This is information on a product in full production.
February 2014 DocID11535 Rev 7 1/78
STA323W
2.1 channel high-efficiency digital audio system
Datasheet - production data
Features
Wide supply voltage range (10 V - 36 V)
Three power output configurations
2x10W + 1 x20W
–2x20W
–1x40W
Thermal protection
Under-voltag e pr ot ect i on
Short-circuit protection
PowerSO-36 slug down package
2.1 channels of 24-bit DDX®
100-dB SNR and dynamic range
32 kHz to 192 kHz input sample rates
Digital gain/attenuation +48dB to -80dB in
0.5-dB steps
Four 28-bit user programmable biquads (EQ)
per channel
I²C control
2-channel I²S input data interface
Individual channel and master ga in/attenuation
Individual channel and master soft and hard
mute
Individual channel volume and EQ bypass
DDX® POP free operation
Bass/treble tone control
Dual independent programmable
limiters/compressors
AutoModes™ settings for:
32 preset EQ curves
15 preset crossover settings
Auto volume controlled loudness
3 preset volume curves
2 preset anti-clipping modes
Preset night-time listening mode
–Preset TV AGC
Input and output channel mapping
AM noise-reduction and PWM frequency
shifting modes
Soft volume update and muting
Auto zero detect and invalid input detect
muting selectable DDX® ternary or binary
PWM output plus variable PWM speeds
Selectable de-emphasis
Post-EQ user programmable mix with default
2.1 bass-management settings
Variable max power correction for lower
full-power THD
Four output routing configurations
Selectable clock input ratio
96 kHz internal processing sample rate, 24 to
28-bit precision
Video application supports 5 76 * fs in put m ode
PowerSO-36
(slug down)
Table 1. Device summary
Order code Package
STA323W13TR PowerSO-36 in tape & reel
www.st.com
Contents STA323W
2/78 DocID11535 Rev 7
Contents
1 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.1 EQ processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .11
1.2 Output options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 Pin out . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.1 Pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3.2 Pin description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.1 General interface specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 DC electrical specifications (3.3 V buffers) . . . . . . . . . . . . . . . . . . . . . . . . 18
4.3 Power electrical specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.4 Timing specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.5 Power supply and control sequencing . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5 Electrical characteristics curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.1 Output power against supply voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Audio performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2.1 Stereo mode, operation with VCC = 26 V, 8 load . . . . . . . . . . . . . . . . 23
5.2.2 Stereo mode, operation with VCC = 18.5 V . . . . . . . . . . . . . . . . . . . . . . 24
5.2.3 Half-bridge binary mode, operation with Vcc = 18.5 V . . . . . . . . . . . . . . 28
6 I²C bus specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.1 Communication protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.2 Device addressing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
6.3 Write operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
6.4 Read operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
7 Register descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.1 Configuration register A (address 0x00) . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.1.1 Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
DocID11535 Rev 7 3/78
STA323W Contents
78
7.1.2 Interpolation ratio select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
7.1.3 Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.1.4 Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.1.5 Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.2 Configuration register B (address 0x01) . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2.1 Serial audio input interface format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2.2 Serial data interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
7.2.3 Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
7.3 Configuration register C (address 0x02) . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3.1 DDX® power-output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
7.3.2 DDX® variable compensating pulse size . . . . . . . . . . . . . . . . . . . . . . . . 43
7.4 Configuration register D (address 0x03) . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4.1 High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4.2 De-emphasis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4.3 DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
7.4.4 Post-scale link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4.5 Biquad coefficient link . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.4.6 Dynamic range compression/anti-clipping bit . . . . . . . . . . . . . . . . . . . . 45
7.4.7 Zero-detect mute enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
7.5 Configuration register E (address 0x04) . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5.1 Max power correction variable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5.2 Max power correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5.3 AM mode enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5.4 PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
7.5.5 Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.5.6 Soft volume update enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
7.6 Configuration register F (address 0x05) . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.6.1 Output configuration selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
7.7 Volume control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.7.1 Master controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.7.2 Channel controls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.7.3 Volume description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
7.8 AutoModes™ registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
7.8.1 AutoModes™ EQ, volume, GC (address 0x0B) . . . . . . . . . . . . . . . . . . 52
7.8.2 AutoModes™ AM/pre-scale/bass management scale (address 0x0C) . 53
7.8.3 Preset EQ settings (address 0x0D) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Contents STA323W
4/78 DocID11535 Rev 7
7.9 Channel configuration registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
7.9.1 Channel 1 configuration (address 0x0E) . . . . . . . . . . . . . . . . . . . . . . . . 55
7.9.2 Channel 2 configuration (address 0x0F) . . . . . . . . . . . . . . . . . . . . . . . . 55
7.9.3 Channel 3 configuration (address 0x10) . . . . . . . . . . . . . . . . . . . . . . . . 56
7.10 Tone control (address 0x11) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.11 Dynamics control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.11.1 Limiter 1 attack/release threshold (address 0x12) . . . . . . . . . . . . . . . . . 57
7.11.2 Limiter 1 attack/release threshold (address 0x13) . . . . . . . . . . . . . . . . . 57
7.11.3 Limiter 2 attack/release rate (address 0x14) . . . . . . . . . . . . . . . . . . . . . 57
7.11.4 Limiter 2 attack/release threshold (address 0x15) . . . . . . . . . . . . . . . . . 58
7.11.5 Dynamics control description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.11.6 Anti-clipping mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.11.7 Dynamic range compression mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
8 User-programmable settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.1 EQ - biquad equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.2 Pre-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.3 Post-scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
8.4 Mix/bass management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
8.5 Calculating 24-bit signed fractional numbers from a dB value . . . . . . . . . 65
8.6 User defined coefficient RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
8.6.1 Coefficient address register 1 (address 0x16) . . . . . . . . . . . . . . . . . . . . 65
8.6.2 Coefficient b1data register bits 23:16 (address 0x17) . . . . . . . . . . . . . . 65
8.6.3 Coefficient b1data register bits 15:8 (address 0x18) . . . . . . . . . . . . . . . 65
8.6.4 Coefficient b1data register bits 7:0 (address 0x19) . . . . . . . . . . . . . . . . 65
8.6.5 Coefficient b2 data register bit s 23:16 ( address 0x1A) . . . . . . . . . . . . . 65
8.6.6 Coefficient b2 data register bits 15:8 (address 0x1B) . . . . . . . . . . . . . . 66
8.6.7 Coefficient b2 data register bits 7:0 (address 0x1C) . . . . . . . . . . . . . . . 66
8.6.8 Coefficient a1 data register bits 23:16 (address 0x1D) . . . . . . . . . . . . . 66
8.6.9 Coefficient a1 data register bits 15:8 (address 0x1E) . . . . . . . . . . . . . . 66
8.6.10 Coefficient a1 data register bits 7:0 (address 0x1F) . . . . . . . . . . . . . . . 66
8.6.11 Coefficient a2 data register bits 23:16 (address 0x20) . . . . . . . . . . . . . 66
8.6.12 Coefficient a2 data register bits 15:8 (address 0x21) . . . . . . . . . . . . . . 66
8.6.13 Coefficient a2 data register bits 7:0 (address 0x22) . . . . . . . . . . . . . . . 67
8.6.14 Coefficient b0 data register bits 23:16 (address 0x23) . . . . . . . . . . . . . 67
8.6.15 Coefficient b0 data register bits 15:8 (address 0x24) . . . . . . . . . . . . . . 67
DocID11535 Rev 7 5/78
STA323W Contents
78
8.6.16 Coefficient b0 data register bits 7:0 (address 0x25) . . . . . . . . . . . . . . . 67
8.6.17 Coefficient write control register (address 0x26) . . . . . . . . . . . . . . . . . . 67
8.7 Reading and writing coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.7.1 Reading a coefficient from RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.7.2 Reading a set of coefficients from RAM . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.7.3 Writing a single coefficient to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.7.4 Writing a set of coefficients to RAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.8 Variable max power correction (address 0x27-0x28) . . . . . . . . . . . . . . . . 70
8.9 Fault detect recovery (address 0x2B - 0x2C) . . . . . . . . . . . . . . . . . . . . . . 71
8.10 Status indicator register (address 0x2D) . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.10.1 Thermal warning indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.10.2 Fault detect indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.10.3 PLL unlock indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
9 Package information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
10 Trademarks and other ackno wledgements . . . . . . . . . . . . . . . . . . . . . . 76
11 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
List of tables STA323W
6/78 DocID11535 Rev 7
List of tables
Table 1. Device summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Table 2. Compon ent selection “Table A” - full-bridge operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 3. Component selection "Table B" - binary half-bridge operation. . . . . . . . . . . . . . . . . . . . . . 12
Table 4. Component selection "Table C" - mono operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
Table 5. Pin list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Table 6. Absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 7. Thermal data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 8. Recommended DC operating conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 9. General interface electrical characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
Table 10. DC electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 11. Power electrical characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
Table 12. Timing characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 13. Register summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Table 14. Master clock select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Table 15. IR and MCS settings for input sample rate and clock rate . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 16. Interpolation ratio select . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 17. IR bit settings as a function of input sample rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Table 18. Thermal warning recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 19. Thermal warning adjustment bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 20. Fault detect recovery bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Table 21. Serial audio input interface format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Table 22. Supported serial audio input formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Table 23. Serial input data timing characteristics (fs = 32 to 192 kHz). . . . . . . . . . . . . . . . . . . . . . . . 42
Table 24. Delay serial clock enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 25. Channel input mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Table 26. DDX® power-output mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 27. DDX® output modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 28. DDX® compensating pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
Table 29. High-pass filter bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 30. De-emphasis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 31. DSP bypass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Table 32. Post-scale link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 33. Biquad coefficient link. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 34. Dynamic range compression/anti-clippi ng bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 35. Zero-detect mute enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Table 36. Max power correct ion v ar iab le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 37. Max power correct ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 38. AM mode enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 39. PWM speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Table 40. PWM output speed selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 41. Zero-crossing volume enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 42. Soft volume update enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Table 43. Output configuration selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 44. Output configuration selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 45. Invalid input detect mute enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 46. Binary clock loss detection enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Table 47. Auto-EAPD on clock loss enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 48. Software power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
DocID11535 Rev 7 7/78
STA323W List of tables
78
Table 49. External amplifier power down . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Table 50. Master volume offset as a function of MV[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 51. Channel volume as a function of CxV[7:0] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Table 52. AutoModes™ EQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 53. AutoModes™ volume . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 54. AutoModes™ gain compression/limiter s . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 55. AMPS - AutoModes™ auto pre scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
Table 56. AutoModes™ AM switching enable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 57. AutoModes™ AM switching frequency selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 58. AutoModes™ crossover setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 59. Crossover frequ en cy se lec tio n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Table 60. Preset EQ selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Table 61. Channel Limiter Mapping Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 62. Channel PWM output mapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Table 63. Tone control boost/ cu t sele ctio n. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Table 64. Limiter attack rate selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 65. Limiter release rate selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
Table 66. Limiter attack - threshold selection (AC-mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 67. Limiter release threshold selection (AC-mode). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Table 68. Limiter attack - threshold selection (DRC-mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
Table 69. Limiter release threshold selection (DRC-mode) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
Table 70. RAM block for biquads, mixing, and scaling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Table 71. Thermal warning indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 72. Fault detect indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Table 73. PLL unlock indicator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Table 74. PowerSO-36 slug down dimensions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Table 75. Document revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
List of figures STA323W
8/78 DocID11535 Rev 7
List of figures
Figure 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2. Channel signal flow diagram through the digital core . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 3. Channel signal flow diagram through the EQ block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 4. Output power stage configurations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Figure 5. Schematic for 2 (half-bridge) channels + 1 (full-bridge) channel . . . . . . . . . . . . . . . . . . . . 12
Figure 6. Power schematic for 2 (full-bridge) channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 7. Power schematic for 1 mono parallel channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Figure 8. Package pins (viewed from top of device) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 9. Test circuit 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Figure 10. Test circuit 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 11. Recommended power up and power down seque nce . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Figure 12. Stereo mode - output power vs. supply voltage, THD+N = 10% . . . . . . . . . . . . . . . . . . . . 21
Figure 13. Output power vs. supply for stereo bridge, THD+N=1% . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Figure 14. Half-bridge binary mode output power vs. supply, THD+N=10% . . . . . . . . . . . . . . . . . . . 22
Figure 15. Half-bridge binary mode output power vs. supply voltage, THD+N=1% . . . . . . . . . . . . . . 22
Figure 16. Typical efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 17. Typical frequency response . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 18. FFT -60 dB, 1 kHz output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Figure 19. FFT inter-modulation distortion 19 kHz and 20 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 20. Fre qu en cy resp o ns e, 1 W, BTL, 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 21. Channel separation, 1 W, BTL stereo mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 22. THD vs. output power, BTL, 1 kHz . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 23. THD vs. frequency, 1 W output, stereo mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 24. THD vs. frequency, BTL, 16 W output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Figure 25. FFT 0 dBFS 1 kHz, 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 26. FFT 0 dBFS 1 kHz, 6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 27. FFT 0 dBFS 1 kHz, 4  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 28. FFT -60 dBFS 1 kHz, 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 29. FFT -60 dBFS 1 kHz, 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 30. FFT -60 dBFS 1 kHz, 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 31. PSRR BTL, 500 mV ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 32. Frequency response, 1 W, binary half-bridge mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 33. Channel separation, 1 W, half bridge binary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
Figure 34. THD+N vs. output power, single ended, 1 kHz, half-bridge binary. . . . . . . . . . . . . . . . . . . 29
Figure 35. THD vs. frequency, single ended, 1 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 36. THD vs. frequency, single ended, 8 W . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 37. FFT 0 dB, 1 kHz, single ended, 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 38. FFT 0 dB, 1 kHz, single ended, 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 39. FFT 0 dB, 1 kHz, single ended, 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 40. FFT -60 dB, single ended, 1 kHz, 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 41. FFT -60 dB, single ended, 1 kHz, 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 42. FFT -60 dB, single ended, 1 kHz, 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 43. PSRR single ended, 500 mV ripple . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 44. I²C write procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 45. I²C read procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Figure 46. General serial input and output formats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
Figure 47. Serial input and data timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Figure 48. Basic limiter and volume flow diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
DocID11535 Rev 7 9/78
STA323W List of figures
78
Figure 49. Biquad filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
Figure 50. Mix/bass management block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Figure 51. PowerSO-36 slug down outline drawing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
Description STA323W
10/78 DocID11535 Rev 7
1 Description
The STA323W is a single-chip audio system comprising digital audio processing, digital
amplifier control and a DDX® power-output stage. The STA323W uses all-digital
amplification to provide high-power, high-quality and high-efficiency.
