DS610 October 4, 2010 www.xilinx.com
Product Specification 1
© Copyright 2007–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.
Module 1:
Introduction and Ordering Information
DS610 (v3.0) October 4, 2010
Introduction
Features
Architectural Overview
Configuration Overview
General I/O Capabilities
Supported Packages and Package Marking
Ordering Information
Module 2:
Functional Description
DS610 (v3.0) October 4, 2010
The functionality of the Spartan®-3A DSP FPGA family is
described in the following documents.
UG331: Spartan-3 Generation FPGA User Guide
Clocking Resources
Digital Clock Managers (DCMs)
•Block RAM
Configurable Logic Blocks (CLBs)
-Distributed RAM
-SRL16 Shift Registers
-Carry and Arithmetic Logic
I/O Resources
Programmable Interconnect
ISE® Software Design Tools and IP Cores
Embedded Processing and Control Solutions
Pin Types and Package Overview
Package Drawings
Powering FPGAs
Power Management
UG332: Spartan-3 Generation Configuration User Guide
Configuration Overview
Configuration Pins and Behavior
Bitstream Sizes
Detailed Descriptions by Mode
-Master Serial Mode using Platform Flash PROM
-Master SPI Mode using Commodity Serial Flash
-Master BPI Mode using Commodity Parallel Flash
-Slave Parallel (SelectMAP) using a Processor
-Slave Serial using a Processor
-JTAG Mode
ISE iMPACT Programming Examples
MultiBoot Reconfiguration
Design Authentication using Device DNA
UG431: XtremeDSP™ DSP48A for Spartan-3A DSP
FPGAs User Guide
DSP48A Slice Design Considerations
DSP48A Architecture Highlights
-18 x 18-Bit Multipliers
-48-Bit Accumulator
-18-bit Pre-Adder
DSP48A Application Examples
Module 3:
DC and Switching Characteristics
DS610 (v3.0) October 4, 2010
DC Electrical Characteristics
Absolute Maximum Ratings
Supply Voltage Specifications
Recommended Operating Conditions
Switching Characteristics
I/O Timing
Configurable Logic Block (CLB) Timing
Digital Clock Manager (DCM) Timing
Block RAM Timing
XtremeDSP Slice Timing
Configuration and JTAG Timing
Module 4:
Pinout Descriptions
DS610 (v3.0) October 4, 2010
Pin Descriptions
Package Overview
Pinout Tables
Footprint Diagrams
1
Spartan-3A DSP FPGA Family Data Sheet
DS610 October 4, 2010 Product Specification
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 2
© Copyright 2007–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.
Introduction
The Spartan®-3A DSP family of Field-Programmable Gate Arrays
(FPGAs) solves the design challenges in most high- volume,
cost-sensitive, high-performance DSP applications.
The
two-member family offers densities ranging from
1.8 to 3.4
million
system gates, as shown in Ta bl e 1 .
The Spartan-3A DSP family builds on the success of the
Spartan-3A FPGA family by increasing the amount of memory per
logic and adding XtremeDSP™ DSP48A slices. New features
improve system performance and reduce the cost of configuration.
These Spartan-3A DSP FPGA enhancements, combined with
proven 90 nm process technology, deliver more functionality and
bandwidth per dollar than ever before, setting the new standard in
the programmable logic
and DSP processing
industry.
The Spartan-3A DSP FPGAs extend and enhance the Spartan-3A
FPGA family. The XC3SD1800A and the XC3SD3400A devices
are tailored for DSP applications and have additional block RAM
and XtremeDSP DSP48A slices. The XtremeDSP DSP48A slices
replace the 18x18 multipliers found in the Spartan-3A devices and
are based on the DSP48 blocks found in the Virtex®-4 devices.
The block RAMs are also enhanced to run faster by adding an
output register. Both the block RAM and DSP48A slices in the
Spartan-3A DSP devices run at 250 MHz in the lowest cost,
standard -4 speed grade.
Because of their exceptional DSP price/performance ratio,
Spartan-3A DSP FPGAs are ideally suited to a wide range of
consumer electronics applications, such as broadband access,
home networking, display/projection, and digital television.
The Spartan-3A DSP family is a superior alternative to mask
programmed ASICs. FPGAs avoid the high initial cost, lengthy
development cycles, and the inherent inflexibility of conventional
ASICs. Also, FPGA programmability permits design upgrades in
the field with no hardware replacement necessary, an impossibility
with ASICs.
Features
Very low cost, high-performance DSP solution for
high-volume, cost-conscious applications
250 MHz XtremeDSP DSP48A Slices
Dedicated 18-bit by 18-bit multiplier
Available pipeline stages for enhanced performance of at
least 250 MHz in the standard -4 speed grade
48-bit accumulator for multiply-accumulate (MAC) operation
Integrated adder for complex multiply or multiply-add
operation
Integrated 18-bit pre-adder
Optional cascaded Multiply or MAC
Hierarchical SelectRAM™ memory architecture
Up to 2268 Kbits of fast block RAM with byte write enables
for processor applications
Up to 373 Kbits of efficient distributed RAM
Registered outputs on the block RAM with operation of at
least 280 MHz in the standard -4 speed grade
Dual-range VCCAUX supply simplifies 3.3V-only design
Suspend, Hibernate modes reduce system power
Low-power option reduces quiescent current
Multi-voltage, multi-standard SelectIO™ interface pins
Up to 519 I/O pins or 227 differential signal pairs
LVCMOS, LVTTL, HSTL, and SSTL single-ended I/O
3.3V, 2.5V, 1.8V, 1.5V, and 1.2V signaling
Selectable output drive, up to 24 mA per pin
QUIETIO standard reduces I/O switching noise
Full 3.3V ± 10% compatibility and hot swap compliance
622+ Mb/s data transfer rate per differential I/O
LVDS, RSDS, mini-LVDS, HSTL/SSTL differential I/O with
integrated differential termination resistors
Enhanced Double Data Rate (DDR) support
DDR/DDR2 SDRAM support up to 333 Mb/s
Fully compliant 32-/64-bit, 33/66 MHz PCI support
Abundant, flexible logic resources
Densities up to 53712 logic cells, including optional shift
register
Efficient wide multiplexers, wide logic, fast carry logic
IEEE 1149.1/1532 JTAG programming/debug port
Eight Digital Clock Managers (DCMs)
Clock skew elimination (delay locked loop)
Frequency synthesis, multiplication, division
High-resolution phase shifting
Wide frequency range (5 MHz to over 320 MHz)
Eight low-skew global clock networks, eight additional clocks
per half device, plus abundant low-skew routing
Configuration interface to industry-standard PROMs
Low-cost, space-saving SPI serial Flash PROM
x8 or x8/x16 BPI parallel NOR Flash PROM
Low-cost Xilinx® Platform Flash with JTAG
Unique Device DNA identifier for design authentication
Load multiple bitstreams under FPGA control
Post-configuration CRC checking
MicroBlaze™ and PicoBlaze embedded processor cores
BGA and CSP packaging with Pb-free options
Common footprints support easy density migration
XA Automotive version available
6Spartan-3A DSP FPGA Family:
Introduction and Ordering Information
DS610 (v3.0) October 4, 2010 Product Specification
Table 1: Summary of Spartan-3A DSP FPGA Attributes
Device
System
Gates
Equivalent
Logic Cells
CLB Array (One CLB = Four Slices) Distributed
RAM
Bits(1)
Block
RAM
Bits(1) DSP48As DCMs
Maximum
User I/O
Maximum
Differential
I/O PairsRows Columns
Total
CLBs
Total
Slices
XC3SD1800A 1800K 37,440 88 48 4,160 16,640 260K 1512K 84 8 519 227
XC3SD3400A 3400K 53,712 104 58 5,968 23,872 373K 2268K 126 8 469 213
Notes:
1. By convention, one Kb is equivalent to 1,024 bits.
Spartan-3A DSP FPGA Family: Introduction and Ordering Information
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 3
Architectural Overview
The Spartan-3A DSP family architecture consists of five fundamental programmable functional elements:
XtremeDSP™ DSP48A Slice provides an 18-bit x
18-bit multiplier, 18-bit pre-adder, 48-bit
post-adder/accumulator, and cascade capabilities for
various DSP applications.
Block RAM provides data storage in the form of
18-Kbit dual-port blocks.
Configurable Logic Blocks (CLBs) contain flexible
Look-Up Tables (LUTs) that implement logic plus
storage elements used as flip-flops or latches. CLBs
perform a wide variety of logical functions as well as
store data.
Input/Output Blocks (IOBs) control the flow of data
between the I/O pins and the internal logic of the
device. IOBs support bidirectional data flow plus
3-state operation. Supports a variety of signal
standards, including several high-performance
differential standards. Double Data-Rate (DDR)
registers are included.
Digital Clock Manager (DCM) Blocks provide
self-calibrating, fully digital solutions for distributing,
delaying, multiplying, dividing, and phase-shifting clock
signals.
These elements are organized as shown in Figure 1. A dual
ring of staggered IOBs surrounds a regular array of CLBs.
The XC3SD1800A has four columns of DSP48As, and the
XC3SD3400A has five columns of DSP48As. Each
DSP48A has an associated block RAM. The DCMs are
positioned in the center with two at the top and two at the
bottom of the device and in the two outer columns of the 4 or
5 columns of block RAM and DSP48As.
The Spartan-3A DSP family features a rich network of
routing that interconnect all five functional elements,
transmitting signals among them. Each functional element
has an associated switch matrix that permits multiple
connections to the routing.
X-Ref Target - Figure 1
Figure 1: Spartan-3A DSP Family Architecture
CLB
Block RAM
DCM
IOBs
IOBs
DS610-1_01_031207
IOBs
IOBs
DCM
Block RAM / DSP48A Slice
DCM
CLBs
IOBs
DSP48A Slice
Notes:
1. The XC3SD1800A and XC3SD3400A have two DCMs on both the left and right sides, as well as the two DCMs at the top and
bottom of the devices. The two DCMs on the left and right of the chips are in the middle of the outer Block RAM/DSP48A
columns of the 4 or 5 columns in the selected device, as shown in the diagram above.
2. A detailed diagram of the DSP48A can be found in UG431: XtremeDSP DSP48A for Spartan-3A DSP FPGAs User Guide.
Spartan-3A DSP FPGA Family: Introduction and Ordering Information
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 4
Configuration
Spartan-3A DSP FPGAs are programmed by loading
configuration data into robust, reprogrammable, static
CMOS configuration latches (CCLs) that collectively control
all functional elements and routing resources. The FPGA’s
configuration data is stored externally in a PROM or some
other non-volatile medium, either on or off the board. After
applying power, the configuration data is written to the
FPGA using any of seven different modes:
Master Serial from a Xilinx Platform Flash PROM
Serial Peripheral Interface (SPI) from an
industry-standard SPI serial Flash
Byte Peripheral Interface (BPI) Up from an
industry-standard x8 or x8/x16 parallel NOR Flash
Slave Serial, typically downloaded from a processor
Slave Parallel, typically downloaded from a processor
Boundary Scan (JTAG), typically downloaded from a
processor or system tester
Furthermore, Spartan-3A DSP FPGAs support MultiBoot
configuration, allowing two or more FPGA configuration
bitstreams to be stored in a single SPI serial Flash or a BPI
parallel NOR Flash. The FPGA application controls which
configuration to load next and when to load it.
Additionally, each Spartan-3A DSP FPGA contains a
unique, factory-programmed Device DNA identifier useful
for tracking purposes, anti-cloning designs, or IP protection.
I/O Capabilities
The Spartan-3A DSP FPGA SelectIO interface supports
many popular single-ended and differential standards.
Tabl e 2 shows the number of user I/Os as well as the
number of differential I/O pairs available for each
device/package combination. Some of the user I/Os are
unidirectional input-only pins as indicated in Tab l e 2 .
Spartan-3A DSP FPGAs support the following single-ended
standards:
3.3V low-voltage TTL (LVTTL)
Low-voltage CMOS (LVCMOS) at 3.3V, 2.5V, 1.8V,
1.5V, or 1.2V
3.3V PCI at 33 MHz or 66 MHz
HSTL I, II, and III at 1.5V and 1.8V, commonly used in
memory applications
SSTL I and II at 1.8V, 2.5V, and 3.3V, commonly used
for memory applications
Spartan-3A DSP FPGAs support the following
differential standards:
LVDS, mini-LVDS, RSDS, and PPDS I/O at 2.5V or
3.3V
Bus LVDS I/O at 2.5V
TMDS I/O at 3.3V
Differential HSTL and SSTL I/O
LVPECL inputs at 2.5V or 3.3V
Tabl e 2: Available User I/Os and Differential (Diff) I/O Pairs
Device
CS484
CSG484
FG676
FGG676
User Diff User Diff
XC3SD1800A 309(1)
(60)
140
(78)
519
(110)
227
(131)
XC3SD3400A 309
(60)
140
(78)
469
(60)
213
(117)
Notes:
1. The number shown in bold indicates the maximum number of I/O and input-only pins. The number shown in (italics) indicates the number of
input-only pins. The differential (Diff) input-only pin count includes both differential pairs on input-only pins and differential pairs on I/O pins within I/O
banks that are restricted to differential inputs.
Spartan-3A DSP FPGA Family: Introduction and Ordering Information
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 5
Package Marking
Figure 2 shows the top marking for Spartan-3A DSP FPGAs. The “5C” and4I” Speed Grade/Temperature Range part
combinations may be dual marked as “5C/4I”. Devices with the dual mark can be used as either -5C or -4I devices. Devices
with a single mark are only guaranteed for the marked speed grade and temperature range.
Ordering Information
Spartan-3A DSP FPGAs are available in both standard and Pb-free packaging options for all device/package combinations.
The Pb-free packages include a ‘G’ character in the ordering code.
X-Ref Target - Figure 2
Figure 2: Spartan-3A DSP FPGA Package Marking Example
Device Speed Grade Package Type / Number of Pins Power/Temperature Range
(TJ)
XC3SD1800A -4 Standard Performance CS484/
CSG484
484-ball Chip-Scale Ball Grid Array (CSBGA) C Commercial (0°C to 85°C)
XC3SD3400A -5 High Performance(1) FG676/
FGG676
676-ball Fine-Pitch Ball Grid Array (FBGA) I Industrial (–40°C to 100°C)
LI Low-power Industrial
(–40°C to 100°C)(2)
Notes:
1. The -5 speed grade is exclusively available in the Commercial temperature range.
2. The low-power option (LI) is exclusively available in the CS(G)484 package and industrial temperature range.
3. See DS705, XA Spartan-3A DSP Automotive FPGA Family Data Sheet for the XA Automotive Spartan-3A DSP FPGAs.
Lot Code
Date Code
L4 I
SPARTAN
Device Type
BGA Ball A1
Package
Low-Power
(optional)
Speed Grade
Operating Range
R
R
DS610-1_02_070607
CSG484XGQ####
X#######X
Mask Revision
Fabrication/
Process Code
XC3SD1800A
-4 CS 484 LI
Device Type
Speed Grade
Power/Temperature Range
Package Type
Number of Pins
Example:
DS610-1_05_021009
XC3SD1800A
Spartan-3A DSP FPGA Family: Introduction and Ordering Information
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 6
Revision History
The following table shows the revision history for this document.
Notice of Disclaimer
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO
APPLICABLE LAWS AND REGULATIONS.
CRITICAL APPLICATIONS DISCLAIMER
XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE
FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR
SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE
DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE
PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, “CRITICAL APPLICATIONS”). FURTHERMORE,
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A
VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF
SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE
OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX
PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL
APPLICATIONS.
AUTOMOTIVE APPLICATIONS DISCLAIMER
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING
FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A
VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN
THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III)
USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY
USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.
Date Version Revision
04/02/07 1.0 Initial Xilinx release.
05/25/07 1.0.1 Minor edits.
06/18/07 1.2 Updated for Production release.
07/16/07 2.0 Added Low-power options.
06/02/08 2.1 Added reference to SCD 4103 for 750 Mbps performance. Add dual mark clarification to Package
Marking. Updated links.
03/11/09 2.2 Simplified ordering information. Removed reference to SCD 4103.
10/04/10 3.0 Updated the Notice of Disclaimer section.
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 7
© Copyright 2007–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.
Spartan-3A DSP FPGA Design Documentation
The functionality of the Spartan®-3A DSP FPGA family is described in the following documents. The topics covered in each
guide are listed.
DS706: Extended Spartan-3A Family Overview
UG331: Spartan-3 Generation FPGA User Guide
Clocking Resources
Digital Clock Managers (DCMs)
Block RAM
Configurable Logic Blocks (CLBs)
-Distributed RAM
-SRL16 Shift Registers
-Carry and Arithmetic Logic
I/O Resources
Programmable Interconnect
ISE® Software Design Tools
•IP Cores
Embedded Processing and Control Solutions
Pin Types and Package Overview
Package Drawings
Powering FPGAs
Power Management
UG332: Spartan-3 Generation Configuration User
Guide
Configuration Overview
-Configuration Pins and Behavior
-Bitstream Sizes
Detailed Descriptions by Mode
-Master Serial Mode using Xilinx Platform Flash
PROM
-Master SPI Mode using Commodity SPI Serial
Flash PROM
-Master BPI Mode using Commodity Parallel
NOR Flash PROM
-Slave Parallel (SelectMAP) using a Processor
-Slave Serial using a Processor
-JTAG Mode
ISE iMPACT Programming Examples
MultiBoot Reconfiguration
Design Authentication using Device DNA
UG431: XtremeDSP DSP48A for Spartan-3A DSP
FPGAs User Guide
XtremeDSP DSP48A Slices
XtremeDSP DSP48A Pre-Adder
For specific hardware examples, please see the Spartan-3A
DSP FPGA Starter Kit board web pages.
XtremeDSP Starter Platform—Spartan-3A DSP
1800A Edition
http://www.xilinx.com/products/devkits
/HW-SD1800A-DSP-SB-UNI-G.htm
XtremeDSP Starter Kit—Spartan-3A DSP 1800A
Edition
http://www.xilinx.com/products/devkits
/DO-SD1800A-DSP-SK-UNI-G.htm
XtremeDSP Video Starter Kit—Spartan-3A DSP
Edition
http://www.xilinx.com/products/devkits
/DO-S3ADSP-VIDEO-SK-UNI-G.htm
Embedded Development HW/SW Kit—Spartan-3A
DSP S3D1800A MicroBlaze Processor Edition
http://www.xilinx.com/products/devkits
/DO-SD1800A-EDK-DK-UNI-G.htm
Create a Xilinx user account and sign up to receive
automatic e-mail notification whenever this data sheet or
the associated user guides are updated.
Sign Up for Alerts on Xilinx.com
https://secure.xilinx.com/webreg/register.do?group=my
profile&languageID=1
8Spartan-3A DSP FPGA Family:
Functional Description
DS610 (v3.0) October 4, 2010 Product Specification
Spartan-3A DSP FPGA Family: Functional Description
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 8
Revision History
The following table shows the revision history for this document.
Notice of Disclaimer
THE XILINX HARDWARE FPGA AND CPLD DEVICES REFERRED TO HEREIN (“PRODUCTS”) ARE SUBJECT TO THE TERMS AND
CONDITIONS OF THE XILINX LIMITED WARRANTY WHICH CAN BE VIEWED AT http://www.xilinx.com/warranty.htm. THIS LIMITED
WARRANTY DOES NOT EXTEND TO ANY USE OF PRODUCTS IN AN APPLICATION OR ENVIRONMENT THAT IS NOT WITHIN THE
SPECIFICATIONS STATED IN THE XILINX DATA SHEET. ALL SPECIFICATIONS ARE SUBJECT TO CHANGE WITHOUT NOTICE.
PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE
PERFORMANCE, SUCH AS LIFE-SUPPORT OR SAFETY DEVICES OR SYSTEMS, OR ANY OTHER APPLICATION THAT INVOKES
THE POTENTIAL RISKS OF DEATH, PERSONAL INJURY, OR PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). USE OF PRODUCTS IN CRITICAL APPLICATIONS IS AT THE SOLE RISK OF CUSTOMER, SUBJECT TO
APPLICABLE LAWS AND REGULATIONS.
CRITICAL APPLICATIONS DISCLAIMER
XILINX PRODUCTS (INCLUDING HARDWARE, SOFTWARE AND/OR IP CORES) ARE NOT DESIGNED OR INTENDED TO BE
FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING FAIL-SAFE PERFORMANCE, SUCH AS IN LIFE-SUPPORT OR
SAFETY DEVICES OR SYSTEMS, CLASS III MEDICAL DEVICES, NUCLEAR FACILITIES, APPLICATIONS RELATED TO THE
DEPLOYMENT OF AIRBAGS, OR ANY OTHER APPLICATIONS THAT COULD LEAD TO DEATH, PERSONAL INJURY OR SEVERE
PROPERTY OR ENVIRONMENTAL DAMAGE (INDIVIDUALLY AND COLLECTIVELY, “CRITICAL APPLICATIONS”). FURTHERMORE,
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED FOR USE IN ANY APPLICATIONS THAT AFFECT CONTROL OF A
VEHICLE OR AIRCRAFT, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF
SOFTWARE IN THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE
OPERATOR. CUSTOMER AGREES, PRIOR TO USING OR DISTRIBUTING ANY SYSTEMS THAT INCORPORATE XILINX
PRODUCTS, TO THOROUGHLY TEST THE SAME FOR SAFETY PURPOSES. TO THE MAXIMUM EXTENT PERMITTED BY
APPLICABLE LAW, CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY USE OF XILINX PRODUCTS IN CRITICAL
APPLICATIONS.
AUTOMOTIVE APPLICATIONS DISCLAIMER
XILINX PRODUCTS ARE NOT DESIGNED OR INTENDED TO BE FAIL-SAFE, OR FOR USE IN ANY APPLICATION REQUIRING
FAIL-SAFE PERFORMANCE, SUCH AS APPLICATIONS RELATED TO: (I) THE DEPLOYMENT OF AIRBAGS, (II) CONTROL OF A
VEHICLE, UNLESS THERE IS A FAIL-SAFE OR REDUNDANCY FEATURE (WHICH DOES NOT INCLUDE USE OF SOFTWARE IN
THE XILINX DEVICE TO IMPLEMENT THE REDUNDANCY) AND A WARNING SIGNAL UPON FAILURE TO THE OPERATOR, OR (III)
USES THAT COULD LEAD TO DEATH OR PERSONAL INJURY. CUSTOMER ASSUMES THE SOLE RISK AND LIABILITY OF ANY
USE OF XILINX PRODUCTS IN SUCH APPLICATIONS.
Date Version Revision
04/02/07 1.0 Initial Xilinx release.
05/25/07 1.0.1 Minor edits.
06/18/07 1.2 Updated for Production release.
07/16/07 2.0 Added Low-power options; no changes to this module.
06/02/08 2.1 Updated links.
03/11/09 2.2 Added link to DS706 on Extended Spartan-3A family.
10/04/10 3.0 Updated link to sign up for Alerts and updated Notice of Disclaimer.
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 9
© Copyright 2007–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.
DC Electrical Characteristics
In this section, specifications may be designated as
Advance, Preliminary, or Production. These terms are
defined as follows:
Advance: Initial estimates are based on simulation, early
characterization, and/or extrapolation from the
characteristics of other families. Values are subject to
change. Use as estimates, not for production.
Preliminary: Based on characterization. Further changes
are not expected.
Production: These specifications are approved once the
silicon has been characterized over numerous production
lots. Parameter values are considered stable with no future
changes expected.
All parameter limits are representative of worst-case supply
voltage and junction temperature conditions. Unless
otherwise noted, the published parameter values apply
to all Spartan®-3A DSP devices. AC and DC
characteristics are specified using the same numbers
for both commercial and industrial grades.
Absolute Maximum Ratings
Stresses beyond those listed under Ta b l e 3 : Absolute
Maximum Ratings may cause permanent damage to the
device. These are stress ratings only; functional operation
of the device at these or any other conditions beyond those
listed under the Recommended Operating Conditions is not
implied. Exposure to absolute maximum conditions for
extended periods of time adversely affects device reliability.
61 Spartan-3A DSP FPGA Family:
DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 Product Specification
Tabl e 3: Absolute Maximum Ratings
Symbol Description Conditions Min Max Units
VCCINT Internal supply voltage –0.5 1.32 V
VCCAUX Auxiliary supply voltage –0.5 3.75 V
VCCO Output driver supply voltage –0.5 3.75 V
VREF Input reference voltage –0.5 VCCO +0.5 V
VIN Voltage applied to all User I/O pins and
Dual-Purpose pins Driver in a high-impedance state
–0.95 4.6 V
Voltage applied to all Dedicated pins –0.5 4.6 V
IIK Input clamp current per I/O pin –0.5V < VIN <(V
CCO +0.5V)(1) –±100mA
VESD Electrostatic Discharge Voltage Human body model ±2000 V
Charged device model –±500V
Machine model –±200V
TJJunction temperature –125°C
TSTG Storage temperature –65 150 °C
Notes:
1. Upper clamp applies only when using PCI IOSTANDARDs.
2. For soldering guidelines, see UG112: Device Packaging and Thermal Characteristics and XAPP427: Implementation and Solder Reflow
Guidelines for Pb-Free Packages.
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 10
Power Supply Specifications
Tabl e 4: Supply Voltage Thresholds for Power-On Reset
Symbol Description Min Max Units
VCCINTT Threshold for the VCCINT supply 0.4 1.0 V
VCCAUXT Threshold for the VCCAUX supply 1.0 2.0 V
VCCO2T Threshold for the VCCO Bank 2 supply 1.0 2.0 V
Notes:
1. VCCINT
, VCCAUX, and VCCO supplies to the FPGA can be applied in any order. However, the FPGA configuration source (Platform Flash, SPI
Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source.
Apply VCCINT last for lowest overall power consumption (see the UG331 chapter titled "Powering Spartan-3 Generation FPGAs" for more
information).
2. To ensure successful power-on, VCCINT
, VCCO Bank 2, and VCCAUX supplies must rise through their respective threshold-voltage ranges with
no dips at any point.
Tabl e 5: Supply Voltage Ramp Rate
Symbol Description Min Max Units
VCCINTR Ramp rate from GND to valid VCCINT supply level 0.2 100 ms
VCCAUXR Ramp rate from GND to valid VCCAUX supply level 0.2 100 ms
VCCO2R Ramp rate from GND to valid VCCO Bank 2 supply level 0.2 100 ms
Notes:
1. VCCINT
, VCCAUX, and VCCO supplies to the FPGA can be applied in any order. However, the FPGA configuration source (Platform Flash, SPI
Flash, parallel NOR Flash, microcontroller) might have specific requirements. Check the data sheet for the attached configuration source.
Apply VCCINT last for lowest overall power consumption (see the UG331 chapter titled "Powering Spartan-3 Generation FPGAs" for more
information).
2. To ensure successful power-on, VCCINT
, VCCO Bank 2, and VCCAUX supplies must rise through their respective threshold-voltage ranges with
no dips at any point.
Tabl e 6:
Supply Voltage Levels Necessary for Preserving CMOS Configuration Latch (CCL) Contents and RAM Data
Symbol Description Min Units
VDRINT VCCINT level required to retain CMOS Configuration Latch (CCL) and RAM data 1.0 V
VDRAUX VCCAUX level required to retain CMOS Configuration Latch (CCL) and RAM data 2.0 V
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 11
General Recommended Operating Conditions
Tabl e 7: General Recommended Operating Conditions
Symbol Description Min Nominal Max Units
TJJunction temperature Commercial 0 –85°C
Industrial –40 –100°C
VCCINT Internal supply voltage 1.14 1.20 1.26 V
VCCO(1) Output driver supply voltage 1.10 –3.60V
VCCAUX Auxiliary supply voltage(2) VCCAUX = 2.5 2.25 2.50 2.75 V
VCCAUX = 3.3 3.00 3.30 3.60 V
VIN(3) Input voltage PCI™ IOSTANDARD –0.5 –V
CCO+0.5 V
All other
IOSTANDARDs
IP or IO_# –0.5 –4.10V
IO_Lxxy_#(4) –0.5 –4.10V
TIN Input signal transition time(5) 500 ns
Notes:
1. This VCCO range spans the lowest and highest operating voltages for all supported I/O standards. Tab l e 10 lists the recommended VCCO
range specific to each of the single-ended I/O standards, and Ta b l e 1 2 lists that specific to the differential standards.
2. Define VCCAUX selection using CONFIG VCCAUX constraint.
3. See XAPP459, Eliminating I/O Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins on Spartan-3 Families.
4. For single-ended signals that are placed on a differential-capable I/O, VIN of –0.2V to –0.5V is supported but can cause increased leakage
between the two pins. See Parasitic Leakage in UG331, Spartan-3 Generation FPGA User Guide.
5. Measured between 10% and 90% VCCO. Follow Signal Integrity recommendations.
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 12
General DC Characteristics for I/O Pins
Tabl e 8: General DC Characteristics of User I/O, Dual-Purpose, and Dedicated Pins (1)
Symbol Description Test Conditions Min Typ Max Units
IL(2) Leakage current at User I/O,
Input-only, Dual-Purpose, and
Dedicated pins, FPGA powered
Driver is in a high-impedance state,
VIN =0V or V
CCO max, sample-tested
–10 –+10µA
IHS Leakage current on pins during
hot socketing, FPGA unpowered
All pins except INIT_B, PROG_B, DONE, and JTAG pins
when PUDC_B = 1.
–10 –+10µA
INIT_B, PROG_B, DONE, and JTAG pins or other pins
when PUDC_B = 0.
Add IHS + IRPU µA
IRPU(3) Current through pull-up resistor
at User I/O, Dual-Purpose,
Input-only, and Dedicated pins.
Dedicated pins are powered by
VCCAUX.
VIN = GND VCCO or VCCAUX = 3.0V to 3.6V –151 –315 –710 µA
VCCO or VCCAUX = 2.3V to 2.7V –82 –182 –437 µA
VCCO = 1.7V to 1.9V –36 –88 –226 µA
VCCO = 1.4V to 1.6V –22 –56 –148 µA
VCCO = 1.14V to 1.26V –11 –31 –83 µA
RPU(3) Equivalent pull-up resistor value
at User I/O, Dual-Purpose,
Input-only, and Dedicated pins
(based on IRPU per Note 2)
VIN = GND VCCO = 3.0V to 3.6V 5.1 11.4 23.9 kΩ
VCCO = 2.3V to 2.7V 6.2 14.8 33.1 kΩ
VCCO = 1.7V to 1.9V 8.4 21.6 52.6 kΩ
VCCO = 1.4V to 1.6V 10.8 28.4 74.0 kΩ
VCCO = 1.14V to 1.26V 15.3 41.1 119.4 kΩ
IRPD(3) Current through pull-down
resistor at User I/O,
Dual-Purpose, Input-only, and
Dedicated pins
VIN = VCCO VCCAUX = 3.0V to 3.6V 167 346 659 µA
VCCAUX = 2.25V to 2.75V 100 225 457 µA
RPD(3) Equivalent pull-down resistor
value at User I/O, Dual-Purpose,
Input-only, and Dedicated pins
(based on IRPD per Note 2)
VCCAUX = 3.0V to 3.6V VIN = 3.0V to 3.6V 5.5 10.4 20.8 kΩ
VIN = 2.3V to 2.7V 4.1 7.8 15.7 kΩ
VIN = 1.7V to 1.9V 3.0 5.7 11.1 kΩ
VIN = 1.4V to 1.6V 2.7 5.1 9.6 kΩ
VIN = 1.14V to 1.26V 2.4 4.5 8.1 kΩ
VCCAUX = 2.25V to 2.75V VIN = 3.0V to 3.6V 7.9 16.0 35.0 kΩ
VIN = 2.3V to 2.7V 5.9 12.0 26.3 kΩ
VIN = 1.7V to 1.9V 4.2 8.5 18.6 kΩ
VIN = 1.4V to 1.6V 3.6 7.2 15.7 kΩ
VIN = 1.14V to 1.26V 3.0 6.0 12.5 kΩ
IREF VREF current per pin All VCCO levels –10 –+10µA
CIN Input capacitance –10pF
RDT Resistance of optional
differential termination circuit
within a differential I/O pair. Not
available on Input-only pairs.
VCCO = 3.3V ± 10% LVDS_33, MINI_LVDS_33,
RSDS_33
90 100 115 Ω
VCCO = 2.5V ± 10% LVDS_25, MINI_LVDS_25,
RSDS_25
90 110 Ω
Notes:
1. The numbers in this table are based on the conditions set forth in Tabl e 7 .
2. For single-ended signals that are placed on a differential-capable I/O, VIN of –0.2V to –0.5V is supported but can cause increased leakage
between the two pins. See Parasitic Leakage in UG331, Spartan-3 Generation FPGA User Guide.
3. This parameter is based on characterization. The pull-up resistance RPU = VCCO/IRPU. The pull-down resistance RPD =V
IN /I
RPD.
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 13
Quiescent Current Requirements
Tabl e 9: Quiescent Supply Current Characteristics(1)
Symbol Description Device Power Typical(2) Commercial
Maximum(2) Industrial
Maximum(2) Units
ICCINTQ Quiescent VCCINT supply current XC3SD1800A C,I 41 390 500 mA
LI 36 175 mA
XC3SD3400A C,I 64 550 725 mA
LI 55 300 mA
ICCOQ Quiescent VCCO supply current XC3SD1800A C,I 0.4 4 5 mA
LI 0.2 –5mA
XC3SD3400A C,I 0.4 4 5 mA
LI 0.2 –5mA
ICCAUXQ Quiescent VCCAUX supply current XC3SD1800A C,I 25 90 110 mA
LI 24 –72mA
XC3SD3400A C,I 39 130 160 mA
LI 38 105 mA
Notes:
1. The numbers in this table are based on the conditions set forth in Tabl e 7 .
2. Quiescent supply current is measured with all I/O drivers in a high-impedance state and with all pull-up/pull-down resistors at the I/O pads
disabled. Typical values are characterized using typical devices at room temperature (TJ of 25°C at VCCINT = 1.2V, VCCO = 3.3V, and VCCAUX
= 2.5V). The maximum limits are tested for each device at the respective maximum specified junction temperature and at maximum voltage
limits with VCCINT = 1.26V, VCCO = 3.6V, and VCCAUX = 3.6V. The FPGA is programmed with a “blank” configuration data file (that is, a design
with no functional elements instantiated). For conditions other than those described above (for example, a design including functional
elements), measured quiescent current levels will be different than the values in the table.
3. For more accurate estimates for a specific design, use the Xilinx XPower tools. There are two recommended ways to estimate the total power
consumption (quiescent plus dynamic) for a specific design: a) The Spartan-3A DSP FPGA XPower Estimator provides quick, approximate,
typical estimates, and does not require a netlist of the design. b) XPower Analyzer uses a netlist as input to provide maximum estimates as
well as more accurate typical estimates.
4. The maximum numbers in this table indicate the minimum current each power rail requires in order for the FPGA to power-on successfully.
5. For information on the power-saving Suspend mode, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs. Suspend mode
typically saves 40% total power consumption compared to quiescent current.
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 14
Single-Ended I/O Standards
Tabl e 10 : Recommended Operating Conditions for User I/Os Using Single-Ended Standards
IOSTANDARD
Attribute
VCCO for Drivers(2) VREF VIL VIH(3)
Min (V) Nom (V) Max (V) Min (V) Nom (V) Max (V) Max (V) Min (V)
LVTT L 3. 0 3.3 3. 6
VREF is not used for
these I/O standards
0.8 2.0
LVC M OS 33 (4) 3.0 3.3 3.6 0.8 2.0
LVC M OS 25 (4,5) 2.3 2.5 2.7 0.7 1.7
LVCMOS18 1.65 1.8 1.95 0.4 0.8
LVCMOS15 1.4 1.5 1.6 0.4 0.8
LVCMOS12 1.1 1.2 1.3 0.4 0.7
PCI33_3(6) 3.0 3.3 3.6 0.3 VCCO 0.5 VCCO
PCI66_3(6) 3.0 3.3 3.6 0.3 VCCO 0.5 VCCO
HSTL_I 1.4 1.5 1.6 0.68 0.75 0.9 VREF –0.1 V
REF +0.1
HSTL_III 1.4 1.5 1.6 –0.9 –V
REF –0.1 V
REF +0.1
HSTL_I_18 1.7 1.8 1.9 0.8 0.9 1.1 VREF –0.1 V
REF +0.1
HSTL_II_18 1.7 1.8 1.9 –0.9 –V
REF –0.1 V
REF +0.1
HSTL_III_18 1.7 1.8 1.9 –1.1 –V
REF –0.1 V
REF +0.1
SSTL18_I 1.7 1.8 1.9 0.833 0.900 0.969 VREF –0.125 V
REF +0.125
SSTL18_II 1.7 1.8 1.9 0.833 0.900 0.969 VREF –0.125 V
REF +0.125
SSTL2_I 2.3 2.5 2.7 1.13 1.25 1.38 VREF –0.150 V
REF +0.150
SSTL2_II 2.3 2.5 2.7 1.13 1.25 1.38 VREF –0.150 V
REF +0.150
SSTL3_I 3.0 3.3 3.6 1.3 1.5 1.7 VREF –0.2 V
REF +0.2
SSTL3_II 3.0 3.3 3.6 1.3 1.5 1.7 VREF –0.2 V
REF +0.2
Notes:
1. Descriptions of the symbols used in this table are as follows:
VCCO—the supply voltage for output drivers
VREF—the reference voltage for setting the input switching threshold
VIL—the input voltage that indicates a Low logic level
VIH—the input voltage that indicates a High logic level
2. In general, the VCCO rails supply only output drivers, not input circuits. The exceptions are for LVCMOS25 inputs when VCCAUX = 3.3V range
and for PCI I/O standards.
