
INPUT3
V
CC
3,4
SENSE 1
V
CC
3,4
OUTPUT 3
OUTPUT 3
OUTPUT 3
OUTPUT 4
OUTPUT 1
OUTPUT 1
OUTPUT 1
OUTPUT 2
V
CC
1,2
OUTPUT 4
OUTPUT 4
OUTPUT 2
OUTPUT 2
CURRENT SENSE 2
CURRENT SENSE 3
CURRENT SENSE 4
1
14 15
28
VNQ600P-E Electrical specifications
7/26
2 Electrical specifications
2.1 Absolute maximum ratings
Stressing the device above the rating listed in the “Absolute maximum ratings” table may
cause permanent damage to the device. These are stress ratings only and operation of the
device at these or any other conditions above those indicated in the Operating sections of
this specification is not implied. Exposure to Absolute Maximum Rating conditions for
extended periods may affect device reliability. Refer also to the STMicroelectronics SURE
Program and other relevant quality document.
Table 3. Absolute maximum rating
Symbol Parameter Value Unit
VCC Supply voltage (continuous) 41 V
-VCC Reverse supply voltage (continuous) -0.3 V
IOUT Output current (continuous), for each channel 15 A
IR Reverse output current (continuous), for each channel -15 A
IIN Input current +/- 10 mA
VCSENSE Current sense maximum voltage -3
+15
V
V
IGND Ground current at Tpins < 25 °C (continuous) -200 mA
VESD
Electrostatic discharge
(Human Body Model: R=1.5KΩ; C=100pF)
- INPUT
- CURRENT SENSE
- OUTPUT
- VCC
4000
2000
5000
5000
V
V
V
V
EMAX
Maximum switching energy
(L=0.11mH; RL=0; Vbat=13.5V; Tjstart=150ºC; IL=40A) 126 mJ
Ptot Power dissipation (per island) at Tlead=25°C 6.25 W
TjJunction operating temperature Internally limited °C
Tstg Storage temperature -55 to 150 °C
Electrical specifications VNQ600P-E
8/26
2.2 Thermal data
2.3 Electrical characteristics
Values specified in this section are for 8V<VCC<36V; -40°C< Tj <150°C, unless otherwise
stated.
Figure 3. Current and voltage conventions
Note: VFn = VCCn - VOUTn during reverse battery condition.
Table 4. Thermal data (per island)
Symbol Parameter Value Unit
Rthj-lead Thermal resistance junction-lead 15 °C/W
Rthj-amb
Thermal resistance junction-ambient
(one chip ON) 60(1)
1. When mounted on a standard single-sided FR-4 board with 0.5cm2 of Cu (at least 35 µm thick) connected
to all VCC pins. Horizontal mounting and no artificial air flow.
44(2)
2. When mounted on a standard single-sided FR-4 board with 6cm2 of Cu (at least 35 µm thick) connected to
all VCC pins. Horizontal mounting and no artificial air flow.
°C/W
Rthj-amb
Thermal Resistance junction-ambient
(two chips ON) 46(1) 31(2) °C/W
I
S1,2
I
GND1,2
OUTPUT3
V
CC1,2
GND
1,2
INPUT2
I
OUT3
V
CC1,2
V
OUT4
OUTPUT2
I
OUT2
V
OUT3
INPUT1
I
IN1
CUR. SENSE1
I
SENSE1
OUTPUT1
I
OUT1
OUTPUT4
I
OUT4
V
OUT2
V
OUT1
I
IN2
I
SENSE2
I
SENSE3
I
IN4
I
SENSE4
CUR. SENSE2
CUR. SENSE3
CUR. SENSE4
INPUT3
INPUT4
V
STAT4
V
IN4
V
SENSE3
V
IN3
V
SENSE2
I
IN3
V
IN2
V
SENSE1
V
IN1
I
GND3,4
GND
3,4
I
S3,4
V
CC3,4
V
CC3,4
V
F1
VNQ600P-E Electrical specifications
9/26
Note: Vclamp and VOV are correlated. Typical difference is 5V.