The STA323W power section consist s of four independent half-bridges. These can be
configured, by digital control, to operate in the following modes.
Two channels, provided by two half-bridges, and a single full-bridge giving up to 2 x 10 W +
1 x 20 W of power outp ut .
Two channels, provided by two full-bridges, giving up to 2 x 20 W of power.
A single, parallel, full- bridge channel capable of high-current operation and giving 1 x 40W
output.
The STA323W also pro vides a full set of digit al processing features. This includes up to four
programmable 28-bit biquads (EQ) per channel, and bass and treble tone control.
AutoModes™ enable a time-to-market advantage by subs tantially reducing the amount of
software de velopmen t needed for specific functi ons. These in cludes auto vo lume loudne ss,
preset volume curves and preset EQ settings. New advanced AM radio-interference
reduction modes are also provided.
The serial audio data input interface accepts all existing formats, including the I²S.
Three channels of DDX® processing are provided. This high-quality conversion from PCM
audio to DDX patented 3-state PWM switchin g pro vid es over 100 dB of SNR and dy na m ic
range.
Figure 1. Block diagram
Figure 2. Channel signal flow diagram through the digital core
Quad
half-bridge
power st age
DDX
processing
crossover,
volume, limit er
processing
Audio EQ, mix,
input, channel
mapping and
resampling
Serial data OUT1A
Power down
OUT1B
OUT2A
OUT2B
EAPD
FAULT
TWARN
Power down
System timing
CLK
I²C
System control
SCL
SDA
LRCKI
BICKI
SDI_12
Channel
mapping Re-sampling ED
processing
I²S
input Mix DDX
Crossover
filter Volume
limiter 4x
Interpol DDX
output
DocID11535 Rev 7 11/78
STA323W Description
78
1.1 EQ processing
Two channels of input data (re-sampled if necessary) at 96 kHz are provided to the EQ
processing block. In these blocks, up to four user-defined Biquads can be applied to each of
the two channels.
Pre-scaling, DC-blocking high-p ass, de -emphasis, bass, an d tone control filters can also be
implemented by means of configuration parameter settin gs.
The entire EQ block can be bypassed for all channels simultaneously by setting the DSPB
bit to 1. The CxEQBP bits can also be used to byp ass the EQ functionality on a per channel
basis. Figure 3 shows the internal signal flow through the EQ block.
Figure 3. Channel signal flow diagram through the EQ block
1.2 Output options
Figure 4. Output power stage configurations
pre-scale High pass BQ#1
Re-sampled
input Treble
Bass
filter
To
mix
filter BQ#2 BQ#3 BQ#4 De-
emphasis filter
If CxTCB = 0
BTC: bass boost/cut
TTC: treble boost/cut
If DEMP = 1
4 biquads
User defined if AMEQ = 00
Preset EQ if AMEQ = 01
Auto loudness if AMEQ = 10
If HPB= 0
If DSPB = 0 and CxEQB = 0
Half
bridge
Half
bridge
Half
bridge
Half
bridge
Channel 1
Channel 2
OUT2A
OUT2B
OUT1A
OUT1B
Half
bridge
Half
bridge
Half
bridge
Half
bridge
Channel 2
Channel 3
OUT2A
OUT2B
OUT1A
OUT1B
Channel 1
Half
bridge
Half
bridge
Half
bridge
Half
bridge
Channel 3
OUT2A
OUT2B
OUT1A
OUT1B
2-channel (full bridge) configuration,
register bits OCFG[1:0] = 00
2.1-channel configuration,
register bits OCFG[1:0] = 01
1-channel mono-parallel configuration,
register bits OCFG[1:0] = 11
The setup register is Configuration
register F (address 0x05) on page 48
Applications STA323W
12/78 DocID11535 Rev 7
2 Applications
Figure 5. Schematic for 2 (half-bridge) channels + 1 (full-bridge) channel
Table 2. Component selection “Table A” - full-bridge operation
Load Inductor Capacitor
410 H1.0F
615 H470nF
822 H470nF
Table 3. Component selection "Table B" - binary half-bridge operation
Load Inductor Capacitor
422 H680nF
633 H470nF
847 H390nF
Table 4. Component selection "Table C" - mono operation
Load Inductor Capacitor
24.7 H2.0F
36.8 H1.0F
410 H1.0F
SUB_GND
SUB_GND
N.C.
OUT2B
VCC2B
N.C.
GND2B
GND2A
VCC2A
OUT2A
OUT1B
VCC1B
GND1B
GND1A
N.C.
VCC1A
OUT1A
GND_CLEAN
GND_REG
VCC_SIGN
VSS
VDD
GND
BICKI
LRCKI
SDI
VDDA
GNDA
XTI
PLL_FILTER
RESERVED
SDA
SCL
RESET
CONFIG
VL
VDD_REG
STA323W
DocID11535 Rev 7 13/78
STA323W Applications
78
Figure 6. Power schematic for 2 (full-bridge) channels
Figure 7. Power schematic fo r 1 mono parallel channel
SUB_GND
SUB_GND
N.C.
OUT2B
VCC2B
N.C.
GND2B
GND2A
VCC2A
OUT2A
OUT1B
VCC1B
GND1B
GND1A
N.C.
VCC1A
OUT1A
GND_CLEAN
GND_REG
VCC_SIGN
VSS
VDD
GND
BICKI
LRCKI
SDI
VDDA
GNDA
XTI
PLL_FILTER
RESERVED
SDA
SCL
RESET
CONFIG
VL
VDD_REG
STA323W
SUB_GND
SUB_GND
N.C.
OUT2B
VCC2B
N.C.
GND2B
GND2A
VCC2A
OUT2A
OUT1B
VCC1B
GND1B
GND1A
N.C.
VCC1A
OUT1A
GND_CLEAN
GND_REG
VCC_SIGN
VSS
VDD
GND
BICKI
LRCKI
SDI
VDDA
GNDA
XTI
PLL_FILTER
RESERVED
SDA
SCL
RESET
CONFIG
VL
VDD_REG
STA323W
Pin out STA323W
14/78 DocID11535 Rev 7
3 Pin out
3.1 Pin numbering
Figure 8. Package pins (viewed from top of device)
Table 5. Pin list
Pin Type Name Description
1 I/O SUB_GND Ground
2 N.C. N.C. Not connected
3 O OUT2B Output half bridge 2B
4 I/O VCC2B Positive supply
5 N.C. N.C. Not connected
6 I/O GND2B Negative supply
7 I/O GND2A Negative supply
8 I/O VCC2A Positive supply
9 O OUT2A Output half bridge 2A
10 O OUT1B Output half bridge 1B
11 I/O VCC1B Positive supply
12 I/O GND1B Negative supply
13 I/O. GND1A Negative supply
14 N.C. N.C. Not connected
15 I/O VCC1A Positive supply
16 O OUT1A Output half bridge 1A
VCC_SIGN
VSS
VDD
GND
BICKI
LRCKI
SDI
VDDA
GNDA
XTI
PLL_FILTER
RESERVED
SDA
SCL
RESET
CONFIG
VL
VDD_REG
SUB_GND
N.C.
OUT2B
VCC2B
N.C.
GND2B
GND2A
VCC2A
OUT2A
OUT1B
VCC1B
GND1B
GND1A
N.C.
VCC1A
OUT1A
GND_CLEAN
GND_REG
36
35
34
33
32
31
30
29
28
27
26
25
24
23
22
21
20
19
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
DocID11535 Rev 7 15/78
STA323W Pin out
78
3.2 Pin description
OUT1A, 1B, 2A and 2B (pins 16, 10, 9 and 3)
The half-bridg e PWM output s 1A, 1B, 2A and 2B pr ovide the input s signals to the spea kers.
RESET (pin 22)
Driving RESET low sets all outputs low and returns all register settings to their default
(reset) values. The reset is asynchronous to the internal clock.
SDA, SCL (pins 24, 23)
The SDA (I²C Data) and SCL (I²C Clock) pins operate according to the I²C specification
(See Chapter 6 on page 33.) Fast-mode (400 kB/s) I²C communication is supported.
VDDA, GNDA (pins 29,28)
The phase locked loop powe r is applied here. This +3.3V supply must be well decoupled
and filtered for good noise immunity since the audio performance of the device depends
upon the PLL circuit.
17 I/O GND_CLEAN Reference ground
18 I/O GND_REG Substrate ground
19 I/O VDD_REG Logic supply
20 I/O VL Logic supply to power section
21 I CONFIG Logic levels
22 I RESET Reset
23 I SCL I²C serial clock
24 I/O SDA I²C serial data
25 - RESERVED Reserved test pin must be connected to ground
26 I PLL_FILTER Connection to PLL filter
27 I XTI PLL input clock
28 I/O GNDA Analog ground
29 I/O VDDA Analog supply 3.3
30 I SDI_12 I²S serial data channels 1 and 2
31 I/O LRCKI I²S left/right clock,
32 I BICKI I²S serial clock
33 I/O GND Digital ground
34 I/O VDD Digital supply 3.3 V
35 I/O VSS 5 V regulator referred to Vcc
36 I/O VCC_SIGN 5 V regulator referred to ground
Table 5. Pin list (continued)
Pin Type Name Description
Pin out STA323W
16/78 DocID11535 Rev 7
CLK (pin 27)
This is the master clock input used by the digital core. The master clock must be an integer
multiple of the LR clock frequency. Typically, the master clock frequency is 12.288 MHz
(256 * fs) for a 48kHz sample rate; it is the default se tting at power-up. Care must be taken
to provide the device with the nominal system clock frequency; over-clocking the device
may result in anomalous operation, such as inability to communicate.
PLL_FILTER (pin 26)
This is the connection for the external filter components for the PLL loop compensation.
Refer to the schematic diagram Figure 7: Power schematic for 1 mono parallel channel on
page 13 for the recommended circuit.
BICKI (pin 32)
The serial or bit clock input is for framing each data bit. The bit clock frequency is typically
64 * fs using I²S serial format.
SDI (pin 30)
This is the serial data input where PCM audio information enters the device. Six format
choices are available including I²S, left or right justified, LSB or MSB first, with word widths
of 16, 18, 20 and 24 bits.
LRCKI (pin 31)
The left/right clock inp ut is for dat a word framing . The clock frequency is at the input sa mple
rate, fs.