3. For device operation, the maximum signal voltage (VIH max) can be as high as VIN max. See Ta b le 7 .
4. There is approximately 100 mV of hysteresis on inputs using LVCMOS33 and LVCMOS25 I/O standards.
5. All Dedicated pins (PROG_B, DONE, SUSPEND, TCK, TDI, TDO, and TMS) draw power from the VCCAUX rail and use the LVCMOS25 or
LVCMOS33 standard depending on VCCAUX. The Dual-Purpose configuration pins use the LVCMOS standard before the User mode. When
using these pins as part of a standard 2.5V configuration interface, apply 2.5V to the VCCO lines of Banks 0, 1, and 2 at power-on as well as
throughout configuration.
6. For information on PCI IP solutions, see www.xilinx.com/pci. The PCI IOSTANDARD is not supported on input-only pins. The PCIX
IOSTANDARD is available and has equivalent characteristics but no PCI-X IP is supported.
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 15
Tabl e 11 : DC Characteristics of User I/Os Using
Single-Ended Standards
IOSTANDARD
Attribute
Test
Conditions
Logic Level
Characteristics
IOL
(mA)
IOH
(mA)
VOL
Max (V)
VOH
Min (V)
LVTT L(3) 2 2 –2 0.4 2.4
444
666
888
12 12 –12
16 16 –16
24 24 –24
LVC M OS 33 (3) 2 2 –2 0.4 VCCO 0.4
444
666
888
12 12 –12
16 16 –16
24(5) 24 –24
LVC M OS 25 (3) 2 2 –2 0.4 VCCO 0.4
444
666
888
12 12 –12
16(5) 16 –16
24(5) 24 –24
LVC M OS 18 (3) 2 2 –2 0.4 VCCO 0.4
444
666
888
12(5) 12 –12
16(5) 16 –16
LVC M OS 15 (3) 2 2 –2 0.4 VCCO 0.4
444
666
8(5) 8–8
12(5) 12 –12
LVC M OS 12 (3) 2 2 –2 0.4 VCCO 0.4
4(5) 4–4
6(5) 6–6
PCI33_3(4) 1.5 –0.5 10% VCCO 90% VCCO
PCI66_3(4) 1.5 –0.5 10% VCCO 90% VCCO
HSTL_I (5) 8–8 0.4 V
CCO 0.4
HSTL_III (5) 24 –8 0.4 VCCO 0.4
HSTL_I_18 8 –8 0.4 VCCO 0.4
HSTL_II_18(5) 16 –16 0.4 VCCO 0.4
HSTL_III_18 24 –8 0.4 VCCO 0.4
SSTL18_I 6.7 –6.7 VTT 0.475 VTT + 0.475
SSTL18_II(5) 13.4 –13.4 VTT 0.603 VTT + 0.603
SSTL2_I 8.1 –8.1 VTT 0.61 VTT +0.61
SSTL2_II(5) 16.2 –16.2 VTT 0.81 VTT +0.81
SSTL3_I 8 –8 VTT 0.6 VTT +0.6
SSTL3_II(5) 16 –16 VTT 0.8 VTT +0.8
Notes:
1. The numbers in this table are based on the conditions set forth in
Tabl e 7 and Ta b l e 1 0 .
2. Descriptions of the symbols used in this table are as follows:
IOL—the output current condition under which VOL is tested
IOH—the output current condition under which VOH is tested
VOL— the output voltage that indicates a Low logic level
VOH—the output voltage that indicates a High logic level
VCCO—the supply voltage for output drivers
VTT—the voltage applied to a resistor termination
3. For the LVCMOS and LVTTL standards: the same VOL and VOH
limits apply for the Fast, Slow, and QUIETIO slew attributes.
4. Tested according to the relevant PCI specifications. For
information on PCI IP solutions, see www.xilinx.com/products/
design_resources/conn_central/protocols/pci_pcix.htm. The
PCIX IOSTANDARD is available and has equivalent
characteristics but no PCI-X IP is supported.
5. These higher-drive output standards are supported only on
FPGA banks 1 and 3. Inputs are unrestricted. See the Using I/O
Resources chapter in UG331.
Tabl e 1 1 : DC Characteristics of User I/Os Using
Single-Ended Standards (Cont’d)
IOSTANDARD
Attribute
Test
Conditions
Logic Level
Characteristics
IOL
(mA)
IOH
(mA)
VOL
Max (V)
VOH
Min (V)
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 16
Differential I/O Standards
Differential Input Pairs
X-Ref Target - Figure 3
Figure 3: Differential Input Voltages
Tabl e 12 : Recommended Operating Conditions for User I/Os Using Differential Signal Standards
IOSTANDARD Attribute VCCO for Drivers(1) VID VICM(2)
Min (V) Nom (V) Max (V) Min (mV) Nom (mV) Max (mV) Min (V) Nom (V) Max (V)
LVD S _2 5 (3) 2.25 2.5 2.75 100 350 600 0.3 1.25 2.35
LVD S _3 3 (3) 3.0 3.3 3.6 100 350 600 0.3 1.25 2.35
BLVDS_25(4) 2.25 2.5 2.75 100 300 –0.31.32.35
MINI_LVDS_25(3) 2.25 2.5 2.75 200 600 0.3 1.2 1.95
MINI_LVDS_33(3) 3.0 3.3 3.6 200 600 0.3 1.2 1.95
LVPECL_25(5) Inputs Only 100 800 1000 0.3 1.2 1.95
LVPECL_33(5) Inputs Only 100 800 1000 0.3 1.2 2.8(6)
RSDS_25(3) 2.25 2.5 2.75 100 200 –0.31.21.5
RSDS_33(3) 3.0 3.3 3.6 100 200 –0.31.21.5
TMDS_33(3,4,7)3.14 3.3 3.47 150 1200 2.7 –3.23
PPDS_25(3) 2.25 2.5 2.75 100 400 0.2 –2.3
PPDS_33(3) 3.0 3.3 3.6 100 400 0.2 –2.3
DIFF_HSTL_I_18 1.7 1.8 1.9 100 –0.8–1.1
DIFF_HSTL_II_18(8) 1.7 1.8 1.9 100 –0.8–1.1
DIFF_HSTL_III_18 1.7 1.8 1.9 100 –0.8–1.1
DIFF_HSTL_I 1.4 1.5 1.6 100 –0.68–0.9
DIFF_HSTL_III 1.4 1.5 1.6 100 –––0.9
DIFF_SSTL18_I 1.7 1.8 1.9 100 –0.7–1.1
DIFF_SSTL18_II(8) 1.7 1.8 1.9 100 –0.7–1.1
DIFF_SSTL2_I 2.3 2.5 2.7 100 –1.0–1.5
DIFF_SSTL2_II(8) 2.3 2.5 2.7 100 –1.0–1.5
DIFF_SSTL3_I 3.0 3.3 3.6 100 –1.1–1.9
DIFF_SSTL3_II 3.0 3.3 3.6 100 –1.1–1.9
Notes:
1. The VCCO rails supply only differential output drivers, not input circuits.
2. VICM must be less than VCCAUX.
3. These true differential output standards are supported only on FPGA banks 0 and 2. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331.
4. See "External Termination Requirements for Differential I/O."
5. LVPECL is supported on inputs only, not outputs. LVPECL_33 requires VCCAUX =3.3V ± 10%.
6. LVPECL_33 maximum VICM = the lower of 2.8V or VCCAUX –(V
ID/2).
7. Requires VCCAUX =3.310%. (V
CCAUX -300 mV)VICM (VCCAUX - 37 mV).
8. These higher-drive output standards are supported only on FPGA banks 1 and 3. Inputs are unrestricted. See the chapter "Using I/O Resources" in UG331.
9. All standards except for LVPECL and TMDS can have VCCAUX at either 2.5V or 3.3V. Define your VCCAUX level using the CONFIG VCCAUX constraint.
DS610-3_03_061507
VINN
VINN
VINP
VINP
GND level
50%
V
ICM
V
ICM
= Input common mode voltage =
V
ID
Internal
Logic
Differential
I/O Pair Pins
N
P
2
V
INP
+ V
INN
V
ID
= Differential input voltage = V
INP
- V
INN
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 17
Differential Output Pairs
X-Ref Target - Figure 4
Figure 4: Differential Output Voltages
Tabl e 13 : DC Characteristics of User I/Os Using Differential Signal Standards
IOSTANDARD Attribute VOD VOCM VOH VOL
Min (mV) Typ (mV) Max (mV) Min (V) Typ (V) Max (V) Min (V) Max (V)
LVDS_25 247 350 454 1.125 –1.375
LVDS_33 247 350 454 1.125 –1.375
BLVDS_25 240 350 460 –1.30
MINI_LVDS_25 300 600 1.0 –1.4
MINI_LVDS_33 300 600 1.0 –1.4
RSDS_25 100 400 1.0 –1.4
RSDS_33 100 400 1.0 –1.4
TMDS_33 400 –800V
CCO – 0.405 –V
CCO – 0.190
PPDS_25 100 400 0.5 0.8 1.4
PPDS_33 100 400 0.5 0.8 1.4
DIFF_HSTL_I_18 –V
CCO – 0.4 0.4
DIFF_HSTL_II_18 –V
CCO – 0.4 0.4
DIFF_HSTL_III_18 –V
CCO – 0.4 0.4
DIFF_HSTL_I –V
CCO – 0.4 0.4
DIFF_HSTL_III –V
CCO – 0.4 0.4
DIFF_SSTL18_I –V
TT + 0.475 VTT – 0.475
DIFF_SSTL18_II –V
TT + 0.603 VTT – 0.603
DIFF_SSTL2_I –V
TT + 0.61 VTT – 0.61
DIFF_SSTL2_II –V
TT + 0.81 VTT – 0.81
DIFF_SSTL3_I – V
TT + 0.6 VTT - 0.6
DIFF_SSTL3_II VTT + 0.8 VTT - 0.8
Notes:
1. The numbers in this table are based on the conditions set forth in Ta b l e 7 and Ta b l e 1 2 .
2. See "External Termination Requirements for Differential I/O."
3. Output voltage measurements for all differential standards are made with a termination resistor (RT) of 100Ω across the N and P pins of the differential signal pair.
4. At any given time, no more than two of the following differential output standards can be assigned to an I/O bank: LVDS_25, RSDS_25, MINI_LVDS_25, PPDS_25 when
VCCO=2.5V, or LVDS_33, RSDS_33, MINI_LVDS_33, TMDS_33, PPDS_33 when VCCO =3.3V
V
OUTN
V
OUTP
GND level
50%
V
OCM
V
OCM
V
OD
V
OL
V
OH
V
OUTP
Internal
Logic V
OUTN
N
P
= Output common mode voltage = 2
V
OUTP
+V
OUTN
V
OD
= Output differential voltage =
V
OH
= Output voltage indicating a High logic level
V
OL
= Output voltage indicating a Low logic level
V
OUTP
-V
OUTN
Differential
I/O Pair Pins
DS312-3_03_090510
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 18
External Termination Requirements for Differential I/O
LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards
BLVDS_25 I/O Standard
TMDS_33 I/O Standard
Device DNA Read Endurance
X-Ref Target - Figure 5
Figure 5: External Input Termination for LVDS, RSDS, MINI_LVDS, and PPDS I/O Standards
X-Ref Target - Figure 6
Figure 6: External Output and Input Termination Resistors for BLVDS_25 I/O Standard
X-Ref Target - Figure 7
Figure 7: External Input Resistors Required for TMDS_33 I/O Standard
Tabl e 14 : Device DNA Identifier Memory Characteristics
Symbol Description Minimum Units
DNA_CYCLES Number of READ operations or JTAG ISC_DNA read operations. Unaffected by
HOLD or SHIFT operations. 30,000,000 Read
cycles
Z0 = 50Ω
Z0 = 50Ω100Ω
DS529-3_09_020107
a) Input-only differential pairs or pairs not using DIFF_TERM=Yes constraint
Z0 = 50Ω
Z0 = 50Ω
b) Differential pairs using DIFF_TERM=Yes constraint
DIFF_TERM=No
DIFF_TERM=Yes
LVDS_33,
MINI_LVDS_33,
RSDS_33,
PPDS_33
LVDS_33, LVDS_25,
MINI_LVDS_33,
MINI_LVDS_25,
RSDS_33, RSDS_25,
PPDS_33, PPDS_25
CAT16-PT4F4
Part Number
/ th of Bourns
14
VCCO = 3.3V
LVDS_25,
MINI_LVDS_25,
RSDS_25,
PPDS_25
VCCO = 2.5V
LVDS_33,
MINI_LVDS_33,
RSDS_33,
PPDS_33
VCCO = 3.3V
LVDS_25,
MINI_LVDS_25,
RSDS_25,
PPDS_25
VCCO = 2.5V
No VCCO Restrictions
R
LVDS_33,
MINI_LVDS_33,
RSDS_33,
PPDS_33
VCCO = 3.3V
LVDS_25,
MINI_LVDS_25,
RSDS_25,
PPDS_25
VCCO = 2.5V
DT
Bank 0
Bank 2
Bank 0
Bank 2
Bank 3
Bank 1
Bank 0 and 2 Any Bank
Z0 = 50Ω
Z0 = 50Ω
140Ω
165Ω
165Ω
100Ω
VCCO = 2.5V No VCCO Requirement
DS529-3_07_020107
BLVDS_25 BLVDS_25
CAT16-LV4F12
Part Number
/ th of Bourns
14
CAT16-PT4F4
Part Number
/ th of Bourns
14
Bank 0
Bank 2
Bank 3
Bank 1
Any Bank
Bank 0
Bank 2
Bank 3
Bank 1
Any Bank
50Ω
VCCO = 3.3VVCCAUX = 3.3V
DS529-3_08_020107DVI/HDMI cable
50Ω
3.3V
TMDS_33 TMDS_33
Bank 0
Bank 2
Bank 0 and 2
Bank 0
Bank 2
Bank 3
Bank 1
Any Bank
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 19
Switching Characteristics
All Spartan-3A DSP FPGAs ship in two speed grades: –4
and the higher performance –5. Switching characteristics in
this document are designated as Advance, Preliminary, or
Production, as shown in Ta bl e 1 5 . Each category is defined
as follows:
Advance: These specifications are based on simulations
only and are typically available soon after establishing
FPGA specifications. Although speed grades with this
designation are considered relatively stable and
conservative, some under-reporting might still occur.
Preliminary: These specifications are based on complete
early silicon characterization. Devices and speed grades
with this designation are intended to give a better indication
of the expected performance of production silicon. The
probability of under-reporting preliminary delays is greatly
reduced compared to Advance data.
Production: These specifications are approved once
enough production silicon of a particular device family
member has been characterized to provide full correlation
between speed files and devices over numerous production
lots. There is no under-reporting of delays, and customers
receive formal notification of any subsequent changes.
Typically, the slowest speed grades transition to Production
before faster speed grades.
Software Version Requirements
Production-quality systems must use FPGA designs
compiled using a speed file designated as PRODUCTION
status. FPGAs designs using a less mature speed file
designation should only be used during system prototyping
or pre-production qualification. FPGA designs with speed
files designated as Preview, Advance, or Preliminary should
not be used in a production-quality system.
Whenever a speed file designation changes, as a device
matures toward Production status, rerun the latest Xilinx®
ISE® software on the FPGA design to ensure that the
FPGA design incorporates the latest timing information and
software updates.
Production designs will require updating the Xilinx ISE
development software with a future version and/or Service
Pack.
All parameter limits are representative of worst-case supply
voltage and junction temperature conditions. Unless
otherwise noted, the published parameter values apply
to all Spartan-3A DSP devices. AC and DC
characteristics are specified using the same numbers
for both commercial and industrial grades.
Create a Xilinx user account and sign up to receive
automatic e-mail notification whenever this data sheet or
the associated user guides are updated.
Sign Up for Alerts on Xilinx.com
http://www.xilinx.com/support/answers/18683.htm
Timing parameters and their representative values are
selected for inclusion below either because they are
important as general design requirements or they indicate
fundamental device performance characteristics. The
Spartan-3A DSP FPGA speed files (v1.32), part of the
Xilinx Development Software, are the original source for
many but not all of the values. The speed grade
designations for these files are shown in Ta b le 1 5 . For more
complete, more precise, and worst-case data, use the
values reported by the Xilinx static timing analyzer (TRACE
in the Xilinx development software) and back-annotated to
the simulation netlist.
Ta b le 1 6 provides the recent history of the Spartan-3A DSP
FPGA speed files.
Tabl e 1 5 : Spartan-3A DSP v1.32 Speed Grade
Designations
Device Advance Preliminary Production
XC3SD1800A -4, -5
XC3SD3400A -4, -5
Tabl e 1 6 : Spartan-3A DSP Speed File Version History
Version ISE
Release Description
1.32 ISE 10.1.02
Updated DSP timing model to reflect
higher performance for some
implementations
1.31 ISE 10.1 Added Automotive support
1.30 ISE 9.2.03i Added absolute minimum values
1.29 ISE 9.2.01i Production Speed Files for -4 and -5
speed grades
1.28 ISE 9.2i Minor updates
1.27 ISE 9.1.03i Advance Speed Files for -4 speed grade
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 20
I/O Timing
Pin-to-Pin Clock-to-Output Times
Tabl e 17 : Pin-to-Pin Clock-to-Output Times for the IOB Output Path
Symbol Description Conditions Device
Speed Grade
Units-5 -4
Max Max
Clock-to-Output Times
TICKOFDCM When reading from the Output
Flip-Flop (OFF), the time from the
active transition on the Global
Clock pin to data appearing at the
Output pin. The DCM is in use.
LVC M OS 25 (2), 12 mA
output drive, Fast slew
rate, with DCM(3)
XC3SD1800A 3.28 3.51 ns
XC3SD3400A 3.36 3.82 ns
TICKOF When reading from OFF, the time
from the active transition on the
Global Clock pin to data appearing
at the Output pin. The DCM is not
in use.
LVC M OS 25 (2), 12 mA
output drive, Fast slew
rate, without DCM
XC3SD1800A 5.23 5.58 ns
XC3SD3400A 5.51 6.13 ns
Notes:
1. The numbers in this table are tested using the methodology presented in Tab l e 2 6 and are based on the operating conditions set forth in
Ta b l e 7 and Tabl e 1 0 .
2. This clock-to-output time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or a
standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data Output. If the former is true, add the appropriate
Input adjustment from Tabl e 2 2 . If the latter is true, add the appropriate Output adjustment from Tabl e 25 .
3. DCM output jitter is included in all measurements.
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 21
Pin-to-Pin Setup and Hold Times
Tabl e 18 : Pin-to-Pin Setup and Hold Times for the IOB Input Path (System Synchronous)
Symbol Description Conditions Device
Speed Grade
Units-5 -4
Max Max
Setup Times
TPSDCM When writing to the Input
Flip-Flop (IFF), the time from
the setup of data at the Input pin
to the active transition at a
Global Clock pin. The DCM is in
use. No Input Delay is
programmed.
LVC M OS 25 (2),
IFD_DELAY_VALUE = 0,
with DCM(4)
XC3SD1800A 2.65 3.11 ns
XC3SD3400A 2.25 2.49 ns
TPSFD When writing to IFF, the time
from the setup of data at the
Input pin to an active transition
at the Global Clock pin. The
DCM is not in use. The Input
Delay is programmed.
LVC M OS 25 (2),
IFD_DELAY_VALUE = 6,
without DCM
XC3SD1800A 2.98 3.39 ns
XC3SD3400A 2.78 3.08 ns
Hold Times
TPHDCM When writing to IFF, the time
from the active transition at the
Global Clock pin to the point
when data must be held at the
Input pin. The DCM is in use.
No Input Delay is programmed.
LVC M OS 25 (3),
IFD_DELAY_VALUE = 0,
with DCM(4)
XC3SD1800A –0.38 –0.38 ns
XC3SD3400A –0.26 –0.26 ns
TPHFD When writing to IFF, the time
from the active transition at the
Global Clock pin to the point
when data must be held at the
Input pin. The DCM is not in
use. The Input Delay is
programmed.
LVC M OS 25 (3),
IFD_DELAY_VALUE = 6,
without DCM
XC3SD1800A –0.71 –0.71 ns
XC3SD3400A –0.65 –0.65 ns
Notes:
1. The numbers in this table are tested using the methodology presented in Tab l e 2 6 and are based on the operating conditions set forth in
Ta b l e 7 and Tabl e 1 0 .
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data
Input. If this is true of the Global Clock Input, subtract the appropriate adjustment from Ta b l e 2 2 . If this is true of the data Input, add the
appropriate Input adjustment from the same table.
3. This hold time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the Global Clock Input or the data
Input. If this is true of the Global Clock Input, add the appropriate Input adjustment from Tabl e 22 . If this is true of the data Input, subtract the
appropriate Input adjustment from the same table. When the hold time is negative, it is possible to change the data before the clock’s active
edge.
4. DCM output jitter is included in all measurements.
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 22
Input Setup and Hold Times
Tabl e 19 : Setup and Hold Times for the IOB Input Path
Symbol Description Conditions DELAY_
VALUE Device
Speed
Units
-5 -4
Min Min
Setup Times
TIOPICK Time from the setup of data at the Input
pin to the active transition at the ICLK
input of the Input Flip-Flop (IFF). No Input
Delay is programmed.
LVC M OS 25 (2) IFD_DELAY_VALUE=0 XC3SD1800A 1.65 1.81 ns
XC3SD3400A 1.51 1.88 ns
TIOPICKD Time from the setup of data at the Input
pin to the active transition at the ICLK
input of the Input Flip-Flop (IFF). The
Input Delay is programmed.
LVC M OS 25 (2) 1 XC3SD1800A 2.09 2.24 ns
2 2.67 2.83 ns
3 3.25 3.64 ns
4 3.75 4.20 ns
5 3.69 4.16 ns
6 4.47 5.09 ns
7 5.27 6.02 ns
8 5.79 6.63 ns
1 XC3SD3400A 2.07 2.44 ns
2 2.57 3.02 ns
3 3.44 3.81 ns
4 4.01 4.39 ns
5 3.89 4.26 ns
6 4.43 5.08 ns
7 5.20 5.95 ns
8 5.70 6.55 ns
Hold Times
TIOICKP Time from the active transition at the
ICLK input of the Input Flip-Flop (IFF) to
the point where data must be held at the
Input pin. No Input Delay is programmed.
LVC M OS 25 (3) 0 XC3SD1800A –0.63 –0.52 ns
XC3SD3400A –0.56 –0.56 ns
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 23
TIOICKPD Time from the active transition at the
ICLK input of the Input Flip-Flop (IFF) to
the point where data must be held at the
Input pin. The Input Delay is
programmed.
LVC M OS 25 (3) 1 XC3SD1800A –1.40 –1.40 ns
2 –2.11 –2.11 ns
3 –2.48 –2.48 ns
4 –2.77 –2.77 ns
5 –2.62 –2.62 ns
6 –3.06 –3.06 ns
7 –3.42 –3.42 ns
8 –3.65 –3.65 ns
1 XC3SD3400A –1.31 –1.31 ns
2 –1.88 –1.88 ns
3 –2.44 –2.44 ns
4 –2.89 –2.89 ns
5 –2.83 –2.83 ns
6 –3.33 –3.33 ns
7 –3.63 –3.63 ns
8 –3.96 –3.96 ns
Set/Reset Pulse Width
TRPW_IOB Minimum pulse width to SR control input
on IOB
All 1.33 1.61 ns
Notes:
1. The numbers in this table are tested using the methodology presented in Tab l e 2 6 and are based on the operating conditions set forth in
Ta b l e 7 and Tabl e 1 0 .
2. This setup time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, add the
appropriate Input adjustment from Ta bl e 2 2.
3. These hold times require adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. If this is true, subtract
the appropriate Input adjustment from Tab l e 22 . When the hold time is negative, it is possible to change the data before the clock’s active
edge.
Tabl e 20 : Sample Window (Source Synchronous)
Symbol Description Max Units
TSAMP Setup and hold
capture window of
an IOB flip-flop.
The input capture sample window value is highly specific to a particular application, device,
package, I/O standard, I/O placement, DCM usage, and clock buffer. Please consult the
appropriate Xilinx Answer Record for application-specific values.
Answer Record 30879
ps
Tabl e 19 : Setup and Hold Times for the IOB Input Path (Cont’d)
Symbol Description Conditions DELAY_
VALUE Device
Speed
Units
-5 -4
Min Min
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 24
Input Propagation Times
Tabl e 21 : Propagation Times for the IOB Input Path
Symbol Description Conditions DELAY_VALUE Device
Speed
Grade
Units
-5 -4
Max Max
Propagation Times
TIOPI The time it takes for data to travel from
the Input pin to the I output with no input
delay programmed
LVC M OS 25 (2)
IBUF_DELAY_VALUE=0
XC3SD1800A 0.51 0.53 ns
XC3SD3400A 0.73 0.93 ns
TIOPID The time it takes for data to travel from
the Input pin to the I output with the input
delay programmed
LVC M OS 25 (2) 1 XC3SD1800A 1.29 1.62 ns
2 1.67 2.08 ns
3 1.92 2.36 ns
4 2.38 2.89 ns
5 2.61 3.17 ns
6 2.98 3.55 ns
7 3.30 3.92 ns
8 3.63 4.37 ns
9 3.31 4.02 ns
10 3.69 4.47 ns
11 3.94 4.77 ns
12 4.41 5.27 ns
13 4.67 5.56 ns
14 5.03 5.94 ns
15 5.36 6.31 ns
16 5.64 6.73 ns
1 XC3SD3400A 1.56 1.99 ns
2 1.92 2.44 ns
3 2.18 2.72 ns
4 2.66 3.19 ns
5 2.91 3.43 ns
6 3.27 3.81 ns
7 3.59 4.17 ns
8 3.87 4.58 ns
9 3.52 4.22 ns
10 3.87 4.65 ns
11 4.14 4.94 ns
12 4.68 5.40 ns
13 4.93 5.66 ns
14 5.29 6.06 ns
15 5.61 6.43 ns
16 5.88 6.80 ns
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 25
TIOPLI The time it takes for data to travel from
the Input pin through the IFF latch to the
I output with no input delay programmed
LVC M OS 25 (2) 0 XC3SD1800A 1.79 2.04 ns
XC3SD3400A 1.65 2.11 ns
TIOPLID The time it takes for data to travel from
the Input pin through the IFF latch to the
I output with the input delay programmed
LVC M OS 25 (2) 1 XC3SD1800A 2.23 2.47 ns
2 2.81 3.06 ns
3 3.39 3.86 ns
4 3.89 4.43 ns
5 3.83 4.39 ns
6 4.61 5.32 ns
7 5.40 6.24 ns
8 5.93 6.86 ns
1 XC3SD3400A 2.21 2.67 ns
2 2.71 3.25 ns
3 3.58 4.04 ns
4 4.15 4.62 ns
5 4.03 4.49 ns
6 4.57 5.31 ns
7 5.34 6.18 ns
8 5.84 6.78 ns
Notes:
1. The numbers in this table are tested using the methodology presented in Tab l e 2 6 and are based on the operating conditions set forth in
Ta b l e 7 and Tabl e 1 0 .
2. This propagation time requires adjustment whenever a signal standard other than LVCMOS25 is assigned to the data Input. When this is
true, add the appropriate Input adjustment from Tabl e 2 2 .
Tabl e 21 : Propagation Times for the IOB Input Path (Cont’d)
Symbol Description Conditions DELAY_VALUE Device
Speed
Grade
Units
-5 -4
Max Max
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 26
Input Timing Adjustments
Tabl e 22 : Input Timing Adjustments by IOSTANDARD
Convert Input Time from
LVCMOS25 to the
Following Signal Standard
(IOSTANDARD)
Add the
Adjustment Below
Units
Speed Grade
-5 -4
Single-Ended Standards
LVT TL 0. 62 0 . 62 ns
LVCMOS33 0.54 0.54 ns
LVCMOS25 0.00 0.00 ns
LVCMOS18 0.83 0.83 ns
LVCMOS15 0.60 0.60 ns
LVCMOS12 0.31 0.31 ns
PCI33_3 0.41 0.41 ns
PCI66_3 0.41 0.41 ns
HSTL_I 0.72 0.72 ns
HSTL_III 0.77 0.77 ns
HSTL_I_18 0.69 0.69 ns
HSTL_II_18 0.69 0.69 ns
HSTL_III_18 0.79 0.79 ns
SSTL18_I 0.71 0.71 ns
SSTL18_II 0.71 0.71 ns
SSTL2_I 0.68 0.68 ns
SSTL2_II 0.68 0.68 ns
SSTL3_I 0.78 0.78 ns
SSTL3_II 0.78 0.78 ns
Differential Standards
LVD S _ 2 5 0.7 6 0. 76 ns
LVD S _ 3 3 0.7 9 0. 79 ns
BLVDS_25 0.79 0.79 ns
MINI_LVDS_25 0.78 0.78 ns
MINI_LVDS_33 0.79 0.79 ns
LVPECL_25 0.78 0.78 ns
LVPECL_33 0.79 0.79 ns
RSDS_25 0.79 0.79 ns
RSDS_33 0.77 0.77 ns
TMDS_33 0.79 0.79 ns
PPDS_25 0.79 0.79 ns
PPDS_33 0.79 0.79 ns
DIFF_HSTL_I_18 0.74 0.74 ns
DIFF_HSTL_II_18 0.72 0.72 ns
DIFF_HSTL_III_18 1.05 1.05 ns
DIFF_HSTL_I 0.72 0.72 ns
DIFF_HSTL_III 1.05 1.05 ns
DIFF_SSTL18_I 0.71 0.71 ns
DIFF_SSTL18_II 0.71 0.71 ns
DIFF_SSTL2_I 0.74 0.74 ns
DIFF_SSTL2_II 0.75 0.75 ns
DIFF_SSTL3_I 1.06 1.06 ns
DIFF_SSTL3_II 1.06 1.06 ns
Notes:
1. The numbers in this table are tested using the methodology
presented in Tab l e 2 6 and are based on the operating conditions
set forth in Ta ble 7 , Ta b l e 1 0 , and Table 1 2.
2. These adjustments are used to convert input path times originally
specified for the LVCMOS25 standard to times that correspond to
other signal standards.
Tabl e 2 2 : Input Timing Adjustments by IOSTANDARD
Convert Input Time from
LVCMOS25 to the
Following Signal Standard
(IOSTANDARD)
Add the
Adjustment Below
Units
Speed Grade
-5 -4
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 27
Output Propagation Times
Tabl e 23 : Timing for the IOB Output Path
Symbol Description Conditions Device
Speed Grade
Units-5 -4
Max Max
Clock-to-Output Times
TIOCKP When reading from the Output
Flip-Flop (OFF), the time from the
active transition at the OCLK input to
data appearing at the Output pin
LVC M O S 25 (2), 12 mA output
drive, Fast slew rate
All 2.87 3.13 ns
Propagation Times
TIOOP The time it takes for data to travel from
the IOB’s O input to the Output pin
LVC M O S 25 (2), 12 mA output
drive, Fast slew rate
All 2.78 2.91 ns
Set/Reset Times
TIOSRP Time from asserting the OFF’s SR
input to setting/resetting data at the
Output pin
LVC M O S 25 (2), 12 mA output
drive, Fast slew rate
All 3.63 3.89 ns
TIOGSRQ Time from asserting the Global Set
Reset (GSR) input on the
STARTUP_SPARTAN3A primitive to
setting/resetting data at the Output pin
8.62 9.65 ns
Notes:
1. The numbers in this table are tested using the methodology presented in Tab l e 2 6 and are based on the operating conditions set forth in
Ta b l e 7 and Tabl e 1 0 .
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the data
Output. When this is true, add the appropriate Output adjustment from Tabl e 25 .
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 28
Three-State Output Propagation Times
Tabl e 24 : Timing for the IOB Three-State Path
Symbol Description Conditions Device
Speed Grade
Units-5 -4
Max Max
Synchronous Output Enable/Disable Times
TIOCKHZ Time from the active transition at the OTCLK
input of the Three-state Flip-Flop (TFF) to when
the Output pin enters the high-impedance state
LVCMOS25, 12 mA
output drive, Fast slew
rate
All 1.13 1.39 ns
TIOCKON(2) Time from the active transition at TFF’s OTCLK
input to when the Output pin drives valid data
All 3.08 3.35 ns
Asynchronous Output Enable/Disable Times
TGTS Time from asserting the Global Three State
(GTS) input on the STARTUP_SPARTAN3A
primitive to when the Output pin enters the
high-impedance state
LVCMOS25, 12 mA
output drive, Fast slew
rate
All 9.47 10.36 ns
Set/Reset Times
TIOSRHZ Time from asserting TFF’s SR input to when the
Output pin enters a high-impedance state
LVCMOS25, 12 mA
output drive, Fast slew
rate
All 1.61 1.86 ns
TIOSRON(2) Time from asserting TFF’s SR input at TFF to
when the Output pin drives valid data
All 3.57 3.82 ns
Notes:
1. The numbers in this table are tested using the methodology presented in Tab l e 2 6 and are based on the operating conditions set forth in
Ta b l e 7 and Tabl e 1 0 .
2. This time requires adjustment whenever a signal standard other than LVCMOS25 with 12 mA drive and Fast slew rate is assigned to the
data Output. When this is true, add the appropriate Output adjustment from Tabl e 2 5.