Note: To ensure long term reliability under heavy overload or short circuit conditions, protection
and related diagnostic signals must be used together with a proper software strategy. If the
device is subjected to abnormal conditions, this software must limit the duration and number
of activation cycles.
Table 5. Power
Symbol Parameter Test conditions Min. Typ. Max. Unit
VCC Operating supply voltage 5.5 13 36 V
VUSD Undervoltage shutdown 3 4 5.5 V
VOV Overvoltage shutdown 36 V
RON On state resistance
IOUT1,2,3,4=5A; Tj=25°C
IOUT1,2,3,4=5A; Tj=150°C
IOUT1,2,3,4=3A; VCC=6V
35
70
120
m
m
m
Vclamp Clamp voltage ICC=20mA 41 48 55 V
IS Supply current
Off State; VCC=13V;
VIN=VOUT=0V
Off State; VCC=13V;
VIN=VOUT=0V;
Tj =25°C
On State; VCC=13V; VIN=5V;
IOUT=0A; RSENSE=3.9K
12
12
40
25
6
µA
µA
mA
IL(off1) Off state output current VIN=VOUT=0V 0 50 µA
IL(off2) Off state output current VIN=0V; VOUT=3.5V -75 0 µA
IL(off3) Off state output current VIN=VOUT=0V; VCC=13V;
Tj =125°C A
IL(off4) Off state output current VIN=VOUT=0V; VCC=13V;
Tj =25°C A
Table 6. Protections
Symbol Parameter Test conditions Min. Typ. Max. Unit
Ilim
DC Short circuit
current
VCC=13V
5.5V<VCC<36V
25 40 70
70
A
A
TTSD
Thermal shutdown
temperature 150 175 200 °C
TR
Thermal reset
temperature 135 °C
Thyst Thermal hysteresis 7 15 °C
Vdemag
Turn-off output
voltage clamp IOUT=2A; L=6mH VCC-41 VCC-48 VCC-55 V
VON
Output voltage drop
limitation IOUT=0.5A; Tj= -40°C...+150°C 50 mV
Electrical specifications VNQ600P-E
10/26
.
Table 7. Switching (VCC=13V; Tj=25°C)
Symbol Parameter Test conditions Min. Typ. Max. Unit
td(on) Turn-on delay time RL=2.6 channels 1,2,3,4
(see Figure 5)40 µs
td(off) Turn-off delay time RL=2.6 channels 1,2,3,4
(see Figure 5)40 µs
(dVOUT/dt)on Turn-on voltage slope RL=2.6 channels 1,2,3,4
(see Figure 5)
See
Figure 10 V/µs
(dVOUT/dt)off Turn-off voltage slope RL=2.6 channels 1,2,3,4
(see Figure 5)
See
Figure 12 V/µs
Table 8. Current sense (9V< VCC< 16V)
Symbol Parameter Test conditions Min. Typ. Max. Unit
K1IOUT/ISENSE
IOUT1 or IOUT2=0.5A;
VSENSE=0.5V; other channels
open; Tj= -40°C...150°C
3300 4400 6000
dK1/K1
Current sense ratio
drift
IOUT1 or IOUT2=0.35A;
VSENSE=0.5V; other channels
open; Tj= -40°C...150°C
-10 +10 %
K2IOUT/ISENSE
IOUT1 or IOUT2=5A; VSENSE=4V;
other channels open;
Tj=-40°C
Tj=25°C...150°C
4200
4400
4900
4900
6000
5750
dK2/K2
Current sense ratio
drift
IOUT1 or IOUT2=2A;
VSENSE=2.5V; other channels
open;
Tj=-40°C...150°C
-6 +6 %
K3IOUT/ISENSE
IOUT1 or IOUT2=15A; VSENSE=4V;
other channels open;
Tj=-40°C
Tj=25°C...150°C
4200
4400
4900
4900
5500
5250
dK3/K3
Current sense ratio
drift
IOUT1 or IOUT2=15A; VSENSE=4V;
other channels open;
Tj=-40°C...150°C
-6 +6 %
VSENSE1,2
Max analog sense
output voltage
VCC=5.5V; IOUT1,2=2.5A;
RSENSE=10k
VCC>8V, IOUT1,2=5A;
RSENSE=10k
2
4
V
V
VSENSEH
Analog sense output
voltage in
overtemperature
condition
VCC= 13V; RSENSE= 3.9k5.5 V
VNQ600P-E Electrical specifications
11/26
Figure 4. IOUT/ISENSE versus IOUT
Symbol Parameter Test conditions Min. Typ. Max. Unit
RVSENSEH
Analog sense output
Impedance in
overtemperature
condition
VCC=13V; Tj>TTSD;