DocID11535 Rev 7 17/78
STA323W Electrical specifications
78
4 Electrical specifications
4.1 General interface specifications
Operating conditions VDD33 = 3.3 V ±0.3 V, Tamb = 25° C unless otherwise specified.
Table 6. Absolute maximum ratings
Symbol Parameter Value Unit
VDD_3.3 3.3 V I/O power supply -0.5 to 4 V
ViVoltage on input pins -0.5 to (VDD+0.5) V
VoVoltage on output pins -0.5 to (VDD+0.5) V
Tstg Stora ge temperature -40 to +150 C
Tamb Ambient operating temperature -40 to +85 C
VCC DC supply voltage 40 V
VMAX Maximum voltage on pin 20 5.5 V
Table 7. Thermal data
Symbol Parameter Min Typ Max Unit
Rthj-case Thermal resistance junction to case (thermal pad) 2.5 C/W
Tj-SD Thermal shut-down junction temperature 150 C
TWARN Thermal warning temperature 130 C
Th-SD Thermal shut-down hysteresis 25 C
Table 8. Recommended DC operating conditions
Symbol Parameter Value Unit
VDD_3.3 I/O power supply 3.0 to 3.6 V
TjOperating junction temperature -40 to +125 C
Table 9. General interface electrical characteristics
Symbol Parameter Test Condition Min. Typ. Max. Unit
Iil Leakage current: low level
input, no pull-up Vi = 0 V (1)
1. The leakage currents are generally very small < 1 nA. The values given here are maximum after an
electrostatic stress on the pin.
1A
Iih Leakage current: high level
input, no pull-down Vi = VDD33 (1) 2A
IOZ Leakage current: 3-state
output without pull-up/down Vi = VDD33 (1) 2A
Vesd Electrostatic protection
(human body model) Leakage < 1A2000 V
Electrical specifications S TA323W
18/78 DocID11535 Rev 7
4.2 DC electrical specifications (3.3 V buffers)
Operating conditions VDD33 = 3.3 V ±0.3 V, Tamb = 25° C unless otherwise specified
4.3 Power electrical specifications
Operating conditions VDD33 = 3.3 V ±0.3 V, V
L
= 3.3 V, VCC =30V, T
amb = 25° C unless
otherwise specified.
Table 10. DC electrical characteristics
Symbol Parameter Test condition Min. Typ. Max. Unit
VIL Low level Input voltage 0.8 V
VIH High level Input voltage 2.0 V
Vhyst Schmitt trigger hysteresis 0.4 V
Vol Low level output IoI = 2mA 0.15 V
Voh High level output Ioh = -2mA VDD -
0.15 V
Table 11. Power electrical characte ristics
Symbol Pa rameter Test con ditions Min. Typ. Max. Unit
RdsON Power Pchannel/Nchannel
MOSFET R
dsON
Id = 1 A 200 270 m
Idss Power Pchannel/Nchannel
leakage I
dss
Vcc = 35 V 50 A
gNPower Pchannel R
dsON
matching Id = 1 A 95 %
gPPower Nchannel R
dsON
matching Id = 1 A 95 %
Dt_s Low current dead time (static) See test circuits , Figure
9 and Figure 10 10 20 ns
td ON Turn-on delay time Resistive load 100 ns
td OFF Turn-off delay time Resistive load 100 ns
trRise time Resistive load, Fig ure 9
and Figure 10 25 ns
tfFall time Resistive load, Fig ure 9
and Figure 10 25 ns
VCC Supply voltage 8 36 V
VLLow logical state voltage V
L
= 3.3 V 0.8 V
VHHigh logical state voltage V
L
= 3.3 V 1.7 V
IVCC-
PWRDN
Supply current from Vcc in
PWRDN PWRDN = 0 3 mA
IVCC-hiz Supply current from Vcc in 3-
state VCC = 30 V, 3-state 22 mA
DocID11535 Rev 7 19/78
STA323W Electrical specifications
78
4.4 Timing specifications
Figure 9. Test circuit 1
IVCC
Supply current from VCC in
operation
(both channel switching)
Input pulse width = 50%
duty,
switching frequency =
384 kHz,
no LC filters;
80 mA
Iout-sh
Overcurrent protection
threshold (short circuit current
limit) 46 A
VUV Under voltage protection
threshold 7V
tpw-min Output minimum pulse width No Lo ad 70 150 ns
PoOutput power THD = 10%,
RL = 8 , VCC = 18 V 20 W
PoOutput power THD = 1%,
RL = 8 , VCC = 18 V 16 W
Table 11. Power electrical characteristics (continued)
Symbol Pa rameter Test con ditions Min. Typ. Max. Unit
Table 12. Timing cha racteristics
Symbol Parameter Test condition Min. Typ. Max. Unit
tRESET Hold time for RESET (pin 22) Active low rest 100 ns
fVCO VCO free run frequency No clock applied to XTI 18 28 MHz
DTr DTf
Vcc
(3/4)Vcc
(1/2)Vcc
(1/4)Vcc
t
OUTxY
Low current dead time = MAX(DTr , DTf)
+Vcc
Duty cycle = 50%
INxY
M58
M57
OUTxY
gnd
vdc = Vcc/2
V67
R 8
+
-
Electrical specifications S TA323W
20/78 DocID11535 Rev 7
Figure 10. Test circuit 2
4.5 Power supply and control sequencing
Figure 11 shows the recommended power-up an d power-down sequencing. The "time zero"
reference point is ta ken where V
CC
crosses the under voltage lockout threshold.
Figure 11. Recommended power up and power down sequence
High Current Dead time for Bridge application = ABS(DTout(A)-DTin(A))+ABS(DTOUT(B)-DTin(B))
+VCC
Rload=4Ω
Q2
OUTB
DTout(B) DTin(B)
DTout(A)
C71 470nF C70
470nF
C69
470nF
Iout=1.5A
Iout=1.5A
Q4
Q1
Q3
M64
INB
M63
D06AU1651
M58
INA
M57
DTin(A)
Duty cycle=A Duty cycle=B
Duty cycle A and B: Fixed to have DC output current of 4A in the direction shown in figure
L68 10μL67 10μ
OUTA
DocID11535 Rev 7 21/78
STA323W Electrical characteristics curves
78
5 Electrical characteristics curves
5.1 Output power against supply voltage
Figure 12. Ster eo mode - output power vs. supply voltage, THD+N = 10%
Figure 12 shows the full-scale output power (0 dBFS digital input with unity amplifier gain)
as a function of power supply voltage for 4, 6, and 8 loads in either DDX® mode or binary
full bridge mode. Output power is constrained for higher impedance loads by the maximum
voltage limit of the STA3 23 W an d by the ove r -cu rr e nt pr ot ec tio n lim it for lowe r impe da n ce
loads. The minimum threshold for the over-current protection circuit of the STA323W is 4 A
(at 25° C) but the typical threshold is 6 A for the device. The solid curves shows the typical
output power capability of the device. The dotted curves shows the output power capability
constrained to the minimum current specification of the STA323W. The output power cur ves
assume proper thermal management of the power device's internal dissipation.
Figure 13. Output power vs. supply for stereo bridge, THD+N=1%
80
70
60
50
40 4ohm 6ohm 8ohm
30
20
10
10 12 14 16 18 20 22 24 26
Power Supply Voltage (VDC)
Output power (W)
supply voltage (V)
output power (W) - BTL 1% THD
0
10
20
30
40
50
60
10 15 20 25 30
16ohm
8 ohm
6 ohm
4 ohm
Electrical characteristics curves STA323W
22/78 DocID11535 Rev 7
Figure 13 shows the mono mode output power as a function of power supply voltages for
loads of 4, 6, 8 and 16 . The same current limit s as those given for Figure 12 apply, except
output current is 8 A minimum, with 12 A typical in the mono-bridge configuration. The so lid
curves show typical performance and dashed curves depict the minimum current limit. The
output power curves assume proper thermal management of the power device internal
dissipation.
Figure 14. Half-bridge bi nary mode output power vs. supply, THD+N=10%
Figure 14 shows the output power as a function of power supp ly voltages for loads of 4, 6,
and 8 when the STA323W is operated in a half-bridge binary mode. The curves depict
typical performance. Minimum cu rrent limit is not reached for these combinations of voltage
and load impedance. The output po wer curves assume proper thermal management of the
power device internal dissipation.
Figure 15. Half-bridge binary mode output power vs. supply voltage, THD+N=1%
10
25
20
15
4ohm 6ohm
8ohm
5
010 12 14 16 18 20 22 2 26
Power Supply Voltage (VDC)
Output power (W)
Curves measured at
f = 1 kHz and using
a blocking capacitor
of 330 µF
supply voltage (V)
output power (W)
0
5
10
15
20
25
10 15 20 25 30
8 ohm
4 ohm
3 ohm
2 ohm
Curves measured at
f = 1 kHz and using
a blocking cap acitor
of 330 µF
DocID11535 Rev 7 23/78
STA323W Electrical characteristics curves
78
5.2 Audio performance
5.2.1 Stereo mode, operation with VCC = 26 V, 8 load
Figure 16. Typical efficiency
Figure 17. Typical frequency response
Figure 18. FFT -60 dB, 1 kHz output
Electrical characteristics curves STA323W
24/78 DocID11535 Rev 7
Figure 19. FFT inter-modulation distortion 19 kHz and 20 kHz
5.2.2 Stereo mode, operation with VCC = 18.5 V
Figure 20. Frequency respon se, 1 W, BTL, 8
Figure 21. Channel separation, 1 W, BTL stereo mode
8ohm
-3
+3
-2.5
-2
-1.5
-1
-0.5
+0
+0.5
+1
+1.5
+2
+2.5
20 20k50 100 200 500 1k 2k 5k 10k
Hz
dBr A
4 ohm
6ohm
8ohm
4ohm
-100
+10
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
20 20k50 100 200 500 1k 2k 5k 10k
Hz
dBr A
DocID11535 Rev 7 25/78
STA323W Electrical characteristics curves
78
Figure 22. THD vs. output power, BTL, 1 kHz
Figure 23. THD vs. frequency, 1 W output, stereo mode
Figure 24. THD vs. frequency, BTL, 16 W output
8ohm 6ohm
4ohm
0.01
10
0.02
0.05
0.1
0.2
0.5
1
2
5
%
100m 50200m 500m 1 2 5 10 20
W
6ohm
8ohm
4ohm
0.01
1
0.02
0.05
0.1
0.2
0.5
%
20 20k50 100 200 500 1k 2k 5k 10k
Hz
0.01
1
0.02
0.05
0.1
0.2
0.5
%
20 20k50 100 200 500 1k 2k 5k 10k
Hz
8ohm 6ohm
4ohm
Electrical characteristics curves STA323W
26/78 DocID11535 Rev 7
Figure 25. FFT 0 dBFS 1 kHz, 8
Figure 26. FFT 0 dBFS 1 kHz, 6 
Figure 27. FFT 0 dBFS 1 kHz, 4 
-140
+40
-120
-100
-80
-60
-40
-20
+0
+20
20 20k50 100 200 500 1k 2k 5k 10k
Hz
dBr
-140
+40
-120
-100
-80
-60
-40
-20
+0
+20
20 20k50 100 200 500 1k 2k 5k 10k
Hz
dBr
-140
+40
-120
-100
-80
-60
-40
-20
+0
+20
20 20k50 100 200 500 1k 2k 5k 10k
Hz
dBr
DocID11535 Rev 7 27/78
STA323W Electrical characteristics curves
78
Figure 28. FFT -60 dBFS 1 kHz, 8
Figure 29. FFT -60 dBFS 1 kHz, 6
Figure 30. FFT -60 dBFS 1 kHz, 4
-160
+40
-140
-120
-100
-80
-60
-40
-20
+0
+20
20 20k50 100 200 500 1k 2k 5k 10k
Hz
dBr
-160
+40
-140
-120
-100
-80
-60
-40
-20
+0
+20
20 20k50 100 200 500 1k 2k 5k 10k
Hz
dBr
-160
+40
-140
-120
-100
-80
-60
-40
-20
+0
+20
20 20k50 100 200 500 1k 2k 5k 10k
Hz
dBr
Electrical characteristics curves STA323W
28/78 DocID11535 Rev 7
Figure 31. PSRR BTL, 500 mV ripple
5.2.3 Half-bridge binary mode, operation with Vcc = 18.5 V
Figure 32. Frequency response, 1 W, binary half-bridge mode
Figure 33. Channel separation, 1 W, half bridge binary
6ohm8 ohm
4 ohm
-100
+10
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
20 20030 40 50 60 70 80 90 100
Hz
TT
dBr
Frequency (Hz)
-3
+3
-2.5
-2
-1.5
-1
-0.5
+0
+0.5
+1
+1.5
+2
+2.5
20 20k50 100 200 500 1k 2k 5k 10k
3ohm
2ohm
4ohm
dBr A
-100
+10
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
8ohm
4 ohm
20 20k50 100 200 500 1k 2k 5k 10k
Hz
dBr A
DocID11535 Rev 7 29/78
STA323W Electrical characteristics curves
78
Figure 34. THD+N vs. output power, single ended, 1 kHz, half-bridge binary
Figure 35. THD vs. frequency, single ended, 1 W
Figure 36. THD vs. frequency, single ended, 8 W
0.01
10
0.02
0.05
0.1
0.2
0.5
1
2
5
%
100m 50200m 500m 1 2 5 10 20
W
4ohm 3 ohm
2 ohm
2ohm
3ohm
4ohm
0.01
0.5
0.02
0.03
0.04
0.05
0.06
0.08
0.1
0.2
0.3
0.4
%
20 20k50 100 200 500 1k 2k 5k 10k
Hz
2ohm
3ohm
4ohm
0.01
5
0.02
0.05
0.1
0.2
0.5
1
2
%
20 20k50 100 200 500 1k 2k 5k 10k
Hz
Electrical characteristics curves STA323W
30/78 DocID11535 Rev 7
Figure 37. FFT 0 dB, 1 kHz, single ended, 2
Figure 38. FFT 0 dB, 1 kHz, single ended, 3
Figure 39. FFT 0 dB, 1 kHz, single ended, 4
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
+10
20 20k50 100 200 500 1k 2k 5k 10k
Hz
dBr
-120
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
+10
20 20k50 100 200 500 1k 2k 5k 10k
Hz
dBr
-120
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
+10
20 20k50 100 200 500 1k 2k 5k 10k
dBr
Hz
-110
DocID11535 Rev 7 31/78
STA323W Electrical characteristics curves
78
Figure 40. FFT -60 dB, single ended, 1 kHz, 2
Figure 41. FFT -60 dB, single ended, 1 kHz, 4
Figure 42. FFT -60 dB, single ended, 1 kHz, 3
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
+10
20 20k50 100 200 500 1k 2k 5k 10k
dBr
Hz
-110
20 20k50 100 200 500 1k 2k 5k 10k
Hz
dBr
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
-130
-140
-120
-110
-100
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
20 20k50 100 200 500 1k 2k 5k 10k
Hz
dBr
-130
-140
Electrical characteristics curves STA323W
32/78 DocID11535 Rev 7
Figure 43. PSRR single ended, 500 mV ripple
+10
-90
-80
-70
-60
-50
-40
-30
-20
-10
+0
20 20030 40 50 60 70 80 90 100
Hz
dBr A
-100
3 ohm
4 ohm
2 ohm
DocID11535 Rev 7 33/78
STA323W I²C bus specification
78
6 I²C bus specification
The STA323W supports the I²C fast mode (400 kbit/s) protocol. This protocol defines any
device that sends data on to the bus as a transmitter and any device that reads the data as
a receiver. The device that controls the data transfer is known as the master and the other
as the slave. The master always starts the transfer and provides the serial clock for
synchronization. The STA323W is always a slave device in all of its communications.