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 29
Output Timing Adjustments
Tabl e 25 : Output Timing Adjustments for IOB
Convert Output Time from
LVCMOS25 with 12mA Drive
and Fast Slew Rate to the
Following Signal Standard
(IOSTANDARD)
Add the
Adjustment
Below Units
Speed Grade
-5 -4
Single-Ended Standards
LVTTL Slow 2 mA 5.58 5.58 ns
4 mA 3.16 3.16 ns
6 mA 3.17 3.17 ns
8 mA 2.09 2.09 ns
12 mA 1.62 1.62 ns
16 mA 1.24 1.24 ns
24 mA 2.74(3) 2.74(3) ns
Fast 2 mA 3.03 3.03 ns
4 mA 1.71 1.71 ns
6 mA 1.71 1.71 ns
8 mA 0.53 0.53 ns
12 mA 0.53 0.53 ns
16 mA 0.59 0.59 ns
24 mA 0.60 0.60 ns
QuietIO 2 mA 27.67 27.67 ns
4 mA 27.67 27.67 ns
6 mA 27.67 27.67 ns
8 mA 16.71 16.71 ns
12 mA 16.67 16.67 ns
16 mA 16.22 16.22 ns
24 mA 12.11 12.11 ns
LVCMOS33 Slow 2 mA 5.58 5.58 ns
4 mA 3.17 3.17 ns
6 mA 3.17 3.17 ns
8 mA 2.09 2.09 ns
12 mA 1.24 1.24 ns
16 mA 1.15 1.15 ns
24 mA 2.55(3) 2.55(3) ns
Fast 2 mA 3.02 3.02 ns
4 mA 1.71 1.71 ns
6 mA 1.72 1.72 ns
8 mA 0.53 0.53 ns
12 mA 0.59 0.59 ns
16 mA 0.59 0.59 ns
24 mA 0.51 0.51 ns
QuietIO 2 mA 27.67 27.67 ns
4 mA 27.67 27.67 ns
6 mA 27.67 27.67 ns
8 mA 16.71 16.71 ns
12 mA 16.29 16.29 ns
16 mA 16.18 16.18 ns
24 mA 12.11 12.11 ns
Tabl e 2 5 : Output Timing Adjustments for IOB (Contd)
Convert Output Time from
LVCMOS25 with 12mA Drive
and Fast Slew Rate to the
Following Signal Standard
(IOSTANDARD)
Add the
Adjustment
Below Units
Speed Grade
-5 -4
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 30
LVCMOS25 Slow 2 mA 5.33 5.33 ns
4 mA 2.81 2.81 ns
6 mA 2.82 2.82 ns
8 mA 1.14 1.14 ns
12 mA 1.10 1.10 ns
16 mA 0.83 0.83 ns
24 mA 2.26(3) 2.26(3) ns
Fast 2 mA 4.36 4.36 ns
4 mA 1.76 1.76 ns
6 mA 1.25 1.25 ns
8 mA 0.38 0.38 ns
12 mA 0.00 0.00 ns
16 mA 0.01 0.01 ns
24 mA 0.01 0.01 ns
QuietIO 2 mA 25.92 25.92 ns
4 mA 25.92 25.92 ns
6 mA 25.92 25.92 ns
8 mA 15.57 15.57 ns
12 mA 15.59 15.59 ns
16 mA 14.27 14.27 ns
24 mA 11.37 11.37 ns
Tabl e 25 : Output Timing Adjustments for IOB (Cont’d)
Convert Output Time from
LVCMOS25 with 12mA Drive
and Fast Slew Rate to the
Following Signal Standard
(IOSTANDARD)
Add the
Adjustment
Below Units
Speed Grade
-5 -4
LVCMOS18 Slow 2 mA 4.48 4.48 ns
4 mA 3.69 3.69 ns
6 mA 2.91 2.91 ns
8 mA 1.99 1.99 ns
12 mA 1.57 1.57 ns
16 mA 1.19 1.19 ns
Fast 2 mA 3.96 3.96 ns
4 mA 2.57 2.57 ns
6 mA 1.90 1.90 ns
8 mA 1.06 1.06 ns
12 mA 0.83 0.83 ns
16 mA 0.63 0.63 ns
QuietIO 2 mA 24.97 24.97 ns
4 mA 24.97 24.97 ns
6 mA 24.08 24.08 ns
8 mA 16.43 16.43 ns
12 mA 14.52 14.52 ns
16 mA 13.41 13.41 ns
LVCMOS15 Slow 2 mA 5.82 5.82 ns
4 mA 3.97 3.97 ns
6 mA 3.21 3.21 ns
8 mA 2.53 2.53 ns
12 mA 2.06 2.06 ns
Fast 2 mA 5.23 5.23 ns
4 mA 3.05 3.05 ns
6 mA 1.95 1.95 ns
8 mA 1.60 1.60 ns
12 mA 1.30 1.30 ns
QuietIO 2 mA 34.11 34.11 ns
4 mA 25.66 25.66 ns
6 mA 24.64 24.64 ns
8 mA 22.06 22.06 ns
12 mA 20.64 20.64 ns
Tabl e 2 5 : Output Timing Adjustments for IOB (Contd)
Convert Output Time from
LVCMOS25 with 12mA Drive
and Fast Slew Rate to the
Following Signal Standard
(IOSTANDARD)
Add the
Adjustment
Below Units
Speed Grade
-5 -4
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 31
LVCMOS12 Slow 2 mA 7.14 7.14 ns
4 mA 4.87 4.87 ns
6 mA 5.67 5.67 ns
Fast 2 mA 6.77 6.77 ns
4 mA 5.02 5.02 ns
6 mA 4.09 4.09 ns
QuietIO 2 mA 50.76 50.76 ns
4 mA 43.17 43.17 ns
6 mA 37.31 37.31 ns
PCI33_3 0.34 0.34 ns
PCI66_3 0.34 0.34 ns
HSTL_I 0.78 0.78 ns
HSTL_III 1.16 1.16 ns
HSTL_I_18 0.35 0.35 ns
HSTL_II_18 0.30 0.30 ns
HSTL_III_18 0.47 0.47 ns
SSTL18_I 0.40 0.40 ns
SSTL18_II 0.30 0.30 ns
SSTL2_I 0.00 0.00 ns
SSTL2_II –0.05 –0.05 ns
SSTL3_I 0.00 0.00 ns
SSTL3_II 0.17 0.17 ns
Tabl e 25 : Output Timing Adjustments for IOB (Cont’d)
Convert Output Time from
LVCMOS25 with 12mA Drive
and Fast Slew Rate to the
Following Signal Standard
(IOSTANDARD)
Add the
Adjustment
Below Units
Speed Grade
-5 -4
Differential Standards
LVDS_25 1.16 1.16 ns
LVDS_33 0.46 0.46 ns
BLVDS_25 0.11 0.11 ns
MINI_LVDS_25 0.75 0.75 ns
MINI_LVDS_33 0.40 0.40 ns
LVPECL_25 Inputs Only
LVPECL_33
RSDS_25 1.42 1.42 ns
RSDS_33 0.58 0.58 ns
TMDS_33 0.46 0.46 ns
PPDS_25 1.07 1.07 ns
PPDS_33 0.63 0.63 ns
DIFF_HSTL_I_18 0.43 0.43 ns
DIFF_HSTL_II_18 0.41 0.41 ns
DIFF_HSTL_III_18 0.36 0.36 ns
DIFF_HSTL_I 1.01 1.01 ns
DIFF_HSTL_III 0.54 0.54 ns
DIFF_SSTL18_I 0.49 0.49 ns
DIFF_SSTL18_II 0.41 0.41 ns
DIFF_SSTL2_I 0.82 0.82 ns
DIFF_SSTL2_II 0.09 0.09 ns
DIFF_SSTL3_I 1.16 1.16 ns
DIFF_SSTL3_II 0.28 0.28 ns
Notes:
1. The numbers in this table are tested using the methodology
presented in Tab l e 2 6 and are based on the operating conditions
set forth in Tabl e 7, Ta b l e 1 0 , and Tabl e 1 2 .
2. These adjustments are used to convert output- and
three-state-path times originally specified for the LVCMOS25
standard with 12 mA drive and Fast slew rate to times that
correspond to other signal standards. Do not adjust times that
measure when outputs go into a high-impedance state.
3. Note that 16 mA drive is faster than 24 mA drive for the Slow
slew rate.
Tabl e 2 5 : Output Timing Adjustments for IOB (Contd)
Convert Output Time from
LVCMOS25 with 12mA Drive
and Fast Slew Rate to the
Following Signal Standard
(IOSTANDARD)
Add the
Adjustment
Below Units
Speed Grade
-5 -4
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 32
Timing Measurement Methodology
When measuring timing parameters at the programmable
I/Os, different signal standards call for different test
conditions. Ta bl e 2 6 lists the conditions to use for each
standard.
The method for measuring Input timing is as follows: A
signal that swings between a Low logic level of VL and a
High logic level of VH is applied to the Input under test.
Some standards also require the application of a bias
voltage to the VREF pins of a given bank to properly set the
input-switching threshold. The measurement point of the
Input signal (VM) is commonly located halfway between VL
and VH.
The Output test setup is shown in Figure 8. A termination
voltage VT is applied to the termination resistor RT
, the other
end of which is connected to the Output. For each standard,
RT and VT generally take on the standard values
recommended for minimizing signal reflections. If the
standard does not ordinarily use terminations (for example,
LVCMOS, LVTTL), then RT is set to 1MΩ to indicate an
open connection, and VT is set to zero. The same
measurement point (VM) that was used at the Input is also
used at the Output.
X-Ref Target - Figure 8
Figure 8: Output Test Setup
FPGA Output
V
T
(V
REF
)
R
T
(R
REF
)
V
M
(V
MEAS
)
C
L
(C
REF
)
DS312-3_04_102406
Notes:
1. The names shown in parentheses are
used in the IBIS file.
Tabl e 26 : Test Methods for Timing Measurement at I/Os
Signal Standard
(IOSTANDARD)
Inputs Outputs(2) Inputs and
Outputs
VREF (V) VL (V) VH (V) RT (Ω)V
T (V) VM (V)
Single-Ended
LVTT L 0 3.3 1M 0 1.4
LVC M OS 33 0 3.3 1M 0 1.65
LVC M OS 25 0 2.5 1M 0 1.25
LVC M OS 18 0 1.8 1M 0 0.9
LVC M OS 15 0 1.5 1M 0 0.75
LVC M OS 12 0 1.2 1M 0 0.6
PCI33_3 Rising –Note 3Note 325 0 0.94
Falling 25 3.3 2.03
PCI66_3 Rising –Note 3Note 325 0 0.94
Falling 25 3.3 2.03
HSTL_I 0.75 VREF – 0.5 VREF + 0.5 50 0.75 VREF
HSTL_III 0.9 VREF – 0.5 VREF + 0.5 50 1.5 VREF
HSTL_I_18 0.9 VREF – 0.5 VREF + 0.5 50 0.9 VREF
HSTL_II_18 0.9 VREF – 0.5 VREF + 0.5 25 0.9 VREF
HSTL_III_18 1.1 VREF – 0.5 VREF + 0.5 50 1.8 VREF
SSTL18_I 0.9 VREF – 0.5 VREF + 0.5 50 0.9 VREF
SSTL18_II 0.9 VREF – 0.5 VREF + 0.5 25 0.9 VREF
SSTL2_I 1.25 VREF – 0.75 VREF + 0.75 50 1.25 VREF
SSTL2_II 1.25 VREF – 0.75 VREF + 0.75 25 1.25 VREF
SSTL3_I 1.5 VREF – 0.75 VREF + 0.75 50 1.5 VREF
SSTL3_II 1.5 VREF – 0.75 VREF + 0.75 25 1.5 VREF
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 33
The capacitive load (CL) is connected between the output and GND. The Output timing for all standards, as published in the
speed files and the data sheet, is always based on a CL value of zero. High-impedance probes (less than 1 pF) are used for
all measurements. Any delay that the test fixture might contribute to test measurements is subtracted from those
measurements to produce the final timing numbers as published in the speed files and data sheet.
Differential
LVDS_25 –V
ICM – 0.125 VICM + 0.125 50 1.2 VICM
LVDS_33 –V
ICM – 0.125 VICM + 0.125 50 1.2 VICM
BLVDS_25 –V
ICM – 0.125 VICM + 0.125 1M 0 VICM
MINI_LVDS_25 –V
ICM – 0.125 VICM + 0.125 50 1.2 VICM
MINI_LVDS_33 –V
ICM – 0.125 VICM + 0.125 50 1.2 VICM
LVPECL_25 –V
ICM – 0.3 VICM + 0.3 N/A N/A VICM
LVPECL_33 –V
ICM – 0.3 VICM + 0.3 N/A N/A VICM
RSDS_25 –V
ICM – 0.1 VICM + 0.1 50 1.2 VICM
RSDS_33 –V
ICM – 0.1 VICM + 0.1 50 1.2 VICM
TMDS_33 –V
ICM – 0.1 VICM + 0.1 50 3.3 VICM
PPDS_25 –V
ICM – 0.1 VICM + 0.1 50 0.8 VICM
PPDS_33 –V
ICM – 0.1 VICM + 0.1 50 0.8 VICM
DIFF_HSTL_I_18 –V
ICM – 0.5 VICM + 0.5 50 0.9 VICM
DIFF_HSTL_II_18 –V
ICM – 0.5 VICM + 0.5 50 0.9 VICM
DIFF_HSTL_III_18 –V
ICM – 0.5 VICM + 0.5 50 1.8 VICM
DIFF_HSTL_I –V
ICM – 0.5 VICM + 0.5 50 0.9 VICM
DIFF_HSTL_III –V
ICM – 0.5 VICM + 0.5 50 0.9 VICM
DIFF_SSTL18_I –V
ICM – 0.5 VICM + 0.5 50 0.9 VICM
DIFF_SSTL18_II –V
ICM – 0.5 VICM + 0.5 50 0.9 VICM
DIFF_SSTL2_I –V
ICM – 0.5 VICM + 0.5 50 1.25 VICM
DIFF_SSTL2_II –V
ICM – 0.5 VICM + 0.5 50 1.25 VICM
DIFF_SSTL3_I –V
ICM – 0.5 VICM + 0.5 50 1.5 VICM
DIFF_SSTL3_II –V
ICM – 0.5 VICM + 0.5 50 1.5 VICM
Notes:
1. Descriptions of the relevant symbols are:
VREF – The reference voltage for setting the input switching threshold
VICM – The common mode input voltage
VM – Voltage of measurement point on signal transition
VL – Low-level test voltage at Input pin
VH – High-level test voltage at Input pin
RT – Effective termination resistance, which takes on a value of 1 MΩ when no parallel termination is required
VT – Termination voltage
2. The load capacitance (CL) at the Output pin is 0 pF for all signal standards.
3. According to the PCI specification. For information on PCI IP solutions, see www.xilinx.com/pci. The PCIX IOSTANDARD is available and
has equivalent characteristics but no PCI-X IP is supported.
Tabl e 26 : Test Methods for Timing Measurement at I/Os (Cont’d)
Signal Standard
(IOSTANDARD)
Inputs Outputs(2) Inputs and
Outputs
VREF (V) VL (V) VH (V) RT (Ω)V
T (V) VM (V)
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 34
Using IBIS Models to Simulate Load
Conditions in Application
IBIS models permit the most accurate prediction of timing
delays for a given application. The parameters found in the
IBIS model (VREF
, RREF
, and VMEAS) correspond directly
with the parameters used in Ta bl e 2 6 (VT
, RT
, and VM). Do
not confuse VREF (the termination voltage) from the IBIS
model with VREF (the input-switching threshold) from the
table. A fourth parameter, CREF
, is always zero. The four
parameters describe all relevant output test conditions. IBIS
models are found in the Xilinx development software as well
as at the following link:
www.xilinx.com/support/download/index.htm
Delays for a given application are simulated according to its
specific load conditions as follows:
1. Simulate the desired signal standard with the output
driver connected to the test setup shown in Figure 8.
Use parameter values VT
, RT
, and VM from Ta bl e 2 6 .
CREF is zero.
2. Record the time to VM.
3. Simulate the same signal standard with the output
driver connected to the PCB trace with load. Use the
appropriate IBIS model (including VREF
, RREF
, CREF
,
and VMEAS values) or capacitive value to represent the
load.
4. Record the time to VMEAS.
5. Compare the results of steps 2 and 4. Add (or subtract)
the increase (or decrease) in delay to (or from) the
appropriate Output standard adjustment (Ta b l e 2 5 ) to
yield the worst-case delay of the PCB trace.
Simultaneously Switching Output
Guidelines
This section provides guidelines for the recommended
maximum allowable number of Simultaneous Switching
Outputs (SSOs). These guidelines describe the maximum
number of user I/O pins of a given output signal standard
that should simultaneously switch in the same direction,
while maintaining a safe level of switching noise. Meeting
these guidelines for the stated test conditions ensures that
the FPGA operates free from the adverse effects of ground
and power bounce.
Ground or power bounce occurs when a large number of
outputs simultaneously switch in the same direction. The
output drive transistors all conduct current to a common
voltage rail. Low-to-High transitions conduct to the VCCO
rail; High-to-Low transitions conduct to the GND rail. The
resulting cumulative current transient induces a voltage
difference across the inductance that exists between the die
pad and the power supply or ground return. The inductance
is associated with bonding wires, the package lead frame,
and any other signal routing inside the package. Other
variables contribute to SSO noise levels, including stray
inductance on the PCB as well as capacitive loading at
receivers. Any SSO-induced voltage consequently affects
internal switching noise margins and ultimately signal
quality.
Ta b le 2 7 and Ta bl e 2 8 provide the essential SSO
guidelines. For each device/package combination, Ta bl e 2 7
provides the number of equivalent VCCO/GND pairs. The
equivalent number of pairs is based on characterization and
may not match the physical number of pairs. For each
output signal standard and drive strength, Ta b l e 2 8
recommends the maximum number of SSOs, switching in
the same direction, allowed per VCCO/GND pair within an
I/O bank. The guidelines in Ta bl e 2 8 are categorized by
package style, slew rate, and output drive current.
Furthermore, the number of SSOs is specified by I/O bank.
Generally, the left and right I/O banks (Banks 1 and 3)
support higher output drive current.
Multiply the appropriate numbers from Ta bl e 2 7 and
Ta b le 2 8 to calculate the maximum number of SSOs
allowed within an I/O bank. Exceeding these SSO
guidelines might result in increased power or ground
bounce, degraded signal integrity, or increased system jitter.
SSOMAX/IO Bank = Ta bl e 2 7 x Ta bl e 2 8
The recommended maximum SSO values assumes that the
FPGA is soldered on the printed circuit board and that the
board uses sound design practices. The SSO values do not
apply for FPGAs mounted in sockets, due to the lead
inductance introduced by the socket.
The SSO values assume that the VCCAUX is powered at
3.3V. Setting VCCAUX to 2.5V provides better SSO
characteristics.
Tabl e 2 7 : Equivalent VCCO/GND Pairs per Bank
Device Package Style (including Pb-free)
CS484 FG676
XC3SD1800A 6 9
XC3SD3400A 6 10
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 35
Tabl e 28 : Recommended Simultaneously Switching
Outputs per VCCO/GND Pair (VCCAUX =3.3V)
Signal Standard
(IOSTANDARD)
Package Type
CS484, FG676
Top, Bottom
(Banks 0, 2)
Left, Right
(Banks 1, 3)
Single-Ended Standards
LVTTL Slow 2 60 60
441 41
629 29
822 22
12 13 13
16 11 11
24 9 9
Fast 2 10 10
46 6
65 5
83 3
12 3 3
16 3 3
24 2 2
QuietIO 2 80 80
448 48
636 36
827 27
12 16 16
16 13 13
24 12 12
LVC M OS 33 S low 2 76 76
446 46
627 27
820 20
12 13 13
16 10 10
24 –9
Fast 2 10 10
48 8
65 5
84 4
12 4 4
16 2 2
24 –2
QuietIO 2 76 76
446 46
632 32
826 26
12 18 18
16 14 14
24 –10
Tabl e 2 8 : Recommended Simultaneously Switching
Outputs per VCCO/GND Pair (VCCAUX =3.3V) (Cont’d)
Signal Standard
(IOSTANDARD)
Package Type
CS484, FG676
Top, Bottom
(Banks 0, 2)
Left, Right
(Banks 1, 3)
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 36
LVC M OS 25 S low 2 76 76
446 46
633 33
824 24
12 18 18
16 –11
24 –7
Fast 2 18 18
414 14
66 6
86 6
12 3 3
16 –3
24 –2
QuietIO 2 76 76
460 60
648 48
836 36
12 36 36
16 –36
24 –8
Tabl e 28 : Recommended Simultaneously Switching
Outputs per VCCO/GND Pair (VCCAUX =3.3V) (Cont’d)
Signal Standard
(IOSTANDARD)
Package Type
CS484, FG676
Top, Bottom
(Banks 0, 2)
Left, Right
(Banks 1, 3)
LVC M OS 18 S low 2 64 64
434 34
622 22
818 18
12 –13
16 –10
Fast 2 18 18
49 9
67 7
84 4
12 –4
16 –3
QuietIO 2 64 64
464 64
648 48
836 36
12 –36
16 –24
LVC M OS 15 S low 2 55 55
431 31
618 18
8–15
12 –10
Fast 2 25 25
410 10
66 6
8–4
12 –3
QuietIO 2 70 70
440 40
631 31
8–31
12 –20
Tabl e 2 8 : Recommended Simultaneously Switching
Outputs per VCCO/GND Pair (VCCAUX =3.3V) (Cont’d)
Signal Standard
(IOSTANDARD)
Package Type
CS484, FG676
Top, Bottom
(Banks 0, 2)
Left, Right
(Banks 1, 3)
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 37
LVC M OS 12 S low 2 40 40
4–25
6–18
Fast 2 31 31
4–13
6–9
QuietIO 2 55 55
4–36
6–36
PCI33_3 16 16
PCI66_3 –13
HSTL_I –20
HSTL_III –8
HSTL_I_18 17 17
HSTL_II_18 –5
HSTL_III_18 10 8
SSTL18_I 7 15
SSTL18_II –9
SSTL2_I 18 18
SSTL2_II –9
SSTL3_I 8 10
SSTL3_II 6 7
Tabl e 28 : Recommended Simultaneously Switching
Outputs per VCCO/GND Pair (VCCAUX =3.3V) (Cont’d)
Signal Standard
(IOSTANDARD)
Package Type
CS484, FG676
Top, Bottom
(Banks 0, 2)
Left, Right
(Banks 1, 3)
Differential Standards (Number of I/O Pairs or Channels)
LVD S _2 5 22
LVD S _3 3 27
BLVDS_25 4 4
MINI_LVDS_25 22
MINI_LVDS_33 27
LVPECL_25 Inputs Only
LVPECL_33 Inputs Only
RSDS_25 22
RSDS_33 27
TMDS_33 27
PPDS_25 22
PPDS_33 27
DIFF_HSTL_I_18 8 8
DIFF_HSTL_II_18 –2
DIFF_HSTL_III_18 5 4
DIFF_HSTL_I –10
DIFF_HSTL_III –4
DIFF_SSTL18_I 3 7
DIFF_SSTL18_II –4
DIFF_SSTL2_I 9 9
DIFF_SSTL2_II –4
DIFF_SSTL3_I 4 5
DIFF_SSTL3_II 3 3
Notes:
1. Not all I/O standards are supported on all I/O banks. The left and
right banks (I/O banks 1 and 3) support higher output drive
current than the top and bottom banks (I/O banks 0 and 2).
Similarly, true differential output standards, such as LVDS,
RSDS, PPDS, miniLVDS, and TMDS, are only supported in top
or bottom banks (I/O banks 0 and 2). Refer to UG331: Spartan-3
Generation FPGA User Guide for additional information.
2. The numbers in this table are recommendations that assume
sound board lay out practice. This table assumes the following
parasitic factors: combined PCB trace and land inductance per
VCCO and GND pin of 1.0 nH, receiver capacitive load of 15 pF.
Test limits are the VIL/VIH voltage limits for the respective I/O
standard.
3. If more than one signal standard is assigned to the I/Os of a
given bank, refer to XAPP689: Managing Ground Bounce in
Large FPGAs for information on how to perform weighted
average SSO calculations.
Tabl e 2 8 : Recommended Simultaneously Switching
Outputs per VCCO/GND Pair (VCCAUX =3.3V) (Cont’d)
Signal Standard
(IOSTANDARD)
Package Type
CS484, FG676
Top, Bottom
(Banks 0, 2)
Left, Right
(Banks 1, 3)
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 38
Configurable Logic Block (CLB) Timing
Tabl e 29 : CLB (SLICEM) Timing
Symbol Description
Speed Grade
Units-5 -4
Min Max Min Max
Clock-to-Output Times
TCKO When reading from the FFX (FFY) Flip-Flop, the time
from the active transition at the CLK input to data
appearing at the XQ (YQ) output
–0.60–0.68ns
Setup Times
TAS Time from the setup of data at the F or G input to the
active transition at the CLK input of the CLB
0.18 –0.36–ns
TDICK Time from the setup of data at the BX or BY input to
the active transition at the CLK input of the CLB
1.58 –1.88–ns
Hold Times
TAH Time from the active transition at the CLK input to the
point where data is last held at the F or G input
0.00 –0.00–ns
TCKDI Time from the active transition at the CLK input to the
point where data is last held at the BX or BY input
0.00 –0.00–ns
Clock Timing
TCH The High pulse width of the CLB’s CLK signal 0.63 –0.75–ns
TCL The Low pulse width of the CLK signal 0.63 –0.75–ns
FTOG Toggle frequency (for export control) 0 770 0 667 MHz
Propagation Times
TILO The time it takes for data to travel from the CLB’s
F (G) input to the X (Y) output
–0.62–0.71ns
Set/Reset Pulse Width
TRPW_CLB The minimum allowable pulse width, High or Low, to
the CLB’s SR input
1.33 –1.61–ns
Notes:
1. The numbers in this table are based on the operating conditions set forth in Ta bl e 7 .
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 39
Tabl e 30 : CLB Distributed RAM Switching Characteristics
Symbol Description
Speed Grade
Units-5 -4
Min Max Min Max
Clock-to-Output Times
TSHCKO Time from the active edge at the CLK input to data appearing on
the distributed RAM output
–1.44–1.72ns
Setup Times
TDS Setup time of data at the BX or BY input before the active
transition at the CLK input of the distributed RAM
–0.07 –0.02 –ns
TAS Setup time of the F/G address inputs before the active transition
at the CLK input of the distributed RAM
0.18 –0.36–ns
TWS Setup time of the write enable input before the active transition at
the CLK input of the distributed RAM
0.30 –0.59–ns
Hold Times
TDH Hold time of the BX and BY data inputs after the active transition
at the CLK input of the distributed RAM
0.13 –0.13–ns
TAH, TWH Hold time of the F/G address inputs or the write enable input after
the active transition at the CLK input of the distributed RAM
0.01 –0.01–ns
Clock Pulse Width
TWPH, TWPL Minimum High or Low pulse width at CLK input 0.88 –1.01–ns
Tabl e 31 : CLB Shift Register Switching Characteristics
Symbol Description
Speed Grade
Units-5 -4
Min Max Min Max
Clock-to-Output Times
TREG Time from the active edge at the CLK input to data appearing on
the shift register output
–4.11–4.82ns
Setup Times
TSRLDS Setup time of data at the BX or BY input before the active
transition at the CLK input of the shift register
0.13 –0.18–ns
Hold Times
TSRLDH Hold time of the BX or BY data input after the active transition at
the CLK input of the shift register
0.16 –0.16–ns
Clock Pulse Width
TWPH, TWPL Minimum High or Low pulse width at CLK input 0.90 –1.01–ns
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 40
Clock Buffer/Multiplexer Switching Characteristics
Tabl e 32 : Clock Distribution Switching Characteristics
Symbol Description Minimum
Maximum
UnitsSpeed Grade
-5 -4
TGIO Global clock buffer (BUFG, BUFGMUX, BUFGCE) I input to
O-output delay –0.220.23ns
TGSI Global clock multiplexer (BUFGMUX) select S-input setup to I0 and
I1 inputs. Same as BUFGCE enable CE-input –0.560.63ns
FBUFG Frequency of signals distributed on global buffers (all sides) 0 350 334 MHz
Notes:
1. The numbers in this table are based on the operating conditions set forth in Ta bl e 7 .
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 41
Block RAM Timing
Tabl e 33 : Block RAM Timing
Symbol Description
Speed Grade
Units-5 -4
Min Max Min Max
Clock-to-Output Times
TRCKO_DOA_NC When reading from block RAM, the delay from the active transition at
the CLK input to data appearing at the DOUT output
–2.38–2.80ns
TRCKO_DOA Clock CLK to DOUT output (with output register) –1.24–1.45ns
Setup Times
TRCCK_ADDR Setup time for the ADDR inputs before the active transition at the CLK
input of the block RAM
0.40 –0.46–ns
TRDCK_DIB Setup time for data at the DIN inputs before the active transition at the
CLK input of the block RAM
0.29 –0.33–ns
TRCCK_ENB Setup time for the EN input before the active transition at the CLK input
of the block RAM
0.51 –0.60–ns
TRCCK_WEB Setup time for the WE input before the active transition at the CLK input
of the block RAM
0.64 –0.75–ns
TRCCK_REGCE Setup time for the CE input before the active transition at the CLK input
of the block RAM
0.34 –0.40–ns
TRCCK_RST Setup time for the RST input before the active transition at the CLK
input of the block RAM
0.22 –0.25–ns
Hold Times
TRCKC_ADDR Hold time on the ADDR inputs after the active transition at the CLK
input
0.09 –0.10–ns
TRCKC_DIB Hold time on the DIN inputs after the active transition at the CLK input 0.09 –0.10–ns
TRCKC_ENB Hold time on the EN input after the active transition at the CLK input 0.09 –0.10–ns
TRCKC_WEB Hold time on the WE input after the active transition at the CLK input 0.09 –0.10–ns
TRCKC_REGCE Hold time on the CE input after the active transition at the CLK input 0.09 –0.10–ns
TRCKC_RST Hold time on the RST input after the active transition at the CLK input 0.09 –0.10–ns
Clock Timing
TBPWH High pulse width of the CLK signal 1.56 –1.79–ns
TBPWL Low pulse width of the CLK signal 1.56 –1.79–ns
Clock Frequency
FBRAM Block RAM clock frequency 0 320 0 280 MHz
Notes:
1. The numbers in this table are based on the operating conditions set forth in Ta bl e 7 .
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 42
DSP48A Timing
To reference the DSP48A block diagram, see UG431: XtremeDSP DSP48A for Spartan-3A DSP FPGA User Guide.
Tabl e 34 : Setup Times for the DSP48A
Symbol Description Pre-adder Multiplier Post-adder
Speed Grade
Units-5 -4
Min Min
Setup Times of Data/Control Pins to the Input Register Clock
TDSPDCK_AA A input to A register CLK 0.04 0.04 ns
TDSPDCK_DB D input to B register CLK Yes 1.64 1.88 ns
TDSPDCK_CC C input to C register CLK 0.05 0.05 ns
TDSPDCK_DD D input to D register CLK 0.04 0.04 ns
TDSPDCK_OPB OPMODE input to B register CLK Yes 0.37 0.42 ns
TDSPDCK_OPOP OPMODE input to OPMODE register CLK 0.06 0.06 ns
Setup Times of Data Pins to the Pipeline Register Clock
TDSPDCK_AM A input to M register CLK –Yes 3.30 3.79 ns
TDSPDCK_BM B input to M register CLK Yes Yes 4.33 4.97 ns
No Yes 3.30 3.79 ns
TDSPDCK_DM D input to M register CLK Yes Yes 4.41 5.06 ns
TDSPDCK_OPM OPMODE to M register CLK Yes Yes 4.72 5.42 ns
Setup Times of Data/Control Pins to the Output Register Clock
TDSPDCK_AP A input to P register CLK Yes Yes 4.78 5.49 ns
TDSPDCK_BP B input to P register CLK Yes Yes Yes 5.87 6.74 ns
No Yes Yes 4.77 5.48 ns
TDSPDCK_DP D input to P register CLK Yes Yes Yes 5.95 6.83 ns
TDSPDCK_CP C input to P register CLK Yes 1.90 2.18 ns
TDSPDCK_OPP OPMODE input to P register CLK Yes Yes Yes 6.25 7.18 ns
Notes:
1. "Yes" means that the component is in the path. "No" means that the component is being bypassed. “–“ means that no path exists, so it is not
applicable.
2. The numbers in this table are based on the operating conditions set forth in Ta bl e 7 .
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 43
Tabl e 35 : Clock to Out, Propagation Delays, and Maximum Frequency for the DSP48A
Symbol Description Pre-adder Multiplier Post-adder
Speed Grade
Units-5 -4
Max Max
Clock to Out from Output Register Clock to Output Pin
TDSPCKO_PP CLK (PREG) to P output 1.26 1.44 ns
Clock to Out from Pipeline Register Clock to Output Pins
TDSPCKO_PM CLK (MREG) to P output Yes Yes 3.16 3.63 ns
Yes No 1.94 2.23 ns
Clock to Out from Input Register Clock to Output Pins
TDSPCKO_PA CLK (AREG) to P output Yes Yes 6.33 7.27 ns
TDSPCKO_PB CLK (BREG) to P output Yes Yes Yes 7.45 8.56 ns
TDSPCKO_PC CLK (CREG) to P output Yes 3.37 3.87 ns
TDSPCKO_PD CLK (DREG) to P output Yes Yes Yes 7.33 8.42 ns
Combinatorial Delays from Input Pins to Output Pins
TDSPDO_AP
TDSPDO_BP
A or B input to P output No Yes 2.78 3.19 ns
Yes No 4.60 5.28 ns
Yes Yes 5.65 6.49 ns
TDSPDO_BP B input to P output Yes No No 3.49 4.01 ns
Yes Yes No 5.79 6.65 ns
Ye s Ye s Ye s 6 . 7 4 7 . 7 4 n s
TDSPDO_CP C input to P output Yes 2.76 3.17 ns
TDSPDO_DP D input to P output Yes Yes Yes 6.81 7.82 ns
TDSPDO_OPP OPMODE input to P output Yes Yes Yes 7.12 8.18 ns
Maximum Frequency
FMAX All registers used Yes Yes Yes 287 250 MHz
Notes:
1. To reference the DSP48A block diagram, see UG431: XtremeDSP DSP48A for Spartan-3A DSP FPGA User Guide.
2. "Yes" means that the component is in the path. "No" means that the component is being bypassed. “–“ means that no path exists, so it is not
applicable.
3. The numbers in this table are based on the operating conditions set forth in Ta bl e 7 .
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 44
Digital Clock Manager (DCM) Timing
For specification purposes, the DCM consists of three key
components: the Delay-Locked Loop (DLL), the Digital
Frequency Synthesizer (DFS), and the Phase Shifter (PS).
Aspects of DLL operation play a role in all DCM
applications. All such applications inevitably use the CLKIN
and the CLKFB inputs connected to either the CLK0 or the
CLK2X feedback, respectively. Thus, specifications in the
DLL tables (Ta bl e 3 6 and Ta bl e 3 7 ) apply to any application
that only employs the DLL component. When the DFS
and/or the PS components are used together with the DLL,
then the specifications listed in the DFS and PS tables
(Ta bl e 3 8 through Ta bl e 4 1 ) supersede any corresponding
ones in the DLL tables. DLL specifications that do not
change with the addition of DFS or PS functions are
presented in Ta bl e 3 6 and Ta bl e 3 7 .
Period jitter and cycle-cycle jitter are two of many different
ways of specifying clock jitter. Both specifications describe
statistical variation from a mean value.
Period jitter is the worst-case deviation from the ideal clock
period over a collection of millions of samples. In a
histogram of period jitter, the mean value is the clock period.
Cycle-cycle jitter is the worst-case difference in clock period
between adjacent clock cycles in the collection of clock
periods sampled. In a histogram of cycle-cycle jitter, the
mean value is zero.
Spread Spectrum
DCMs accept typical spread spectrum clocks as long as
they meet the input requirements. The DLL will track the
frequency changes created by the spread spectrum clock to
drive the global clocks to the FPGA logic. See XAPP469:
Spread-Spectrum Clocking Reception for Displays for
details.
Delay-Locked Loop (DLL)
Tabl e 36 : Recommended Operating Conditions for the DLL
Symbol Description
Speed Grade
Units-5 -4
Min Max Min Max
Input Frequency Ranges
FCLKIN CLKIN_FREQ_DLL Frequency of the CLKIN clock input 5(2) 280(3) 5(2) 250(3) MHz
Input Pulse Requirements
CLKIN_PULSE CLKIN pulse width as a
percentage of the CLKIN
period
FCLKIN < 150 MHz 40% 60% 40% 60%
FCLKIN > 150 MHz 45% 55% 45% 55%
Input Clock Jitter Tolerance and Delay Path Variation(4)
CLKIN_CYC_JITT_DLL_LF Cycle-to-cycle jitter at the
CLKIN input
FCLKIN < 150 MHz –±300–±300ps
CLKIN_CYC_JITT_DLL_HF FCLKIN > 150 MHz –±150–±150ps
CLKIN_PER_JITT_DLL Period jitter at the CLKIN input –±1–±1ns
CLKFB_DELAY_VAR_EXT Allowable variation of off-chip feedback delay
from the DCM output to the CLKFB input
–±1–±1ns
Notes:
1. DLL specifications apply when any of the DLL outputs (CLK0, CLK90, CLK180, CLK270, CLK2X, CLK2X180, or CLKDV) are in use.
2. The DFS, when operating independently of the DLL, supports lower FCLKIN frequencies. See Ta b l e 3 8 .
3. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming
clock frequency by two as it enters the DCM. The CLK2X output reproduces the clock frequency provided on the CLKIN input.
4. CLKIN input jitter beyond these limits might cause the DCM to lose lock.
5. The DCM specifications are guaranteed when both adjacent DCMs are locked.
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 45
Tabl e 37 : Switching Characteristics for the DLL
Symbol Description Device
Speed Grade
Units-5 -4
Min Max Min Max
Output Frequency Ranges
CLKOUT_FREQ_CLK0 Frequency for the CLK0 and CLK180 outputs All 5 280 5 250 MHz
CLKOUT_FREQ_CLK90 Frequency for the CLK90 and CLK270 outputs 5 200 5 200 MHz
CLKOUT_FREQ_2X Frequency for the CLK2X and CLK2X180 outputs 10 334 10 334 MHz
CLKOUT_FREQ_DV Frequency for the CLKDV output 0.3125 186 0.3125 166 MHz
Output Clock Jitter (2)(3)(4)
CLKOUT_PER_JITT_0 Period jitter at the CLK0 output All –±100–±100ps
CLKOUT_PER_JITT_90 Period jitter at the CLK90 output –±150–±150ps
CLKOUT_PER_JITT_180 Period jitter at the CLK180 output –±150–±150ps
CLKOUT_PER_JITT_270 Period jitter at the CLK270 output –±150–±150ps
CLKOUT_PER_JITT_2X Period jitter at the CLK2X and CLK2X180 outputs ±[0.5%
of
CLKIN
period
+ 100]
±[0.5%
of
CLKIN
period
+ 100]
ps
CLKOUT_PER_JITT_DV1 Period jitter at the CLKDV output when performing
integer division
–±150–±150ps
CLKOUT_PER_JITT_DV2 Period jitter at the CLKDV output when performing
non-integer division
±[0.5%
of
CLKIN
period
+ 100]
±[0.5%
of
CLKIN
period
+ 100]
ps
Duty Cycle (4)
CLKOUT_DUTY_CYCLE_
DLL
Duty cycle variation for the CLK0, CLK90, CLK180,
CLK270, CLK2X, CLK2X180, and CLKDV outputs,
including the BUFGMUX and clock tree duty-cycle
distortion
All –±[1% of
CLKIN
period
+ 350]
–±[1% of
CLKIN
period
+ 350]
ps
Phase Alignment (4)
CLKIN_CLKFB_PHASE Phase offset between the CLKIN and CLKFB inputs All –±150–±150ps
CLKOUT_PHASE_DLL Phase offset between DLL
outputs
CLK0 to CLK2X
(not CLK2X180)
–±[1% of
CLKIN
period
+ 100]
–±[1% of
CLKIN
period
+ 100]
ps
All others –±[1% of
CLKIN
period
+ 150]
–±[1% of
CLKIN
period
+ 150]
ps
Lock Time
LOCK_DLL(3) When using the DLL alone:
The time from deassertion at
the DCM’s Reset input to the
rising transition at its LOCKED
output. When the DCM is
locked, the CLKIN and CLKFB
signals are in phase
5 MHz < FCLKIN <
15 MHz
All –5–5ms
FCLKIN > 15 MHz 600 600 µs
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 46
Digital Frequency Synthesizer (DFS)
Delay Lines
DCM_DELAY_STEP(5) Finest delay resolution, averaged over all steps All 15 35 15 35 ps
Notes:
1. The numbers in this table are based on the operating conditions set forth in Ta bl e 7 and Tabl e 3 6 .
2. Indicates the maximum amount of output jitter that the DCM adds to the jitter on the CLKIN input.
3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
4. Some jitter and duty-cycle specifications include 1% of input clock period or 0.01 UI. For example, the data sheet specifies a maximum jitter
of ±[1% of CLKIN period + 150]. Assume the CLKIN frequency is 100 MHz. The equivalent CLKIN period is 10 ns and 1% of 10 ns is 0.1ns
or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 150 ps] = ±250 ps, averaged over all steps.