All channels open 400
tDSENSE
Current sense delay
response To 9 0 % I SENSE(1) 500 µs
1. Current sense signal delay after positive input slope.
Table 9. Logic inputs
Symbol Parameter Test conditions Min. Typ. Max. Unit
VIL Low level input voltage 1.25 V
VIH High level input voltage 3.25 V
VI(hyst) Input hysteresis voltage 0.5 V
IIL Input current VIN=1.5V 1 µA
IIN Input current VIN=3.5V 10 µA
VICL Input clamp voltage IIN=1mA
IIN= -1mA
66.8
-0.7
8V
V
Table 10. VCC - output diode
Symbol Parameter Test conditions Min. Typ. Max. Unit
VFForward on voltage -IOUT=2.3A; Tj=150°C 0.6 V
Table 8. Current sense (9V< VCC< 16V) (continued)
0246810121416
3000
3500
4000
4500
5000
5500
6000
6500
min.Tj=-40°C
max.Tj=-40°C
min.Tj=25...150°C
max.Tj=25...150°C
typical value
IOUT/ISENSE
IOUT (A)
Electrical specifications VNQ600P-E
12/26
Figure 5. Switching characteristics
Table 11. Truth table
Conditions Input Output Sense
Normal operation L
H
L
H
0
Nominal
Overtemperature L
H
L
L
0
VSENSEH
Undervoltage L
H
L
L
0
0
Overvoltage L
H
L
L
0
0
Short circuit to GND
L
H
H
L
L
L
0
(Tj<TTSD) 0
(Tj>TTSD) VSENSEH
Short circuit to VCC
L
H
H
H
0
< Nominal
Negative output voltage
clamp LL0
V
OUT
dV
OUT
/dt
(on)
t
r
80%
10% t
f
dV
OUT
/dt
(off)
I
SENSE
t
t
90%
t
d(off)
INPUT
t
90%
t
d(on)
t
DSENSE
VNQ600P-E Electrical specifications
13/26
Table 12. Electrical transient requirements
ISO T/R
7637/1
Test pulse
Test levels
I
Test levels
II
Test levels
III
Test levels
IV
Test levels
delays and impedance
1 -25V -50V -75V -100V 2ms, 10
2 +25V +50V +75V +100V 0.2ms, 10
3a -25V -50V -100V -150V 0.1 µs, 50
3b +25V +50V +75V +100V 0.1µs, 50
4 -4V -5V -6V -7V 100ms, 0.01
5 +26.5V +46.5V +66.5V +86.5V 400ms, 2
ISO T/R
7637/1
Test pulse
Test levels result
I
Test levels result
II
Test levels result
III
Test levels result
IV
1C C C C
2C C C C
3a C C C C
3b C C C C
4C C C C
5C E E E
Class Contents
CAll functions of the device are performed as designed after exposure to
disturbance.
EOne or more functions of the device is not performed as designed after exposure
and cannot be returned to proper operation without replacing the device.