6.1 Communication protocol
Data transition or change
Data changes on the SDA line must only occur when the SCL clock is low. SDA transition
while the clock is high is used to identify a START or ST OP condition.
Start condition
START is identified by a high to low transition of the data bus SDA signal while the clock
signal SCL is stable in the high state. A START condition must precede any command for
data transfer.
Stop condition
STOP is identified by a low to high transition of the data bus SDA signal while the clock
signal SCL is stable in the high state . A STOP co ndition terminates communication b etween
STA323W and the bus master.
Data input
During the data input the STA323W samples the SDA signal on the rising edge of clock
SCL. For correct device operation the SDA signal must be stable during the rising edge of
the clock and the data can ch ange only when the SCL line is low.
6.2 Device addressing
To start com munication between the master an d the STA323W, the master must initiate with
a START condition. Following th is, th e ma ste r sends 8 bits (MSB first) on the SDA line
correspond in g to th e de vice sele ct ad dre ss an d re a d or write m ode.
The 7 MSBs are the device address identifiers, corresponding to the I²C bus definition. In
the STA323W the I²C interface uses a device address of decimal 34 (binary 00100010).
The 8th bit (LSB) identifies re ad or write opera tion, RW. This bit is set to 1 in read mode and
0 for write mode. After a ST AR T condition the STA323W identifies the device addres s on the
bus. If a match is found, it acknowledges the identification on the SDA bu s during the 9th bit
time. The byte following the device identification byte is the internal space address.
I²C bus specification STA323W
34/78 DocID11535 Rev 7
6.3 Write operation
Figure 44. I²C write procedure
Following the START condition the master sends a device select code with th e RW bit set
to 0. The STA323W acknowledges this and then the master writes the internal addre ss byte.
After receiving the internal byte address the STA323W again responds with an
acknowledgement.
Byte write
In the byte write mode the master sends one data byte. This is acknowledged by the
STA323W. The master then terminates the transfer by generating a STOP condition.
Multi-byte write
The multi-byte write modes can start from any internal address. Sequential data bytes are
written to sequential addresses within the STA323W.
The master generates a STOP condition to terminate the transfer.
6.4 Read operation
Figure 45. I²C read procedure
Current address byte read
Following the START condition the master sends a device select code with th e RW bit set
to 1. The STA323W acknowledges this and then respo nds by sending o ne byte of dat a. The
master then terminates the transfer by generating a STOP condition.
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DATA IN
ACK
STOP
BYTE
WRITE
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DATA IN
ACK
STOP
MULTIBYTE
WRITE DATA IN
ACK
DEV-ADDR
ACK
START RW
DATA
NO ACK
STOP
CURRENT
ADDRESS
READ
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DEV-ADDR
ACK
STOP
RANDOM
ADDRESS
READ DATA
NO
ACK
START RW
DEV-ADDR
ACK
START
DATA
ACK
DATA
ACK
STOP
SEQUENTIAL
CURRENT
READ DATA
NO
ACK
DEV-ADDR
ACK
START RW
SUB-ADDR
ACK
DEV-ADDR
ACK
SEQUENTIAL
RANDOM
READ DATA
ACK
START RW
DATA
ACK
NO
ACK
STOP
DATA
RW=
HIGH
DocID11535 Rev 7 35/78
STA323W I²C bus specification
78
Current address multi-byte read
The multi-byte read modes can start from any internal address. Sequentia l data bytes are
read from sequential addresses within the STA323W. The master acknowledges each data
byte read and then generates a STOP condition to terminate the transfer.
Random address byte read
Following the START condition the master sends a device select code with th e RW bit set
to 0. The ST A323W acknowledges this and then the master writes the internal address byte.
After receiving, the internal byte address the STA323W again responds with an
acknowledgement. The master then initiates another START condition and sends the device
select code with the RW bit set to 1. The STA323W acknowledges this and then responds
by sending one byte of dat a. The master then ter minates the transfer by gene rating a ST OP
condition.
Random address multi-byte read
The multi-byte read modes can start from any internal address. Sequentia l data bytes are
then read from sequential addresses within the STA323W. The master acknowledges each
data byte read and then generates a STOP condition to terminate the transfer.
Register descriptions STA323W
36/78 DocID11535 Rev 7
7 Register descriptions
You must not reprogram the register bits marked “Reserved”. It is important that these bits
keep their default reset values.
Table 13. Register summary
Address Name D7 D6 D5 D4 D3 D2 D1 D0
0x00 ConfA FDRB TWAB TWRB IR1 IR0 MCS2 MCS1 MCS0
0x01 ConfB C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0
0x02 ConfC Reserved CSZ4 CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0
0x03 ConfD MME ZDE DRC BQL PSL DSPB DEMP HPB
0x04 ConfE SVE ZCE DCCV PWMS AME Reserved MPC MPCV
0x05 ConfF EAPD PWDN ECLE LDTE BCLE IDE OCFG1 OCFG0
0x06 Mmute Reserved Reserved Reserved Reserved Reserved Reserved Reserved MMute
0x07 Mvol MV7 MV6 MV5 MV4 MV3 MV2 MV1 MV0
0x08 C1Vol C1V7 C1V6 C1V5 C1V4 C1V3 C1V2 C1V1 C1V0
0x09 C2Vol C2V7 C2V6 C2V5 C2V4 C2V3 C2V2 C2V1 C2V0
0x0A C3Vol C3V7 C3V6 C3V5 C3V4 C3V3 C3V2 C3V1 C3V0
0x0B Auto1 AMPS Reserved AMGC1 AMGC0 AMV1 AMV0 AMEQ1 AMEQ0
0x0C Auto2 XO3 XO2 XO1 XO1 AMAM2 AMAM1 AMAM0 AMAME
0x0D Auto3 Reserved Reserved Reserved PEQ4 PEQ3 PEQ2 PEQ1 PEQ0
0x0E C1Cfg C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VBP C1EQBP C1TCB
0x1F C2Cfg C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VBP C2EQBP C2TCB
0x10 C3Cfg C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VBP Reserved Reserved
0x11 Tone TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0
0x12 L1ar L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0
0x13 L1atrt L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0
0x14 L2ar L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0
0x15 L2atrt L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0
0x16 Cfaddr2 CFA7 CFA6 CFA5 CFA4 CFA3 CFA2 CFA1 CFA0
0x17 B1cf1 C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
0x18 B1cf2 C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8
0x19 B1cf3 C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0
0x1A B2cf1 C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16
0x1B B2cf2 C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8
0x1C B2cf3 C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0
0x1D A1cf1 C3B23 C3B22 C3B21 C3B20 C3B19 C3B18 C3B17 C3B16
DocID11535 Rev 7 37/78
STA323W Register descriptions
78
7.1 Configuration register A (address 0x00)
7.1.1 Master clock select
The STA323W supports sample rates of 32 kHz, 44.1 kHz, 48 kHz, 88.2 kHz, and 96 kHz.
Therefore the internal clock is:
32.768 MHz for 32 kHz
45.1584 MHz for 44.1 kHz, 88.2 kHz, and 176.4 kHz
49.152 MHz for 48 kHz, 96 kHz, and 192 kHz
0x1E A1cf2 C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8
0x1F A1cf3 C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0
0x20 A2cf1 C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16
0x21 A2cf2 C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8
0x22 A2cf3 C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0
0x23 B0cf1 C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16
0x24 B0cf2 C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8
0x25 B0cf3 C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0
0x26 Cfud Reserved Reserved Reserved Reserved Reserved Reserved WA W1
0x27 MPCC1 MPCC15 MPCC14 MPCC13 MPCC12 MPCC11 MPCC10 MPCC9 MPCC8
0x28 MPCC2 MPCC7 MPCC6 MPCC5 MPCC4 MPCC3 MPCC2 MPCC1 MPCC0
0x29 Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
0x2A Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved Reserved
0x2B FDRC1 FDRC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8
0x2C FDRC2 FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0
0x2D Status PLLUL Reserved Reserved Reserved Reserved Reserved FAULT TWARN
Table 13. Regi st er su mma ry (con t inue d )
Address Name D7 D6 D5 D4 D3 D2 D1 D0
D7 D6 D5 D4 D3 D2 D1 D0
FDRB TWAB TWRB IR1 IR0 MCS2 MCS1 MCS0
01100011
Table 14. Master clock select
Bit R/W RST Name Description
0RW1MCS0 Master clock select: selects the ratio between the input
I²S sample frequency and the inp ut clock.
1RW1MCS1
2RW0MCS2
Register descriptions STA323W
38/78 DocID11535 Rev 7
The external clock frequency provided to the XTI pin must be a multiple of the input sample
frequency (fs). The correlation between the input clock and the input sample rate is
determined by the status of the MCSx bits and the IR (input rate) register bits. The MCSx
bits determine the PLL factor generating the internal clock and the IR bit determines the
oversampling ratio used internally.
7.1.2 Interpolation ratio select
The STA323W has variable interpolation (r e-sampling) settings such that internal
processing and DDX output rates remain consistent. The first processing block interpolates
by either 2 times or 1 time (pass-through) or provides a down-sample by a factor of 2.
The IR bits determine the re-sampling ratio of this interpolation.