5. The typical delay step size is 23 ps.
Tabl e 38 : Recommended Operating Conditions for the DFS
Symbol Description
Speed Grade
Units-5 -4
Min Max Min Max
Input Frequency Ranges(2)
FCLKIN CLKIN_FREQ_FX Frequency for the CLKIN input 0.2 333(5) 0.2 333(5) MHz
Input Clock Jitter Tolerance(3)
CLKIN_CYC_JITT_FX_LF Cycle-to-cycle jitter at the
CLKIN input, based on CLKFX
output frequency
FCLKFX < 150 MHz –±300–±300ps
CLKIN_CYC_JITT_FX_HF FCLKFX > 150 MHz –±150–±150ps
CLKIN_PER_JITT_FX Period jitter at the CLKIN input –±1–±1ns
Notes:
1. DFS specifications apply when either of the DFS outputs (CLKFX or CLKFX180) are used.
2. If both DFS and DLL outputs are used on the same DCM, follow the more restrictive CLKIN_FREQ_DLL specifications in Tabl e 3 6 .
3. CLKIN input jitter beyond these limits may cause the DCM to lose lock.
4. The DCM specifications are guaranteed when both adjacent DCMs are locked.
5. To support double the maximum effective FCLKIN limit, set the CLKIN_DIVIDE_BY_2 attribute to TRUE. This attribute divides the incoming
clock frequency by two as it enters the DCM.
Tabl e 37 : Switching Characteristics for the DLL (Cont’d)
Symbol Description Device
Speed Grade
Units-5 -4
Min Max Min Max
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 47
Tabl e 39 : Switching Characteristics for the DFS
Symbol Description Device
Speed Grade
Units-5 -4
Min Max Min Max
Output Frequency Ranges
CLKOUT_FREQ_FX(2) Frequency for the CLKFX and CLKFX180 outputs All 5 350 5 311 MHz
Output Clock Jitter (3)(4)
CLKOUT_PER_JITT_FX Period jitter at the CLKFX and
CLKFX180 outputs.
CLKIN
20 MHz
All Typ Max Typ Max
Use the Spartan-3A Jitter Calculator:
www.xilinx.com/support/documentation/
data_sheets/s3a_jitter_calc.zip
ps
CLKIN
> 20 MHz
±[1% of
CLKFX
period
+ 100]
±[1% of
CLKFX
period
+ 200]
±[1% of
CLKFX
period
+ 100]
±[1% of
CLKFX
period
+ 200]
ps
Duty Cycle(5)(6)
CLKOUT_DUTY_CYCLE_
FX
Duty cycle precision for the CLKFX and CLKFX180
outputs, including the BUFGMUX and clock tree
duty-cycle distortion
All –±[1% of
CLKFX
period
+ 350]
–±[1% of
CLKFX
period
+ 350]
ps
Phase Alignment(6)
CLKOUT_PHASE_FX Phase offset between the DFS CLKFX output and the
DLL CLK0 output when both the DFS and DLL are used
All –±200–±200ps
CLKOUT_PHASE_FX180 Phase offset between the DFS CLKFX180 output and
the DLL CLK0 output when both the DFS and DLL are
used
All –±[1% of
CLKFX
period
+ 200]
–±[1% of
CLKFX
period
+ 200]
ps
Lock Time
LOCK_FX(2)(3) The time from deassertion at the
DCM’s Reset input to the rising
transition at its LOCKED output. The
DFS asserts LOCKED when the
CLKFX and CLKFX180 signals are
valid. If using both the DLL and the
DFS, use the longer locking time.
5 MHz < F CLKIN
< 15 MHz
All –5–5ms
FCLKIN >
15 MHz
450 450 µs
Notes:
1. The numbers in this table are based on the operating conditions set forth in Ta bl e 7 and Tabl e 3 8 .
2. DFS performance requires the additional logic automatically added by ISE 9.1i and later software revisions.
3. For optimal jitter tolerance and faster lock time, use the CLKIN_PERIOD attribute.
4. Maximum output jitter is characterized within a reasonable noise environment (150 ps input period jitter, 40 SSOs and 25% CLB switching)
on an FPGA. Output jitter strongly depends on the environment, including the number of SSOs, the output drive strength, CLB utilization,
CLB switching activities, switching frequency, power supply and PCB design. The actual maximum output jitter depends on the system
application.
5. The CLKFX and CLKFX180 outputs always have an approximate 50% duty cycle.
6. Some duty-cycle and alignment specifications include a percentage of the CLKFX output period. For example, the data sheet specifies a
maximum CLKFX jitter of “±[1% of CLKFX period + 200]”. Assume the CLKFX output frequency is 100 MHz. The equivalent CLKFX period
is 10 ns and 1% of 10 ns is 0.1 ns or 100 ps. According to the data sheet, the maximum jitter is ±[100 ps + 200 ps] = ±300 ps.
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 48
Phase Shifter (PS)
Miscellaneous DCM Timing
Tabl e 40 : Recommended Operating Conditions for the PS in Variable Phase Mode
Symbol Description
Speed Grade
Units-5 -4
Min Max Min Max
Operating Frequency Ranges
PSCLK_FREQ
(FPSCLK)
Frequency for the PSCLK input 1 167 1 167 MHz
Input Pulse Requirements
PSCLK_PULSE PSCLK pulse width as a percentage of the PSCLK period 40% 60% 40% 60%
Tabl e 41 : Switching Characteristics for the PS in Variable Phase Mode
Symbol Description Phase Shift Amount Units
Phase Shifting Range
MAX_STEPS(2,3) Maximum allowed number of
DCM_DELAY_STEP steps for a given
CLKIN clock period, where T = CLKIN
clock period in ns. If using
CLKIN_DIVIDE_BY_2 = TRUE, double
the effective clock period.
CLKIN < 60 MHz ±[INTEGER(10 (TCLKIN – 3 ns))] steps
CLKIN 60 MHz ±[INTEGER(15 (TCLKIN – 3 ns))]
FINE_SHIFT_RANGE_MIN Minimum guaranteed delay for variable phase shifting ±[MAX_STEPS
DCM_DELAY_STEP_MIN]
ns
FINE_SHIFT_RANGE_MAX Maximum guaranteed delay for variable phase shifting ±[MAX_STEPS
DCM_DELAY_STEP_MAX]
ns
Notes:
1. The numbers in this table are based on the operating conditions set forth in Tab l e 7 and Ta b l e 4 0 .
2. The maximum variable phase shift range, MAX_STEPS, is only valid when the DCM is has no initial fixed phase shifting, that is, the
PHASE_SHIFT attribute is set to 0.
3. The DCM_DELAY_STEP values are provided at the bottom of Tabl e 3 7 .
Tabl e 42 : Miscellaneous DCM Timing
Symbol Description Min Max Units
DCM_RST_PW_MIN Minimum duration of a RST pulse width 3 –CLKIN
cycles
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 49
DNA Port Timing
Tabl e 43 : DNA_PORT Interface Timing
Symbol Description Min Max Units
TDNASSU Setup time on SHIFT before the rising edge of CLK 1.0 –ns
TDNASH Hold time on SHIFT after the rising edge of CLK 0.5 –ns
TDNADSU Setup time on DIN before the rising edge of CLK 1.0 –ns
TDNADH Hold time on DIN after the rising edge of CLK 0.5 –ns
TDNARSU Setup time on READ before the rising edge of CLK 5.0 10,000 ns
TDNARH Hold time on READ after the rising edge of CLK 0.0 –ns
TDNADCKO Clock-to-output delay on DOUT after rising edge of CLK 0.5 1.5 ns
TDNACLKF CLK frequency 0.0 100 MHz
TDNACLKH CLK High time 1.0 ns
TDNACLKL CLK Low time 1.0 ns
Notes:
1. The minimum READ pulse width is 5 ns, and the maximum READ pulse width is 10 μs.
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 50
Suspend Mode Timing
X-Ref Target - Figure 9
Figure 9: Suspend Mode Timing
Tabl e 44 : Suspend Mode Timing Parameters
Symbol Description Min Typ Max Units
Entering Suspend Mode
TSUSPENDHIGH_AWAKE Rising edge of SUSPEND pin to falling edge of AWAKE pin without glitch filter
(suspend_filter:No)
–7–ns
TSUSPENDFILTER Adjustment to SUSPEND pin rising edge parameters when glitch filter
enabled (suspend_filter:Yes)
+160 +300 +600 ns
TSUSPEND_GTS Rising edge of SUSPEND pin until FPGA output pins drive their defined
SUSPEND constraint behavior
–10–ns
TSUSPEND_GWE Rising edge of SUSPEND pin to write-protect lock on all writable clocked
elements
–<5–ns
TSUSPEND_DISABLE Rising edge of the SUSPEND pin to FPGA input pins and interconnect
disabled
340 –ns
Exiting Suspend Mode
TSUSPENDLOW_AWAKE Falling edge of the SUSPEND pin to rising edge of the AWAKE pin. Does not
include DCM lock time.
4 to 108 μs
TSUSPEND_ENABLE Falling edge of the SUSPEND pin to FPGA input pins and interconnect
re-enabled
3.7 to 109 μs
TAWAKE_GWE1 Rising edge of the AWAKE pin until write-protect lock released on all writable
clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:1.
–67–ns
TAWAKE_GWE512 Rising edge of the AWAKE pin until write-protect lock released on all writable
clocked elements, using sw_clk:InternalClock and sw_gwe_cycle:512.
–14–µs
TAWAKE_GTS1 Rising edge of the AWAKE pin until outputs return to the behavior described
in the FPGA application, using sw_clk:InternalClock and sw_gts_cycle:1.
–57–ns
TAWAKE_GTS512 Rising edge of the AWAKE pin until outputs return to the behavior described
in the FPGA application, using sw_clk:InternalClock and
sw_gts_cycle:512.
–14–µs
Notes:
1. These parameters based on characterization.
2. For information on using the Spartan-3A DSP Suspend feature, see XAPP480: Using Suspend Mode in Spartan-3 Generation FPGAs.
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 51
Configuration and JTAG Timing
General Configuration Power-On/Reconfigure Timing
X-Ref Target - Figure 10
Figure 10: Waveforms for Power-On and the Beginning of Configuration
Tabl e 45 : Power-On Timing and the Beginning of Configuration
Symbol Description Device All Speed Grades Units
Min Max
TPOR(2) The time from the application of VCCINT
, VCCAUX, and VCCO
Bank 2 supply voltage ramps (whichever occurs last) to the
rising transition of the INIT_B pin
All –18ms
TPROG The width of the low-going pulse on the PROG_B pin All 0.5 –µs
TPL(2) The time from the rising edge of the PROG_B pin to the
rising transition on the INIT_B pin
All –2ms
TINIT Minimum Low pulse width on INIT_B output All 300 –ns
TICCK(3) The time from the rising edge of the INIT_B pin to the
generation of the configuration clock signal at the CCLK
output pin
All 0.5 4 µs
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 7 . This means power must be applied to all VCCINT
, VCCO,
and VCCAUX lines.
2. Power-on reset and the clearing of configuration memory occurs during this period.
3. This specification applies only to the Master Serial, SPI, and BPI modes.
4. For details on configuration, see UG332 Spartan-3 Generation Configuration User Guide.
VCCINT
(Supply)
(Supply)
(Supply)
VCCAUX
VCCO Bank 2
PROG_B
(Output)
(Open-Drain)
(Input)
INIT_B
CCLK
DS529-3_01_052708
1.2V
2.5V
TICCK
TPROG TPL
TPOR
1.0V
2.0V
2.0V 3.3V
or
2.5V
3.3V
or
Notes:
1. The VCCINT
, VCCAUX, and VCCO supplies can be applied in any order.
2. The Low-going pulse on PROG_B is optional after power-on but necessary for reconfiguration without a power cycle.
3. The rising edge of INIT_B samples the voltage levels applied to the mode pins (M0 - M2).
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 52
Configuration Clock (CCLK) Characteristics
Tabl e 46 : Master Mode CCLK Output Period by ConfigRate Option Setting
Symbol Description ConfigRate
Setting(1) Temperature
Range Minimum Maximum Units
TCCLK1
CCLK clock period by
ConfigRate setting 1
(power-on value)
Commercial 1,254 2,500 ns
Industrial 1,180 ns
TCCLK3 3Commercial 413 833 ns
Industrial 390 ns
TCCLK6 6
(default)
Commercial 207 417 ns
Industrial 195 ns
TCCLK7 7Commercial 178 357 ns
Industrial 168 ns
TCCLK8 8Commercial 156 313 ns
Industrial 147 ns
TCCLK10 10 Commercial 123 250 ns
Industrial 116 ns
TCCLK12 12 Commercial 103 208 ns
Industrial 97 ns
TCCLK13 13 Commercial 93 192 ns
Industrial 88 ns
TCCLK17 17 Commercial 72 147 ns
Industrial 68 ns
TCCLK22 22 Commercial 54 114 ns
Industrial 51 ns
TCCLK25 25 Commercial 47 100 ns
Industrial 45 ns
TCCLK27 27 Commercial 44 93 ns
Industrial 42 ns
TCCLK33 33 Commercial 36 76 ns
Industrial 34 ns
TCCLK44 44 Commercial 26 57 ns
Industrial 25 ns
TCCLK50 50 Commercial 22 50 ns
Industrial 21 ns
TCCLK100 100 Commercial 11.2 25 ns
Industrial 10.6 ns
Notes:
1. Set the ConfigRate option value when generating a configuration bitstream.
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 53
Tabl e 47 : Master Mode CCLK Output Frequency by ConfigRate Option Setting
Symbol Description ConfigRate
Setting
Temperature
Range Minimum Maximum Units
FCCLK1
Equivalent CCLK clock frequency
by ConfigRate setting 1
(power-on value)
Commercial 0.400 0.797 MHz
Industrial 0.847 MHz
FCCLK3 3Commercial 1.20 2.42 MHz
Industrial 2.57 MHz
FCCLK6 6
(default)
Commercial 2.40 4.83 MHz
Industrial 5.13 MHz
FCCLK7 7Commercial 2.80 5.61 MHz
Industrial 5.96 MHz
FCCLK8 8Commercial 3.20 6.41 MHz
Industrial 6.81 MHz
FCCLK10 10 Commercial 4.00 8.12 MHz
Industrial 8.63 MHz
FCCLK12 12 Commercial 4.80 9.70 MHz
Industrial 10.31 MHz
FCCLK13 13 Commercial 5.20 10.69 MHz
Industrial 11.37 MHz
FCCLK17 17 Commercial 6.80 13.74 MHz
Industrial 14.61 MHz
FCCLK22 22 Commercial 8.80 18.44 MHz
Industrial 19.61 MHz
FCCLK25 25 Commercial 10.00 20.90 MHz
Industrial 22.23 MHz
FCCLK27 27 Commercial 10.80 22.39 MHz
Industrial 23.81 MHz
FCCLK33 33 Commercial 13.20 27.48 MHz
Industrial 29.23 MHz
FCCLK44 44 Commercial 17.60 37.60 MHz
Industrial 40.00 MHz
FCCLK50 50 Commercial 20.00 44.80 MHz
Industrial 47.66 MHz
FCCLK100 100 Commercial 40.00 88.68 MHz
Industrial 94.34 MHz
Tabl e 48 : Master Mode CCLK Output Minimum Low and High Time
Symbol Description ConfigRate Setting Units
1 3 6 7 8 10121317222527334450100
TMCCL,
TMCCH
Master Mode
CCLK
Minimum
Low and High
Time
Commercial 595 196 98.3 84.5 74.1 58.4 48.9 44.1 34.2 25.6 22.3 20.9 17.1 12.3 10.4 5.3 ns
Industrial 560 185 92.6 79.8 69.8 55.0 46.0 41.8 32.3 24.2 21.4 20.0 16.2 11.9 10.0 5.0 ns
Tabl e 49 : Slave Mode CCLK Input Low and High Time
Symbol Description Min Max Units
TSCCL
TSCCH
CCLK Low and High time 5 ns
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 54
Master Serial and Slave Serial Mode Timing
X-Ref Target - Figure 11
Figure 11: Waveforms for Master Serial and Slave Serial Configuration
Tabl e 50 : Timing for the Master Serial and Slave Serial Configuration Modes
Symbol Description Slave/
Master
All Speed Grades Units
Min Max
Clock-to-Output Times
TCCO The time from the falling transition on the CCLK pin to data appearing at the
DOUT pin
Both 1.5 10 ns
Setup Times
TDCC The time from the setup of data at the DIN pin to the rising transition at the
CCLK pin
Both 7 –ns
Hold Times
TCCD The time from the rising transition at the CCLK pin to the point when data is
last held at the DIN pin
Master 0.0 –ns
Slave 1.0 –ns
Clock Timing
TCCH High pulse width at the CCLK input pin Master See Tabl e 48
Slave See Ta bl e 4 9
TCCL Low pulse width at the CCLK input pin Master See Tabl e 48
Slave See Ta bl e 4 9
FCCSER Frequency of the clock signal at the
CCLK input pin(2) No bitstream compression Slave 0 100 MHz
With bitstream compression 0 100 MHz
Notes:
1. The numbers in this table are based on the operating conditions set forth in Ta bl e 7 .
2. For serial configuration with a daisy-chain of multiple FPGAs, the maximum limit is 25 MHz.
DS312-3_05_103105
Bit 0 Bit 1 Bit n Bit n+1
Bit n-64 Bit n-63
1/FCCSER
TSCCL
TDCC
TCCD
TSCCH
TCCO
PROG_B
(Input)
DIN
(Input)
DOUT
(Output)
(Open-Drain)
INIT_B
(Input/Output)
CCLK
TMCCL TMCCH
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 55
Slave Parallel Mode Timing
X-Ref Target - Figure 12
Figure 12: Waveforms for Slave Parallel Configuration
Tabl e 51 : Timing for the Slave Parallel Configuration Mode
Symbol Description All Speed Grades Units
Min Max
Setup Times
TSMDCC(2) The time from the setup of data at the D0-D7 pins to the rising transition at the CCLK pin 7 –ns
TSMCSCC Setup time on the CSI_B pin before the rising transition at the CCLK pin 7 –ns
TSMCCW Setup time on the RDWR_B pin before the rising transition at the CCLK pin 17 –ns
Hold Times
TSMCCD The time from the rising transition at the CCLK pin to the point when data is last held at
the D0-D7 pins
1–ns
TSMCCCS The time from the rising transition at the CCLK pin to the point when a logic level is last
held at the CSO_B pin
0–ns
TSMWCC The time from the rising transition at the CCLK pin to the point when a logic level is last
held at the RDWR_B pin
0–ns
Clock Timing
TCCH The High pulse width at the CCLK input pin 5 –ns
TCCL The Low pulse width at the CCLK input pin 5 –ns
FCCPAR Frequency of the clock signal at the CCLK input pin No bitstream compression 0 80 MHz
With bitstream compression 0 80 MHz
Notes:
1. The numbers in this table are based on the operating conditions set forth in Table 7 .
2. Some Xilinx documents refer to Parallel modes as “SelectMAP” modes.
DS529-3_02_051607
Byte 0 Byte 1 Byte n Byte n+1
TSMWCC
1/F
CCPAR
TSMCCCS
TSCCH
TSMCCW
T
SMCCD
TSMCSCC
T
SMDCC
PROG_B
(Input)
(Open-Drain)
INIT_B
(Input)
CSI_B
RDWR_B
(Input)
(Input)
CCLK
(Inputs)
D0 - D7
TMCCH TSCCL
TMCCL
Notes:
1. It is possible to abort configuration by pulling CSI_B Low in a given CCLK cycle, then switching RDWR_B Low or High in any subsequent
cycle for which CSI_B remains Low. The RDWR_B pin asynchronously controls the driver impedance of the D0–D7 bus. When RDWR_B
switches High, be careful to avoid contention on the D0–D7 bus.
2. To pause configuration, pause CCLK instead of de-asserting CSI_B. See UG332, Chapter 7, section “Non-Continuous SelectMAP Data
Loading” for more details.
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 56
Serial Peripheral Interface (SPI) Configuration Timing
X-Ref Target - Figure 13
Figure 13: Waveforms for Serial Peripheral Interface (SPI) Configuration
Tabl e 52 : Timing for Serial Peripheral Interface (SPI) Configuration Mode
Symbol Description Minimum Maximum Units
TCCLK1 Initial CCLK clock period See Ta b l e 4 6
TCCLKnCCLK clock period after FPGA loads ConfigRate setting See Ta bl e 4 6
TMINIT Setup time on VS[2:0] variant-select pins and M[2:0] mode pins before the
rising edge of INIT_B
50 –ns
TINITM Hold time on VS[2:0] variant-select pins and M[2:0] mode pins after the
rising edge of INIT_B
0–ns
TCCO MOSI output valid delay after CCLK falling edge See Ta bl e 5 0
TDCC Setup time on DIN data input before CCLK rising edge See Ta bl e 5 0
TCCD Hold time on DIN data input after CCLK rising edge See Ta bl e 5 0
T
DH
T
DSU
Command
(msb)
T
V
T
CSS
<1:1:1>
INIT_B
M[2:0]
T
MINIT
T
INITM
DIN
CCLK
(Input)
T
CCLKn
T
CCLK1
VS[2:0]
(Input)
New ConfigRate active
Mode input pins M[2:0] and variant select input pins VS[2:0] are sampled when INIT_B
goes High. After this point, input values do not matter until DONE goes High, at which
point these pins become user-I/O pins.
<0:0:1>
Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low.
Pin initially high-impedance (Hi-Z) if PUDC_B input is High. External pull-up resistor required on CSO_B.
T
CCLK1
T
MCCLn
T
MCCHn
(Input)
Data Data Data Data
CSO_B
MOSI
T
CCO
T
MCCL1
T
MCCH1
T
DCC
T
CCD
(Input)
PROG_B
PUDC_B
(Input)
PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process.
DS529-3_06_102506
(Open-Drain)
Shaded values indicate specifications on attached SPI Flash PROM.
Command
(msb-1)
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 57
Tabl e 53 : Configuration Timing Requirements for Attached SPI Serial Flash
Symbol Description Requirement Units
TCCS SPI serial Flash PROM chip-select time ns
TDSU SPI serial Flash PROM data input setup time ns
TDH SPI serial Flash PROM data input hold time ns
TVSPI serial Flash PROM data clock-to-output time ns
fC or fRMaximum SPI serial Flash PROM clock frequency (also depends on
specific read command used)
MHz
Notes:
1. These requirements are for successful FPGA configuration in SPI mode, where the FPGA generates the CCLK signal. The
post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.
2. Subtract additional printed circuit board routing delay as required by the application.
TCCS TMCCL1TCCO
TDSU TMCCL1TCCO
TDH TMCCH1
TVTMCCLn TDCC
fC
1
TCCLKn min()
---------------------------------
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 58
Byte Peripheral Interface (BPI) Configuration Timing
X-Ref Target - Figure 14
Figure 14: Waveforms for Byte-wide Peripheral Interface (BPI) Configuration
Tabl e 54 : Timing for Byte-wide Peripheral Interface (BPI) Configuration Mode
Symbol Description Minimum Maximum Units
TCCLK1 Initial CCLK clock period See Ta b l e 4 6
TCCLKnCCLK clock period after FPGA loads ConfigRate setting See Ta b l e 4 6
TMINIT Setup time on M[2:0] mode pins before the rising edge of INIT_B 50 –ns
TINITM Hold time on M[2:0] mode pins after the rising edge of INIT_B 0 –ns
TINITADDR Minimum period of initial A[25:0] address cycle; LDC[2:0] and HDC are asserted
and valid
55T
CCLK1
cycles
TCCO Address A[25:0] outputs valid after CCLK falling edge See Ta b l e 5 0
TDCC Setup time on D[7:0] data inputs before CCLK rising edge See TSMDCC in Ta b l e 5 1
TCCD Hold time on D[7:0] data inputs after CCLK rising edge 0 –ns
(Input) PUDC_B must be stable before INIT_B goes High and constant throughout the configuration process.
DataDataData
AddressAddress
Data
Address
Byte 0
000_0000
INIT_B
<0:1:0>
M[2:0]
T
MINIT
T
INITM
LDC[2:0]
HDC
CSO_B
Byte 1
000_0001
CCLK
A[25:0]
D[7:0]
T
DCC
T
CCD
T
AVQV
T
CCLK1
(Input)
T
INITADDR
TCCLKn
T
CCLK1
T
CCO
PUDC_B
New ConfigRate active
Pin initially pulled High by internal pull-up resistor if PUDC_B input is Low.
Pin initially high-impedance (Hi-Z) if PUDC_B input is High.
Mode input pins M[2:0] are sampled when INIT_B goes High. After this point,
input values do not matter until DONE goes High, at which point the mode pins
become user-I/O pins.
(Input)
PROG_B
(Input)
DS529-3_05_090610
(Open-Drain)
Shaded values indicate specifications on attached parallel NOR Flash PROM.
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 59
Tabl e 55 : Configuration Timing Requirements for Attached Parallel NOR BPI Flash
Symbol Description Requirement Units
TCE
(tELQV)
Parallel NOR Flash PROM chip-select time ns
TOE
(tGLQV)
Parallel NOR Flash PROM output-enable time ns
TACC
(tAVQV)
Parallel NOR Flash PROM read access time ns
TBYTE
(tFLQV, tFHQV)
For x8/x16 PROMs only: BYTE# to output valid time(3) ns
Notes:
1. These requirements are for successful FPGA configuration in BPI mode, where the FPGA generates the CCLK signal. The
post-configuration timing can be different to support the specific needs of the application loaded into the FPGA.
2. Subtract additional printed circuit board routing delay as required by the application.
3. The initial BYTE# timing can be extended using an external, appropriately sized pull-down resistor on the FPGA’s LDC2 pin. The resistor
value also depends on whether the FPGA’s PUDC_B pin is High or Low.
TCE TINITADDR
TOE TINITADDR
TACC 50%TCCLKn min()
TCCO TDCC PCB
TBYTE TINITADDR
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 60
IEEE 1149.1/1532 JTAG Test Access Port Timing
X-Ref Target - Figure 15
Figure 15: JTAG Waveforms
Tabl e 56 : Timing for the JTAG(2) Test Access Port
Symbol Description
All Speed
Grades Units
Min Max
Clock-to-Output Times
TTCKTDO The time from the falling transition on the TCK pin to data appearing at the TDO pin 1.0 11.0 ns
Setup Times
TTDITCK The time from the setup of data at the
TDI pin to the rising transition at the
TCK pin
All functions except those shown below 7.0 –ns
Boundary scan commands
(INTEST, EXTEST, SAMPLE)
13.0
TTMSTCK The time from the setup of a logic level at the TMS pin to the rising transition at the TCK pin 7.0 –ns
Hold Times
TTCKTDI The time from the rising transition at
the TCK pin to the point when data is
last held at the TDI pin
All functions except those shown below 0 –ns
Configuration commands (CFG_IN, ISC_PROGRAM) 3.5
TTCKTMS The time from the rising transition at the TCK pin to the point when a logic level is last held at the
TMS pin
0–ns
Clock Timing
TCCH The High pulse width at the TCK pin All functions except ISC_DNA command 5 –ns
TCCL The Low pulse width at the TCK pin 5 –ns
TCCHDNA The High pulse width at the TCK pin During ISC_DNA command 10 10,000 ns
TCCLDNA The Low pulse width at the TCK pin 10 10,000 ns
FTCK Frequency of the TCK signal BYPASS or HIGHZ instructions 0 33 MHz
All operations except for BYPASS or HIGHZ instructions 20
Notes:
1. The numbers in this table are based on the operating conditions set forth in Ta bl e 7 .
2. For details on JTAG, see Chapter 9, “JTAG Configuraton Mode and Boundary-Scan” in UG332: Spartan-3 Generation Configuration User
Guide.
TCK
TTMSTCK
TMS
TDI
TDO
(Input)
(Input)
(Input)
(Output)
TTCKTMS
T
TCKTDI
TTCKTDO
TTDITCK
DS099_06_090610
TCCH TCCL
1/FTCK
Spartan-3A DSP FPGA Family: DC and Switching Characteristics
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 61
Revision History
The following table shows the revision history for this document.
Date Version Revision
04/02/07 1.0 Initial Xilinx release.
05/25/07 1.0.1 Minor edits.
06/18/07 1.2 Updated for v1.29 production speed files. Noted banking rules in Ta b l e 1 1 and Ta bl e 1 2 . Added
DIFF_HSTL_I and DIFF_HSTL_III to Ta b l e 1 2 , Ta b l e 1 3 , and Ta bl e 26 . Updated TMDS DC characteristics
in Ta bl e 1 3 . Updated I/O Test Method values in Ta b l e 2 6 . Added Simultaneously Switching Output limits in
Ta bl e 2 8 . Updated DSP48A timing symbols, descriptions, and values in Ta bl e 3 4 . Added power-on timing in
Ta bl e 4 5 . Added CCLK specifications for Commercial in Tab le 4 6 through Ta b l e 4 8 . Updated Slave Parallel
timing in Tab l e 5 1. Updated JTAG specifications in Tab l e 5 6.
07/16/07 2.0 Added Low-power options and updated typical values for quiescent current in Ta b l e 9 . Updated DSP48A
timing in Tab l e 3 4 and Tabl e 3 5 .
06/02/08 2.1 Improved VCCAUXT and VCCO2T POR minimum in Ta bl e 4 and updated VCCO POR levels in Figure 10. Added
VIN to Recommended Operating Conditions in Ta b l e 7 and added reference to XAPP459, “Eliminating I/O
Coupling Effects when Interfacing Large-Swing Single-Ended Signals to User I/O Pins.” Reduced typical
ICCINTQ and ICCAUXQ quiescent current values by 20%-44% in Tabl e 9 . Increased VIL max to 0.4V for
LVCMOS12/15/18 and improved VIH min to 0.7V for LVCMOS12 in Ta b l e 1 0 . Changed VOL max to 0.4V and
VOH min to VCCO–0.4V for LVCMOS15/18 in Ta b le 1 1 . Added reference to VCCAUX in Simultaneously
Switching Output Guidelines. Removed DNA_RETENTION limit of 10 years in Ta ble 1 4 since number of
Read cycles is the only unique limit. Updated speed files to v1.31 in Tabl e 1 6 and elsewhere. Updated IOB
Setup and Hold times with device-specific values in Ta bl e 1 9 . Added reference to Sample Window in
Ta bl e 2 0 . Updated IOB Propagation times with device-specific values in Ta b l e 2 1 . Improved SSTL_18_II
SSO value in Ta bl e 2 8 . Improved FBUFG for -4 to 334 MHz in Ta bl e 3 2 . Added references to 375 MHz
performance via SCD 4103 in Ta b l e 3 2 ,Ta b l e 3 7 , Tabl e 3 8, and Ta b l e 3 9 . Added explanatory footnotes to
DSP48A Timing tables. Simplified DSP48A FMAX to value with all registers used in Ta b l e 3 5 . Improved
FBUFG in Ta bl e 3 2 for -4 speed grade. Updated CCLK output maximum period in Ta bl e 46 to match
minimum frequency in Ta b l e 4 7. Replaced BPI with SPI specification descriptions in Ta b l e 5 2 . Corrected BPI
Figure 14 and Ta b l e 5 4 from falling edge to rising edge. Added references to Spartan-3 Generation User
Guides. Updated links.
03/11/09 2.2 Changed typical quiescent current temperature from ambient to quiescent. Updated selected I/O standard
DC characteristics. Removed PCIX IOSTANDARD due to limited PCIX interface support. Added TIOPI and
TIOPID to Ta b l e 2 1 . Updated BPI configuration waveforms in Figure 14 and updated Ta b l e 5 5 . Removed
references to SCD 4103.
10/04/10 3.0 Added IIK to Ta bl e 3 . Updated description for VIN in Ta b l e 7 including adding note 4. Also, added note 2 to IL
in Ta bl e 8 to note potential leakage between pins of a differential pair. Added note 6 to Ta b l e 1 0 . Updated
notes 5 and 6 in Ta b l e 1 2 . Corrected symbols for TSUSPEND_GTS and TSUSPEND_GWE in Ta b l e 4 4 .
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 62
© Copyright 2007–2010 Xilinx, Inc. XILINX, the Xilinx logo, Virtex, Spartan, ISE, and other designated brands included herein are trademarks of Xilinx in the United States and
other countries. PCI and PCI-X are trademarks of PCI-SIG and used under license. All other trademarks are the property of their respective owners.
Introduction
This section describes how the various pins on a Spartan®-3A DSP FPGA connect within the supported component
packages and provides device-specific thermal characteristics. For general information on the pin functions and the package
characteristics, see the Packaging section in UG331: Spartan-3 Generation FPGA User Guide.
Spartan-3A DSP FPGAs are available in both standard and Pb-free, RoHS versions of each package, with the Pb-free
version adding a “G” to the middle of the package code. Except for the thermal characteristics, all information for the
standard package applies equally to the Pb-free package.
Pin Types
Most pins on a Spartan-3A DSP FPGA are general-purpose, user-defined I/O pins. There are, however, up to 12 different
functional types of pins on Spartan-3A DSP packages, as outlined in Ta bl e 5 7 . In the package footprint drawings that follow,
the individual pins are color-coded according to pin type as in the table.
101 Spartan-3A DSP FPGA Family:
Pinout Descriptions
DS610 (v3.0) October 4, 2010 Product Specification
Tabl e 57 : Types of Pins on Spartan-3A DSP FPGAs
Type/Color
Code Description Pin Name(s) in Type
I/O Unrestricted, general-purpose user-I/O pin. Most pins can be paired together to form
differential I/Os.
IO_#
IO_Lxxy_#
INPUT Unrestricted, general-purpose input-only pin. This pin does not have an output structure,
differential termination resistor, or PCI clamp diode.
IP_#
IP_Lxxy_#
DUAL
Dual-purpose pin used in some configuration modes during the configuration process and
then usually available as a user I/O after configuration. If the pin is not used during
configuration, this pin behaves as an I/O-type pin. See UG332: Spartan-3 Generation
Configuration User Guide for additional information on these signals.
M[2:0]
PUDC_B
CCLK
MOSI/CSI_B
D[7:1]
D0/DIN
CSO_B
RDWR_B
INIT_B
A[25:0]
VS[2:0]
LDC[2:0]
HDC
VREF
Dual-purpose pin that is either a user-I/O pin or Input-only pin, or, along with all other VREF
pins in the same bank, provides a reference voltage input for certain I/O standards. If used for
a reference voltage within a bank, all VREF pins within the bank must be connected.
IP/VREF_#
IP_Lxxy_#/VREF_#
IO/VREF_#
IO_Lxxy_#/VREF_#
CLK
Either a user-I/O pin or an input to a specific clock buffer driver. Packages have 16 global clock
inputs that optionally clock the entire device. The RHCLK inputs optionally clock the right half
of the device. The LHCLK inputs optionally clock the left half of the device. See the Using
Global Clock Resources chapter in UG331: Spartan-3 Generation FPGA User Guide for
additional information on these signals.
IO_Lxxy_#/GCLK[15:0],
IO_Lxxy_#/LHCLK[7:0],
IO_Lxxy_#/RHCLK[7:0]
CONFIG
Dedicated configuration pin, two per device. Not available as a user-I/O pin. Every package
has two dedicated configuration pins. These pins are powered by VCCAUX. See the UG332:
Spartan-3 Generation Configuration User Guide for additional information on the DONE and
PROG_B signals.
DONE, PROG_B
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 63
Package Pins by Type
Each package has three separate voltage supply
inputs—VCCINT, VCCAUX, and VCCO—and a common
ground return, GND. The numbers of pins dedicated to
these functions vary by package, as shown in Ta b l e 5 8 .
A majority of package pins are user-defined I/O or input
pins. However, the numbers and characteristics of these I/O
depend on the device type and the package in which it is
available, as shown in Ta b le 5 9 . The table shows the
maximum number of single-ended I/O pins available,
assuming that all I/O-, INPUT-, DUAL-, VREF-, and
CLK-type pins are used as general-purpose I/O. AWAKE is
counted here as a dual-purpose I/O pin. Likewise, the table
shows the maximum number of differential pin-pairs
available on the package. Finally, the table shows how the
total maximum user-I/Os are distributed by pin type,
including the number of unconnected—N.C.—pins on the
device.
Not all I/O standards are supported on all I/O banks. The left
and right banks (I/O banks 1 and 3) support higher output
drive current than the top and bottom banks (I/O banks 0
and 2). Similarly, true differential output standards, such as
LVDS, RSDS, PPDS, miniLVDS, and TMDS, are only
supported in the top or bottom banks (I/O banks 0 and 2).
Inputs are unrestricted. For more details, see the Using I/O
Resources chapter in UG331.
PWR
MGMT
Control and status pins for the power-saving Suspend mode. SUSPEND is a dedicated pin
and is powered by VCCAUX. AWAKE is a dual-purpose pin. Unless Suspend mode is enabled
in the application, AWAKE is available as a user-I/O pin.