Electrical specifications VNQ600P-E
14/26
Figure 6. Waveforms
SENSEn
INPUTn
NORMAL OPERATION
UNDERVOLTAGE
VCC
VUSD
VUSDhyst
INPUTn
OVERVOLTAGE
VCC
SENSEn
INPUTn
SENSEn
LOAD CURRENTn
LOAD CURRENTn
LOAD CURRENTn
OVERTEMPERATURE
INPUTn
SENSEn
TTSD
TR
Tj
LOAD CURRENTn
VOV
VCC > VOV
VCC < VOV
SHORT TO GROUND
INPUTn
LOAD CURRENTn
SENSEn
LOAD VOLTAGEn
INPUTn
LOAD VOLTAGEn
SENSEn
LOAD CURRENTn
<Nominal <Nominal
SHORT TO VCC
ISENSE=RSENSE
VSENSEH
VNQ600P-E Electrical specifications
15/26
2.4 Electrical characteristics curves
Figure 7. Off state output current Figure 8. Low level input current
Figure 9. Input clamp voltage Figure 10. Turn-on voltage slope
-50 -25 0 25 50 75 100 125 150 175
Tc (°C )
6
6.2
6.4
6.6
6.8
7
7.2
7.4
7.6
7.8
8
Vicl (V)
Ii n =1 m A
Figure 11. Overvoltage shutdown Figure 12. Turn-off voltage slope
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
30
32
34
36
38
40
42
44
46
48
50
Vov (V)
Electrical specifications VNQ600P-E
16/26
Figure 13. ILIM vs Tcase Figure 14. Input low level
-50-25 0 255075100125150175
Tc (°C)
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
Vil (V)
Figure 15. Input high level Figure 16. Input hysteresis voltage
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
2
2.2
2.4
2.6
2.8
3
3.2
3.4
3.6
Vih (V)
-50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0.5
0.6
0.7
0.8
0.9
1
1.1
1.2
1.3
1.4
1.5
Vhyst (V)
Figure 17. On state resistance vs Tcase
-75 -50 -25 0 25 50 75 100 125 150 175
Tc (°C)
0
10
20
30
40
50
60
70
80
90
100
Ron (mOhm)
Io u t =5 A
Vcc=8V & 36V
VNQ600P-E Application information
17/26
3 Application information
Figure 18. Application schematic
Note: Channels 3 & 4 have the same internal circuit as channel 1 & 2.
3.1 GND protection network against reverse battery
This section provides two solutions for implementing a ground protection network against
reverse battery.
3.1.1 Solution 1: a resistor in the ground line (RGND only)
This can be used with any type of load.
The following show how to dimension the RGND resistor:
1. RGND 600mV / 2(IS(on)max)
2. RGND ≥ (−VCC) / (-IGND)
where -IGND is the DC reverse ground pin current and can be found in the absolute
maximum rating section of the device datasheet.
Power dissipation in RGND (when VCC<0 during reverse battery situations) is:
PD= (-VCC)2/RGND
V
CC1,2
OUTPUT2
C. SENSE 1
D
ld
+5V
R
prot
OUTPUT1
R
SENSE1,2,3,4
INPUT1
C. SENSE 2
INPUT2
µ
C
R
prot
R
prot
R
prot
INPUT3
INPUT4
C. SENSE 3
C. SENSE 4
D
GND
R
GND
V
GND
GND1,2 GND3,4
OUTPUT3
R
prot
R
prot
R
prot
R
prot
V
CC3,4
OUTPUT4
Application information VNQ600P-E
18/26
This resistor can be shared amongst several different HSDs. Please note that the value of
this resistor should be calculated with formula (1) where IS(on)max becomes the sum of the
maximum on-state currents of the different devices.
Please note that, if the microprocessor ground is not shared by the device ground, then the
RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output
values. This shift will vary depending on how many devices are ON in the case of several
high side drivers sharing the same RGND.
If the calculated power dissipation requires the use of a large resistor, or several devices
have to share the same resistor, then ST suggests using solution 2 below.
3.1.2 Solution 2: a diode (DGND) in the ground line
A resistor (RGND=1k) should be inserted in parallel to DGND if the device will be driving
an inductive load. This small signal diode can be safely shared amongst several different
HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in
the input threshold and the status output values if the microprocessor ground is not common
with the device ground. This shift will not vary if more than one HSD shares the same
diode/resistor network. Series resistor in INPUT and STATUS lines are also required to
prevent that, during battery voltage transient, the current exceeds the Absolute Maximum
Rating. Safest configuration for unused INPUT and STATUS pin is to leave them
unconnected.