Table 15. IR and MCS settings for input sample rate and clock rate
Input sample rate
fs (kHz) IR MCS[2:0]
000 001 010 011 100 101
32, 44.1, 48 00 768 * fs 512 * fs 384 * fs 256 * fs 128 * fs 576 * fs
88.2, 96 01 384 * fs 256 * fs 192 * fs 128 * fs 64 * fs x
176.4, 192 1X 384 * fs 256 * fs 192 * fs 128 * fs 64 * fs x
Table 16. Interpolation ratio select
Bit R/W RST Name Description
4:3 RW 00 IR[1:0] Selects internal interpolation ratio based on input I²S sample
frequency
Table 17. IR bit settings as a function of input sample rate
Input sample rate fs (kHz) IR[1, 0] 1st stage interpolati on ratio
32 00 2 times over-sampling
44.1 00 2 times over-sampling
48 00 2 times over-sampling
88.2 01 Pass-Through
96 01 Pass-Through
176.4 10 Down-sampling by 2
192 10 Down-sampling by 2
DocID11535 Rev 7 39/78
STA323W Register descriptions
78
7.1.3 Thermal warning recovery bypass
If the thermal warning adjustment is enabled (T WAB = 0), then the therm al warning recovery
determines if the adjustment is removed when thermal warning is negative. If TWRB = 0 and
TWAB = 0, then, when a thermal warning disappears, the gain adjustment determined by
the thermal war ning post -scale (default = -3 dB) is remove d an d the ga in is ap plie d to the
system. If TWRB = 1 and TWAB = 0, then when a thermal warning disappears, the thermal
warning post-scale gain adjustment remains un til TWRB is cha nge d to zer o or th e device is
reset.
7.1.4 Thermal warning adjustment bypass
The STA323W on-chip power output block provide s feedback to the digital controller by the
power control block inputs. The TWARN input is used to indicate a thermal warning
condition. When TWARN is active (set to 0 for a period greater than 400 ms) the power
control block forces an adjustment to the modulation limit in an attempt to eliminate the
thermal warning condition. Once the thermal warning volume adjustment is applied, whether
the gain is reapplied when TWARN is inactive, depends on the TWRB bit.
7.1.5 Fault detect recovery bypass
The DDX power block provides feedback to the digital controller using inputs to the power
control block. The FAULT input is used to indicate a fault condition (either over-current or
thermal). When FAULT is active (set to 0), the power control block attempts a recovery from
the fault by activating the 3-state output (setting it to 0 which directs the power output block
to begin recove ry) . It ho lds it at 0 for pe rio d of time in the ra ng e of 0.1 ms to 1 sec ond as
defined by the fault-detect recovery constant register (FDRC registers 0x29-0x2A), then
toggles it back to 1. This sequence is repeated as long as the fault indication exists. This
feature is enabled by default but can be byp assed by setting the FDRB control bit to 1.
Table 18. Thermal warning recovery bypass
Bit R/W RST Name Description
5RW1TWRB 0: thermal warning recovery enabled
1: thermal warning recovery disabled
Table 19. Thermal warning adjustment bypass
Bit R/W RST Name Description
6RW1TWAB 0: thermal warning adjustment enabled
1: thermal warning adjustment disabled
Table 20. Fault detect recovery bypass
Bit R/W RST Name Description
7 RW 0 FDRB 0: fault detector recovery enabled
1: fault detector recovery disabled
Register descriptions STA323W
40/78 DocID11535 Rev 7
7.2 Configuration register B (address 0x01)
7.2.1 Serial audio inpu t interface format
7.2.2 Serial data interface
The STA323W serial audio input interfaces with standard digital audio components and
accepts several different serial data formats. The STA3 23 W always acts as a slave when
receiving audio input from standard digital audio components. Serial data for two channels
is provided using 3 input pin s: left /right clock LRCKI, seria l clock BICKI, and serial dat a SDI.
The SAI register (configuration register B (address 0x01) bits D3-D0) and the SAIFB
register (configuration register B (address 0x01) bit D4) are used to specify the serial data
format. The default serial data format is I²SI²S, MSB first. The formats available are shown
in Figure 46 and in Table 21 and Table 22.
Figure 46. General serial input and outp ut formats
Table 22. lists the serial audio input formats supported by STA323W when
BICKI = 32 * fs, 48 * fs or 64 * fs, where the sampling rate fs = 32, 44.1, 48, 88.2, 96, 176.4
or 192 kHz.
D7 D6 D5 D4 D3 D2 D1 D0
C2IM C1IM DSCKE SAIFB SAI3 SAI2 SAI1 SAI0
10000000
Table 21. Serial audio input interface format
Bit R/W RST Name Description
3:0 RW 0000 SAI[3:0] D etermines the interface format of the input serial digital
audio interface.
4 RW 0 SAIFB Data format:
0: MSB first1: LSB first
I
2
S
Left Justified
LRCLK
Left Right
SCLK
SDATA
LSBMSB LSBMSB MSB
LRCLK
Left Right
SCLK
SDATA
LSBMSB
LSBMSB MSB
Right Justified
LRCLK
Left Right
SCLK
SDATA
LSBMSB LSB
MSB MSB
DocID11535 Rev 7 41/78
STA323W Register descriptions
78
For example, SAI = 1110 and SAIFB = 1 specifies right justified 16-bit data, LSB first.
Table 22. Supported serial audio input formats
BICKI SAI[3:0] SAIFB Interface format
32 * fs 1100 X I²S 15-bit data
1110 X Left/right-justified 16-bit data
48 * fs 0100 X I²S 23-bit data
0100 X I²S 20-bit data
1000 X I²S 18-bit data
0100 0 MSB first I²S 16-bit data
1100 1 LSB first I²S 16-bit data
0001 X Left-justified 24-bit data
0101 X Left-justified 20-bit data
1001 X Left-justified 18-bit data
1101 X Left-justified 16-bit data
0010 X Right-justified 24-bit data
0110 X Right-justified 20-bit data
1010 X Right-justified 18-bit data
1110 X Right-justified 16-bit data
64 * fs 0000 X I²S 24-bit data
0100 X I²S 20-bit data
1000 X I²S 18-bit data
0000 0 MSB first I²S 16-bit data
1100 1 LSB first I²S 16-bit data
0001 X Left-justified 24-bit data
0101 X Left-justified 20-bit data
1001 X Left-justified 18-bit data
1101 X Left-justified 16-bit data
0010 X Right-justified 24-bit data
0110 X Right-justified 20-bit data
1010 X Right-justified 18-bit data
1110 X Right-justified 16-bit data
Register descriptions STA323W
42/78 DocID11535 Rev 7
Figure 47. Serial input and data timing
7.2.3 Delay serial clock enable
g
Each channel rec eiv ed from th e I²S ca n be ma pp ed t o any inte rn a l pro ce ssin g chan ne l vi a
the channel input mapping registers. This allows processing flexibility. The default settings
of these registers map each I²S input channel to its corresponding processing channel.
Table 23. Serial input data timing characteristics (fs = 32 to 192 kHz)
parameter Timing
BICKI frequency (slave mode) 12.5 MHz max.
BICKI pulse width high (T1) (slave mode) 40 ns min.
BICKI active to LRCKI edge delay (T2) 20 ns min.
BICKI active to LRCKI edge delay (T3) 20 ns min.
SDI valid to BICKI active setup (T4) 20 ns min.
BICKI active to SDI hold time (T5) 20 ns min.
T5
T0
T1
T3T2
T4
SDI
BICKI
LRCKI
Table 24. Delay serial clock enable
Bit R/W RST Name Description
5 RW 0 DSCKE 0: no serial clock delay
1: serial clock delay by 1 core clock cycle to tolerate
anomalies in some I²S master devices
Table 25. Channel input mapping
Bit R/W RST Name Description
6RW0C1IM 0: processing channel 1 receives left I²S input
1: processing channel 1 receives right I²S input
7RW1C2IM 0: processing channel 2 receives left I²S input
1: processing channel 2 receives right I²S input
DocID11535 Rev 7 43/78
STA323W Register descriptions
78
7.3 Configuration register C (address 0x02)
7.3.1 DDX® power-output mode
The DDX® power output mode selects how the DDX® output timing is configured. Different
power devices can use different output modes. The recommended use is OM = 10. When
OM = 11 the CSZ bits determine the size of the DDX® compensating pulse.
7.3.2 DDX® variable compensating pulse size
The DDX® variable compensating pulse size is intended to adapt to different power stage
ICs. Contact ST for support when using this functio n.
D7 D6 D5 D4 D3 D2 D1 D0
Reserved CSZ4 CSZ3 CSZ2 CSZ1 CSZ0 OM1 OM0
01000010
Table 26. DDX® power-output mode
Bit R/W RST Name Description
1:0 RW 10 OM[1:0] Selects configuration of DDX® output.
Table 27. DDX® output modes
OM[1,0] Output st age - mode
00 Not used
01 Not used
10 Recommended
11 Variable compensation
Table 28. DDX® compensating pu lse
CSZ[4:0] Compensating pulse size
00000 0 clock period compensating pulse size
00001 1 clock period compensating pulse size
……
10000 16 clock period compensating pulse size
……
11111 31 clock period compensating pulse size
Register descriptions STA323W
44/78 DocID11535 Rev 7
7.4 Configuration register D (address 0x03)
7.4.1 High-pass filter bypass
The STA323W features an internal digital high-pass filter for DC blocking. The purpose of
this filter is to prevent DC signals from passing through a DDX® amplifier. DC signals can
cause speaker damage.
7.4.2 De-emphasis
By setting this bit to 1, de-emphasis is implemented on all channels. DSPB (DSP Bypass,
Bit D2, CFA) bit must be set to 0 for de-emphasis to function.
7.4.3 DSP bypass
Setting the DSPB bit bypasses all the EQ and mixing functions of the STA323W core.
D7 D6 D5 D4 D3 D2 D1 D0
MME ZDE DRC BQL PSL DSPB DEMP HPB
01000000
Table 29. High-pass filter bypass
Bit R/W RST Name Description
0RW0HPB 0: AC coupling high pass filter enabled
1: AC coupling high pass filter enabled
Table 30. De-emphasis
Bit R/W RST Name Description
1RW0DEMP 0: no de-emphasis
1: de-emphasis
Table 31. DSP bypass
Bit R/W RST Name Description
2 RW 0 DSPB 0: norma l operation
1: bypass of EQ and mixing functionality
DocID11535 Rev 7 45/78
STA323W Register descriptions
78
7.4.4 Post-scale link
Post-scale functionality is an attenuation plac ed after the volume control and di rectly b efore
the conversion to PWM. Post-scale can a lso be used to limit the maximum modul ation index
and therefore the peak current. Setting 1, in the PSL register, causes the value stored in
Channel 1 post-scale to be used for all three internal channels.
7.4.5 Biquad coefficient link
For ease of use, all channels can use the biquad coefficients loaded into the channel 1
coefficient RAM space by setting the BQL bit to 1. Therefore, an y EQ updates only have to
be performed once.
7.4.6 Dynamic range compression/anti-c lipping bit
Both limiters can be used in on e of two ways: anti-clipping or dynamic range compression.
When used in anti-clipping mode the limiter threshold values are constant and dependent
on the limiter settings. In dynamic range compression mode the limiter threshold values vary
with the volume settings allowing a nighttime listening mode that pr ovides a reduction in th e
dynamic rang e rega rd le ss of th e volu m e lev el.
7.4.7 Zero-detect mute enable
Setting the ZDE bit enables the zero-detect automatic mute. When ZDE = 1, the zero-detect
circuit looks at the input d ata to each pr ocessing channel af ter the channel-mapping block. If
any channel receives 2048 consecutive zero value samples (regardless of fs) then that
individual channel is muted if this function is enabled.
Table 32. Post-scale link
Bit R/W RST Name Description
3 RW 0 PSL 0: each channel uses individual post-sca le value
1: each channel uses channel 1 post-scale val ue
Table 33. Biquad coefficient link
Bit R/W RST Name Description
4RW0BQL 0: each channel uses coefficient values
1: each channel uses channel 1 coefficient values
Table 34. Dynamic range compression/anti-clipping bit
Bit R/W RST Name Description
5 RW 0 DRC 0 : li miters act in anti-clipping mode
1: limiters act in dynamic range compression mode
Table 35. Zero-detect mute enable
Bit R/W RST Name Description
6 RW 1 ZDE Setting of 1 enables the automatic zero-detect mute
Register descriptions STA323W
46/78 DocID11535 Rev 7
7.5 Configuration register E (address 0x04)
7.5.1 Max power correction variable
By enabling MPC and setting MPCV = 1, the max power correction becomes variable. By
adjusting the MPC C reg ist er s (add re ss 0x 27 -0 x2 8) it is possibl e to adjust th e TH D at
maximum unclipped power to a lower value for a particular application.