SUSPEND, AWAKE
JTAG Dedicated JTAG pin - 4 per device. Not available as a user-I/O pin. Every package has four
dedicated JTAG pins. These pins are powered by VCCAUX.
TDI, TMS, TCK, TDO
GND Dedicated ground pin. The number of GND pins depends on the package used. All must be
connected.
GND
VCCAUX Dedicated auxiliary power supply pin. The number of VCCAUX pins depends on the package
used. All must be connected. Set on board and using CONFIG VCCAUX constraint.
VCCAUX
VCCINT Dedicated internal core logic power supply pin. The number of VCCINT pins depends on the
package used. All must be connected to +1.2V.
VCCINT
VCCO
Along with all the other VCCO pins in the same bank, this pin supplies power to the output
buffers within the I/O bank and sets the input threshold voltage for some I/O standards. All
must be connected.
VCCO_#
N.C. This package pin is not connected in this specific device/package combination but may be
connected in larger devices in the same package.
N.C.
Notes:
1. # = I/O bank number, an integer between 0 and 3.
Tabl e 57 : Types of Pins on Spartan-3A DSP FPGAs (Cont’d)
Type/Color
Code Description Pin Name(s) in Type
Tabl e 58 : Power and Ground Supply Pins by Package
Package Device VCCINT VCCAUX VCCO GND
CS484 XC3SD1800A 36 24 24 84
XC3SD3400A 36 24 24 84
FG676 XC3SD1800A 23 14 36 77
XC3SD3400A 36 24 40 100
Tabl e 59 : Maximum User I/O by Package
Package Device
Maximum
User I/Os and
Input-Only
Maximum
Input-Only
Maximum
Differential
Pairs
All Possible I/Os by Type
I/O INPUT DUAL VREF(1) CLK N.C.
CS484 XC3SD1800A 309 60 140 156 41 52 28 32 0
XC3SD3400A 309 60 140 156 41 52 28 32 0
FG676 XC3SD1800A 519 110 227 314 82 52 39 32 0
XC3SD3400A 469 60 213 314 34 52 37 32 0
Notes:
1. Some VREFs are on INPUT pins. See pinout tables for details.
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 64
Electronic versions of the package pinout tables and foot- prints are available for download from the Xilinx® website. Using
a spreadsheet program, the data can be sorted and reformatted according to any specific needs. Similarly, the ASCII-text file
is easily parsed by most scripting programs. www.xilinx.com/support/documentation/data_sheets/s3a_pin.zip
Package Overview
Ta bl e 6 0 shows the two low-cost, space-saving production package styles for the Spartan-3A DSP family.
Each package style is available as a standard and an environmentally friendly lead-free (Pb-free) option. The Pb-free
packages include an extra ‘G’ in the package style name. For example, the standard “CS484” package becomes “CSG484”
when ordered as the Pb-free option. The mechanical dimensions of the standard and Pb-free packages are similar, as
shown in the mechanical drawings provided in Ta bl e 6 1 .
For additional package information, see UG112: Device Package User Guide.
Mechanical Drawings
Detailed mechanical drawings for each package type are available from the Xilinx web site at the specified location in
Ta bl e 6 1 .
Material Declaration Data Sheets (MDDS) are also available on the Xilinx web site for each package.
Tabl e 60 : Spartan-3A DSP Family Package Options
Package Leads Type Maximum
I/O
Lead Pitch
(mm)
Footprint
Area (mm)
Height
(mm)
Mass(1)
(g)
CS484 / CSG484 484 Chip-Scale Ball Grid Array (CS) 309 0.8 19 x 19 1.80 1.4
FG676 / FGG676 676 Fine-pitch Ball Grid Array (FBGA) 519 1.0 27 x 27 2.60 3.4
Notes:
1. Package mass is ±10%.
Tabl e 61 : Xilinx Package Documentation
Package Drawing MDDS
CS484 Package Drawing PK230_CS484
CSG484 PK231_CSG484
FG676 Package Drawing PK155_FG676
FGG676 PK111_FGG676
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 65
Package Thermal Characteristics
The power dissipated by an FPGA application has implications on package selection and system design. The power
consumed by a Spartan-3A DSP FPGA is reported using either the XPower Power Estimator or the XPower Analyzer
calculator integrated in the Xilinx ISE® development software. Ta bl e 6 2 provides the thermal characteristics for the various
Spartan-3A DSP device package offerings. This information is also available using the Thermal Query tool.
The junction-to-case thermal resistance (θJC) indicates the difference between the temperature measured on the package
body (case) and the die junction temperature per watt of power consumption. The junction-to-board (θJB) value similarly
reports the difference between the board and junction temperature. The junction-to-ambient (θJA) value reports the
temperature difference between the ambient environment and the junction temperature. The θJA value is reported at
different air velocities, measured in linear feet per minute (LFM). The “Still Air (0 LFM)” column shows the θJA value in a
system without a fan. The thermal resistance drops with increasing air flow.
Tabl e 62 : Spartan-3A DSP FPGA Package Thermal Characteristics
Package Device Junction-to-Case
(θJC)
Junction-to-
Board (θJB)
Junction-to-Ambient (θJA)
at Different Air Flows Units
Still Air
(0 LFM) 250 LFM 500 LFM 750 LFM
CS484
CSG484
XC3SD1800A 4.1 6.8 18.0 13.3 12.3 11.5 °C/W
XC3SD3400A 3.5 5.6 16.9 12.2 11.0 10.4 °C/W
FG676
FGG676
XC3SD1800A 4.7 7.8 15.9 11.6 10.6 10.0 °C/W
XC3SD3400A 3.8 6.4 14.7 10.5 9.4 8.9 °C/W
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 66
CS484: 484-Ball Chip-Scale Ball Grid Array
The 484-ball chip-scale ball grid array, CS484, supports
both the XC3SD1800A and XC3SD3400A FPGAs. There
are no pinout differences between the two devices.
Ta bl e 6 3 lists all the CS484 package pins. They are sorted
by bank number and then by pin name. Pairs of pins that
form a differential I/O pair appear together in the table. The
table also shows the pin number for each pin and the pin
type, as defined earlier.
An electronic version of this package pinout table and
footprint diagram is available for download from the Xilinx
website at
www.xilinx.com/support/documentation/data_sheets/s3a_pin.zip
Pinout Table
Tabl e 63 : Spartan-3A DSP CS484 Pinout
Bank Pin Name CS484
Ball Type
0 IO_L30N_0 A3 I/O
0 IO_L28N_0 A4 I/O
0 IO_L25N_0 A5 I/O
0 IO_L25P_0 A6 I/O
0 IO_L24N_0/VREF_0 A7 VREF
0 IO_L20P_0/GCLK10 A8 GCLK
0 IO_L18P_0/GCLK6 A9 GCLK
0 IP_0 A10 INPUT
0 IO_L15N_0 A11 I/O
0 IP_0 A12 INPUT
0 IO_L11P_0 A13 I/O
0 IO_L10P_0 A14 I/O
0 IP_0 A15 INPUT
0 IO_L06P_0/VREF_0 A16 VREF
0 IO_L06N_0 A17 I/O
0 IP_0 A18 INPUT
0 IO_L07N_0 A19 I/O
0 IO_0 A20 I/O
0 IO_L30P_0 B3 I/O
0 IO_L28P_0 B4 I/O
0 IO_L24P_0 B6 I/O
0 IO_L20N_0/GCLK11 B8 GCLK
0 IO_L18N_0/GCLK7 B9 GCLK
0 IO_L15P_0 B11 I/O
0 IO_L11N_0 B13 I/O
0 IO_L10N_0 B15 I/O
0 IO_L03P_0 B17 I/O
0 IO_L02N_0 B19 I/O
0 IO_L07P_0 B20 I/O
0 IO_L29N_0 C4 I/O
0 IP_0 C5 INPUT
0 IO_L21P_0 C6 I/O
0 IO_L26P_0 C7 I/O
0 IO_L22P_0 C8 I/O
0 IO_L16P_0 C9 I/O
0 IP_0 C10 INPUT
0 IP_0/VREF_0 C11 VREF
0 IO_L14N_0 C12 I/O
0 IO_L14P_0 C13 I/O
0 IP_0 C14 INPUT
0 IO_L12N_0/VREF_0 C15 VREF
0 IO_L08N_0 C16 I/O
0 IO_L03N_0 C17 I/O
0 IO_L02P_0/VREF_0 C18 VREF
0 IO_L01N_0 C19 I/O
0 IO_L29P_0 D5 I/O
0 IO_L21N_0 D6 I/O
0 IO_L26N_0 D7 I/O
0 IO_L22N_0 D9 I/O
0 IO_L16N_0 D10 I/O
0 IO_L09N_0 D13 I/O
0 IO_L12P_0 D14 I/O
0 IO_L08P_0 D15 I/O
0 IP_0 D17 INPUT
0 IP_0 D18 INPUT
0 IO_L01P_0 D19 I/O
0 IP_0 E6 INPUT
0 IO_L31P_0/VREF_0 E7 VREF
0 IO_L27N_0 E8 I/O
0 IP_0 E10 INPUT
0 IO_L19N_0/GCLK9 E11 GCLK
0 IO_L17P_0/GCLK4 E12 GCLK
0 IO_L09P_0 E13 I/O
0 IO_L05P_0 E15 I/O
0 IO_L04P_0 E16 I/O
0 IP_0 E17 INPUT
0 IO_L31N_0/PUDC_B F7 DUAL
0 IO_L27P_0 F8 I/O
0 IO_L23N_0 F9 I/O
Tabl e 6 3 : Spartan-3A DSP CS484 Pinout (Cont’d)
Bank Pin Name CS484
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 67
0 IO_L19P_0/GCLK8 F10 GCLK
0 IO_L17N_0/GCLK5 F11 GCLK
0 IP_0 F12 INPUT
0 IO_L13N_0 F13 I/O
0 IO_L13P_0 F14 I/O
0 IO_L05N_0 F15 I/O
0 IO_L04N_0 F16 I/O
0 IO_L23P_0 G8 I/O
0 VCCO_0 B5 VCCO
0 VCCO_0 B10 VCCO
0 VCCO_0 B14 VCCO
0 VCCO_0 B18 VCCO
0 VCCO_0 E9 VCCO
0 VCCO_0 E14 VCCO
1 IO_L02N_1/LDC0 AA22 DUAL
1 IP_L39N_1 C21 INPUT
1 IP_L39P_1/VREF_1 C22 VREF
1 IO_L36P_1/A20 D20 DUAL
1 IO_L37P_1/A22 D21 DUAL
1 IO_L37N_1/A23 D22 DUAL
1 IO_L36N_1/A21 E19 DUAL
1 IO_L35N_1 E20 I/O
1 IO_L33N_1 E22 I/O
1 IO_L38N_1/A25 F18 DUAL
1 IO_L38P_1/A24 F19 DUAL
1 IO_L30N_1/A19 F20 DUAL
1 IO_L35P_1 F21 I/O
1 IO_L33P_1 F22 I/O
1 IO_L34P_1 G17 I/O
1 IO_L34N_1 G18 I/O
1 IO_L30P_1/A18 G19 DUAL
1 IP_L31N_1 G20 INPUT
1 IO_L28N_1 G22 I/O
1 IO_L26P_1/A14 H17 DUAL
1 IO_L26N_1/A15 H18 DUAL
1 IO_L32N_1 H20 I/O
1 IP_L31P_1/VREF_1 H21 VREF
1 IO_L28P_1 H22 I/O
1 IO_L29N_1/A17 J17 DUAL
1 IO_L32P_1 J19 I/O
1 IO_L25N_1/A13 J20 DUAL
1 IP_L27P_1 J21 INPUT
Tabl e 63 : Spartan-3A DSP CS484 Pinout (Cont’d)
Bank Pin Name CS484
Ball Type
1 IP_L27N_1 J22 INPUT
1 IO_L29P_1/A16 K16 DUAL
1 IP_L23N_1 K17 INPUT
1 IO_L24N_1 K18 I/O
1 IO_L24P_1 K19 I/O
1 IO_L25P_1/A12 K20 DUAL
1 IO_L22N_1/A11 K22 DUAL
1 IO_L21N_1/RHCLK7 L17 RHCLK
1 IP_L23P_1/VREF_1 L18 VREF
1 IO_L20N_1/RHCLK5 L20 RHCLK
1 IO_L20P_1/RHCLK4 L21 RHCLK
1 IO_L22P_1/A10 L22 DUAL
1 IO_L18N_1/RHCLK1 M17 RHCLK
1 IO_L21P_1/IRDY1/RHCLK6 M18 RHCLK
1 IO_L19N_1/TRDY1/RHCLK3 M20 RHCLK
1 IO_L17N_1/A9 M22 DUAL
1 IO_L13P_1/A2 N17 DUAL
1 IO_L18P_1/RHCLK0 N18 RHCLK
1 IO_L15N_1/A7 N19 DUAL
1 IO_L15P_1/A6 N20 DUAL
1 IO_L19P_1/RHCLK2 N21 RHCLK
1 IO_L17P_1/A8 N22 DUAL
1 IO_L13N_1/A3 P16 DUAL
1 IP_L12N_1/VREF_1 P17 VREF
1 IO_L10P_1 P19 I/O
1 IP_L16N_1 P20 INPUT
1 IO_L14N_1/A5 P22 DUAL
1 IP_L12P_1 R17 INPUT
1 IO_L10N_1 R18 I/O
1 IO_L07P_1 R19 I/O
1 IO_L07N_1 R20 I/O
1 IP_L16P_1/VREF_1 R21 VREF
1 IO_L14P_1/A4 R22 DUAL
1 IO_L05N_1 T17 I/O
1 IO_L05P_1 T18 I/O
1 IO_L09N_1 T20 I/O
1 IO_L11N_1/VREF_1 T22 VREF
1 IO_L01P_1/HDC U18 DUAL
1 IO_L01N_1/LDC2 U19 DUAL
1 IO_L09P_1 U20 I/O
1 IP_L08N_1/VREF_1 U21 VREF
1 IO_L11P_1 U22 I/O
Tabl e 6 3 : Spartan-3A DSP CS484 Pinout (Cont’d)
Bank Pin Name CS484
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 68
1 IO_L03N_1/A1 V20 DUAL
1 IP_L08P_1 V22 INPUT
1 IO_L03P_1/A0 W19 DUAL
1 IP_L04N_1/VREF_1 W20 VREF
1 IP_L04P_1 W21 INPUT
1 IO_L06P_1 W22 I/O
1 IO_L02P_1/LDC1 Y21 DUAL
1 IO_L06N_1 Y22 I/O
1 VCCO_1 E21 VCCO
1 VCCO_1 J18 VCCO
1 VCCO_1 K21 VCCO
1 VCCO_1 P18 VCCO
1 VCCO_1 P21 VCCO
1 VCCO_1 V21 VCCO
2 IO_L01P_2/M1 AA3 DUAL
2 IO_L04N_2 AA4 I/O
2 IP_2 AA6 INPUT
2 IO_L08N_2 AA8 I/O
2 IO_L12N_2/D6 AA10 DUAL
2 IO_L16P_2/GCLK14 AA12 GCLK
2 IO_L18N_2/GCLK3 AA14 GCLK
2 IO_L19P_2 AA15 I/O
2 IO_L22P_2/AWAKE AA17 PWRMGMT
2 IO_L27N_2 AA19 I/O
2 IO_L30P_2 AA20 I/O
2 IP_2/VREF_2 AB2 VREF
2 IO_L01N_2/M0 AB3 DUAL
2 IO_L04P_2 AB4 I/O
2 IO_L05P_2 AB5 I/O
2 IO_L05N_2 AB6 I/O
2 IO_L08P_2 AB7 I/O
2 IO_L09P_2/VS1 AB8 DUAL
2 IO_L09N_2/VS0 AB9 DUAL
2 IO_L12P_2/D7 AB10 DUAL
2 IP_2/VREF_2 AB11 VREF
2 IO_L16N_2/GCLK15 AB12 GCLK
2 IO_L18P_2/GCLK2 AB13 GCLK
2 IO_L19N_2 AB14 I/O
2 IP_2 AB15 INPUT
2 IO_L22N_2/DOUT AB16 DUAL
2 IO_L23P_2 AB17 I/O
2 IO_L23N_2 AB18 I/O
Tabl e 63 : Spartan-3A DSP CS484 Pinout (Cont’d)
Bank Pin Name CS484
Ball Type
2 IO_L27P_2 AB19 I/O
2 IO_L30N_2 AB20 I/O
2 IO_L02N_2/CSO_B U7 DUAL
2 IO_L11N_2 U8 I/O
2 IO_L10N_2 U9 I/O
2 IO_L14N_2/D4 U10 DUAL
2 IO_L17P_2/GCLK0 U12 GCLK
2 IO_L20P_2 U13 I/O
2 IO_L25P_2 U14 I/O
2 IO_L25N_2 U15 I/O
2 IO_L28P_2 U16 I/O
2 IO_L02P_2/M2 V6 DUAL
2 IO_L11P_2 V7 I/O
2 IO_L06N_2 V8 I/O
2 IO_L10P_2 V10 I/O
2 IO_L14P_2/D5 V11 DUAL
2 IO_L17N_2/GCLK1 V12 GCLK
2 IO_L20N_2/MOSI/CSI_B V13 DUAL
2 IP_2/VREF_2 V15 VREF
2 IO_L28N_2 V16 I/O
2 IO_L31N_2/CCLK V17 DUAL
2 IP_2/VREF_2 W4 VREF
2 IO_L03P_2 W5 I/O
2 IO_L07N_2/VS2 W6 DUAL
2 IO_L06P_2 W8 I/O
2 IP_2/VREF_2 W9 VREF
2 IP_2 W10 INPUT
2 IP_2/VREF_2 W13 VREF
2 IO_L21N_2 W14 I/O
2 IO_L24P_2/INIT_B W15 DUAL
2 IO_L31P_2/D0/DIN/MISO W17 DUAL
2 IP_2/VREF_2 W18 VREF
2 IO_L03N_2 Y4 I/O
2 IO_L07P_2/RDWR_B Y5 DUAL
2 IP_2 Y6 INPUT
2 IP_2 Y7 INPUT
2 IO_L13P_2 Y8 I/O
2 IO_L13N_2 Y9 I/O
2 IO_L15N_2/GCLK13 Y10 GCLK
2 IO_L15P_2/GCLK12 Y11 GCLK
2 IP_2 Y12 INPUT
2 IO_L21P_2 Y13 I/O
Tabl e 6 3 : Spartan-3A DSP CS484 Pinout (Cont’d)
Bank Pin Name CS484
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 69
2 IP_2/VREF_2 Y14 VREF
2 IO_L24N_2/D3 Y15 DUAL
2 IO_L29N_2 Y16 I/O
2 IO_L29P_2 Y17 I/O
2 IO_L26P_2/D2 Y18 DUAL
2 IO_L26N_2/D1 Y19 DUAL
2 VCCO_2 AA5 VCCO
2 VCCO_2 AA9 VCCO
2 VCCO_2 AA13 VCCO
2 VCCO_2 AA18 VCCO
2 VCCO_2 V9 VCCO
2 VCCO_2 V14 VCCO
3 IP_L39N_3/VREF_3 AA1 VREF
3 IO_L02N_3 C1 I/O
3 IO_L02P_3 C2 I/O
3 IP_L04P_3 D1 INPUT
3 IP_L08P_3 D3 INPUT
3 IP_L08N_3 D4 INPUT
3 IP_L04N_3/VREF_3 E1 VREF
3 IO_L09P_3 E3 I/O
3 IO_L09N_3 E4 I/O
3 IO_L06N_3 F1 I/O
3 IO_L06P_3 F2 I/O
3 IO_L01P_3 F3 I/O
3 IO_L03P_3 F4 I/O
3 IO_L03N_3 F5 I/O
3 IO_L11P_3 G1 I/O
3 IO_L01N_3 G3 I/O
3 IO_L07P_3 G5 I/O
3 IO_L07N_3 G6 I/O
3 IO_L11N_3 H1 I/O
3 IO_L14P_3 H2 I/O
3 IO_L05P_3 H3 I/O
3 IO_L05N_3 H4 I/O
3 IO_L10P_3 H5 I/O
3 IO_L10N_3 H6 I/O
3 IO_L14N_3/VREF_3 J1 VREF
3 IP_L16P_3 J3 INPUT
3 IP_L16N_3 J4 INPUT
3 IP_L12P_3 J6 INPUT
3 IP_L12N_3/VREF_3 J7 VREF
3 IO_L19P_3/LHCLK2 K1 LHCLK
Tabl e 63 : Spartan-3A DSP CS484 Pinout (Cont’d)
Bank Pin Name CS484
Ball Type
3 IO_L17P_3 K2 I/O
3 IO_L17N_3 K3 I/O
3 IO_L13P_3 K4 I/O
3 IO_L13N_3 K5 I/O
3 IO_L15P_3 K6 I/O
3 IO_L19N_3/IRDY2/LHCLK3 L1 LHCLK
3 IO_L20P_3/LHCLK4 L3 LHCLK
3 IO_L15N_3 L5 I/O
3 IO_L18P_3/LHCLK0 L6 LHCLK
3 IO_L22P_3/VREF_3 M1 VREF
3 IO_L20N_3/LHCLK5 M2 LHCLK
3 IP_L23P_3 M3 INPUT
3 IO_L18N_3/LHCLK1 M5 LHCLK
3 IO_L21P_3/TRDY2/LHCLK6 M6 LHCLK
3 IO_L22N_3 N1 I/O
3 IP_L31P_3 N3 INPUT
3 IP_L23N_3 N4 INPUT
3 IO_L24N_3 N5 I/O
3 IO_L24P_3 N6 I/O
3 IO_L21N_3/LHCLK7 N7 LHCLK
3 IO_L25P_3 P1 I/O
3 IO_L25N_3 P2 I/O
3 IP_L31N_3 P3 INPUT
3 IO_L32P_3/VREF_3 P4 VREF
3 IO_L26P_3 P6 I/O
3 IO_L28N_3 R1 I/O
3 IO_L28P_3 R2 I/O
3 IO_L34P_3 R3 I/O
3 IO_L32N_3 R5 I/O
3 IO_L26N_3 R6 I/O
3 IO_L30P_3 T1 I/O
3 IP_L27P_3 T3 INPUT
3 IO_L34N_3 T4 I/O
3 IO_L29N_3 T5 I/O
3 IO_L29P_3 T6 I/O
3 IO_L30N_3 U1 I/O
3 IO_L33P_3 U2 I/O
3 IP_L27N_3 U3 INPUT
3 IO_L38P_3 U4 I/O
3 IO_L38N_3 U5 I/O
3 IO_L33N_3 V1 I/O
3 IO_L36N_3 V3 I/O
Tabl e 6 3 : Spartan-3A DSP CS484 Pinout (Cont’d)
Bank Pin Name CS484
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 70
3 IO_L36P_3 V4 I/O
3 IO_L35N_3 W1 I/O
3 IO_L37N_3 W2 I/O
3 IO_L37P_3 W3 I/O
3 IO_L35P_3 Y1 I/O
3 IP_L39P_3 Y2 INPUT
3 VCCO_3 E2 VCCO
3 VCCO_3 J2 VCCO
3 VCCO_3 J5 VCCO
3 VCCO_3 N2 VCCO
3 VCCO_3 P5 VCCO
3 VCCO_3 V2 VCCO
GND GND A1 GND
GND GND A22 GND
GND GND AA7 GND
GND GND AA11 GND
GND GND AA16 GND
GND GND AB1 GND
GND GND AB22 GND
GND GND B7 GND
GND GND B12 GND
GND GND B16 GND
GND GND C3 GND
GND GND C20 GND
GND GND D8 GND
GND GND D11 GND
GND GND D16 GND
GND GND F6 GND
GND GND F17 GND
GND GND G2 GND
GND GND G4 GND
GND GND G9 GND
GND GND G11 GND
GND GND G13 GND
GND GND G15 GND
GND GND G21 GND
GND GND H7 GND
GND GND H8 GND
GND GND H10 GND
GND GND H12 GND
GND GND H14 GND
GND GND H16 GND
Tabl e 63 : Spartan-3A DSP CS484 Pinout (Cont’d)
Bank Pin Name CS484
Ball Type
GND GND H19 GND
GND GND J9 GND
GND GND J11 GND
GND GND J13 GND
GND GND J15 GND
GND GND K8 GND
GND GND K10 GND
GND GND K12 GND
GND GND K14 GND
GND GND L2 GND
GND GND L7 GND
GND GND L9 GND
GND GND L11 GND
GND GND L13 GND
GND GND L15 GND
GND GND L19 GND
GND GND M4 GND
GND GND M8 GND
GND GND M10 GND
GND GND M12 GND
GND GND M14 GND
GND GND M16 GND
GND GND M21 GND
GND GND N9 GND
GND GND N11 GND
GND GND N13 GND
GND GND N15 GND
GND GND P8 GND
GND GND P10 GND
GND GND P12 GND
GND GND P14 GND
GND GND R4 GND
GND GND R7 GND
GND GND R9 GND
GND GND R11 GND
GND GND R13 GND
GND GND R15 GND
GND GND R16 GND
GND GND T2 GND
GND GND T8 GND
GND GND T10 GND
GND GND T12 GND
Tabl e 6 3 : Spartan-3A DSP CS484 Pinout (Cont’d)
Bank Pin Name CS484
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 71
GND GND T14 GND
GND GND T15 GND
GND GND T19 GND
GND GND T21 GND
GND GND U6 GND
GND GND U11 GND
GND GND U17 GND
GND GND W7 GND
GND GND W12 GND
GND GND W16 GND
GND GND Y3 GND
GND GND Y20 GND
VCCAUX SUSPEND V19 PWRMGMT
VCCAUX PROG_B A2 CONFIG
VCCAUX DONE AB21 CONFIG
VCCAUX TCK A21 JTAG
VCCAUX TMS B1 JTAG
VCCAUX TDO B22 JTAG
VCCAUX TDI D2 JTAG
VCCAUX VCCAUX AA2 VCCAUX
VCCAUX VCCAUX AA21 VCCAUX
VCCAUX VCCAUX B2 VCCAUX
VCCAUX VCCAUX B21 VCCAUX
VCCAUX VCCAUX D12 VCCAUX
VCCAUX VCCAUX E5 VCCAUX
VCCAUX VCCAUX E18 VCCAUX
VCCAUX VCCAUX G10 VCCAUX
VCCAUX VCCAUX G12 VCCAUX
VCCAUX VCCAUX G14 VCCAUX
VCCAUX VCCAUX J16 VCCAUX
VCCAUX VCCAUX K7 VCCAUX
VCCAUX VCCAUX L4 VCCAUX
VCCAUX VCCAUX L16 VCCAUX
VCCAUX VCCAUX M7 VCCAUX
VCCAUX VCCAUX M19 VCCAUX
VCCAUX VCCAUX N16 VCCAUX
VCCAUX VCCAUX P7 VCCAUX
VCCAUX VCCAUX T9 VCCAUX
VCCAUX VCCAUX T11 VCCAUX
VCCAUX VCCAUX T13 VCCAUX
VCCAUX VCCAUX V5 VCCAUX
VCCAUX VCCAUX V18 VCCAUX
Tabl e 63 : Spartan-3A DSP CS484 Pinout (Cont’d)
Bank Pin Name CS484
Ball Type
VCCAUX VCCAUX W11 VCCAUX
VCCINT VCCINT G7 VCCINT
VCCINT VCCINT G16 VCCINT
VCCINT VCCINT H9 VCCINT
VCCINT VCCINT H11 VCCINT
VCCINT VCCINT H13 VCCINT
VCCINT VCCINT H15 VCCINT
VCCINT VCCINT J8 VCCINT
VCCINT VCCINT J10 VCCINT
VCCINT VCCINT J12 VCCINT
VCCINT VCCINT J14 VCCINT
VCCINT VCCINT K9 VCCINT
VCCINT VCCINT K11 VCCINT
VCCINT VCCINT K13 VCCINT
VCCINT VCCINT K15 VCCINT
VCCINT VCCINT L8 VCCINT
VCCINT VCCINT L10 VCCINT
VCCINT VCCINT L12 VCCINT
VCCINT VCCINT L14 VCCINT
VCCINT VCCINT M9 VCCINT
VCCINT VCCINT M11 VCCINT
VCCINT VCCINT M13 VCCINT
VCCINT VCCINT M15 VCCINT
VCCINT VCCINT N8 VCCINT
VCCINT VCCINT N10 VCCINT
VCCINT VCCINT N12 VCCINT
VCCINT VCCINT N14 VCCINT
VCCINT VCCINT P9 VCCINT
VCCINT VCCINT P11 VCCINT
VCCINT VCCINT P13 VCCINT
VCCINT VCCINT P15 VCCINT
VCCINT VCCINT R8 VCCINT
VCCINT VCCINT R10 VCCINT
VCCINT VCCINT R12 VCCINT
VCCINT VCCINT R14 VCCINT
VCCINT VCCINT T7 VCCINT
VCCINT VCCINT T16 VCCINT
Tabl e 6 3 : Spartan-3A DSP CS484 Pinout (Cont’d)
Bank Pin Name CS484
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 72
User I/Os by Bank
Table 64 and Tabl e 65 indicates how the user-I/O pins are distributed between the four I/O banks on the CS484 package.
The AWAKE pin is counted as a dual-purpose I/O.
Footprint Migration Differences
There are no migration footprint differences between the XC3SD1800A and the XC3SD3400A in the CS484 package.
Tabl e 64 : User I/Os Per Bank for the XC3SD1800A in the CS484 Package
Package
Edge I/O Bank
Maximum I/Os
and
Input-Only
All Possible I/O Pins by Type
I/O INPUT DUAL VREF(1) CLK
Top 077 49 13 1 6 8
Right 178 23 930 8 8
Bottom 276 33 621 8 8
Left 378 51 13 0 6 8
TOTAL 309 156 41 52 28 32
Notes:
1. 19 VREF are on INPUT pins.
Tabl e 65 : User I/Os Per Bank for the XC3SD3400A in the CS484 Package
Package
Edge I/O Bank
Maximum I/O
and
Input-Only
All Possible I/O Pins by Type
I/O INPUT DUAL VREF(1) CLK
Top 077 49 13 1 6 8
Right 178 23 930 8 8
Bottom 276 33 621 8 8
Left 378 51 13 0 6 8
TOTAL 309 156 41 52 28 32
Notes:
1. 19 VREF are on INPUT pins.
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 73
CS484 Footprint
Left Half of Package
(Top View)
156
I/O: Unrestricted,
general-purpose user I/O.
41
INPUT: Unrestricted,
general-purpose input pin.
51
DUAL: Configuration
pins, then possible user
I/O.
28
VREF: User I/O or input
voltage reference for bank.
32
CLK: User I/O, input, or
clock buffer input.
2
CONFIG: Dedicated
configuration pins.
2SUSPEND: Dedicated
SUSPEND and
dual-purpose AWAKE
Power Management pins.
4
JTAG: Dedicated JTAG
port pins.
84
GND: Ground.
24
VCCO: Output voltage
supply for bank.
36
VCCINT: Internal core
supply voltage (+1.2V).
24
VCCAUX: Auxiliary
supply voltage
Figure 15: CS484 Package Footprint (Top View–Left Half)
1234567891011
AGND PROG_
B
I/O
L30N_0
I/O
L28N_0
I/O
L25N_0
I/O
L25P_0
I/O
L24N_0
VREF_0
I/O
L20P_0
GCLK10
I/O
L18P_0
GCLK6
INPUT
I/O
L15N_0
BTMS VCCAUX
I/O
L30P_0
I/O
L28P_0 VCCO_0
I/O
L24P_0 GND
I/O
L20N_0
GCLK11
I/O
L18N_0
GCLK7
VCCO_0
I/O
L15P_0
C
I/O
L02N_3
I/O
L02P_3 GND
I/O
L29N_0 INPUT
I/O
L21P_0
I/O
L26P_0
I/O
L22P_0
I/O
L16P_0 INPUT
INPUT
0
VREF_0
D
INPUT
L04P_3 TDI
INPUT
L08P_3
INPUT
L08N_3
I/O
L29P_0
I/O
L21N_0
I/O
L26N_0 GND
I/O
L22N_0
I/O
L16N_0 GND
E
INPUT
L04N_3
VREF_3
VCCO_3
I/O
L09P_3
I/O
L09N_3 VCCAUX INPUT
I/O
L31P_0
VREF_0
I/O
L27N_0 VCCO_0 INPUT
I/O
L19N_0
GCLK9
F
I/O
L06N_3
I/O
L06P_3
I/O
L01P_3
I/O
L03P_3
I/O
L03N_3 GND
I/O
L31N_0
PUDC_B
I/O
L27P_0
I/O
L23N_0
I/O
L19P_0
GCLK8
I/O
L17N_0
GCLK5
G
I/O
L11P_3 GND
I/O
L01N_3 GND
I/O
L07P_3
I/O
L07N_3 VCCINT
I/O
L23P_0 GND VCCAUX GND
H
I/O
L11N_3
I/O
L14P_3
I/O
L05P_3
I/O
L05N_3
I/O
L10P_3
I/O
L10N_3 GND GND VCCINT GND VCCINT
J
I/O
L14N_3
VREF_3
VCCO_3
INPUT
L16P_3
INPUT
L16N_3 VCCO_3
INPUT
L12P_3
INPUT
L12N_3
VREF_3
VCCINT GND VCCINT GND
K
I/O
L19P_3
LHCLK2
I/O
L17P_3
I/O
L17N_3
I/O
L13P_3
I/O
L13N_3
I/O
L15P_3 VCCAUX GND VCCINT GND VCCINT
L
I/O
L19N_3
IRDY2
LHCLK3
GND
I/O
L20P_3
LHCLK4
VCCAUX
I/O
L15N_3
I/O
L18P_3
LHCLK0
GND VCCINT GND VCCINT GND
M
I/O
L22P_3
VREF_3
I/O
L20N_3
LHCLK5
INPUT
L23P_3 GND
I/O
L18N_3
LHCLK1
I/O
L21P_3
TRDY2
LHCLK6
VCCAUX GND VCCINT GND VCCINT
N
I/O
L22N_3 VCCO_3
INPUT
L31P_3
INPUT
L23N_3
I/O
L24N_3
I/O
L24P_3
I/O
L21N_3
LHCLK7
VCCINT GND VCCINT GND
P
I/O
L25P_3
I/O
L25N_3
INPUT
L31N_3
I/O
L32P_3
VREF_3
VCCO_3
I/O
L26P_3 VCCAUX GND VCCINT GND VCCINT
R
I/O
L28N_3
I/O
L28P_3
I/O
L34P_3 GND
I/O
L32N_3
I/O
L26N_3 GND VCCINT GND VCCINT GND
T
I/O
L30P_3 GND
INPUT
L27P_3
I/O
L34N_3
I/O
L29N_3
I/O
L29P_3 VCCINT GND VCCAUX GND VCCAUX
U
I/O
L30N_3
I/O
L33P_3
INPUT
L27N_3
I/O
L38P_3
I/O
L38N_3 GND
I/O
L02N_2
CSO_B
I/O
L11N_2
I/O
L10N_2
I/O
L14N_2
D4
GND
V
I/O
L33N_3 VCCO_3
I/O
L36N_3
I/O
L36P_3 VCCAUX
I/O
L02P_2
M2
I/O
L11P_2
I/O
L06N_2 VCCO_2
I/O
L10P_2
I/O
L14P_2
D5
Bank 3
Bank 0
W
I/O
L35N_3
I/O
L37N_3
I/O
L37P_3
INPUT
2
VREF_2
I/O
L03P_2
I/O
L07N_2
VS2
GND
I/O
L06P_2
INPUT
2
VREF_2
INPUT VCCAUX
Y
I/O
L35P_3
INPUT
L39P_3 GND
I/O
L03N_2
I/O
L07P_2
RDWR_B
INPUT INPUT
I/O
L13P_2
I/O
L13N_2
I/O
L15N_2
GCLK13
I/O
L15P_2
GCLK12
A
A
INPUT
L39N_3
VREF_3
VCCAUX
I/O
L01P_2
M1
I/O
L04N_2 VCCO_2 INPUT GND
I/O
L08N_2 VCCO_2
I/O
L12N_2
D6
GND
A
BGND
INPUT
2
VREF_2
I/O
L01N_2
M0
I/O
L04P_2
I/O
L05P_2
I/O
L05N_2
I/O
L08P_2
I/O
L09P_2
VS1
I/O
L09N_2
VS0
I/O
L12P_2
D7
INPUT
2
VREF_2
Bank 2
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 74
Right Half of CS484
Package (Top View)
Figure 16: CS484 Package Footprint (Top View–Right Half)
12 13 14 15 16 17 18 19 20 21 22
INPUT
I/O
L11P_0
I/O
L10P_0 INPUT
I/O
L06P_0
VREF_0
I/O
L06N_0 INPUT
I/O
L07N_0
I/O
0TCK GND A
GND
I/O
L11N_0 VCCO_0
I/O
L10N_0 GND
I/O
L03P_0 VCCO_0
I/O
L02N_0
I/O
L07P_0 VCCAUX TDO B
I/O
L14N_0
I/O
L14P_0 INPUT
I/O
L12N_0
VREF_0
I/O
L08N_0
I/O
L03N_0
I/O
L02P_0
VREF_0
I/O
L01N_0 GND
INPUT
L39N_1
INPUT
L39P_1
VREF_1
C
VCCAUX
I/O
L09N_0
I/O
L12P_0
I/O
L08P_0 GND INPUT INPUT
I/O
L01P_0
I/O
L36P_1
A20
I/O
L37P_1
A22
I/O
L37N_1
A23
D
I/O
L17P_0
GCLK4
I/O
L09P_0 VCCO_0
I/O
L05P_0
I/O
L04P_0 INPUT VCCAUX
I/O
L36N_1
A21
I/O
L35N_1 VCCO_1
I/O
L33N_1 E
INPUT
I/O
L13N_0
I/O
L13P_0
I/O
L05N_0
I/O
L04N_0 GND
I/O
L38N_1
A25
I/O
L38P_1
A24
I/O
L30N_1
A19
I/O
L35P_1
I/O
L33P_1 F
VCCAUX GND VCCAUX GND VCCINT
I/O
L34P_1
I/O
L34N_1
I/O
L30P_1
A18
INPUT
L31N_1 GND
I/O
L28N_1 G
GND VCCINT GND VCCINT GND
I/O
L26P_1
A14
I/O
L26N_1
A15
GND
I/O
L32N_1
INPUT
L31P_1
VREF_1
I/O
L28P_1 H
VCCINT GND VCCINT GND VCCAUX
I/O
L29N_1
A17
VCCO_1
I/O
L32P_1
I/O
L25N_1
A13
INPUT
L27P_1
INPUT
L27N_1 J
GND VCCINT GND VCCINT
I/O
L29P_1
A16
INPUT
L23N_1
I/O
L24N_1
I/O
L24P_1
I/O
L25P_1
A12
VCCO_1
I/O
L22N_1
A11
K
VCCINT GND VCCINT GND VCCAUX
I/O
L21N_1
RHCLK7
INPUT
L23P_1
VREF_1
GND
I/O
L20N_1
RHCLK5
I/O
L20P_1
RHCLK4
I/O
L22P_1
A10
L
GND VCCINT GND VCCINT GND
I/O
L18N_1
RHCLK1
I/O
L21P_1
IRDY1
RHCLK6
VCCAUX
I/O
L19N_1
TRDY1
RHCLK3
GND
I/O
L17N_1
A9
M
VCCINT GND VCCINT GND VCCAUX
I/O
L13P_1
A2
I/O
L18P_1
RHCLK0
I/O
L15N_1
A7
I/O
L15P_1
A6
I/O
L19P_1
RHCLK2
I/O
L17P_1
A8
N
GND VCCINT GND VCCINT
I/O
L13N_1
A3
INPUT
L12N_1
VREF_1
VCCO_1
I/O
L10P_1
INPUT
L16N_1 VCCO_1
I/O
L14N_1
A5
P
VCCINT GND VCCINT GND GND
INPUT
L12P_1
I/O
L10N_1
I/O
L07P_1
I/O
L07N_1
INPUT
L16P_1
VREF_1
I/O
L14P_1
A4
R
GND VCCAUX GND GND VCCINT
I/O
L05N_1
I/O
L05P_1 GND
I/O
L09N_1 GND
I/O
L11N_1
VREF_1
T
I/O
L17P_2
GCLK0
I/O
L20P_2
I/O
L25P_2
I/O
L25N_2
I/O
L28P_2 GND
I/O
L01P_1
HDC
I/O
L01N_1
LDC2
I/O
L09P_1
INPUT
L08N_1
VREF_1
I/O
L11P_1 U
I/O
L17N_2
GCLK1
I/O
L20N_2
MOSI
CSI B
VCCO_2
INPUT
2
VREF_2
I/O
L28N_2
I/O
L31N_2
CCLK
VCCAUX SUSPEN
D
I/O
L03N_1
A1
VCCO_1
INPUT
L08P_1 V
Bank 0
I/O
L17P_2
GCLK0
I/O
L20P_2
I/O
L25P_2
I/O
L25N_2
I/O
L28P_2 GND
I/O
L01P_1
HDC
I/O
L01N_1
LDC2
I/O
L09P_1
INPUT
L08N_1
VREF_1
I/O
L11P_1 U
I/O
L17N_2
GCLK1
I/O
L20N_2
MOSI
CSI B
VCCO_2
INPUT
2
VREF_2
I/O
L28N_2
I/O
L31N_2
CCLK
VCCAUX SUSPEN
D
I/O
L03N_1
A1
VCCO_1
INPUT
L08P_1 V
GND
INPUT
2
VREF_2
I/O
L21N_2
I/O
L24P_2
INIT_B
GND
I/O
L31P_2
D0
DIN/MISO
INPUT
2
VREF_2
I/O
L03P_1
A0
INPUT
L04N_1
VREF_1
INPUT
L04P_1
I/O
L06P_1 W
INPUT
I/O
L21P_2
INPUT
2
VREF_2
I/O
L24N_2
D3
I/O
L29N_2
I/O
L29P_2
I/O
L26P_2
D2
I/O
L26N_2
D1
GND
I/O
L02P_1
LDC1
I/O
L06N_1 Y
I/O
L16P_2
GCLK14
VCCO_2
I/O
L18N_2
GCLK3
I/O
L19P_2 GND
I/O
L22P_2
AWAKE
VCCO_2
I/O
L27N_2
I/O
L30P_2 VCCAUX
I/O
L02N_1
LDC0
A
A
I/O
L16N_2
GCLK15
I/O
L18P_2
GCLK2
I/O
L19N_2 INPUT
I/O
L22N_2
DOUT
I/O
L23P_2
I/O
L23N_2
I/O
L27P_2
I/O
L30N_2 DONE GND A
B
Bank 2
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 75
FG676: 676-Ball Fine-Pitch Ball Grid Array
The 676-ball fine-pitch ball grid array, FG676, supports both the XC3SD1800A and the XC3SD3400A FPGAs. There are
multiple pinout differences between the two devices. For a list of differences and migration advice, see the Footprint
Migration Differences section.