3.2 Load dump protection
Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds the
VCC maximum DC rating. The same applies if the device is subject to transients on the VCC
line that are greater than those shown in the ISO T/R 7637/1 table.
3.3 MCU I/O protection
If a ground protection network is used and negative transients are present on the VCC line,
the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to
prevent the µC I/O pins from latching up.
The value of these resistors is a compromise between the leakage current of µC and the
current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of µC
I/Os:
-VCCpeak/Ilatchup Rprot (VOHµC-VIH-VGND) / IIHmax
Example
For the following conditions:
VCCpeak= - 100V
Ilatchup 20mA
VOHµC 4.5V
5k Rprot 65k.
Recommended values are:
Rprot =10k
VNQ600P-E Application information
19/26
3.4 Maximum demagnetization energy (VCC = 13.5V)
Figure 19. Maximum turn-off current versus load inductance
Note: Values are generated with RL=0Ω.
In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse
must not exceed the temperature specified above for curves B and C.
VIN, IL
t
Demagnetization Demagnetization Demagnetization
1
10
100
0.001 0.01 0.1 1 10 100
L(mH)
I
LMAX (A)
A
B
C
A = Single Pulse at TJstart=150ºC
B= Repetitive pulse at TJstart=100ºC
C= Repetitive Pulse at TJstart=125ºC
Package and PCB thermal data VNQ600P-E
20/26
4 Package and PCB thermal data
4.1 SO-28 thermal data
Figure 20. SO-28 PC board
Note: Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB
thickness=2mm, Cu thickness=35µm, Copper areas: 0.5 cm2, 3 cm2, 6 cm2).
RthA = Thermal resistance Junction to Ambient with one chip ON
RthB = Thermal resistance Junction to Ambient with both chips ON and Pdchip1=Pdchip2
RthC = Mutual thermal resistance
Table 13. Thermal calculation according to the PCB heatsink area
Chip 1 Chip 2 Tjchip1 Tjchip2 Note
ON OFF RthA x Pdchip1 + Tamb RthC x Pdchip1 + Tamb
OFF ON RthC x Pdchip2 + Tamb RthA x Pdchip2 + Tamb
ON ON RthB x (Pdchip1 + Pdchip2) +
Tamb
RthB x (Pdchip1 + Pdchip2) +
Tamb
Pdchip1=Pdchip2
ON ON (RthA x Pdchip1) + RthC x
Pdchip2 + Tamb
(RthA x Pdchip2) + RthC x
Pdchip1 + Tamb
Pdchip1Pdchip2
VNQ600P-E Package and PCB thermal data
21/26
Figure 21. Rthj-amb Vs PCB copper area in open box free air condition
Figure 22. Thermal impedance junction ambient single pulse
10
20
30
40
50
60
70
01234567
PCB Cu heatsink area (cm^2)/is land
RTH
j
_am b
C /W)
0.01
0.1
1
10
100
0.0001 0.001 0.01 0.1 1 10 100 1000
time(s )
Zth(°C /W)
6 cm ^2/is land
3 cm ^2/is land
0,5 c m ^2/is land
One channel ON
Two channels
ON on same chip
Package and PCB thermal data VNQ600P-E
22/26
Equation 1: pulse calculation formula
Figure 23. Thermal fitting model of a quad channel HSD in SO-28
Table 14. Thermal parameters
Area/island (cm2)0.56
R1=R7=R13=R15 (°C/W) 0.05
R2=R8=R14=R16 (°C/W) 0.3
R3=R9 (°C/W) 3.4
R4=R10 (°C/W) 11
R5=R11 (°C/W) 15
R6=R12 (°C/W) 30 13
C1=C7=C13=C15 (W.s/°C) 0.001
C2=C8=C14=C16 (W.s/°C) 5.00E-03
C3=C9 (W.s/°C) 1.00E-02
C4=C10 (W.s/°C) 0.2
C5=C11 (W.s/°C) 1.5
C6=C12 (W.s/°C) 5 8
R17=R18 (°C/W) 150
ZTHδRTH δZTHtp 1δ()+=
where
δtpT=
Pd1
C1
R4
C3 C4
R3R1 R6R5R2
C5 C6C2
Pd2
R14
C13 C14
R13
Tj_1
Tj_2
T_amb
Pd3
C7
R10
C9 C10
R9R7 R12R11
R8
C11 C12
C8
Pd4
R16
C15 C16
R15
Tj_3
Tj_4
R17 R18
VNQ600P-E Package and packing information
23/26
5 Package and packing information
5.1 ECOPACK® packages
In order to meet environmental requirements, ST offers these devices in ECOPACK®
packages. These packages have a Lead-free second-level interconnect. The category of
Second-Level Interconnect is marked on the package and on the inner box label, in
compliance with JEDEC Standard JESD97. The maximum ratings related to soldering
conditions are also marked on the inner box label.