7.5.2 Max power correction
Setting the MPC bit corrects the power device at high power. This mode lowers the THD+N
of the full DDX® system at, and slightly below, maximum power output.
7.5.3 AM mode enable
The STA323W features a DDX® processing mode that minimizes the amoun t of noise
generated in the freque ncy range of AM radio. This mode is inten ded for use when DDX® is
operating in a device with an active AM tuner. The SNR of the DDX® processing is reduced
to ~83 dB in this mode, which is still greater than the SNR of AM radio.
7.5.4 PWM speed mode
D7 D6 D5 D4 D3 D2 D1 D0
SVE ZCE Reserved PWMS AME Reserved MPC MPCV
11000010
Table 36. Max power correction variable
Bit R/W RST Name Description
0RW0MPCV 0: use standard MPC coefficient
1: use MPCC bits for MPC coefficient
Table 37. Ma x powe r correc t ion
Bit R/W RST Name Description
1RW1MPC 0: MPC disabled
1: MPC enabled
Table 38. AM mode enable
Bit R/W RST Name Description
3RW0AME 0: normal DDX® operation
1: AM reduction mode DDX® operation
Table 39. PWM speed mode
Bit R/W RST Name Description
4 RW 0 PWMS Normal or odd
DocID11535 Rev 7 47/78
STA323W Register descriptions
78
7.5.5 Zero-crossing volume enable
The ZCE bit enables zero-crossing volume adjustment s. When volume is adjusted on digit al
zero-crossings no clicks are audible.
7.5.6 Soft volume update enable
The STA323W includes a soft volume a l gorithm th at ste p s thr oug h the inter med iate volume
values at a predetermined rate when a volume change occurs. By setting SVE = 0 this can
be bypassed and volume changes will jump from the old to the new value directly. This
feature is available only if individual channel volume bypass bit is set to 0.
Table 40. PWM output speed selections
PWMS[1:0] PWM output speed
0 Normal speed (384kHz) all channels
1 Odd speed (341.3kHz) all channels
Table 41. Zero-crossing volume enable
Bit R/W RST Name Description
6RW1ZCE 1: volume adjustments will only occur at digital zero-
crossings
0: volume adjustments will occur immediately
Table 42. Soft volume update enable
Bit R/W RST Name Description
7 RW 1 SVE 1: volume adjustments will use soft volume
0: volume adjustments will occur immediately
Register descriptions STA323W
48/78 DocID11535 Rev 7
7.6 Configuration register F (address 0x05)
7.6.1 Output configuration selection
Setting the IDE bit enables this function, which looks at the input I²S data and clocking and
automatically mutes all outputs if the signals are invalid.
Detects loss of input MCLK in binary mo de an d outp uts 50% duty cyc le to pre ven t aud i ble
noise when input clocking is lost.
D7 D6 D5 D4 D3 D2 D1 D0
EAPD PWDN ECLE Reserved BCLE IDE OCFG1 OCFG0
01011100
Table 43. Output configuration selection
Bit R/W RST Name Description
1:0 RW 00 OCFG[1:0] 00: 2-channel (full-bridge) power, 1-channel DDX is defau lt
Table 44. Output configuration selections
OCFG[1:0] Output power conf igu r ation
00 2 channel (full-bridge) power, 1 channel DDX:
1A/1B 1A/1B
2A/2B 2A/2B
01
2(half-bridge).1(full-bridge) on-board power:
1A 1A Binary
2A 1B Binary
3A/3B 2A/2B Binary
10 Reserved
11 1 channel mono-parallel:
3A 1A/1B
3B 2A/2B
Table 45. Invalid input detect mute en able
Bit R/W RST Name Description
2RW1IDE 0: disable d
1: enabled
Table 46. Binary clock loss detection enable
Bit R/W RST Name Description
3RW1BCLE 0: disabled
1: enabled
DocID11535 Rev 7 49/78
STA323W Register descriptions
78
When ECLE is active, it issues a power device power down signal (EAPD) on clock loss
detection.
EAPD is used to actively power down a connected DDX® power device. This r egister has to
be written to 1 at start-up to enable the DDX® power device for normal operation.
Table 47. Auto-EAPD on clock loss enable
Bit R/W RST Name Description
5RW0ECLE 0: disabled
1: enabled
Table 48. Sof tware power down
Bit R/W RST Name Description
6RW1PWDN
Software power down:
0: power down mode: initiates a power-down sequence
which results in a soft mute of all channels and finally asserts
EAPD circa 260 ms later
1: normal operation
Table 49 . Ext ern al amplifier power dow n
Bit R/W RST Name Description
7 RW 0 EAPD 0: external power stage power down active
1: normal operation
Register descriptions STA323W
50/78 DocID11535 Rev 7
7.7 Volume control
7.7.1 Master controls
Master mute register (address 0x06)
Master volume register (Address 0x07)
Note: The value of volume derived from MV is dependent on the AMV AutoModes™ volume
settings.
7.7.2 Channel controls
Channel 1 volume (address 0x08)
Channel 2 volume (address 0x09)
Channel 3 volume (address 0x0A)
7.7.3 Volume description
The volume structure of the STA323W consists of individual volume registers for each of the
three channels and a master volume register, and individual channel volume trim registers.
The channel volume settings are normally used to set the maximum allowable digital gain
and to hard-set gain dif ferences between cer tain channels. These valu es are normally set at
the initialization of the IC an d not changed. The individual channel volu mes are adjustable in
0.5-dB steps from +48 dB to -80 dB. The master volume control is normally mapped to the
master volume of the s yst em . Th e values of thes e two sett ing s ar e sum m e d to fin d th e
actual gain or volume value for any given channel.
When set to 1, the Master Mute will mute all channels, whereas the individual channel
mutes (CxM) will mute only that channel. Both the Master Mute and the Channel Mutes
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved Reserved Reserved Reserved Reserved MMUTE
00000000
D7 D6 D5 D4 D3 D2 D1 D0
MV7 MV6 MV5 MV4 MV3 MV2 MV1 MV0
11111111
D7 D6 D5 D4 D3 D2 D1 D0
C1V7 C1V6 C1V5 C1V4 C1V3 C1V2 C1V1 C1V0
01100000
D7 D6 D5 D4 D3 D2 D1 D0
C2V7 C2V6 C2V5 C2V4 C2V3 C2V2 C2V1 C2V0
01100000
D7 D6 D5 D4 D3 D2 D1 D0
C3V7 C3V6 C3V5 C3V4 C3V3 C3V2 C3V1 C3V0
01100000
DocID11535 Rev 7 51/78
STA323W Register descriptions
78
provide a “soft mute”, that is, a gradual muting with the volume ramping down to mute in
4096 samples from the maximum volume setting at the internal processing rate of circa
96 kHz. A “hard mute” can be obtained by setting a value of 0xF F in any channel volume
register or the master volume register. When volume offsets are provided, via the master
volume register, any channel whose total volume is less than -100 dB is muted.
All changes in volume take place at zero-crossings when ZCE = 1 (configuration register E)
on a per channel basis as this creates the smoothest possible volume transitions. When
ZCE = 0, volume updates occur immediately.
The STA323W also features a soft-volume update function. When SVE = 1 (in configuration
register E) the volume ramps between intermediate value s when the value is updated, This
feature can be disabled by setting SVE = 0.
Each channel also cont ains an individual ch annel volume bypass. If a particular chan nel has
volume bypassed via the CxVBP = 1 register then only the channel volume setting for that
particu lar channel affects the volume setting , the master volume setting does not affect that
channel. Also, master soft-mute does not affect the channel if CxVBP = 1.
Each channel also contains a channel mute. If CxM = 1 a soft mute is performed on that
channel.
Table 50. Master volume offset as a function of MV[7:0]
MV[7:0] Volume offset from channel value
00000000 (0x00) 0 dB
00000001 (0x01) -0.5 dB
00000010 (0x02) -1 dB
……
01001100 (0x4C) -38 dB
……
11111110 (0xFE) -127 dB
11111111 (0xFF) Hard Master Mute
Table 51. Channel volume as a function of CxV[7:0]
CxV[7:0] Volume
00000000 (0x00) +48 dB
00000001 (0x01) +47.5 dB
00000010 (0x02) +47 dB
……
01100001 (0x5F) +0.5 dB
01100000 (0x60) 0 dB
01011111 (0x61) -0.5 dB
……
11111110 (0xFE) -79.5 dB
11111111 (0xFF) Hard channel mute
Register descriptions STA323W
52/78 DocID11535 Rev 7
7.8 AutoModes™ registers
7.8.1 AutoModes™ EQ, volume, GC (address 0x0B)
Setting AMEQ to any value, other than 00, enables AutoModes™ EQ. When set, biquads 1-
4 are not user progr am m abl e. Any co efficient settings for these biquads is ignored. Also
when AutoModes™ EQ is used the pre -scale value for cha nnels 1 and 2 beco mes ha rd-set
to -18 dB.
D7 D6 D5 D4 D3 D2 D1 D0
AMPS Reserved AMGC1 AMGC0 AMV1 AMV0 AMEQ1 AMEQ0
10000000
Table 52. AutoModes™ EQ
AMEQ[1,0] Mode (Biquad 1-4)
00 User Programmable
01 Preset EQ - PEQ bits
10 Auto Volume Controlled Loudness Curve
11 Not used
Table 53. AutoModes™ volume
AMV[1,0] Mode (MVOL)
00 MVOL 256, 0.5-dB steps (standard)
01 MVOL auto curve 30 steps
10 MVOL auto curve 40 steps
11 MVOL auto curv e 50 s te ps
Table 54. AutoModes™ gain compression/limiters
AMGC[1:0] Mode
00 User programmable GC
01 AC no clipping
10 AC limited clipping (10%)
11 DRC nigh t time listening mode
Table 55. AMPS - AutoModes™ auto pre scale
Bit R/W RST Name Description
0 RW 0 AMPS AutoMode pre-scale
0: -18 dB used for pre-scale when AMEQ neq 00
1: User defined pre-scale when AMEQ neq 00
DocID11535 Rev 7 53/78
STA323W Register descriptions
78
7.8.2 AutoModes™ AM/pre-scale/bass management scale (address 0x0C)
When DDX® is used with an AM radio tuner, it is recommended to use the AMAM bits to
automatically adjust the output PWM switching rate so that it depends on the specific radio
frequency that the tuner is receiving. The values used in AMAM are also dependent upon
the sample rate that is determined by the ADC used.