XC3SD1800A FPGA
Ta bl e 6 6 lists all the FG676 package pins for the XC3SD1800A FPGA. They are sorted by bank number and then by pin
name. Pairs of pins that form a differential I/O pair appear together in the table. The table also shows the pin number for each
pin and the pin type, as defined earlier.
Pinout Table
Note: The grayed boxes denote a difference between the XC3SD1800A and the XC3SD3400A devices.
Tabl e 66 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA
Bank XC3SD1800A Pin Name FG676
Ball Type
0 IO_L43N_0 K11 I/O
0 IO_L39N_0 K12 I/O
0 IO_L25P_0/GCLK4 K14 GCLK
0 IO_L12N_0 K16 I/O
0 IP_0 J10 INPUT
0 IO_L43P_0 J11 I/O
0 IO_L39P_0 J12 I/O
0 IP_0 J13 INPUT
0 IO_L25N_0/GCLK5 J14 GCLK
0 IP_0 J15 INPUT
0 IO_L12P_0 J16 I/O
0 IP_0/VREF_0 J17 VREF
0 IO_L47N_0 H9 I/O
0 IO_L46N_0 H10 I/O
0 IO_L35N_0 H12 I/O
0 IP_0 H13 INPUT
0 IO_L16N_0 H15 I/O
0 IO_L08P_0 H17 I/O
0 IP_0 H18 INPUT
0 IO_L52N_0/PUDC_B G8 DUAL
0 IO_L47P_0 G9 I/O
0 IO_L46P_0 G10 I/O
0 IP_0/VREF_0 G11 VREF
0 IO_L35P_0 G12 I/O
0 IO_L27N_0/GCLK9 G13 GCLK
0 IP_0 G14 INPUT
0 IO_L16P_0 G15 I/O
0 IO_L08N_0 G17 I/O
0 IO_L02P_0/VREF_0 G19 VREF
0 IO_L01P_0 G20 I/O
0 IO_L48P_0 F7 I/O
0 IO_L52P_0/VREF_0 F8 VREF
0 IO_L31N_0 F12 I/O
0 IO_L27P_0/GCLK8 F13 GCLK
0 IO_L24N_0 F14 I/O
0 IO_L20P_0 F15 I/O
0 IO_L13P_0 F17 I/O
0 IO_L02N_0 F19 I/O
0 IO_L01N_0 F20 I/O
0 IO_L48N_0 E7 I/O
0 IO_L37P_0 E10 I/O
0 IP_0 E11 INPUT
0 IO_L31P_0 E12 I/O
0 IO_L24P_0 E14 I/O
0 IO_L20N_0/VREF_0 E15 VREF
0 IO_L13N_0 E17 I/O
0 IP_0 E18 INPUT
0 IO_L10P_0 E21 I/O
0 IO_L44N_0 D6 I/O
0 IP_0/VREF_0 D7 VREF
0 IO_L40N_0 D8 I/O
0 IO_L37N_0 D9 I/O
0 IO_L34N_0 D10 I/O
0 IO_L32N_0/VREF_0 D11 VREF
0 IP_0 D12 INPUT
0 IO_L30P_0 D13 I/O
Tabl e 6 6 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA (Cont’d)
Bank XC3SD1800A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 76
0 IP_0/VREF_0 D14 VREF
0 IO_L22P_0 D16 I/O
0 IO_L21P_0 D17 I/O
0 IO_L17P_0 D18 I/O
0 IO_L11P_0 D20 I/O
0 IO_L10N_0 D21 I/O
0 IO_L05P_0 D22 I/O
0 IO_L06P_0 D23 I/O
0 IO_L44P_0 C5 I/O
0 IO_L41N_0 C6 I/O
0 IO_L42N_0 C7 I/O
0 IO_L40P_0 C8 I/O
0 IO_L34P_0 C10 I/O
0 IO_L32P_0 C11 I/O
0 IO_L30N_0 C12 I/O
0 IO_L28N_0/GCLK11 C13 GCLK
0 IO_L22N_0 C15 I/O
0 IO_L21N_0 C16 I/O
0 IO_L19P_0 C17 I/O
0 IO_L17N_0 C18 I/O
0 IO_L11N_0 C20 I/O
0 IO_L09P_0 C21 I/O
0 IO_L05N_0 C22 I/O
0 IO_L06N_0 C23 I/O
0 IO_L51N_0 B3 I/O
0 IO_L45N_0 B4 I/O
0 IO_L41P_0 B6 I/O
0 IO_L42P_0 B7 I/O
0 IO_L38N_0 B8 I/O
0 IO_L36N_0 B9 I/O
0 IO_L33N_0 B10 I/O
0 IO_L29N_0 B12 I/O
0 IO_L28P_0/GCLK10 B13 GCLK
0 IO_L26P_0/GCLK6 B14 GCLK
0 IO_L23P_0 B15 I/O
0 IO_L19N_0 B17 I/O
0 IO_L18P_0 B18 I/O
0 IO_L15P_0 B19 I/O
0 IO_L14P_0/VREF_0 B20 VREF
Tabl e 66 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA (Cont’d)
Bank XC3SD1800A Pin Name FG676
Ball Type
0 IO_L09N_0 B21 I/O
0 IO_L07P_0 B23 I/O
0 IO_L51P_0 A3 I/O
0 IO_L45P_0 A4 I/O
0IP_0 A7 INPUT
0 IO_L38P_0 A8 I/O
0 IO_L36P_0 A9 I/O
0 IO_L33P_0 A10 I/O
0 IO_L29P_0 A12 I/O
0 IP_0 A13 INPUT
0 IO_L26N_0/GCLK7 A14 GCLK
0 IO_L23N_0 A15 I/O
0 IP_0 A17 INPUT
0 IO_L18N_0 A18 I/O
0 IO_L15N_0 A19 I/O
0 IO_L14N_0 A20 I/O
0 IO_L07N_0 A22 I/O
0IP_0 G16 INPUT
0IP_0 E9 INPUT
0IP_0 D15 INPUT
0IP_0 D19 INPUT
0IP_0 B24 INPUT
0IP_0 A5 INPUT
0IP_0 A23 INPUT
0IP_0 F9 INPUT
0IP_0 E20 INPUT
0IP_0 A24 INPUT
0IP_0 G18 INPUT
0IP_0 F10 INPUT
0IP_0 F18 INPUT
0IP_0 E6 INPUT
0IP_0 D5 INPUT
0IP_0 C4 INPUT
0 VCCO_0 H11 VCCO
0 VCCO_0 H16 VCCO
0 VCCO_0 E8 VCCO
0 VCCO_0 E13 VCCO
0 VCCO_0 E19 VCCO
0 VCCO_0 B5 VCCO
Tabl e 6 6 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA (Cont’d)
Bank XC3SD1800A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 77
0 VCCO_0 B11 VCCO
0 VCCO_0 B16 VCCO
0 VCCO_0 B22 VCCO
1 IO_L01P_1/HDC Y20 DUAL
1IO_L01N_1/LDC2 Y21DUAL
1 IO_L13P_1 Y22 I/O
1 IO_L13N_1 Y23 I/O
1 IO_L15P_1 Y24 I/O
1 IO_L15N_1 Y25 I/O
1IP_L16N_1 Y26 INPUT
1 IO_L04P_1 W20 I/O
1 IO_L04N_1 W21 I/O
1 IO_L18P_1 W23 I/O
1 IO_L08P_1 V18 I/O
1 IO_L08N_1 V19 I/O
1 IO_L10P_1 V21 I/O
1 IO_L18N_1 V22 I/O
1 IO_L21P_1 V23 I/O
1 IO_L19P_1 V24 I/O
1 IO_L19N_1 V25 I/O
1IP_L20N_1/VREF_1 V26 VREF
1 IO_L12N_1 U18 I/O
1 IO_L12P_1 U19 I/O
1 IO_L10N_1 U20 I/O
1 IO_L14P_1 U21 I/O
1 IO_L21N_1 U22 I/O
1 IO_L23P_1 U23 I/O
1 IO_L23N_1/VREF_1 U24 VREF
1IP_L24N_1/VREF_1 U26 VREF
1 IO_L17N_1 T17 I/O
1 IO_L17P_1 T18 I/O
1 IO_L14N_1 T20 I/O
1 IO_L26P_1/A4 T23 DUAL
1 IO_L26N_1/A5 T24 DUAL
1 IO_L27N_1/A7 R17 DUAL
1 IO_L27P_1/A6 R18 DUAL
1 IO_L22P_1 R19 I/O
1 IO_L22N_1 R20 I/O
1 IO_L25P_1/A2 R21 DUAL
Tabl e 66 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA (Cont’d)
Bank XC3SD1800A Pin Name FG676
Ball Type
1 IO_L25N_1/A3 R22 DUAL
1 IP_L28P_1/VREF_1 R23 VREF
1 IP_L28N_1 R24 INPUT
1 IO_L29P_1/A8 R25 DUAL
1 IO_L29N_1/A9 R26 DUAL
1IO_L34P_1/IRDY1/RHCLK6 P18 RHCLK
1 IO_L30N_1/RHCLK1 P20 RHCLK
1 IO_L30P_1/RHCLK0 P21 RHCLK
1 IO_L37P_1 P22 I/O
1 IO_L33P_1/RHCLK4 P23 RHCLK
1IO_L31N_1/TRDY1/RHCLK3 P25 RHCLK
1 IO_L31P_1/RHCLK2 P26 RHCLK
1 IO_L39N_1/A15 N17 DUAL
1 IO_L39P_1/A14 N18 DUAL
1 IO_L34N_1/RHCLK7 N19 RHCLK
1 IO_L42P_1/A16 N20 DUAL
1 IO_L37N_1 N21 I/O
1 IP_L36N_1 N23 INPUT
1 IO_L33N_1/RHCLK5 N24 RHCLK
1 IP_L32N_1 N25 INPUT
1 IP_L32P_1 N26 INPUT
1 IO_L47N_1 M18 I/O
1 IO_L47P_1 M19 I/O
1 IO_L42N_1/A17 M20 DUAL
1 IO_L45P_1 M21 I/O
1 IO_L45N_1 M22 I/O
1 IO_L38N_1/A13 M23 DUAL
1 IP_L36P_1/VREF_1 M24 VREF
1 IO_L35N_1/A11 M25 DUAL
1 IO_L35P_1/A10 M26 DUAL
1 IO_L55N_1 L17 I/O
1 IO_L55P_1 L18 I/O
1 IO_L53P_1 L20 I/O
1 IO_L50P_1 L22 I/O
1 IP_L40N_1 L23 INPUT
1 IO_L38P_1/A12 L24 DUAL
1 IO_L57N_1 K18 I/O
1 IO_L57P_1 K19 I/O
1 IO_L53N_1 K20 I/O
Tabl e 6 6 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA (Cont’d)
Bank XC3SD1800A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 78
1 IO_L50N_1 K21 I/O
1 IO_L46N_1 K22 I/O
1 IO_L46P_1 K23 I/O
1 IP_L40P_1 K24 INPUT
1 IO_L41P_1 K25 I/O
1 IO_L41N_1 K26 I/O
1 IO_L59P_1 J19 I/O
1 IO_L59N_1 J20 I/O
1 IO_L62P_1/A20 J21 DUAL
1 IO_L49N_1 J22 I/O
1 IO_L49P_1 J23 I/O
1 IO_L43N_1/A19 J25 DUAL
1 IO_L43P_1/A18 J26 DUAL
1 IO_L64P_1/A24 H20 DUAL
1 IO_L62N_1/A21 H21 DUAL
1IP_L48N_1 H24 INPUT
1IP_L44N_1 H25 INPUT
1IP_L44P_1/VREF_1 H26 VREF
1 IO_L64N_1/A25 G21 DUAL
1 IO_L58N_1 G22 I/O
1 IO_L51P_1 G23 I/O
1 IO_L51N_1 G24 I/O
1IP_L52N_1/VREF_1 G25 VREF
1 IO_L58P_1/VREF_1 F22 VREF
1 IO_L56N_1 F23 I/O
1 IO_L54N_1 F24 I/O
1 IO_L54P_1 F25 I/O
1 IO_L56P_1 E24 I/O
1 IO_L60P_1 E26 I/O
1 IO_L61N_1 D24 I/O
1 IO_L61P_1 D25 I/O
1 IO_L60N_1 D26 I/O
1 IO_L63N_1/A23 C25 DUAL
1 IO_L63P_1/A22 C26 DUAL
1IP_L65P_1/VREF_1 B26 VREF
1 IO_L02P_1/LDC1 AE26 DUAL
1 IO_L02N_1/LDC0 AD25 DUAL
1 IO_L05P_1 AD26 I/O
1 IO_L03P_1/A0 AC23 DUAL
Tabl e 66 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA (Cont’d)
Bank XC3SD1800A Pin Name FG676
Ball Type
1 IO_L03N_1/A1 AC24 DUAL
1 IO_L05N_1 AC25 I/O
1 IO_L06P_1 AC26 I/O
1 IO_L07P_1 AB23 I/O
1 IO_L07N_1/VREF_1 AB24 VREF
1 IO_L06N_1 AB26 I/O
1 IO_L09P_1 AA22 I/O
1 IO_L09N_1 AA23 I/O
1 IO_L11P_1 AA24 I/O
1 IO_L11N_1 AA25 I/O
1IP_L16P_1 W25 INPUT
1IP_L24P_1 U25 INPUT
1IP_L65N_1 B25 INPUT
1IP_L20P_1 W26 INPUT
1IP_L48P_1 H23 INPUT
1IP_L52P_1 G26 INPUT
1 VCCO_1 W22 VCCO
1 VCCO_1 T19 VCCO
1 VCCO_1 T25 VCCO
1 VCCO_1 N22 VCCO
1 VCCO_1 L19 VCCO
1 VCCO_1 L25 VCCO
1 VCCO_1 H22 VCCO
1 VCCO_1 E25 VCCO
1 VCCO_1 AB25 VCCO
2 IO_L02P_2/M2 Y7 DUAL
2 IO_L05N_2 Y9 I/O
2 IO_L12P_2 Y10 I/O
2 IO_L17P_2/RDWR_B Y12 DUAL
2 IO_L25N_2/GCLK13 Y13 GCLK
2 IO_L27P_2/GCLK0 Y14 GCLK
2 IO_L34N_2/D3 Y15 DUAL
2 IP_2/VREF_2 Y16 VREF
2 IO_L43N_2 Y17 I/O
2 IO_L05P_2 W9 I/O
2 IO_L09N_2 W10 I/O
2 IO_L16N_2 W12 I/O
2 IO_L20N_2 W13 I/O
2 IO_L31N_2 W15 I/O
Tabl e 6 6 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA (Cont’d)
Bank XC3SD1800A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 79
2 IO_L46P_2 W17 I/O
2 IO_L09P_2 V10 I/O
2 IO_L13P_2 V11 I/O
2 IO_L16P_2 V12 I/O
2 IO_L20P_2 V13 I/O
2 IO_L31P_2 V14 I/O
2 IO_L35P_2 V15 I/O
2 IO_L42P_2 V16 I/O
2 IO_L46N_2 V17 I/O
2 IO_L13N_2 U11 I/O
2 IO_L35N_2 U15 I/O
2 IO_L42N_2 U16 I/O
2 IO_L06N_2 AF3 I/O
2 IO_L07N_2 AF4 I/O
2 IO_L10P_2 AF5 I/O
2IP_2 AF7 INPUT
2 IO_L18N_2 AF8 I/O
2 IO_L19N_2/VS0 AF9 DUAL
2 IO_L22N_2/D6 AF10 DUAL
2 IO_L24P_2/D5 AF12 DUAL
2 IO_L26P_2/GCLK14 AF13 GCLK
2 IO_L28P_2/GCLK2 AF14 GCLK
2 IP_2/VREF_2 AF15 VREF
2 IP_2/VREF_2 AF17 VREF
2 IO_L36P_2/D2 AF18 DUAL
2 IO_L37P_2 AF19 I/O
2 IO_L39P_2 AF20 I/O
2 IP_2/VREF_2 AF22 VREF
2 IO_L48P_2 AF23 I/O
2 IO_L52P_2/D0/DIN/MISO AF24 DUAL
2 IO_L51P_2 AF25 I/O
2 IO_L06P_2 AE3 I/O
2 IO_L07P_2 AE4 I/O
2 IO_L10N_2 AE6 I/O
2 IO_L11N_2 AE7 I/O
2 IO_L18P_2 AE8 I/O
2 IO_L19P_2/VS1 AE9 DUAL
2 IO_L22P_2/D7 AE10 DUAL
2 IO_L24N_2/D4 AE12 DUAL
Tabl e 66 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA (Cont’d)
Bank XC3SD1800A Pin Name FG676
Ball Type
2 IO_L26N_2/GCLK15 AE13 GCLK
2 IO_L28N_2/GCLK3 AE14 GCLK
2 IO_L32N_2/DOUT AE15 DUAL
2 IO_L33P_2 AE17 I/O
2 IO_L36N_2/D1 AE18 DUAL
2 IO_L37N_2 AE19 I/O
2 IO_L39N_2 AE20 I/O
2 IO_L44P_2 AE21 I/O
2 IO_L48N_2 AE23 I/O
2 IO_L52N_2/CCLK AE24 DUAL
2 IO_L51N_2 AE25 I/O
2 IO_L01N_2/M0 AD4 DUAL
2 IO_L08N_2 AD6 I/O
2 IO_L11P_2 AD7 I/O
2 IP_2 AD9 INPUT
2 IP_2 AD10 INPUT
2 IO_L23P_2 AD11 I/O
2 IP_2/VREF_2 AD12 VREF
2 IO_L29P_2 AD14 I/O
2 IO_L32P_2/AWAKE AD15 PWRMGMT
2 IP_2 AD16 INPUT
2 IO_L33N_2 AD17 I/O
2 IO_L40P_2 AD19 I/O
2 IO_L41P_2 AD20 I/O
2 IO_L44N_2 AD21 I/O
2 IO_L45P_2 AD22 I/O
2 IO_L01P_2/M1 AC4 DUAL
2 IO_L08P_2 AC6 I/O
2 IO_L14P_2 AC8 I/O
2 IO_L15N_2 AC9 I/O
2 IP_2/VREF_2 AC10 VREF
2 IO_L23N_2 AC11 I/O
2 IO_L21N_2 AC12 I/O
2 IP_2 AC13 INPUT
2 IO_L29N_2 AC14 I/O
2 IO_L30P_2 AC15 I/O
2 IO_L38P_2 AC16 I/O
2 IP_2 AC17 INPUT
2 IO_L40N_2 AC19 I/O
Tabl e 6 6 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA (Cont’d)
Bank XC3SD1800A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 80
2 IO_L41N_2 AC20 I/O
2 IO_L45N_2 AC21 I/O
2 IO_2 AC22 I/O
2 IP_2/VREF_2 AB6 VREF
2 IO_L14N_2 AB7 I/O
2 IO_L15P_2 AB9 I/O
2 IO_L21P_2 AB12 I/O
2 IP_2 AB13 INPUT
2 IO_L30N_2/MOSI/CSI_B AB15 DUAL
2 IO_L38N_2 AB16 I/O
2 IO_L47P_2 AB18 I/O
2 IO_L02N_2/CSO_B AA7 DUAL
2 IP_2/VREF_2 AA9 VREF
2 IO_L12N_2 AA10 I/O
2 IO_L17N_2/VS2 AA12 DUAL
2 IO_L25P_2/GCLK12 AA13 GCLK
2 IO_L27N_2/GCLK1 AA14 GCLK
2 IO_L34P_2/INIT_B AA15 DUAL
2 IO_L43P_2 AA17 I/O
2 IO_L47N_2 AA18 I/O
2 IP_2/VREF_2 AA20 VREF
2IP_2 AD5 INPUT
2IP_2 AD23 INPUT
2IP_2 AC5 INPUT
2IP_2 AC7 INPUT
2IP_2 AC18 INPUT
2IP_2/VREF_2 AB10 VREF
2IP_2 AB20 INPUT
2IP_2 AA19 INPUT
2IP_2 AF2 INPUT
2IP_2 AB17 INPUT
2IP_2 Y8 INPUT
2IP_2 Y11 INPUT
2IP_2 Y18 INPUT
2IP_2/VREF_2 Y19 VREF
2IP_2 W18 INPUT
2IP_2 AA8 INPUT
2 VCCO_2 W11 VCCO
2 VCCO_2 W16 VCCO
Tabl e 66 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA (Cont’d)
Bank XC3SD1800A Pin Name FG676
Ball Type
2 VCCO_2 AE5 VCCO
2 VCCO_2 AE11 VCCO
2 VCCO_2 AE16 VCCO
2 VCCO_2 AE22 VCCO
2 VCCO_2 AB8 VCCO
2 VCCO_2 AB14 VCCO
2 VCCO_2 AB19 VCCO
3 IO_L53P_3 Y1 I/O
3 IO_L53N_3 Y2 I/O
3IP_L54P_3 Y3 INPUT
3 IO_L57P_3 Y5 I/O
3 IO_L57N_3 Y6 I/O
3 IP_L50P_3 W1 INPUT
3 IP_L50N_3/VREF_3 W2 VREF
3 IO_L52P_3 W3 I/O
3 IO_L52N_3 W4 I/O
3 IO_L63N_3 W6 I/O
3 IO_L63P_3 W7 I/O
3 IO_L47P_3 V1 I/O
3 IO_L47N_3 V2 I/O
3 IP_L46N_3 V4 INPUT
3 IO_L49N_3 V5 I/O
3 IO_L59N_3 V6 I/O
3 IO_L59P_3 V7 I/O
3 IO_L61N_3 V8 I/O
3 IO_L44P_3 U1 I/O
3 IO_L44N_3 U2 I/O
3 IP_L46P_3 U3 INPUT
3 IO_L42N_3 U4 I/O
3 IO_L49P_3 U5 I/O
3 IO_L51N_3 U6 I/O
3 IO_L56P_3 U7 I/O
3 IO_L56N_3 U8 I/O
3 IO_L61P_3 U9 I/O
3 IO_L38P_3 T3 I/O
3 IO_L38N_3 T4 I/O
3 IO_L42P_3 T5 I/O
3 IO_L51P_3 T7 I/O
3 IO_L48N_3 T9 I/O
Tabl e 6 6 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA (Cont’d)
Bank XC3SD1800A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 81
3 IO_L48P_3 T10 I/O
3 IO_L36P_3/VREF_3 R1 VREF
3 IO_L36N_3 R2 I/O
3 IO_L37P_3 R3 I/O
3 IO_L37N_3 R4 I/O
3 IO_L40P_3 R5 I/O
3 IO_L40N_3 R6 I/O
3 IO_L45N_3 R7 I/O
3 IO_L45P_3 R8 I/O
3 IO_L43N_3 R9 I/O
3 IO_L43P_3/VREF_3 R10 VREF
3 IO_L33P_3/LHCLK2 P1 LHCLK
3IO_L33N_3/IRDY2/LHCLK3 P2 LHCLK
3 IO_L34N_3/LHCLK5 P3 LHCLK
3 IO_L34P_3/LHCLK4 P4 LHCLK
3 IO_L39N_3 P6 I/O
3 IO_L39P_3 P7 I/O
3 IO_L41P_3 P8 I/O
3 IO_L41N_3 P9 I/O
3 IO_L35N_3/LHCLK7 P10 LHCLK
3 IO_L31P_3 N1 I/O
3 IO_L31N_3 N2 I/O
3 IO_L30N_3 N4 I/O
3 IO_L30P_3 N5 I/O
3 IO_L32P_3/LHCLK0 N6 LHCLK
3 IO_L32N_3/LHCLK1 N7 LHCLK
3IO_L35P_3/TRDY2/LHCLK6 N9 LHCLK
3 IO_L29N_3/VREF_3 M1 VREF
3 IO_L29P_3 M2 I/O
3 IO_L27N_3 M3 I/O
3 IO_L27P_3 M4 I/O
3 IO_L28P_3 M5 I/O
3 IO_L28N_3 M6 I/O
3 IO_L26N_3 M7 I/O
3 IO_L26P_3 M8 I/O
3 IO_L21N_3 M9 I/O
3 IO_L21P_3 M10 I/O
3 IO_L25N_3 L3 I/O
3 IO_L25P_3 L4 I/O
Tabl e 66 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA (Cont’d)
Bank XC3SD1800A Pin Name FG676
Ball Type
3 IO_L18N_3 L7 I/O
3 IO_L15N_3 L9 I/O
3 IO_L15P_3 L10 I/O
3 IP_L24N_3 K1 INPUT
3 IO_L23N_3 K2 I/O
3 IO_L23P_3 K3 I/O
3 IO_L22N_3 K4 I/O
3 IO_L22P_3 K5 I/O
3 IO_L18P_3 K6 I/O
3 IO_L13P_3 K7 I/O
3 IO_L05N_3 K8 I/O
3 IO_L05P_3 K9 I/O
3 IP_L24P_3 J1 INPUT
3 IP_L20N_3/VREF_3 J2 VREF
3 IP_L20P_3 J3 INPUT
3 IO_L19N_3 J4 I/O
3 IO_L19P_3 J5 I/O
3 IO_L13N_3 J6 I/O
3 IO_L10P_3 J7 I/O
3 IO_L01P_3 J8 I/O
3 IO_L01N_3 J9 I/O
3 IO_L17N_3 H1 I/O
3 IO_L17P_3 H2 I/O
3IP_L12N_3/VREF_3 H4 VREF
3 IO_L10N_3 H6 I/O
3 IO_L03N_3 H7 I/O
3IP_L16N_3 G1 INPUT
3 IO_L14P_3 G3 I/O
3 IO_L09N_3 G4 I/O
3 IO_L03P_3 G6 I/O
3 IO_L11N_3 F2 I/O
3 IO_L14N_3 F3 I/O
3 IO_L07N_3 F4 I/O
3 IO_L09P_3 F5 I/O
3 IO_L11P_3 E1 I/O
3 IO_L07P_3 E3 I/O
3 IO_L06N_3 E4 I/O
3 IO_L06P_3 D3 I/O
3IP_L04N_3/VREF_3 C1 VREF
Tabl e 6 6 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA (Cont’d)
Bank XC3SD1800A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 82
3IP_L04P_3 C2 INPUT
3 IO_L02N_3 B1 I/O
3 IO_L02P_3 B2 I/O
3 IP_L66P_3 AE1 INPUT
3 IP_L66N_3/VREF_3 AE2 VREF
3 IO_L65P_3 AD1 I/O
3 IO_L65N_3 AD2 I/O
3 IO_L60N_3 AC1 I/O
3 IO_L64P_3 AC2 I/O
3 IO_L64N_3 AC3 I/O
3 IO_L60P_3 AB1 I/O
3 IO_L55P_3 AA2 I/O
3 IO_L55N_3 AA3 I/O
3IP_L58N_3/VREF_3 AA5 VREF
3IP_L16P_3 G2 INPUT
3IP_L12P_3 G5 INPUT
3IP_L08P_3 D2 INPUT
3IP_L62P_3 AB3 INPUT
3IP_L58P_3 AA4 INPUT
3IP_L08N_3 D1 INPUT
3IP_L62N_3 AB4 INPUT
3IP_L54N_3 Y4 INPUT
3 VCCO_3 W5 VCCO
3 VCCO_3 T2 VCCO
3 VCCO_3 T8 VCCO
3 VCCO_3 P5 VCCO
3 VCCO_3 L2 VCCO
3 VCCO_3 L8 VCCO
3 VCCO_3 H5 VCCO
3 VCCO_3 E2 VCCO
3 VCCO_3 AB2 VCCO
GND GND W8 GND
GND GND W14 GND
GND GND W19 GND
GND GND W24 GND
GND GND V3 GND
GND GND U10 GND
GND GND U13 GND
GND GND U17 GND
Tabl e 66 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA (Cont’d)
Bank XC3SD1800A Pin Name FG676
Ball Type
GND GND T1 GND
GND GND T6 GND
GND GND T12 GND
GND GND T14 GND
GND GND T16 GND
GND GND T21 GND
GND GND T26 GND
GND GND R11 GND
GND GND R13 GND
GND GND R15 GND
GND GND P12 GND
GND GND P16 GND
GND GND P19 GND
GND GND P24 GND
GND GND N3 GND
GND GND N8 GND
GND GND N11 GND
GND GND N15 GND
GND GND M12 GND
GND GND M14 GND
GND GND M16 GND
GND GND L1 GND
GND GND L6 GND
GND GND L11 GND
GND GND L13 GND
GND GND L15 GND
GND GND L21 GND
GND GND L26 GND
GND GND K10 GND
GND GND K17 GND
GND GND J24 GND
GND GND H3 GND
GND GND H8 GND
GND GND H14 GND
GND GND H19 GND
GND GND F1 GND
GND GND F6 GND
GND GND F11 GND
GND GND F16 GND
Tabl e 6 6 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA (Cont’d)
Bank XC3SD1800A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 83
GND GND F21 GND
GND GND F26 GND
GND GND C3 GND
GND GND C9 GND
GND GND C14 GND
GND GND C19 GND
GND GND C24 GND
GND GND AF1 GND
GND GND AF6 GND
GND GND AF11 GND
GND GND AF16 GND
GND GND AF21 GND
GND GND AF26 GND
GND GND AD3 GND
GND GND AD8 GND
GND GND AD13 GND
GND GND AD18 GND
GND GND AD24 GND
GND GND AA1 GND
GND GND AA6 GND
GND GND AA11 GND
GND GND AA16 GND
GND GND AA21 GND
GND GND AA26 GND
GND GND A1 GND
GND GND A6 GND
GND GND A11 GND
GND GND A16 GND
GND GND A21 GND
GND GND A26 GND
VCCAUX SUSPEND V20 PWRMGMT
VCCAUX DONE AB21 CONFIG
VCCAUX PROG_B A2 CONFIG
VCCAUX TDI G7 JTAG
VCCAUX TDO E23 JTAG
VCCAUX TMS D4 JTAG
VCCAUX TCK A25 JTAG
VCCAUX VCCAUX V9 VCCAUX
VCCAUX VCCAUX U14 VCCAUX
Tabl e 66 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA (Cont’d)
Bank XC3SD1800A Pin Name FG676
Ball Type
VCCAUX VCCAUX T22 VCCAUX
VCCAUX VCCAUX P17 VCCAUX
VCCAUX VCCAUX N10 VCCAUX
VCCAUX VCCAUX L5 VCCAUX
VCCAUX VCCAUX K13 VCCAUX
VCCAUX VCCAUX J18 VCCAUX
VCCAUX VCCAUX E5 VCCAUX
VCCAUX VCCAUX E16 VCCAUX
VCCAUX VCCAUX E22 VCCAUX
VCCAUX VCCAUX AB5 VCCAUX
VCCAUX VCCAUX AB11 VCCAUX
VCCAUX VCCAUX AB22 VCCAUX
VCCINT VCCINT U12 VCCINT
VCCINT VCCINT T11 VCCINT
VCCINT VCCINT T13 VCCINT
VCCINT VCCINT T15 VCCINT
VCCINT VCCINT R12 VCCINT
VCCINT VCCINT R14 VCCINT
VCCINT VCCINT R16 VCCINT
VCCINT VCCINT P11 VCCINT
VCCINT VCCINT P13 VCCINT
VCCINT VCCINT P14 VCCINT
VCCINT VCCINT P15 VCCINT
VCCINT VCCINT N12 VCCINT
VCCINT VCCINT N13 VCCINT
VCCINT VCCINT N14 VCCINT
VCCINT VCCINT N16 VCCINT
VCCINT VCCINT M11 VCCINT
VCCINT VCCINT M13 VCCINT
VCCINT VCCINT M15 VCCINT
VCCINT VCCINT M17 VCCINT
VCCINT VCCINT L12 VCCINT
VCCINT VCCINT L14 VCCINT
VCCINT VCCINT L16 VCCINT
VCCINT VCCINT K15 VCCINT
Tabl e 6 6 : Spartan-3A DSP FG676 Pinout for
XC3SD1800A FPGA (Cont’d)
Bank XC3SD1800A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 84
User I/Os by Bank
Table 67 indicates how the available user-I/O pins are distributed between the four I/O banks on the FG676 package. The
AWAKE pin is counted as a dual-purpose I/O.