ECOPACK is an ST trademark. ECOPACK specifications are available at: www.st.com.
Figure 24. SO-28 package dimensions
Table 15. SO-28 mechanical data
Symbol
Millimeters
Min. Typ. Max.
A2.65
a1 0.10 0.30
b 0.35 0.49
b1 0.23 0.32
C0.50
c1 45° (typ.)
D 17.7 18.1
E 10.00 10.65
e1.27
e3 16.51
F 7.40 7.60
L 0.40 1.27
S 8° (max.)
Package and packing information VNQ600P-E
24/26
5.2 SO-28 packing information
Figure 25. SO-28 tube shipment (no suffix)
Figure 26. SO-28 tape and reel shipment (suffix “TR”)
All dimensions are in mm.
Base Q.ty 28
Bulk Q.ty 700
Tube length (± 0.5) 532
A3.5
B13.8
C (± 0.1) 0.6
A
C
B
Base Q.ty 1000
Bulk Q.ty 1000
A (max) 330
B (min) 1.5
C (± 0.2) 13
F20.2
G (+ 2 / -0) 16.4
N (min) 60
T (max) 22.4
Tape dimensions
According to Electronic Industries Association
(EIA) Standard 481 rev. A, Feb. 1986
All dimensions are in mm.
Tape width W 16
Tape Hole Spacing P0 (± 0.1) 4
Component Spacing P 12
Hole Diameter D (± 0.1/-0) 1.5
Hole Diameter D1 (min) 1.5
Hole Position F (± 0.05) 7.5
Compartment Depth K (max) 6.5
Hole Spacing P1 (± 0.1) 2
Top
cover
tape
End
Start
No componentsNo components Components
500mm min
500mm min
Empty components pockets
saled with cover tape.
User direction of feed
Reel dimensions
VNQ600P-E Revision history
25/26
6 Revision history
Table 16. Document revision history
Date Revision Changes
Oct-2004 1 Initial release.
02-Jul-2006 2 Added Table 16: Document revision history.
11-Nov-2008 3 Document converted to corporate template.
VNQ600P-E
26/26
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold pursuant to ST’s terms and conditions of sale.
Purchasers are solely responsible for the choice, selection and use of the ST products and services described herein, and ST assumes no
liability whatsoever relating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document refers to any third party products or services it shall not be deemed a license grant by ST for the use of such third party products
or services, or any intellectual property contained therein or considered as a warranty covering the use in any manner whatsoever of such
third party products or services or any intellectual property contained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
UNLESS EXPRESSLY APPROVED IN WRITING BY AN AUTHORIZED ST REPRESENTATIVE, ST PRODUCTS ARE NOT
RECOMMENDED, AUTHORIZED OR WARRANTED FOR USE IN MILITARY, AIR CRAFT, SPACE, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS, NOR IN PRODUCTS OR SYSTEMS WHERE FAILURE OR MALFUNCTION MAY RESULT IN PERSONAL INJURY,
DEATH, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE. ST PRODUCTS WHICH ARE NOT SPECIFIED AS "AUTOMOTIVE
GRADE" MAY ONLY BE USED IN AUTOMOTIVE APPLICATIONS AT USER’S OWN RISK.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST logo are trademarks or registered trademarks of ST in various countries.
Information in this document supersedes and replaces all information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2008 STMicroelectronics - All rights reserved
STMicroelectronics group of companies
Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan -
Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America
www.st.com