D7 D6 D5 D4 D3 D2 D1 D0
XO3 XO2 XO1 XO0 AMAM2 AMAM1 AMAM0 AMAME
00000000
Table 56. AutoModes™ AM switching enable
Bit R/W RST Name Description
0 RW 0 AMAME 0: switching frequency determin ed by PWMS setting
1: switching frequency determined by AMAM settings
3:1 RW 000 AMAM[2:0] Default: 000
Table 57. AutoModes™ AM switching frequency selection
AMAM[2:0] 48 kHz/96 kHz input fs 44.1 kHz/88.2 kHz input fs
000 0.535 MHz - 0.720 MHz 0.535 MHz - 0.670 MHz
001 0.721 MHz - 0.900 MHz 0.671 MHz - 0.800 MHz
010 0.901 MHz - 1.100 MHz 0.801 MHz - 1.000 MHz
011 1.101 MHz - 1.300 MHz 1.001 MHz - 1.180 MHz
100 1.301 MHz - 1.480 MHz 1.181 MHz - 1.340 MHz
101 1.481 MHz - 1.600 MHz 1.341 MHz - 1.500 MHz
110 1.601 MHz - 1.700 MHz 1.50 1 MHz - 1.700 MHz
Table 58. AutoModes™ crossover setting
Bit R/W RST Name Description
7:4 RW 0 XO[3:0] 000: user define d crossover coefficients are used
Otherwise: preset coefficients are used for the required
crossover setting
Table 59. Crossover frequency selection
XO[2:0] Bass management - crossover frequency
0000 User
0001 80 Hz
0010 100 Hz
0011 120 Hz
0100 140 Hz
Register descriptions STA323W
54/78 DocID11535 Rev 7
7.8.3 Preset EQ settings (address 0x0D)
0101 160 Hz
0110 180 Hz
0111 200 Hz
1000 220 Hz
1001 240 Hz
1010 260 Hz
1011 280 Hz
1100 300 Hz
1101 320 Hz
1110 340 Hz
1111 360 Hz
Table 59. Crossover frequency selection (continued)
XO[2:0] Bass management - crossover frequency
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved PEQ4 PEQ3 PEQ2 PEQ1 PEQ0
00000000
Table 60. Preset EQ selection
PEQ[3:0] Setting
00000 Flat
00001 Rock
00010 Soft Rock
00011 Jazz
00100 Classical
00101 Dance
00110 Pop
00111 Soft
01000 Hard
01001 Party
01010 Vocal
01011 Hip-Hop
01100 Dialog
01101 Bass-boost #1
01110 Bass-boost #2
01111 Bass-boost #3
DocID11535 Rev 7 55/78
STA323W Register descriptions
78
7.9 Channel configuration registers
7.9.1 Channel 1 confi guration (address 0x0E)
7.9.2 Channel 2 confi guration (address 0x0F)
10000 Loudness 1 (least boost)
10001 Loudness 2
10010 Loudness 3
10011 Loudness 4
10100 Loudness 5
10101 Loudness 6
10110 Loudness 7
10111 Loudness 8
11000 Loudness 9
11001 L ou d ne ss 10
11010 Loudness 11
11011 Loudness 12
11100 Loudness 13
11101 Loudness 14
11110 Loudness 15
11111 Loudness 16 (most boost)
Table 60. Preset EQ selection (continued)
PEQ[3:0] Setting
D7 D6 D5 D4 D3 D2 D1 D0
C1OM1 C1OM0 C1LS1 C1LS0 C1BO C1VBP C1EQBP C1TCB
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C2OM1 C2OM0 C2LS1 C2LS0 C2BO C2VBP C2EQBP C2TCB
00000000
Register descriptions STA323W
56/78 DocID11535 Rev 7
7.9.3 Channel 3 confi guration (address 0x10)
EQ control can be bypassed on a per channel basis. If EQ control is bypassed on a given
channel the prescale and all 9 filters (high-pass, biquads, de-emphasis, bass management
cross-over, bass, treble in any combination) are bypassed for that channel.
CxEQBP:
0: perform EQ on channel X (normal operation)
1: bypass EQ on channel X
Tone control (bass and treble) can be bypassed on a per channel basis. If tone control is
bypassed on a given channel the two filters that tone control utilizes are bypassed.
CxTCB:
0: perform tone control on channel x - (defa ult operation)
1: bypass tone control on channel x
Each channel can be configured to output either the patented DDX PWM data or standard
binary PWM encoded data. By setting the CxBO bit to ‘1’, each channel can be individually
set to binary operatio n mode.
It is also possible to map each channel independently to either of the two limiters available
within the STA323W. In the default mode the channels are not mapped to a limiter.
Each PWM output channel ca n receive data from any channel output of the volume block.
Which channel a particular PWM ou tput receives depends on the CxOM register bit s for that
channel.
D7 D6 D5 D4 D3 D2 D1 D0
C3OM1 C3OM0 C3LS1 C3LS0 C3BO C3VBP Reserved Reserved
00000000
Table 61. Channel Limiter Mapping Selection
CxLS[1,0] Channel limiter mapping
00 Channel has limiting disabled
01 Channel is mapped to limiter #1
10 Channel is mapped to limiter #2
Table 62. Channel PWM output mapping
CxOM[1:0] PWM output from
00 Channel 1
01 Channel 2
10 Channel 3
11 Not used
DocID11535 Rev 7 57/78
STA323W Register descriptions
78
7.10 Tone control (address 0x11)
7.11 Dynamics control
7.11.1 Limiter 1 attack/release threshold (address 0x12)
7.11.2 Limiter 1 attack/release threshold (address 0x13)
7.11.3 Limiter 2 attack/release rate (address 0x14)
D7 D6 D5 D4 D3 D2 D1 D0
TTC3 TTC2 TTC1 TTC0 BTC3 BTC2 BTC1 BTC0
01110111
Table 63. Tone control boost/cut s election
BTC[3:0]/TTC[3:0] Boost/cut
0000 -12 dB
0001 -12 dB
……
0111 -4 dB
0110 -2 dB
0111 0 dB
1000 +2 dB
1001 +4 dB
……
1101 +12 dB
1110 +12 dB
1111 +12 dB
D7 D6 D5 D4 D3 D2 D1 D0
L1A3 L1A2 L1A1 L1A0 L1R3 L1R2 L1R1 L1R0
01101010
D7 D6 D5 D4 D3 D2 D1 D0
L1AT3 L1AT2 L1AT1 L1AT0 L1RT3 L1RT2 L1RT1 L1RT0
01101001
D7 D6 D5 D4 D3 D2 D1 D0
L2A3 L2A2 L2A1 L2A0 L2R3 L2R2 L2R1 L2R0
01101010
Register descriptions STA323W
58/78 DocID11535 Rev 7
7.11.4 Limiter 2 attack/release threshold (address 0x15)
7.11.5 Dynamics control description
The STA323W includes two independent limiter blocks. The purpose of the limiter s is to
automatically reduce the dynamic range of a recording to prevent the outp uts from clipping
in anti-clipping mode, or to actively reduce the dynamic range for a better listening
environment (such as a night-time liste ning mode, which is often needed for DVDs.) Th e two
modes are selected via the DRC bit in Configuration Register D, bit 5 address 0x03. Each
channel can be mapped to Limiter1 or Limiter2, or not mapped.
If a channel is not mapped, that channel will clip normally when 0 dB FS is exceeded. Each
limiter will look at the present value of each channel that is mapped to it, select the
maximum absolute value of all these channels, perform the limiting algorithm on that value,
and then, if needed, adjust the gain of the mapped channels in unison.
The limiter attack thresholds ar e de te rm in ed by the LxAT registers. When the Attack
Threshold has been exceeded, the limiter, when active, automatically starts reducing the
gain. The rate at which the gain is reduced when the attack threshold is exceeded is
dependent upon the attack rate register setting for that limiter. A peak-detect algor ithms
used to control th e ga in re du ct ion .
The release of limiter, when the gain is again increased, is dependent on an RMS-detect
algorithm. The output of th e volume limiter block is p assed through an RMS filter . The output
of this filter is compared with the release threshold, determined by the Release Threshold
register.
When the RMS filter output falls below the release threshold, the gain is increased at a rate
dependent upon the rele ase rate register . The gain can never be increased p ast its set value
and therefore the release will only occur if the limiter has already reduced the gain. The
release threshold value can be used to set what is effectively a minimum dynamic range.
This is helpful as over-limiting can reduce the dynamic range to virtually zero and cause
program material to sound “lifeless”.
In AC mode the attack and release thresholds are set relative to full-scale. In DRC mode the
attack threshold is set relative to the maximum volume setting of the channels mapped to
that limiter and the release threshold is set relative to the maximum volume setting plus the
attack threshold.
Figure 48. Basic limiter and volume flow diagram
D7 D6 D5 D4 D3 D2 D1 D0
L2AT3 L2AT2 L2AT1 L2AT0 L2RT3 L2RT2 L2RT1 L2RT0
01101001
Gain Attenuation Saturation Output
Input
Gain/volume
Limiter RMS
DocID11535 Rev 7 59/78
STA323W Register descriptions
78
Table 64. Limiter attack rate selection
LxA[3:0] Attack rate dB/ms
0000 3.1584 Fast
0001 2.7072
0010 2.2560
0011 1.8048
0100 1.3536
0101 0.9024
0110 0.4512
0111 0.2256
1000 0.1504
1001 0.1123
1010 0.0902
1011 0.0752
1100 0.0645
1101 0.0564
1110 0.0501
1111 0.0451 Slow
Table 65. Limiter release rate selection
LxR[3:0] Release rate dB /m s
0000 0.5116 Fast
0001 0.1370
0010 0.0744
0011 0.0499
0100 0.0360
0101 0.0299
0110 0.0264
0111 0.0208
1000 0.0198
1001 0.0172
1010 0.0147
1011 0.0137
1100 0.0134
1101 0.0117
1110 0.0110
1111 0.0104 Slow
Register descriptions STA323W
60/78 DocID11535 Rev 7
7.11.6 Anti-clipping mode
.
Table 66. Limiter attack - threshold selection (AC-mode)
LxAT[3:0] AC (dB relative to FS)
0000 -12
0001 -10
0010 -8
0011 -6
0100 -4
0101 -2
0110 0
0111 +2
1000 +3
1001 +4
1010 +5
1011 +6
1100 +7
1101 +8
1110 +9
1111 +10
Table 67. Limiter release threshold selection (AC-mode)
LxRT[3:0] AC (dB relative to FS)
0000 -
0001 -29dB
0010 -20dB
0011 -16dB
0100 -14dB
0101 -12dB
0110 -10dB
0111 -8dB
1000 -7dB
1001 -6dB
1010 -5dB
1011 -4dB
1100 -3dB
1101 -2dB
DocID11535 Rev 7 61/78
STA323W Register descriptions
78
7.11.7 Dynamic range compression mode
1110 -1dB
1111 -0dB
Table 67. Limiter release threshold selection (AC-mode) (continued)
LxRT[3:0] AC (dB relative to FS)
Table 68. Limiter attack - threshold selection (DRC-mode)
LxAT[3:0] DRC (dB relative to volume)
0000 -31
0001 -29
0010 -27
0011 -25
0100 -23
0101 -21
0110 -19
0111 -17
1000 -16
1001 -15
1010 -14
1011 -13
1100 -12
1101 -10
1110 -7
1111 -4
Register descriptions STA323W
62/78 DocID11535 Rev 7
.( Table 69. Limiter release threshold selection (DRC-mode)
LxRT[3:0] DRC (db relative to Volume + LxAT)
0000 -
0001 -38 dB
0010 -36 dB
0011 -33 dB
0100 -31 dB
0101 -30 dB
0110 -28 dB
0111 -26 dB
1000 -24 dB
1001 -22 dB
1010 -20 dB
1011 -18 dB
1100 -15 dB
1101 -12 dB
1110 -9 dB
1111 -6 dB
DocID11535 Rev 7 63/78
STA323W User-programma bl e se tt in gs
78
8 User-programmable settings
8.1 EQ - biquad equation
The biquads use the equation that follows. This is shown in Figure 49.
Y[n] = 2(b0/2)X[n] + 2(b1/2)X[n-1] + b2X[n-2] - 2(a1/2)Y[n-1] - a2Y[n-2]
= b0X[n] + b1X[n-1] + b2X[n-2] - a1Y[n-1] - a2Y[n-2]
where Y[n] represents the output and X[n] represents the input. Signed, fractional 28-bit
multipliers are used, with coefficient values in the range of 0x800000 (-1) to 0x7FFFFF
(0.9999998808).
Coefficients stored in the user defined coefficient RAM are referenced in the following
manner:
CxHy0 = b1/2
CxHy1 = b2
CxHy2 = -a1/2
CxHy3 = -a2
CxHy4 = b0/2
The x represents the channel and the y the biqu ad n umber. For example C3H4 1 is the b0/2
coefficient in the fourth biquad for channel 3.
Figure 49. Biqua d fil te r
8.2 Pre-scale
The pre-scale bloc k, which precedes the first bi quad, is used for atten uation when filters are
designed that boost frequencies above 0 dBFS. The Pre-Scale block is a single 28-bit
signed multiplier, with 0x800000 = -1 and 0x7FFFFF = 0.9999998808. By default, all
pre-scale factors are set to 0x7FFFFF.
8.3 Post-scale
The STA323W provides one additional multiplication after the last interpolation stage and
before the distortion com pensation on each chan nel. The post-scale block is a 24-bit sign ed
fractional multiplier. The scale factor for this multiplier is loaded into RAM using the same
I²C registers as the biquad coefficients and the mix. All channels ca n use the same se ttings
as channel 1 by setting the post-scale link bit.
+
+
+
2
22
b1/2
b0/2
Z -1
Z -1
b2 -a2
-a1/2
Z -1
Z -1
User-programmable settings STA323W
64/78 DocID11535 Rev 7
8.4 Mix/bass management
The STA323W provides one post-EQ mixing block per channel. Each channel has two
mixing coefficients, which are each 24-bit signed fractional multipliers, that correspond to
the two channels of input to the mixing block. These coefficients are accessible via the User
Controlled Coefficient RAM described below. The mix coefficients expressed as 24-bit
signed, fractional numbers in the range +1.0 (8388607) to -1.0 (-8388608), are used to
provide three channels of output from two channels of filtered input.