Tabl e 67 : User I/Os Per Bank for the XC3SD1800A in the FG676 Package
Package
Edge I/O Bank
Maximum I/Os
and
Input-Only
All Possible I/O Pins by Type
I/O INPUT DUAL VREF(1) CLK
Top 0128 82 28 1 9 8
Right 1130 67 15 30 10 8
Bottom 2129 68 21 21 11 8
Left 3132 97 18 0 9 8
TOTAL 519 314 82 52 39 32
Notes:
1. 28 VREF are on INPUT pins.
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 85
FG676 Footprint
XC3SD1800A FPGA
Left Half of Package
(Top View)
314
I/O: Unrestricted,
general-purpose user I/O.
82
INPUT: Unrestricted,
general-purpose input pin.
51
DUAL: Configuration pins,
then possible user I/O.
39
VREF: User I/O or input
voltage reference for bank.
32
CLK: User I/O, input, or
clock buffer input.
2CONFIG: Dedicated
configuration pins.
4
JTAG: Dedicated JTAG
port pins.
2SUSPEND: Dedicated
SUSPEND and
dual-purpose AWAKE
Power Management pins
77
GND: Ground
36
VCCO: Output voltage
supply for bank.
23
VCCINT: Internal core
supply voltage (+1.2V).
14
VCCAUX: Auxiliary
supply voltage.
Note: The boxes with triangles
inside indicate pin differences from
the XC3SD3400A device. Please
see the Footprint Migration
Differences section for more
information.
Figure 16: FG676 Package Footprint for XC3SD1800A FPGA (Top View–Left Half)
12345678910111213
AGND PROG_
B
I/O
L51P_0
I/O
L45P_0
INPUT
GND
INPUT
I/O
L38P_0
I/O
L36P_0
I/O
L33P_0 GND
I/O
L29P_0 INPUT
B
I/O
L02N_3
I/O
L02P_3
I/O
L51N_0
I/O
L45N_0 VCCO_0
I/O
L41P_0
I/O
L42P_0
I/O
L38N_0
I/O
L36N_0
I/O
L33N_0 VCCO_0
I/O
L29N_0
I/O
L28P_0
GCLK10
C
INPUT
L04N_3
VREF_3
INPUT
L04P_3
GND
INPUT
I/O
L44P_0
I/O
L41N_0
I/O
L42N_0
I/O
L40P_0 GND
I/O
L34P_0
I/O
L32P_0
I/O
L30N_0
I/O
L28N_0
GCLK11
D
INPUT
L08N_3
INPUT
L08P_3
I/O
L06P_3 TMS
INPUT
I/O
L44N_0
INPUT
VREF_0
I/O
L40N_0
I/O
L37N_0
I/O
L34N_0
I/O
L32N_0
VREF_0
INPUT
I/O
L30P_0
E
I/O
L11P_3 VCCO_3
I/O
L07P_3
I/O
L06N_3 VCCAUX
INPUT
I/O
L48N_0 VCCO_0
INPUT
I/O
L37P_0 INPUT
I/O
L31P_0 VCCO_0
FGND
I/O
L11N_3
I/O
L14N_3
I/O
L07N_3
I/O
L09P_3 GND
I/O
L48P_0
I/O
L52P_0
VREF_0
INPUT
INPUT
GND
I/O
L31N_0
I/O
L27P_0
GCLK8
G
INPUT
L16N_3
INPUT
L16P_3
I/O
L14P_3
I/O
L09N_3
INPUT
L12P_3
I/O
L03P_3 TDI
I/O
L52N_0
PUDC_B
I/O
L47P_0
I/O
L46P_0
INPUT
VREF_0
I/O
L35P_0
I/O
L27N_0
GCLK9
H
I/O
L17N_3
I/O
L17P_3 GND
INPUT
L12N_3
VREF_3
VCCO_3
I/O
L10N_3
I/O
L03N_3 GND
I/O
L47N_0
I/O
L46N_0 VCCO_0
I/O
L35N_0 INPUT
J
INPUT
L24P_3
INPUT
L20N_3
VREF_3
INPUT
L20P_3
I/O
L19N_3
I/O
L19P_3
I/O
L13N_3
I/O
L10P_3
I/O
L01P_3
I/O
L01N_3 INPUT
I/O
L43P_0
I/O
L39P_0 INPUT
K
INPUT
L24N_3
I/O
L23N_3
I/O
L23P_3
I/O
L22N_3
I/O
L22P_3
I/O
L18P_3
I/O
L13P_3
I/O
L05N_3
I/O
L05P_3 GND
I/O
L43N_0
I/O
L39N_0 VCCAUX
LGND VCCO_3
I/O
L25N_3
I/O
L25P_3 VCCAUX GND
I/O
L18N_3 VCCO_3
I/O
L15N_3
I/O
L15P_3 GND VCCINT GND
M
I/O
L29N_3
VREF_3
I/O
L29P_3
I/O
L27N_3
I/O
L27P_3
I/O
L28P_3
I/O
L28N_3
I/O
L26N_3
I/O
L26P_3
I/O
L21N_3
I/O
L21P_3 VCCINT GND VCCINT
N
I/O
L31P_3
I/O
L31N_3 GND
I/O
L30N_3
I/O
L30P_3
I/O
L32P_3
LHCLK0
I/O
L32N_3
LHCLK1
GND
I/O
L35P_3
TRDY2
LHCLK6
VCCAUX GND VCCINT VCCINT
P
I/O
L33P_3
LHCLK2
I/O
L33N_3
IRDY2
LHCLK3
I/O
L34N_3
LHCLK5
I/O
L34P_3
LHCLK4
VCCO_3
I/O
L39N_3
I/O
L39P_3
I/O
L41P_3
I/O
L41N_3
I/O
L35N_3
LHCLK7
VCCINT GND VCCINT
R
I/O
L36P_3
VREF_3
I/O
L36N_3
I/O
L37P_3
I/O
L37N_3
I/O
L40P_3
I/O
L40N_3
I/O
L45N_3
I/O
L45P_3
I/O
L43N_3
I/O
L43P_3
VREF_3
GND VCCINT GND
TGND VCCO_3
I/O
L38P_3
I/O
L38N_3
I/O
L42P_3 GND
I/O
L51P_3 VCCO_3
I/O
L48N_3
I/O
L48P_3 VCCINT GND VCCINT
U
I/O
L44P_3
I/O
L44N_3
INPUT
L46P_3
I/O
L42N_3
I/O
L49P_3
I/O
L51N_3
I/O
L56P_3
I/O
L56N_3
I/O
L61P_3 GND
I/O
L13N_2 VCCINT GND
Bank 0
Bank 3
V
I/O
L47P_3
I/O
L47N_3 GND
INPUT
L46N_3
I/O
L49N_3
I/O
L59N_3
I/O
L59P_3
I/O
L61N_3 VCCAUX
I/O
L09P_2
I/O
L13P_2
I/O
L16P_2
I/O
L20P_2
W
INPUT
L50P_3
INPUT
L50N_3
VREF_3
I/O
L52P_3
I/O
L52N_3 VCCO_3
I/O
L63N_3
I/O
L63P_3 GND
I/O
L05P_2
I/O
L09N_2 VCCO_2
I/O
L16N_2
I/O
L20N_2
Y
I/O
L53P_3
I/O
L53N_3
INPUT
L54P_3
INPUT
L54N_3
I/O
L57P_3
I/O
L57N_3
I/O
L02P_2
M2
INPUT
I/O
L05N_2
I/O
L12P_2
INPUT
I/O
L17P_2
RDWR_B
I/O
L25N_2
GCLK13
A
AGND
I/O
L55P_3
I/O
L55N_3
INPUT
L58P_3
INPUT
L58N_3
VREF_3
GND
I/O
L02N_2
CSO_B
INPUT
INPUT
VREF_2
I/O
L12N_2 GND
I/O
L17N_2
VS2
I/O
L25P_2
GCLK12
A
B
I/O
L60P_3 VCCO_3
INPUT
L62P_3
INPUT
L62N_3
VCCAUX
INPUT
VREF_2
I/O
L14N_2 VCCO_2
I/O
L15P_2
INPUT
VREF_2
VCCAUX
I/O
L21P_2 INPUT
A
C
I/O
L60N_3
I/O
L64P_3
I/O
L64N_3
I/O
L01P_2
M1
INPUT
I/O
L08P_2
INPUT
I/O
L14P_2
I/O
L15N_2
INPUT
VREF_2
I/O
L23N_2
I/O
L21N_2 INPUT
A
D
I/O
L65P_3
I/O
L65N_3 GND
I/O
L01N_2
M0
INPUT
I/O
L08N_2
I/O
L11P_2 GND INPUT INPUT
I/O
L23P_2
INPUT
VREF_2 GND
A
E
INPUT
L66P_3
INPUT
L66N_3
VREF_3
I/O
L06P_2
I/O
L07P_2 VCCO_2
I/O
L10N_2
I/O
L11N_2
I/O
L18P_2
I/O
L19P_2
VS1
I/O
L22P_2
D7
VCCO_2
I/O
L24N_2
D4
I/O
L26N_2
GCLK15
A
FGND
INPUT
I/O
L06N_2
I/O
L07N_2
I/O
L10P_2 GND
INPUT
I/O
L18N_2
I/O
L19N_2
VS0
I/O
L22N_2
D6
GND
I/O
L24P_2
D5
I/O
L26P_2
GCLK14
Bank 2
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 86
Right Half of FG676
Package (Top View)
Figure 17: FG676 Package Footprint for XC3SD1800A FPGA (Top View–Right Half)
14 15 16 17 18 19 20 21 22 23 24 25 26
I/O
L26N_0
GCLK7
I/O
L23N_0 GND INPUT
I/O
L18N_0
I/O
L15N_0
I/O
L14N_0 GND
I/O
L07N_0
INPUT
INPUT
TCK GND A
I/O
L26P_0
GCLK6
I/O
L23P_0 VCCO_0
I/O
L19N_0
I/O
L18P_0
I/O
L15P_0
I/O
L14P_0
VREF_0
I/O
L09N_0 VCCO_0
I/O
L07P_0
INPUT
INPUT
L65N_1
INPUT
L65P_1
VREF_1
B
GND
I/O
L22N_0
I/O
L21N_0
I/O
L19P_0
I/O
L17N_0 GND
I/O
L11N_0
I/O
L09P_0
I/O
L05N_0
I/O
L06N_0 GND
I/O
L63N_1
A23
I/O
L63P_1
A22
C
INPUT
VREF_0
INPUT
I/O
L22P_0
I/O
L21P_0
I/O
L17P_0
INPUT
I/O
L11P_0
I/O
L10N_0
I/O
L05P_0
I/O
L06P_0
I/O
L61N_1
I/O
L61P_1
I/O
L60N_1 D
I/O
L24P_0
I/O
L20N_0
VREF_0
VCCAUX
I/O
L13N_0 INPUT VCCO_0
INPUT
I/O
L10P_0 VCCAUX TDO
I/O
L56P_1 VCCO_1
I/O
L60P_1 E
I/O
L24N_0
I/O
L20P_0 GND
I/O
L13P_0
INPUT
I/O
L02N_0
I/O
L01N_0 GND
I/O
L58P_1
VREF_1
I/O
L56N_1
I/O
L54N_1
I/O
L54P_1 GND F
INPUT
I/O
L16P_0
INPUT
I/O
L08N_0
INPUT
I/O
L02P_0
VREF_0
I/O
L01P_0
I/O
L64N_1
A25
I/O
L58N_1
I/O
L51P_1
I/O
L51N_1
INPUT
L52N_1
VREF_1
INPUT
L52P_1
G
GND
I/O
L16N_0 VCCO_0
I/O
L08P_0 INPUT GND
I/O
L64P_1
A24
I/O
L62N_1
A21
VCCO_1
INPUT
L48P_1
INPUT
L48N_1
INPUT
L44N_1
INPUT
L44P_1
VREF_1
H
I/O
L25N_0
GCLK5
INPUT
I/O
L12P_0
INPUT
VREF_0 VCCAUX
I/O
L59P_1
I/O
L59N_1
I/O
L62P_1
A20
I/O
L49N_1
I/O
L49P_1 GND
I/O
L43N_1
A19
I/O
L43P_1
A18
J
I/O
L25P_0
GCLK4
VCCINT
I/O
L12N_0 GND
I/O
L57N_1
I/O
L57P_1
I/O
L53N_1
I/O
L50N_1
I/O
L46N_1
I/O
L46P_1
INPUT
L40P_1
I/O
L41P_1
I/O
L41N_1 K
VCCINT GND VCCINT
I/O
L55N_1
I/O
L55P_1 VCCO_1
I/O
L53P_1 GND
I/O
L50P_1
INPUT
L40N_1
I/O
L38P_1
A12
VCCO_1 GND L
GND VCCINT GND VCCINT
I/O
L47N_1
I/O
L47P_1
I/O
L42N_1
A17
I/O
L45P_1
I/O
L45N_1
I/O
L38N_1
A13
INPUT
L36P_1
VREF_1
I/O
L35N_1
A11
I/O
L35P_1
A10
M
VCCINT GND VCCINT
I/O
L39N_1
A15
I/O
L39P_1
A14
I/O
L34N_1
RHCLK7
I/O
L42P_1
A16
I/O
L37N_1 VCCO_1
INPUT
L36N_1
I/O
L33N_1
RHCLK5
INPUT
L32N_1
INPUT
L32P_1 N
VCCINT VCCINT GND VCCAUX
I/O
L34P_1
IRDY1
RHCLK6
GND
I/O
L30N_1
RHCLK1
I/O
L30P_1
RHCLK0
I/O
L37P_1
I/O
L33P_1
RHCLK4
GND
I/O
L31N_1
TRDY1
RHCLK3
I/O
L31P_1
RHCLK2
P
VCCINT GND VCCINT
I/O
L27N_1
A7
I/O
L27P_1
A6
I/O
L22P_1
I/O
L22N_1
I/O
L25P_1
A2
I/O
L25N_1
A3
INPUT
L28P_1
VREF_1
INPUT
L28N_1
I/O
L29P_1
A8
I/O
L29N_1
A9
R
GND VCCINT GND
I/O
L17N_1
I/O
L17P_1 VCCO_1
I/O
L14N_1 GND VCCAUX
I/O
L26P_1
A4
I/O
L26N_1
A5
VCCO_1 GND T
VCCAUX
I/O
L35N_2
I/O
L42N_2 GND
I/O
L12N_1
I/O
L12P_1
I/O
L10N_1
I/O
L14P_1
I/O
L21N_1
I/O
L23P_1
I/O
L23N_1
VREF_1
INPUT
L24P_1
INPUT
L24N_1
VREF_1
U
Bank 0
Bank 1
I/O
L31P_2
I/O
L35P_2
I/O
L42P_2
I/O
L46N_2
I/O
L08P_1
I/O
L08N_1 SUSPEND
I/O
L10P_1
I/O
L18N_1
I/O
L21P_1
I/O
L19P_1
I/O
L19N_1
INPUT
L20N_1
VREF_1
V
GND
I/O
L31N_2 VCCO_2
I/O
L46P_2
INPUT
GND
I/O
L04P_1
I/O
L04N_1 VCCO_1
I/O
L18P_1 GND
INPUT
L16P_1
INPUT
L20P_1
W
I/O
L27P_2
GCLK0
I/O
L34N_2
D3
INPUT
VREF_2
I/O
L43N_2
INPUT
INPUT
VREF_2
I/O
L01P_1
HDC
I/O
L01N_1
LDC2
I/O
L13P_1
I/O
L13N_1
I/O
L15P_1
I/O
L15N_1
INPUT
L16N_1
Y
I/O
L27N_2
GCLK1
I/O
L34P_2
INIT_B
GND
I/O
L43P_2
I/O
L47N_2
INPUT
INPUT
VREF_2 GND
I/O
L09P_1
I/O
L09N_1
I/O
L11P_1
I/O
L11N_1 GND A
A
VCCO_2
I/O
L30N_2
MOSI
CSI
_
B
I/O
L38N_2
INPUT
I/O
L47P_2 VCCO_2
INPUT
DONE VCCAUX
I/O
L07P_1
I/O
L07N_1
VREF_1
VCCO_1
I/O
L06N_1
A
B
I/O
L29N_2
I/O
L30P_2
I/O
L38P_2 INPUT
INPUT
I/O
L40N_2
I/O
L41N_2
I/O
L45N_2
I/O
2
I/O
L03P_1
A0
I/O
L03N_1
A1
I/O
L05N_1
I/O
L06P_1
A
C
I/O
L29P_2
I/O
L32P_2
AWAKE
INPUT
I/O
L33N_2 GND
I/O
L40P_2
I/O
L41P_2
I/O
L44N_2
I/O
L45P_2
INPUT
GND
I/O
L02N_1
LDC0
I/O
L05P_1
A
D
I/O
L28N_2
GCLK3
I/O
L32N_2
DOUT
VCCO_2
I/O
L33P_2
I/O
L36N_2
D1
I/O
L37N_2
I/O
L39N_2
I/O
L44P_2 VCCO_2
I/O
L48N_2
I/O
L52N_2
CCLK
I/O
L51N_2
I/O
L02P_1
LDC1
A
E
I/O
L28P_2
GCLK2
INPUT
VREF_2 GND
INPUT
VREF_2
I/O
L36P_2
D2
I/O
L37P_2
I/O
L39P_2 GND
INPUT
VREF_2
I/O
L48P_2
I/O
L52P_2
D0
DIN/MISO
I/O
L51P_2 GND A
F
Bank 2
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 87
XC3SD3400A FPGA
Ta bl e 6 8 lists all the FG676 package pins for the XC3SD3400A FPGA. They are sorted by bank number and then by pin
name. Pairs of pins that form a differential I/O pair appear together in the table. Tab l e 6 8 also shows the pin number for each
pin and the pin type, as defined earlier.
An electronic version of this package pinout table and footprint diagram is available for download from the Xilinx website at:
www.xilinx.com/support/documentation/data_sheets/s3a_pin.zip.
Pinout Table
Note: The grayed boxes denote a difference between the XC3SD1800A and the XC3SD3400A devices.
Tabl e 68 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA
Bank XC3SD3400A Pin Name FG676
Ball Type
0 IO_L43N_0 K11 I/O
0 IO_L39N_0 K12 I/O
0 IO_L25P_0/GCLK4 K14 GCLK
0 IO_L12N_0 K16 I/O
0 IP_0 J10 INPUT
0 IO_L43P_0 J11 I/O
0 IO_L39P_0 J12 I/O
0 IP_0 J13 INPUT
0 IO_L25N_0/GCLK5 J14 GCLK
0 IP_0 J15 INPUT
0 IO_L12P_0 J16 I/O
0 IP_0/VREF_0 J17 VREF
0 IO_L47N_0 H9 I/O
0 IO_L46N_0 H10 I/O
0 IO_L35N_0 H12 I/O
0 IP_0 H13 INPUT
0 IO_L16N_0 H15 I/O
0 IO_L08P_0 H17 I/O
0 IP_0 H18 INPUT
0 IO_L52N_0/PUDC_B G8 DUAL
0 IO_L47P_0 G9 I/O
0 IO_L46P_0 G10 I/O
0 IP_0/VREF_0 G11 VREF
0 IO_L35P_0 G12 I/O
0 IO_L27N_0/GCLK9 G13 GCLK
0 IP_0 G14 INPUT
0 IO_L16P_0 G15 I/O
0 IO_L08N_0 G17 I/O
0 IO_L02P_0/VREF_0 G19 VREF
0 IO_L01P_0 G20 I/O
0 IO_L48P_0 F7 I/O
0 IO_L52P_0/VREF_0 F8 VREF
0 IO_L31N_0 F12 I/O
0 IO_L27P_0/GCLK8 F13 GCLK
0 IO_L24N_0 F14 I/O
0 IO_L20P_0 F15 I/O
0 IO_L13P_0 F17 I/O
0 IO_L02N_0 F19 I/O
0 IO_L01N_0 F20 I/O
0 IO_L48N_0 E7 I/O
0 IO_L37P_0 E10 I/O
0 IP_0 E11 INPUT
0 IO_L31P_0 E12 I/O
0 IO_L24P_0 E14 I/O
0 IO_L20N_0/VREF_0 E15 VREF
0 IO_L13N_0 E17 I/O
0 IP_0 E18 INPUT
0 IO_L10P_0 E21 I/O
0 IO_L44N_0 D6 I/O
0 IP_0/VREF_0 D7 VREF
0 IO_L40N_0 D8 I/O
0 IO_L37N_0 D9 I/O
0 IO_L34N_0 D10 I/O
0 IO_L32N_0/VREF_0 D11 VREF
0 IP_0 D12 INPUT
0 IO_L30P_0 D13 I/O
0 IP_0/VREF_0 D14 VREF
0 IO_L22P_0 D16 I/O
0 IO_L21P_0 D17 I/O
0 IO_L17P_0 D18 I/O
0 IO_L11P_0 D20 I/O
Tabl e 6 8 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA (Cont’d)
Bank XC3SD3400A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 88
0 IO_L10N_0 D21 I/O
0 IO_L05P_0 D22 I/O
0 IO_L06P_0 D23 I/O
0 IO_L44P_0 C5 I/O
0 IO_L41N_0 C6 I/O
0 IO_L42N_0 C7 I/O
0 IO_L40P_0 C8 I/O
0 IO_L34P_0 C10 I/O
0 IO_L32P_0 C11 I/O
0 IO_L30N_0 C12 I/O
0 IO_L28N_0/GCLK11 C13 GCLK
0 IO_L22N_0 C15 I/O
0 IO_L21N_0 C16 I/O
0 IO_L19P_0 C17 I/O
0 IO_L17N_0 C18 I/O
0 IO_L11N_0 C20 I/O
0 IO_L09P_0 C21 I/O
0 IO_L05N_0 C22 I/O
0 IO_L06N_0 C23 I/O
0 IO_L51N_0 B3 I/O
0 IO_L45N_0 B4 I/O
0 IO_L41P_0 B6 I/O
0 IO_L42P_0 B7 I/O
0 IO_L38N_0 B8 I/O
0 IO_L36N_0 B9 I/O
0 IO_L33N_0 B10 I/O
0 IO_L29N_0 B12 I/O
0 IO_L28P_0/GCLK10 B13 GCLK
0 IO_L26P_0/GCLK6 B14 GCLK
0 IO_L23P_0 B15 I/O
0 IO_L19N_0 B17 I/O
0 IO_L18P_0 B18 I/O
0 IO_L15P_0 B19 I/O
0 IO_L14P_0/VREF_0 B20 VREF
0 IO_L09N_0 B21 I/O
0 IO_L07P_0 B23 I/O
0 IO_L51P_0 A3 I/O
0 IO_L45P_0 A4 I/O
0 IO_L38P_0 A8 I/O
Tabl e 68 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA (Cont’d)
Bank XC3SD3400A Pin Name FG676
Ball Type
0 IO_L36P_0 A9 I/O
0 IO_L33P_0 A10 I/O
0 IO_L29P_0 A12 I/O
0 IP_0 A13 INPUT
0 IO_L26N_0/GCLK7 A14 GCLK
0 IO_L23N_0 A15 I/O
0 IP_0 A17 INPUT
0 IO_L18N_0 A18 I/O
0 IO_L15N_0 A19 I/O
0 IO_L14N_0 A20 I/O
0 IO_L07N_0 A22 I/O
0 VCCO_0 H11 VCCO
0 VCCO_0 H16 VCCO
0 VCCO_0 E8 VCCO
0 VCCO_0 E13 VCCO
0 VCCO_0 E19 VCCO
0 VCCO_0 B5 VCCO
0 VCCO_0 B11 VCCO
0 VCCO_0 B16 VCCO
0 VCCO_0 B22 VCCO
0VCCO_0 A7 VCCO
1 IO_L01P_1/HDC Y20 DUAL
1 IO_L01N_1/LDC2 Y21 DUAL
1 IO_L13P_1 Y22 I/O
1 IO_L13N_1 Y23 I/O
1 IO_L15P_1 Y24 I/O
1 IO_L15N_1 Y25 I/O
1IP_1 Y26 INPUT
1 IO_L04P_1 W20 I/O
1 IO_L04N_1 W21 I/O
1 IO_L18P_1 W23 I/O
1 IO_L08P_1 V18 I/O
1 IO_L08N_1 V19 I/O
1 IO_L10P_1 V21 I/O
1 IO_L18N_1 V22 I/O
1 IO_L21P_1 V23 I/O
1 IO_L19P_1 V24 I/O
1 IO_L19N_1 V25 I/O
1IP_1/VREF_1 V26 VREF
Tabl e 6 8 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA (Cont’d)
Bank XC3SD3400A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 89
1 IO_L12N_1 U18 I/O
1 IO_L12P_1 U19 I/O
1 IO_L10N_1 U20 I/O
1 IO_L14P_1 U21 I/O
1 IO_L21N_1 U22 I/O
1 IO_L23P_1 U23 I/O
1 IO_L23N_1/VREF_1 U24 VREF
1IP_1/VREF_1 U26 VREF
1 IO_L17N_1 T17 I/O
1 IO_L17P_1 T18 I/O
1 IO_L14N_1 T20 I/O
1 IO_L26P_1/A4 T23 DUAL
1 IO_L26N_1/A5 T24 DUAL
1 IO_L27N_1/A7 R17 DUAL
1 IO_L27P_1/A6 R18 DUAL
1 IO_L22P_1 R19 I/O
1 IO_L22N_1 R20 I/O
1 IO_L25P_1/A2 R21 DUAL
1 IO_L25N_1/A3 R22 DUAL
1 IP_L28P_1/VREF_1 R23 VREF
1 IP_L28N_1 R24 INPUT
1 IO_L29P_1/A8 R25 DUAL
1 IO_L29N_1/A9 R26 DUAL
1 IO_L34P_1/IRDY1/RHCLK6 P18 RHCLK
1 IO_L30N_1/RHCLK1 P20 RHCLK
1 IO_L30P_1/RHCLK0 P21 RHCLK
1 IO_L37P_1 P22 I/O
1 IO_L33P_1/RHCLK4 P23 RHCLK
1IO_L31N_1/TRDY1/RHCLK3 P25 RHCLK
1 IO_L31P_1/RHCLK2 P26 RHCLK
1 IO_L39N_1/A15 N17 DUAL
1 IO_L39P_1/A14 N18 DUAL
1 IO_L34N_1/RHCLK7 N19 RHCLK
1 IO_L42P_1/A16 N20 DUAL
1 IO_L37N_1 N21 I/O
1 IP_L36N_1 N23 INPUT
1 IO_L33N_1/RHCLK5 N24 RHCLK
1 IP_L32N_1 N25 INPUT
1 IP_L32P_1 N26 INPUT
Tabl e 68 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA (Cont’d)
Bank XC3SD3400A Pin Name FG676
Ball Type
1 IO_L47N_1 M18 I/O
1 IO_L47P_1 M19 I/O
1 IO_L42N_1/A17 M20 DUAL
1 IO_L45P_1 M21 I/O
1 IO_L45N_1 M22 I/O
1 IO_L38N_1/A13 M23 DUAL
1 IP_L36P_1/VREF_1 M24 VREF
1 IO_L35N_1/A11 M25 DUAL
1 IO_L35P_1/A10 M26 DUAL
1 IO_L55N_1 L17 I/O
1 IO_L55P_1 L18 I/O
1 IO_L53P_1 L20 I/O
1 IO_L50P_1 L22 I/O
1 IP_L40N_1 L23 INPUT
1 IO_L38P_1/A12 L24 DUAL
1 IO_L57N_1 K18 I/O
1 IO_L57P_1 K19 I/O
1 IO_L53N_1 K20 I/O
1 IO_L50N_1 K21 I/O
1 IO_L46N_1 K22 I/O
1 IO_L46P_1 K23 I/O
1 IP_L40P_1 K24 INPUT
1 IO_L41P_1 K25 I/O
1 IO_L41N_1 K26 I/O
1 IO_L59P_1 J19 I/O
1 IO_L59N_1 J20 I/O
1 IO_L62P_1/A20 J21 DUAL
1 IO_L49N_1 J22 I/O
1 IO_L49P_1 J23 I/O
1 IO_L43N_1/A19 J25 DUAL
1 IO_L43P_1/A18 J26 DUAL
1 IO_L64P_1/A24 H20 DUAL
1 IO_L62N_1/A21 H21 DUAL
1IP_1 H24 INPUT
1IP_1/VREF_1 H26 VREF
1 IO_L64N_1/A25 G21 DUAL
1 IO_L58N_1 G22 I/O
1 IO_L51P_1 G23 I/O
1 IO_L51N_1 G24 I/O
Tabl e 6 8 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA (Cont’d)
Bank XC3SD3400A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 90
1IP_1/VREF_1 G25 VREF
1 IO_L58P_1/VREF_1 F22 VREF
1 IO_L56N_1 F23 I/O
1 IO_L54N_1 F24 I/O
1 IO_L54P_1 F25 I/O
1 IO_L56P_1 E24 I/O
1 IO_L60P_1 E26 I/O
1 IO_L61N_1 D24 I/O
1 IO_L61P_1 D25 I/O
1 IO_L60N_1 D26 I/O
1 IO_L63N_1/A23 C25 DUAL
1 IO_L63P_1/A22 C26 DUAL
1IP_1/VREF_1 B26 VREF
1 IO_L02P_1/LDC1 AE26 DUAL
1 IO_L02N_1/LDC0 AD25 DUAL
1 IO_L05P_1 AD26 I/O
1 IO_L03P_1/A0 AC23 DUAL
1 IO_L03N_1/A1 AC24 DUAL
1 IO_L05N_1 AC25 I/O
1 IO_L06P_1 AC26 I/O
1 IO_L07P_1 AB23 I/O
1 IO_L07N_1/VREF_1 AB24 VREF
1 IO_L06N_1 AB26 I/O
1 IO_L09P_1 AA22 I/O
1 IO_L09N_1 AA23 I/O
1 IO_L11P_1 AA24 I/O
1 IO_L11N_1 AA25 I/O
1 VCCO_1 W22 VCCO
1 VCCO_1 T19 VCCO
1 VCCO_1 T25 VCCO
1 VCCO_1 N22 VCCO
1 VCCO_1 L19 VCCO
1 VCCO_1 L25 VCCO
1 VCCO_1 H22 VCCO
1VCCO_1 H25 VCCO
1 VCCO_1 E25 VCCO
1 VCCO_1 AB25 VCCO
2 IO_L02P_2/M2 Y7 DUAL
2 IO_L05N_2 Y9 I/O
Tabl e 68 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA (Cont’d)
Bank XC3SD3400A Pin Name FG676
Ball Type
2 IO_L12P_2 Y10 I/O
2 IO_L17P_2/RDWR_B Y12 DUAL
2 IO_L25N_2/GCLK13 Y13 GCLK
2 IO_L27P_2/GCLK0 Y14 GCLK
2 IO_L34N_2/D3 Y15 DUAL
2 IP_2/VREF_2 Y16 VREF
2 IO_L43N_2 Y17 I/O
2 IO_L05P_2 W9 I/O
2 IO_L09N_2 W10 I/O
2 IO_L16N_2 W12 I/O
2 IO_L20N_2 W13 I/O
2 IO_L31N_2 W15 I/O
2 IO_L46P_2 W17 I/O
2 IO_L09P_2 V10 I/O
2 IO_L13P_2 V11 I/O
2 IO_L16P_2 V12 I/O
2 IO_L20P_2 V13 I/O
2 IO_L31P_2 V14 I/O
2 IO_L35P_2 V15 I/O
2 IO_L42P_2 V16 I/O
2 IO_L46N_2 V17 I/O
2 IO_L13N_2 U11 I/O
2 IO_L35N_2 U15 I/O
2 IO_L42N_2 U16 I/O
2 IO_L06N_2 AF3 I/O
2 IO_L07N_2 AF4 I/O
2 IO_L10P_2 AF5 I/O
2 IO_L18N_2 AF8 I/O
2 IO_L19N_2/VS0 AF9 DUAL
2 IO_L22N_2/D6 AF10 DUAL
2 IO_L24P_2/D5 AF12 DUAL
2 IO_L26P_2/GCLK14 AF13 GCLK
2 IO_L28P_2/GCLK2 AF14 GCLK
2 IP_2/VREF_2 AF15 VREF
2 IP_2/VREF_2 AF17 VREF
2 IO_L36P_2/D2 AF18 DUAL
2 IO_L37P_2 AF19 I/O
2 IO_L39P_2 AF20 I/O
2 IP_2/VREF_2 AF22 VREF
Tabl e 6 8 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA (Cont’d)
Bank XC3SD3400A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 91
2 IO_L48P_2 AF23 I/O
2 IO_L52P_2/D0/DIN/MISO AF24 DUAL
2 IO_L51P_2 AF25 I/O
2 IO_L06P_2 AE3 I/O
2 IO_L07P_2 AE4 I/O
2 IO_L10N_2 AE6 I/O
2 IO_L11N_2 AE7 I/O
2 IO_L18P_2 AE8 I/O
2 IO_L19P_2/VS1 AE9 DUAL
2 IO_L22P_2/D7 AE10 DUAL
2 IO_L24N_2/D4 AE12 DUAL
2 IO_L26N_2/GCLK15 AE13 GCLK
2 IO_L28N_2/GCLK3 AE14 GCLK
2 IO_L32N_2/DOUT AE15 DUAL
2 IO_L33P_2 AE17 I/O
2 IO_L36N_2/D1 AE18 DUAL
2 IO_L37N_2 AE19 I/O
2 IO_L39N_2 AE20 I/O
2 IO_L44P_2 AE21 I/O
2 IO_L48N_2 AE23 I/O
2 IO_L52N_2/CCLK AE24 DUAL
2 IO_L51N_2 AE25 I/O
2 IO_L01N_2/M0 AD4 DUAL
2 IO_L08N_2 AD6 I/O
2 IO_L11P_2 AD7 I/O
2 IP_2 AD9 INPUT
2 IP_2 AD10 INPUT
2 IO_L23P_2 AD11 I/O
2 IP_2/VREF_2 AD12 VREF
2 IO_L29P_2 AD14 I/O
2 IO_L32P_2/AWAKE AD15 PWRMGMT
2 IP_2 AD16 INPUT
2 IO_L33N_2 AD17 I/O
2 IO_L40P_2 AD19 I/O
2 IO_L41P_2 AD20 I/O
2 IO_L44N_2 AD21 I/O
2 IO_L45P_2 AD22 I/O
2 IO_L01P_2/M1 AC4 DUAL
2 IO_L08P_2 AC6 I/O
Tabl e 68 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA (Cont’d)
Bank XC3SD3400A Pin Name FG676
Ball Type
2 IO_L14P_2 AC8 I/O
2 IO_L15N_2 AC9 I/O
2 IP_2/VREF_2 AC10 VREF
2 IO_L23N_2 AC11 I/O
2 IO_L21N_2 AC12 I/O
2 IP_2 AC13 INPUT
2 IO_L29N_2 AC14 I/O
2 IO_L30P_2 AC15 I/O
2 IO_L38P_2 AC16 I/O
2 IP_2 AC17 INPUT
2 IO_L40N_2 AC19 I/O
2 IO_L41N_2 AC20 I/O
2 IO_L45N_2 AC21 I/O
2 IO_2 AC22 I/O
2 IP_2/VREF_2 AB6 VREF
2 IO_L14N_2 AB7 I/O
2 IO_L15P_2 AB9 I/O
2 IO_L21P_2 AB12 I/O
2 IP_2 AB13 INPUT
2 IO_L30N_2/MOSI/CSI_B AB15 DUAL
2 IO_L38N_2 AB16 I/O
2 IO_L47P_2 AB18 I/O
2 IO_L02N_2/CSO_B AA7 DUAL
2 IP_2/VREF_2 AA9 VREF
2 IO_L12N_2 AA10 I/O
2 IO_L17N_2/VS2 AA12 DUAL
2 IO_L25P_2/GCLK12 AA13 GCLK
2 IO_L27N_2/GCLK1 AA14 GCLK
2 IO_L34P_2/INIT_B AA15 DUAL
2 IO_L43P_2 AA17 I/O
2 IO_L47N_2 AA18 I/O
2 IP_2/VREF_2 AA20 VREF
2 VCCO_2 W11 VCCO
2 VCCO_2 W16 VCCO
2VCCO_2 AF7 VCCO
2 VCCO_2 AE5 VCCO
2 VCCO_2 AE11 VCCO
2 VCCO_2 AE16 VCCO
2 VCCO_2 AE22 VCCO
Tabl e 6 8 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA (Cont’d)
Bank XC3SD3400A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 92
2 VCCO_2 AB8 VCCO
2 VCCO_2 AB14 VCCO
2 VCCO_2 AB19 VCCO
3 IO_L53P_3 Y1 I/O
3 IO_L53N_3 Y2 I/O
3IP_3 Y3 INPUT
3 IO_L57P_3 Y5 I/O
3 IO_L57N_3 Y6 I/O
3 IP_L50P_3 W1 INPUT
3 IP_L50N_3/VREF_3 W2 VREF
3 IO_L52P_3 W3 I/O
3 IO_L52N_3 W4 I/O
3 IO_L63N_3 W6 I/O
3 IO_L63P_3 W7 I/O
3 IO_L47P_3 V1 I/O
3 IO_L47N_3 V2 I/O
3 IP_L46N_3 V4 INPUT
3 IO_L49N_3 V5 I/O
3 IO_L59N_3 V6 I/O
3 IO_L59P_3 V7 I/O
3 IO_L61N_3 V8 I/O
3 IO_L44P_3 U1 I/O
3 IO_L44N_3 U2 I/O
3 IP_L46P_3 U3 INPUT
3 IO_L42N_3 U4 I/O
3 IO_L49P_3 U5 I/O
3 IO_L51N_3 U6 I/O
3 IO_L56P_3 U7 I/O
3 IO_L56N_3 U8 I/O
3 IO_L61P_3 U9 I/O
3 IO_L38P_3 T3 I/O
3 IO_L38N_3 T4 I/O
3 IO_L42P_3 T5 I/O
3 IO_L51P_3 T7 I/O
3 IO_L48N_3 T9 I/O
3 IO_L48P_3 T10 I/O
3 IO_L36P_3/VREF_3 R1 VREF
3 IO_L36N_3 R2 I/O
3 IO_L37P_3 R3 I/O
Tabl e 68 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA (Cont’d)
Bank XC3SD3400A Pin Name FG676
Ball Type
3 IO_L37N_3 R4 I/O
3 IO_L40P_3 R5 I/O
3 IO_L40N_3 R6 I/O
3 IO_L45N_3 R7 I/O
3 IO_L45P_3 R8 I/O
3 IO_L43N_3 R9 I/O
3 IO_L43P_3/VREF_3 R10 VREF
3 IO_L33P_3/LHCLK2 P1 LHCLK
3 IO_L33N_3/IRDY2/LHCLK3 P2 LHCLK
3 IO_L34N_3/LHCLK5 P3 LHCLK
3 IO_L34P_3/LHCLK4 P4 LHCLK
3 IO_L39N_3 P6 I/O
3 IO_L39P_3 P7 I/O
3 IO_L41P_3 P8 I/O
3 IO_L41N_3 P9 I/O
3 IO_L35N_3/LHCLK7 P10 LHCLK
3 IO_L31P_3 N1 I/O
3 IO_L31N_3 N2 I/O
3 IO_L30N_3 N4 I/O
3 IO_L30P_3 N5 I/O
3 IO_L32P_3/LHCLK0 N6 LHCLK
3 IO_L32N_3/LHCLK1 N7 LHCLK
3 IO_L35P_3/TRDY2/LHCLK6 N9 LHCLK
3 IO_L29N_3/VREF_3 M1 VREF
3 IO_L29P_3 M2 I/O
3 IO_L27N_3 M3 I/O
3 IO_L27P_3 M4 I/O
3 IO_L28P_3 M5 I/O
3 IO_L28N_3 M6 I/O
3 IO_L26N_3 M7 I/O
3 IO_L26P_3 M8 I/O
3 IO_L21N_3 M9 I/O
3 IO_L21P_3 M10 I/O
3 IO_L25N_3 L3 I/O
3 IO_L25P_3 L4 I/O
3 IO_L18N_3 L7 I/O
3 IO_L15N_3 L9 I/O
3 IO_L15P_3 L10 I/O
3 IP_L24N_3 K1 INPUT
Tabl e 6 8 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA (Cont’d)
Bank XC3SD3400A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 93
3 IO_L23N_3 K2 I/O
3 IO_L23P_3 K3 I/O
3 IO_L22N_3 K4 I/O
3 IO_L22P_3 K5 I/O
3 IO_L18P_3 K6 I/O
3 IO_L13P_3 K7 I/O
3 IO_L05N_3 K8 I/O
3 IO_L05P_3 K9 I/O
3 IP_L24P_3 J1 INPUT
3 IP_L20N_3/VREF_3 J2 VREF
3 IP_L20P_3 J3 INPUT
3 IO_L19N_3 J4 I/O
3 IO_L19P_3 J5 I/O
3 IO_L13N_3 J6 I/O
3 IO_L10P_3 J7 I/O
3 IO_L01P_3 J8 I/O
3 IO_L01N_3 J9 I/O
3 IO_L17N_3 H1 I/O
3 IO_L17P_3 H2 I/O
3IP_3/VREF_3 H4 VREF
3 IO_L10N_3 H6 I/O
3 IO_L03N_3 H7 I/O
3IP_3 G1 INPUT
3 IO_L14P_3 G3 I/O
3 IO_L09N_3 G4 I/O
3 IO_L03P_3 G6 I/O
3 IO_L11N_3 F2 I/O
3 IO_L14N_3 F3 I/O
3 IO_L07N_3 F4 I/O
3 IO_L09P_3 F5 I/O
3 IO_L11P_3 E1 I/O
3 IO_L07P_3 E3 I/O
3 IO_L06N_3 E4 I/O
3 IO_L06P_3 D3 I/O
3IP_3/VREF_3 C1 VREF
3 IO_L02N_3 B1 I/O
3 IO_L02P_3 B2 I/O
3 IP_L66P_3 AE1 INPUT
3 IP_L66N_3/VREF_3 AE2 VREF
Tabl e 68 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA (Cont’d)
Bank XC3SD3400A Pin Name FG676
Ball Type
3 IO_L65P_3 AD1 I/O
3 IO_L65N_3 AD2 I/O
3 IO_L60N_3 AC1 I/O
3 IO_L64P_3 AC2 I/O
3 IO_L64N_3 AC3 I/O
3 IO_L60P_3 AB1 I/O
3 IO_L55P_3 AA2 I/O
3 IO_L55N_3 AA3 I/O
3IP_3/VREF_3 AA5 VREF
3 VCCO_3 W5 VCCO
3 VCCO_3 T2 VCCO
3 VCCO_3 T8 VCCO
3 VCCO_3 P5 VCCO
3 VCCO_3 L2 VCCO
3 VCCO_3 L8 VCCO
3 VCCO_3 H5 VCCO
3 VCCO_3 E2 VCCO
3VCCO_3 C2 VCCO
3 VCCO_3 AB2 VCCO
GND GND W8 GND
GND GND W14 GND
GND GND W19 GND
GND GND W24 GND
GND GND W25 GND
GND GND V3 GND
GND GND U10 GND
GND GND U13 GND
GND GND U17 GND
GND GND U25 GND
GND GND T1 GND
GND GND T6 GND
GND GND T12 GND
GND GND T14 GND
GND GND T16 GND
GND GND T21 GND
GND GND T26 GND
GND GND R11 GND
GND GND R13 GND
GND GND R15 GND
Tabl e 6 8 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA (Cont’d)
Bank XC3SD3400A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 94
GND GND P12 GND
GND GND P16 GND
GND GND P19 GND
GND GND P24 GND
GND GND N3 GND
GND GND N8 GND
GND GND N11 GND
GND GND N15 GND
GND GND M12 GND
GND GND M14 GND
GND GND M16 GND
GND GND L1 GND
GND GND L6 GND
GND GND L11 GND
GND GND L13 GND
GND GND L15 GND
GND GND L21 GND
GND GND L26 GND
GND GND K10 GND
GND GND K17 GND
GND GND J24 GND
GND GND H3 GND
GND GND H8 GND
GND GND H14 GND
GND GND H19 GND
GND GND G2 GND
GND GND G5 GND
GND GND G16 GND
GND GND F1 GND
GND GND F6 GND
GND GND F11 GND
GND GND F16 GND
GND GND F21 GND
GND GND F26 GND
GND GND E9 GND
GND GND D2 GND
GND GND D15 GND
GND GND D19 GND
GND GND C3 GND
Tabl e 68 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA (Cont’d)
Bank XC3SD3400A Pin Name FG676
Ball Type
GND GND C9 GND
GND GND C14 GND
GND GND C19 GND
GND GND C24 GND
GND GND B24 GND
GND GND B25 GND
GND GND AF1 GND
GND GND AF6 GND
GND GND AF11 GND
GND GND AF16 GND
GND GND AF21 GND
GND GND AF26 GND
GND GND AD3 GND
GND GND AD5 GND
GND GND AD8 GND
GND GND AD13 GND
GND GND AD18 GND
GND GND AD23 GND
GND GND AD24 GND
GND GND AC5 GND
GND GND AC7 GND
GND GND AC18 GND
GND GND AB3 GND
GND GND AB10 GND
GND GND AB20 GND
GND GND AA1 GND
GND GND AA4 GND
GND GND AA6 GND
GND GND AA11 GND
GND GND AA16 GND
GND GND AA19 GND
GND GND AA21 GND
GND GND AA26 GND
GND GND A1 GND
GND GND A5 GND
GND GND A6 GND
GND GND A11 GND
GND GND A16 GND
GND GND A21 GND
Tabl e 6 8 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA (Cont’d)
Bank XC3SD3400A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 95
GND GND A23 GND
GND GND A26 GND
VCCAUX SUSPEND V20 PWRMGMT
VCCAUX DONE AB21 CONFIG
VCCAUX PROG_B A2 CONFIG
VCCAUX TDI G7 JTAG
VCCAUX TDO E23 JTAG
VCCAUX TMS D4 JTAG
VCCAUX TCK A25 JTAG
VCCAUX VCCAUX W26 VCCAUX
VCCAUX VCCAUX V9 VCCAUX
VCCAUX VCCAUX U14 VCCAUX
VCCAUX VCCAUX T22 VCCAUX
VCCAUX VCCAUX P17 VCCAUX
VCCAUX VCCAUX N10 VCCAUX
VCCAUX VCCAUX L5 VCCAUX
VCCAUX VCCAUX K13 VCCAUX
VCCAUX VCCAUX J18 VCCAUX
VCCAUX VCCAUX H23 VCCAUX
VCCAUX VCCAUX G26 VCCAUX
VCCAUX VCCAUX F9 VCCAUX
VCCAUX VCCAUX E5 VCCAUX
VCCAUX VCCAUX E16 VCCAUX
VCCAUX VCCAUX E20 VCCAUX
VCCAUX VCCAUX E22 VCCAUX
VCCAUX VCCAUX D1 VCCAUX
VCCAUX VCCAUX AF2 VCCAUX
VCCAUX VCCAUX AB4 VCCAUX
VCCAUX VCCAUX AB5 VCCAUX
VCCAUX VCCAUX AB11 VCCAUX
VCCAUX VCCAUX AB17 VCCAUX
VCCAUX VCCAUX AB22 VCCAUX
VCCAUX VCCAUX A24 VCCAUX
VCCINT VCCINT Y4 VCCINT
VCCINT VCCINT Y8 VCCINT
VCCINT VCCINT Y11 VCCINT
VCCINT VCCINT Y18 VCCINT
VCCINT VCCINT Y19 VCCINT
VCCINT VCCINT W18 VCCINT
Tabl e 68 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA (Cont’d)
Bank XC3SD3400A Pin Name FG676
Ball Type
VCCINT VCCINT U12 VCCINT
VCCINT VCCINT T11 VCCINT
VCCINT VCCINT T13 VCCINT
VCCINT VCCINT T15 VCCINT
VCCINT VCCINT R12 VCCINT
VCCINT VCCINT R14 VCCINT
VCCINT VCCINT R16 VCCINT
VCCINT VCCINT P11 VCCINT
VCCINT VCCINT P13 VCCINT
VCCINT VCCINT P14 VCCINT
VCCINT VCCINT P15 VCCINT
VCCINT VCCINT N12 VCCINT
VCCINT VCCINT N13 VCCINT
VCCINT VCCINT N14 VCCINT
VCCINT VCCINT N16 VCCINT
VCCINT VCCINT M11 VCCINT
VCCINT VCCINT M13 VCCINT
VCCINT VCCINT M15 VCCINT
VCCINT VCCINT M17 VCCINT
VCCINT VCCINT L12 VCCINT
VCCINT VCCINT L14 VCCINT
VCCINT VCCINT L16 VCCINT
VCCINT VCCINT K15 VCCINT
VCCINT VCCINT G18 VCCINT
VCCINT VCCINT F10 VCCINT
VCCINT VCCINT F18 VCCINT
VCCINT VCCINT E6 VCCINT
VCCINT VCCINT D5 VCCINT
VCCINT VCCINT C4 VCCINT
VCCINT VCCINT AA8 VCCINT
Tabl e 6 8 : Spartan-3A DSP FG676 Pinout for
XC3SD3400A FPGA (Cont’d)
Bank XC3SD3400A Pin Name FG676
Ball Type
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 96
User I/Os by Bank
Table 69 indicates how the available user-I/O pins are distributed between the four I/O banks on the FG676 package. The
AWAKE pin is counted as a dual-purpose I/O.
Tabl e 69 : User I/Os Per Bank for the XC3SD3400A in the FG676 Package
Package
Edge I/O Bank
Maximum I/Os
and
Input-Only
All Possible I/O Pins by Type
I/O INPUT DUAL VREF(1) CLK
Top 0111 82 11 1 9 8
Right 1123 67 830 10 8
Bottom 2112 68 621 9 8
Left 3123 97 9 0 9 8
TOTAL 469 314 34 52 37 32
Notes:
1. 26 VREF are on INPUT pins.
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 97
FG676 Footprint –
XC3SD3400A FPGA
Left Half of Package
(Top View)
314
I/O: Unrestricted,
general-purpose user I/O.
34
INPUT: Unrestricted,
general-purpose input pin.
51
DUAL: Configuration pins,
then possible user I/O.
37
VREF: User I/O or input
voltage reference for bank.
32
CLK: User I/O, input, or
clock buffer input.
2
CONFIG: Dedicated
configuration pins.
2
SUSPEND: Dedicated
SUSPEND and
dual-purpose AWAKE
Power Management pins
4
JTAG: Dedicated JTAG
port pins.
100
GND: Ground
40
VCCO: Output voltage
supply for bank.
36
VCCINT: Internal core
supply voltage (+1.2V).
24
VCCAUX: Auxiliary supply
voltage.
Note: The boxes with
question marks inside
indicate pin differences
from the XC3SD1800A
device. Please see the
Footprint Migration
Differences section for more
information.
Figure 17: FG676 Package Footprint for XC3SD3400A FPGA (Top View–Left Half)
12345678910111213
AGND PROG_
B
I/O
L51P_0
I/O
L45P_0
GND
GND
VCCO_0
I/O
L38P_0
I/O
L36P_0
I/O
L33P_0 GND
I/O
L29P_0 INPUT
B
I/O
L02N_3
I/O
L02P_3
I/O
L51N_0
I/O
L45N_0 VCCO_0
I/O
L41P_0
I/O
L42P_0
I/O
L38N_0
I/O
L36N_0
I/O
L33N_0 VCCO_0
I/O
L29N_0
I/O
L28P_0
GCLK10
C
INPUT
VREF_3
VCCO_3
GND
VCCINT
I/O
L44P_0
I/O
L41N_0
I/O
L42N_0
I/O
L40P_0 GND
I/O
L34P_0
I/O
L32P_0
I/O
L30N_0
I/O
L28N_0
GCLK11
D
VCCAUX
GND
I/O
L06P_3 TMS
VCCINT
I/O
L44N_0
INPUT
VREF_0
I/O
L40N_0
I/O
L37N_0
I/O
L34N_0
I/O
L32N_0
VREF_0
INPUT
I/O
L30P_0
E
I/O
L11P_3 VCCO_3
I/O
L07P_3
I/O
L06N_3 VCCAUX
VCCINT
I/O
L48N_0 VCCO_0
GND
I/O
L37P_0 INPUT
I/O
L31P_0 VCCO_0
FGND
I/O
L11N_3
I/O
L14N_3
I/O
L07N_3
I/O
L09P_3 GND
I/O
L48P_0
I/O
L52P_0
VREF_0
VCCAUX
VCCINT
GND
I/O
L31N_0
I/O
L27P_0
GCLK8
G
INPUT
GND
I/O
L14P_3
I/O
L09N_3
GND
I/O
L03P_3 TDI
I/O
L52N_0
PUDC_B
I/O
L47P_0
I/O
L46P_0
INPUT
VREF_0
I/O
L35P_0
I/O
L27N_0
GCLK9
H
I/O
L17N_3
I/O
L17P_3 GND
INPUT
VREF_3
VCCO_3
I/O
L10N_3
I/O
L03N_3 GND
I/O
L47N_0
I/O
L46N_0 VCCO_0
I/O
L35N_0 INPUT
J
INPUT
L24P_3
INPUT
L20N_3
VREF_3
INPUT
L20P_3
I/O
L19N_3
I/O
L19P_3
I/O
L13N_3
I/O
L10P_3
I/O
L01P_3
I/O
L01N_3 INPUT
I/O
L43P_0
I/O
L39P_0 INPUT
K
INPUT
L24N_3
I/O
L23N_3
I/O
L23P_3
I/O
L22N_3
I/O
L22P_3
I/O
L18P_3
I/O
L13P_3
I/O
L05N_3
I/O
L05P_3 GND
I/O
L43N_0
I/O
L39N_0 VCCAUX
LGND VCCO_3
I/O
L25N_3
I/O
L25P_3 VCCAUX GND
I/O
L18N_3 VCCO_3
I/O
L15N_3
I/O
L15P_3 GND VCCINT GND
M
I/O
L29N_3
VREF_3
I/O
L29P_3
I/O
L27N_3
I/O
L27P_3
I/O
L28P_3
I/O
L28N_3
I/O
L26N_3
I/O
L26P_3
I/O
L21N_3
I/O
L21P_3 VCCINT GND VCCINT
N
I/O
L31P_3
I/O
L31N_3 GND
I/O
L30N_3
I/O
L30P_3
I/O
L32P_3
LHCLK0
I/O
L32N_3
LHCLK1
GND
I/O
L35P_3
TRDY2
LHCLK6
VCCAUX GND VCCINT VCCINT
P
I/O
L33P_3
LHCLK2
I/O
L33N_3
IRDY2
LHCLK3
I/O
L34N_3
LHCLK5
I/O
L34P_3
LHCLK4
VCCO_3
I/O
L39N_3
I/O
L39P_3
I/O
L41P_3
I/O
L41N_3
I/O
L35N_3
LHCLK7
VCCINT GND VCCINT
R
I/O
L36P_3
VREF_3
I/O
L36N_3
I/O
L37P_3
I/O
L37N_3
I/O
L40P_3
I/O
L40N_3
I/O
L45N_3
I/O
L45P_3
I/O
L43N_3
I/O
L43P_3
VREF_3
GND VCCINT GND
TGND VCCO_3
I/O
L38P_3
I/O
L38N_3
I/O
L42P_3 GND
I/O
L51P_3 VCCO_3
I/O
L48N_3
I/O
L48P_3 VCCINT GND VCCINT
U
I/O
L44P_3
I/O
L44N_3
INPUT
L46P_3
I/O
L42N_3
I/O
L49P_3
I/O
L51N_3
I/O
L56P_3
I/O
L56N_3
I/O
L61P_3 GND
I/O
L13N_2 VCCINT GND
Bank 0
Bank 3
V
I/O
L47P_3
I/O
L47N_3 GND
INPUT
L46N_3
I/O
L49N_3
I/O
L59N_3
I/O
L59P_3
I/O
L61N_3 VCCAUX
I/O
L09P_2
I/O
L13P_2
I/O
L16P_2
I/O
L20P_2
W
INPUT
L50P_3
INPUT
L50N_3
VREF_3
I/O
L52P_3
I/O
L52N_3 VCCO_3
I/O
L63N_3
I/O
L63P_3 GND
I/O
L05P_2
I/O
L09N_2 VCCO_2
I/O
L16N_2
I/O
L20N_2
Y
I/O
L53P_3
I/O
L53N_3
INPUT
VCCINT
I/O
L57P_3
I/O
L57N_3
I/O
L02P_2
M2
VCCINT
I/O
L05N_2
I/O
L12P_2
VCCINT
I/O
L17P_2
RDWR_B
I/O
L25N_2
GCLK13
A
AGND
I/O
L55P_3
I/O
L55N_3
GND
INPUT
VREF_3
GND
I/O
L02N_2
CSO_B
VCCINT
INPUT
VREF_2
I/O
L12N_2 GND
I/O
L17N_2
VS2
I/O
L25P_2
GCLK12
A
B
I/O
L60P_3 VCCO_3
GND
VCCAUX
VCCAUX
INPUT
VREF_2
I/O
L14N_2 VCCO_2
I/O
L15P_2
GND
VCCAUX
I/O
L21P_2 INPUT
A
C
I/O
L60N_3
I/O
L64P_3
I/O
L64N_3
I/O
L01P_2
M1
GND
I/O
L08P_2
GND
I/O
L14P_2
I/O
L15N_2
INPUT
VREF_2
I/O
L23N_2
I/O
L21N_2 INPUT
A
D
I/O
L65P_3
I/O
L65N_3 GND
I/O
L01N_2
M0
GND
I/O
L08N_2
I/O
L11P_2 GND INPUT INPUT
I/O
L23P_2
INPUT
VREF_2 GND
A
E
INPUT
L66P_3
INPUT
L66N_3
VREF_3
I/O
L06P_2
I/O
L07P_2 VCCO_2
I/O
L10N_2
I/O
L11N_2
I/O
L18P_2
I/O
L19P_2
VS1
I/O
L22P_2
D7
VCCO_2
I/O
L24N_2
D4
I/O
L26N_2
GCLK15
A
FGND
VCCAUX
I/O
L06N_2
I/O
L07N_2
I/O
L10P_2 GND
VCCO_2
I/O
L18N_2
I/O
L19N_2
VS0
I/O
L22N_2
D6
GND
I/O
L24P_2
D5
I/O
L26P_2
GCLK14
Bank 2
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 98
Right Half of FG676
Package (Top View)
Figure 17: FG676 Package Footprint for XC3SD3400A FPGA (Top View–Right Half)
14 15 16 17 18 19 20 21 22 23 24 25 26
I/O
L26N_0
GCLK7
I/O
L23N_0 GND INPUT
I/O
L18N_0
I/O
L15N_0
I/O
L14N_0 GND
I/O
L07N_0
GND
VCCAUX
TCK GND A
I/O
L26P_0
GCLK6
I/O
L23P_0 VCCO_0
I/O
L19N_0
I/O
L18P_0
I/O
L15P_0
I/O
L14P_0
VREF_0
I/O
L09N_0 VCCO_0
I/O
L07P_0
GND
GND
INPUT
VREF_1
B
GND
I/O
L22N_0
I/O
L21N_0
I/O
L19P_0
I/O
L17N_0 GND
I/O
L11N_0
I/O
L09P_0
I/O
L05N_0
I/O
L06N_0 GND
I/O
L63N_1
A23
I/O
L63P_1
A22
C
INPUT
VREF_0
GND
I/O
L22P_0
I/O
L21P_0
I/O
L17P_0
GND
I/O
L11P_0
I/O
L10N_0
I/O
L05P_0
I/O
L06P_0
I/O
L61N_1
I/O
L61P_1
I/O
L60N_1 D
I/O
L24P_0
I/O
L20N_0
VREF_0
VCCAUX
I/O
L13N_0 INPUT VCCO_0
VCCAUX
I/O
L10P_0 VCCAUX TDO
I/O
L56P_1 VCCO_1
I/O
L60P_1 E
I/O
L24N_0
I/O
L20P_0 GND
I/O
L13P_0
VCCINT
I/O
L02N_0
I/O
L01N_0 GND
I/O
L58P_1
VREF_1
I/O
L56N_1
I/O
L54N_1
I/O
L54P_1 GND F
INPUT
I/O
L16P_0
GND
I/O
L08N_0
VCCINT
I/O
L02P_0
VREF_0
I/O
L01P_0
I/O
L64N_1
A25
I/O
L58N_1
I/O
L51P_1
I/O
L51N_1
INPUT
VREF_1
VCCAUX
G
GND
I/O
L16N_0 VCCO_0
I/O
L08P_0 INPUT GND
I/O
L64P_1
A24
I/O
L62N_1
A21
VCCO_1
VCCAUX
INPUT
VCCO_1
INPUT
VREF_1
H
I/O
L25N_0
GCLK5
INPUT
I/O
L12P_0
INPUT
VREF_0 VCCAUX
I/O
L59P_1
I/O
L59N_1
I/O
L62P_1
A20
I/O
L49N_1
I/O
L49P_1 GND
I/O
L43N_1
A19
I/O
L43P_1
A18
J
I/O
L25P_0
GCLK4
VCCINT
I/O
L12N_0 GND
I/O
L57N_1
I/O
L57P_1
I/O
L53N_1
I/O
L50N_1
I/O
L46N_1
I/O
L46P_1
INPUT
L40P_1
I/O
L41P_1
I/O
L41N_1 K
VCCINT GND VCCINT
I/O
L55N_1
I/O
L55P_1 VCCO_1
I/O
L53P_1 GND
I/O
L50P_1
INPUT
L40N_1
I/O
L38P_1
A12
VCCO_1 GND L
GND VCCINT GND VCCINT
I/O
L47N_1
I/O
L47P_1
I/O
L42N_1
A17
I/O
L45P_1
I/O
L45N_1
I/O
L38N_1
A13
INPUT
L36P_1
VREF_1
I/O
L35N_1
A11
I/O
L35P_1
A10
M
VCCINT GND VCCINT
I/O
L39N_1
A15
I/O
L39P_1
A14
I/O
L34N_1
RHCLK7
I/O
L42P_1
A16
I/O
L37N_1 VCCO_1
INPUT
L36N_1
I/O
L33N_1
RHCLK5
INPUT
L32N_1
INPUT
L32P_1 N
VCCINT VCCINT GND VCCAUX
I/O
L34P_1
IRDY1
RHCLK6
GND
I/O
L30N_1
RHCLK1
I/O
L30P_1
RHCLK0
I/O
L37P_1
I/O
L33P_1
RHCLK4
GND
I/O
L31N_1
TRDY1
RHCLK3
I/O
L31P_1
RHCLK2
P
VCCINT GND VCCINT
I/O
L27N_1
A7
I/O
L27P_1
A6
I/O
L22P_1
I/O
L22N_1
I/O
L25P_1
A2
I/O
L25N_1
A3
INPUT
L28P_1
VREF_1
INPUT
L28N_1
I/O
L29P_1
A8
I/O
L29N_1
A9
R
GND VCCINT GND
I/O
L17N_1
I/O
L17P_1 VCCO_1
I/O
L14N_1 GND VCCAUX
I/O
L26P_1
A4
I/O
L26N_1
A5
VCCO_1 GND T
VCCAUX
I/O
L35N_2
I/O
L42N_2 GND
I/O
L12N_1
I/O
L12P_1
I/O
L10N_1
I/O
L14P_1
I/O
L21N_1
I/O
L23P_1
I/O
L23N_1
VREF_1
GND
INPUT
VREF_1
U
Bank 0
Bank 1
I/O
L31P_2
I/O
L35P_2
I/O
L42P_2
I/O
L46N_2
I/O
L08P_1
I/O
L08N_1
SUSPEN
D
I/O
L10P_1
I/O
L18N_1
I/O
L21P_1
I/O
L19P_1
I/O
L19N_1
INPUT
VREF_1
V
GND
I/O
L31N_2 VCCO_2
I/O
L46P_2
VCCINT
GND
I/O
L04P_1
I/O
L04N_1 VCCO_1
I/O
L18P_1 GND
GND
VCCAUX
W
I/O
L27P_2
GCLK0
I/O
L34N_2
D3
INPUT
VREF_2
I/O
L43N_2
VCCINT
VCCINT
I/O
L01P_1
HDC
I/O
L01N_1
LDC2
I/O
L13P_1
I/O
L13N_1
I/O
L15P_1
I/O
L15N_1
INPUT
Y
I/O
L27N_2
GCLK1
I/O
L34P_2
INIT_B
GND
I/O
L43P_2
I/O
L47N_2
GND
INPUT
VREF_2 GND
I/O
L09P_1
I/O
L09N_1
I/O
L11P_1
I/O
L11N_1 GND A
A
VCCO_2
I/O
L30N_2
MOSI
CSI
_
B
I/O
L38N_2
VCCAUX
I/O
L47P_2 VCCO_2
GND
DONE VCCAUX
I/O
L07P_1
I/O
L07N_1
VREF_1
VCCO_1
I/O
L06N_1
A
B
I/O
L29N_2
I/O
L30P_2
I/O
L38P_2 INPUT
GND
I/O
L40N_2
I/O
L41N_2
I/O
L45N_2
I/O
2
I/O
L03P_1
A0
I/O
L03N_1
A1
I/O
L05N_1
I/O
L06P_1
A
C
I/O
L29P_2
I/O
L32P_2
AWAKE
INPUT
I/O
L33N_2 GND
I/O
L40P_2
I/O
L41P_2
I/O
L44N_2
I/O
L45P_2
GND
GND
I/O
L02N_1
LDC0
I/O
L05P_1
A
D
I/O
L28N_2
GCLK3
I/O
L32N_2
DOUT
VCCO_2
I/O
L33P_2
I/O
L36N_2
D1
I/O
L37N_2
I/O
L39N_2
I/O
L44P_2 VCCO_2
I/O
L48N_2
I/O
L52N_2
CCLK
I/O
L51N_2
I/O
L02P_1
LDC1
A
E
I/O
L28P_2
GCLK2
INPUT
VREF_2 GND
INPUT
VREF_2
I/O
L36P_2
D2
I/O
L37P_2
I/O
L39P_2 GND
INPUT
VREF_2
I/O
L48P_2
I/O
L52P_2
D0
DIN/MISO
I/O
L51P_2 GND A
F
Bank 2
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 99
Footprint Migration Differences
There are multiple migration footprint differences between the XC3SD1800A and the XC3SD3400A in the FG676 package.
These migration footprint differences are shown in Ta bl e 7 0 . Migration from the XC3S1400A Spartan-3A device in the
FG676 package to a Spartan-3A DSP device in the FG676 package is also possible. The XC3S1800A pin migration
differences have been added to Ta bl e 7 0 for designs migrating between these devices.
Tabl e 70 : FG676 Footprint Migration Differences
FG676
Ball
Spartan-3A Spartan-3A DSP Spartan-3A DSP FG676
Ball
XC3S1400A
Type
XC3S1400A
Bank
XC3SD1800A
Type
XC3SD1800A
Bank
XC3SD3400A
Type
XC3SD3400A
Bank
G16 IP_0 0 IP_0 0 GND GND G16
G18 N.C. N.C. IP_0 0 VCCINT VCCINT G18
F9 N.C. N.C. IP_0 0 VCCAUX VCCAUX F9
F10 IP_0 0 IP_0 0 VCCINT VCCINT F10
F18 N.C. N.C. IP_0 0 VCCINT VCCINT F18
E6 N.C. N.C. IP_0 0 VCCINT VCCINT E6
E9 N.C. N.C. IP_0 0 GND GND E9
E20 IP_0 0 IP_0 0 VCCAUX VCCAUX E20
D5 N.C. N.C. IP_0 0 VCCINT VCCINT D5
D15 IP_0 0 IP_0 0 GND GND D15
D19 IP_0 0 IP_0 0 GND GND D19
C4 IP_0 0 IP_0 0 VCCINT VCCINT C4
B24 N.C. N.C. IP_0 0 GND GND B24
A5 IP_0 0 IP_0 0 GND GND A5
A7 IP_0 0 IP_0 0 VCCO_0 0 A7
A23 IP_0 0 IP_0 0 GND GND A23
A24 N.C. N.C. IP_0 0 VCCAUX VCCAUX A24
Y26 IP_L16N_1 1 IP_L16N_1 1 IP_1 1 Y26
W25 IP_L16P_1 1 IP_L16P_1 1 GND GND W25
W26 IP_L20P_1 1 IP_L20P_1 1 VCCAUX VCCAUX W26
V26 IP_L20N_1/
VREF_1
1 IP_L20N_1/
VREF_1
1 IP_1/VREF_1 1 V26
U25 IP_L24P_1 1 IP_L24P_1 1 GND GND U25
U26 IP_L24N_1/
VREF_1
1 IP_L24N_1/
VREF_1
1 IP_1/VREF_1 1 U26
H23 IP_L48P_1 1 IP_L48P_1 1 VCCAUX VCCAUX H23
H24 IP_L48N_1 1 IP_L48N_1 1 IP_1 1 H24
H25 IP_L44N_1 1 IP_L44N_1 1 VCCO_1 1 H25
H26 IP_L44P_1/
VREF_1
1 IP_L44P_1/
VREF_1
1 IP_1/VREF_1 1 H26
G25 IP_L52N_1/
VREF_1
1 IP_L52N_1/
VREF_1
1 IP_1/VREF_1 1 G25
G26 IP_L52P_1 1 IP_L52P_1 1 VCCAUX VCCAUX G26
B25 IP_L65N_1 1 IP_L65N_1 1 GND GND B25
B26 IP_L65P_1/
VREF_1
1 IP_L65P_1/
VREF_1
1 IP_1/VREF_1 1 B26
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 100
Migration Recommendations
There are multiple pinout differences between the XC3SD1800A and the XC3SD3400A FPGAs in the FG676 package.
Please note the differences between the two devices from Ta b l e 7 0 and take the necessary precautions.
Y8 N.C. N.C. IP_2 2 VCCINT VCCINT Y8
Y11 IP_2 2 IP_2 2 VCCINT VCCINT Y11
Y18 N.C. N.C. IP_2 2 VCCINT VCCINT Y18
Y19 N.C. N.C. IP_2/VREF_2 2 VCCINT VCCINT Y19
W18 N.C. N.C. IP_2 2 VCCINT VCCINT W18
AF2 IP_2 2 IP_2 2 VCCAUX VCCAUX AF2
AF7 IP_2 2 IP_2 2 VCCO_2 2 AF7
AD5 N.C. N.C. IP_2 2 GND GND AD5
AD23 N.C. N.C. IP_2 2 GND GND AD23
AC5 N.C. N.C. IP_2 2 GND GND AC5
AC7 IP_2 2 IP_2 2 GND GND AC7
AC18 IP_2 2 IP_2 2 GND GND AC18
AB10 IP_2/VREF_2 2 IP_2/VREF_2 2 GND GND AB10
AB17 IP_2 2 IP_2 2 VCCAUX VCCAUX AB17
AB20 IP_2 2 IP_2 2 GND GND AB20
AA8 N.C. N.C. IP_2 2 VCCINT VCCINT AA8
AA19 IP_2 2 IP_2 2 GND GND AA19
AC22N.C.N.C.IO_22IO_22AC22
Y3 IP_L54P_3 3 IP_L54P_3 3 IP_3 3 Y3
Y4 IP_L54N_3 3 IP_L54N_3 3 VCCINT VCCINT Y4
H4 IP_L12N_3/
VREF_3
3 IP_L12N_3/
VREF_3
3 IP_3/VREF_3 3 H4
G1 IP_L16N_3 3 IP_L16N_3 3 IP_3 3 G1
G2 IP_L16P_3 3 IP_L16P_3 3 GND GND G2
G5 IP_L12P_3 3 IP_L12P_3 3 GND GND G5
D1 IP_L08N_3 3 IP_L08N_3 3 VCCAUX VCCAUX D1
D2 IP_L08P_3 3 IP_L08P_3 3 GND GND D2
C1 IP_L04N_3/
VREF_3
3 IP_L04N_3/
VREF_3
3 IP_3/VREF_3 3 C1
C2 IP_L04P_3 3 IP_L04P_3 3 VCCO_3 3 C2
AB3 IP_L62P_3 3 IP_L62P_3 3 GND GND AB3
AB4 IP_L62N_3 3 IP_L62N_3 3 VCCAUX VCCAUX AB4
AA4 IP_L58P_3 3 IP_L58P_3 3 GND GND AA4
AA5 IP_L58N_3/
VREF_3
3 IP_L58N_3/
VREF_3
3 IP_3/VREF_3 3 AA5
Tabl e 70 : FG676 Footprint Migration Differences (Cont’d)
FG676
Ball
Spartan-3A Spartan-3A DSP Spartan-3A DSP FG676
Ball
XC3S1400A
Type
XC3S1400A
Bank
XC3SD1800A
Type
XC3SD1800A
Bank
XC3SD3400A
Type
XC3SD3400A
Bank
Spartan-3A DSP FPGA Family: Pinout Descriptions
DS610 (v3.0) October 4, 2010 www.xilinx.com
Product Specification 101
Revision History
The following table shows the revision history for this document.
Date Version Revision
04/02/07 1.0 Initial Xilinx release.
05/25/07 1.1 Updates to Ta bl e 5 9 , Ta bl e 6 3 , Ta bl e 6 4 , Ta b l e 6 5 , Ta b l e 6 6 , Ta b l e 6 7 , Ta b l e 6 8 , Ta bl e 6 9 . Corrected
VREF pins in XC3S1800A FG676 (Ta b le 7 0 ). Updated FG676 package footprints for XC3SD1800A
FPGA (Figure 16) and XC3SD3400A FPGA (Figure 17). Minor edits.
06/18/07 1.2 Updated for Production release.
07/16/07 2.0 Added Low-power options. Added advance thermal data to Ta bl e 6 2 .
06/02/08 2.1 Added Package Overview section. Updated Thermal Characteristics in Ta b l e 6 2 . Corrected name for
AB14 in CS484 in Ta b l e 6 3 . Updated links.
03/11/09 2.2 Corrected bank designation for SUSPEND to VCCAUX.
10/04/10 3.0 Revision update to match other data sheet modules.