Figure 50. Mix/bass management block diagram
After mixing, STA323W also permits the implementation of crossover filters on all channels
corresponding to 2.1 bass management operation. Channels 1 an d 2 use a 1st order, high-
pass filter and ch annel 3 uses a 2nd- order low-p ass filter cor responding to the setting of the
XO bits of I²CI²C register 0x0C. If XO = 000, user specified crossover filters are used.
By default these coefficients correspond to pass-through. However , the user can write these
coefficients in a similar way as the EQ biquads. When user-defined setting is selected, the
user can only write 2nd-order crossover filters. This output is then passed on to the Volume
and Limiter block.
C1MX1
High pass
XO
filter
C1MX2
.
Channel #1
from EQ
Channel #2
from EQ
Channel #1
to GC/vol
C2MX1
High pass
XO
filter
C2MX2
.Channel #2
to GC/vol
C3MX1
Low pass
XO
filter
C3MX2
.Channel #3
to GC/vol
Crossover frequency determined
by XO setting.
User defined when XO = 000
User defined mix coefficients
DocID11535 Rev 7 65/78
STA323W User-programma bl e se tt in gs
78
8.5 Calculating 24-bit signed fractional numbers from a dB value
The pre-scale, mixing, and post-scale functions of the STA323W use 24- bit signed fractional
multipliers to attenuate signals. These attenuations can also invert the phase and therefore
range in value from -1 to +1.
It is possible to calculate the coefficient to use for a given negative dB value (attenuation)
using the equations following.
non-inverting phase numbers 0 to +1:
coefficient = round(8388 607 * 10(dB/20))
inverting phase numbers 0 to -1:
coefficient = 16777216 - round(8388607 * 10(dB/20))
As can be seen by the preceding equations, the value for positive phase 0 dB is 0x7FFFFF
and the value for negative phase 0 dB is 0x800000.
8.6 User defined coefficient RAM
8.6.1 Coefficient address register 1 (address 0x16)
8.6.2 Coefficient b1data register bits 23:16 (address 0x17)
8.6.3 Coefficient b1data register bits 15:8 (address 0x18)
8.6.4 Coefficient b1data register bits 7:0 (address 0x19)
8.6.5 Coefficient b2 data register bits 23:16 (address 0x1A)
D7 D6 D5 D4 D3 D2 D1 D0
CFA7 CFA6 CFA5 CFA4 CFA3 CFA2 CFA1 CFA0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B15 C1B14 C1B13 C1B12 C1B11 C1B10 C1B9 C1B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B7 C1B6 C1B5 C1B4 C1B3 C1B2 C1B1 C1B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C2B23 C2B22 C2B21 C2B20 C2B19 C2B18 C2B17 C2B16
00000000
User-programmable settings STA323W
66/78 DocID11535 Rev 7
8.6.6 Coefficient b2 data register bits 15:8 (address 0x1B)
8.6.7 Coefficient b2 data register bits 7:0 (address 0x1C)
8.6.8 Coefficient a1 data register bits 23:16 (address 0x1D)
8.6.9 Coefficient a1 data register bits 15:8 (address 0x1E)
8.6.10 Coefficient a1 data register bits 7:0 (address 0x1F)
8.6.11 Coefficient a2 data register bits 23:16 (address 0x20)
8.6.12 Coefficient a2 data register bits 15:8 (address 0x21)
D7 D6 D5 D4 D3 D2 D1 D0
C2B15 C2B14 C2B13 C2B12 C2B11 C2B10 C2B9 C2B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C2B7 C2B6 C2B5 C2B4 C2B3 C2B2 C2B1 C2B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C1B23 C1B22 C1B21 C1B20 C1B19 C1B18 C1B17 C1B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C3B15 C3B14 C3B13 C3B12 C3B11 C3B10 C3B9 C3B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C3B7 C3B6 C3B5 C3B4 C3B3 C3B2 C3B1 C3B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C4B23 C4B22 C4B21 C4B20 C4B19 C4B18 C4B17 C4B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C4B15 C4B14 C4B13 C4B12 C4B11 C4B10 C4B9 C4B8
00000000
DocID11535 Rev 7 67/78
STA323W User-programma bl e se tt in gs
78
8.6.13 Coefficient a2 data register bits 7:0 (address 0x22)
8.6.14 Coefficient b0 data register bits 23:16 (address 0x23)
8.6.15 Coefficient b0 data register bits 15:8 (address 0x24)
8.6.16 Coefficient b0 data register bits 7:0 (address 0x25)
8.6.17 Coefficient write control register (address 0x26)
Coefficients for EQ, Mix and Scaling are handled internally in the STA323W via RAM.
Access to this RAM is available to the user via an I²C register interface . A collection of I²C
registers are dedicated to this function. The first register contains base address of the
coefficient: five set s of three regi sters store t he values of the 24 -bit coef ficients to be written
or that were read, and one contains bits used to contr ol the reading or writing of the
coefficients to RAM. The following are instructions for reading and writing coefficients.
D7 D6 D5 D4 D3 D2 D1 D0
C4B7 C4B6 C4B5 C4B4 C4B3 C4B2 C4B1 C4B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C5B23 C5B22 C5B21 C5B20 C5B19 C5B18 C5B17 C5B16
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C5B15 C5B14 C5B13 C5B12 C5B11 C5B10 C5B9 C5B8
00000000
D7 D6 D5 D4 D3 D2 D1 D0
C5B7 C5B6 C5B5 C5B4 C5B3 C5B2 C5B1 C5B0
00000000
D7 D6 D5 D4 D3 D2 D1 D0
Reserved Reserved Reserved Reserved RA R1 WA W1
00000000
User-programmable settings STA323W
68/78 DocID11535 Rev 7
8.7 Reading and writing coefficient s
8.7.1 Reading a coefficient from RAM
1. Write 8-bits of address to I²C register 0x16.
2. Write 1 to bit R1 (D2) of I²C register 0x26.
3. Read top 8-bits of coefficient in I²C address 0x17.
4. Read middle 8-bits of coefficient in I²C address 0x18.
5. Read bottom 8-bits of coefficient in I²C address 0x19.
8.7.2 Reading a set of coefficients from RAM
1. Write 8-bits of address to I²C register 0x16.
2. Write 1 to bit RA (D3) of I²C register 0x26.
3. Read top 8-bits of coefficient in I²C address 0x17.
4. Read middle 8-bits of coefficient in I²C address 0x18.
5. Read bottom 8-bits of coefficient in I²C address 0x19.
6. Read top 8-bits of coefficient b2 in I²C address 0x1A.
7. Read middle 8-bits of coefficient b2 in I²C address 0x1B.
8. Read bottom 8-bits of coefficient b2 in I²C address 0x1C.
9. Read top 8-bits of coefficient a1 in I²C address 0x1D.
10. Read middle 8-bits of coefficient a1 in I²C address 0x1E.
11. Read bottom 8-bits of coefficient a1 in I²C address 0x1F.
12. Read top 8-bit s of coefficient a2 in I²C addr ess 0x20.
13. Read middle 8-bits of coefficient a2 in I²C address 0x21.
14. Read bottom 8-bits of coefficient a2 in I²C address 0x22.
15. Read top 8-bit s of coefficient b0 in I²C addr ess 0x23.
16. Read middle 8-bits of coefficient b0 in I²C address 0x24.
17. Read bottom 8-bits of coefficient b0 in I²C address 0x25.
8.7.3 Writing a single coefficient to RAM
1. Write 8-bits of address to I²C register 0x16.
2. Write top 8-bits of coefficient in I²C address 0x17.
3. Write middle 8-bits of coefficient in I²C address 0x18.
4. Write bottom 8-bits of coefficient in I²C address 0x19.
5. Write 1 to W1 bit in I²C address 0x26.
DocID11535 Rev 7 69/78
STA323W User-programma bl e se tt in gs
78
8.7.4 Writing a set of coefficients to RAM
1. Write 8-bits of starting address to I²C register 0x16.
2. Write top 8-bits of coefficient b1 in I²C address 0x17.
3. Write middle 8-bits of coefficient b1 in I²C address 0x18.
4. Write bottom 8-bits of coefficient b1 in I²C address 0x19.
5. Write top 8-bits of coefficient b2 in I²C address 0x1A.
6. Write middle 8-bits of coefficient b2 in I²C address 0x1B.
7. Write bottom 8-bits of coefficient b2 in I²C address 0x1C.
8. Write top 8-bits of coefficient a1 in I²C address 0x1D.
9. Write middle 8-bits of coefficient a1 in I²C address 0x1E.
10. Write bottom 8-bits of coefficient a1 in I²C address 0x1F.
11. Write top 8-bits of coefficient a2 in I²C address 0x20.
12. Write middle 8-bits of coefficient a2 in I²C address 0x21.
13. Write bottom 8-bits of coefficient a2 in I²C address 0x22.
14. Write top 8-bits of coefficient b0 in I²C address 0x23.
15. Write middle 8-bits of coefficient b0 in I²C address 0x24.
16. Write bottom 8-bits of coefficient b0 in I²C address 0x25.
17. Write 1 to WA bit in I²C address 0x26.
The mechanism for writing a set of coefficients to RAM provides a method of simultaneously
updating the five coefficients corresponding to a given biquad (filter) to avoid possible
unpleasant acoustic side-effects. When using this techniqu e, the 8-bit ad dress specifies the
address of the biquad b1 coefficient (for example 0, 5, 10, 15, …, 45 decimal), and the
STA323W generates the RAM addresses as an offsets from this base value to write the
complete set of coefficient data.
Table 70. RAM block for biquads, mixing, and scaling
Index (decimal) Index (hex) Coefficient Default
0 0x00
Channel 1 - biquad 1
C1H10 (b1/2) 0x000000
1 0x01 C1H11 (b2) 0x000000
2 0x02 C1H12 (a1/2) 0x000000
3 0x03 C1H13 (a2) 0x000000
4 0x04 C1H14 (b0/2) 0x400000
5 0x05 Channel 1 - biquad 2 C1H20 0x00000 0
... ... ... ... ...
19 0x13 Chann el 1 - biquad 4 C1H44 0x400000
20 0x14 Channel 2 - biquad 1 C2H10 0x000000
21 0x15 C2H11 0x000000
…… ……
39 0x27 Chann el 2 - biquad 4 C2H44 0x400000
User-programmable settings STA323W
70/78 DocID11535 Rev 7
8.8 Variable max power correction (address 0x27-0x28)
The MPCC bits determine the 16 MSBs of the MPC compensation coefficient. This
coefficient is used in place of the default coefficient when MPCV = 1.
40 0x28
High-pass 2nd-order
filter
For XO = 000
C12H0 (b1/2) 0x000000
41 0x29 C12H1 (b2) 0x00000 0
42 0x2A C12H2 (a1/2) 0x000000
43 0x2B C12H3 (a2) 0x00 0000
44 0x2C C12H4 (b0/2) 0x400000
45 0x2D
Low-Pass 2nd-order filter
For XO = 000
C12L0 (b1/2) 0x000000
46 0x2E C12L1 (b2) 0x000000
47 0x2F C12L2 (a1/2) 0x000000
48 0x30 C12L3 (a2) 0x000000
49 0x31 C12L4 (b0/2) 0x400000
50 0x32 Channel 1 - post scale C1PreS 0x7FFFFF
51 0x33 Channel 2 - post scale C2PreS 0x7FFFFF
52 0x34 Channel 1 - post scale C1PstS 0x7FFFFF
53 0x35 Channel 2 - post scale C2PstS 0x7FFFFF
54 0x36 Channel 3 - post scale C3PstS 0x7FFFFF
55 0x37 Thermal warning - post
scale TWPstS 0x5A9DF7
56 0x38 Channel 1 - mix 1 C1MX1 0x7FFFFF
57 0x39 Channel 1 - mix 2 C1MX2 0x000000
58 0x3A Channel 2 - mix 1 C2MX1 0x000000
59 0x3B Channel 2 - mix 2 C2MX2 0x7FFFFF
60 0x3C Channel 3 - mix 1 C3MX1 0x400000
61 0x3D Channel 3 - mix 2 C3MX2 0x400000
62 0x3E Unused
63 0x3F Unused
Table 70. RAM block for biquads, mixing, and scaling (continued)
Index (decimal) Index (hex) Coefficient Default
D7 D6 D5 D4 D3 D2 D1 D0
MPCC15 MPCC14 MPCC13 MPCC12 MPCC11 MPCC10 MPCC9 MPCC8
00101101
MPCC7 MPCC6 MPCC5 MPCC4 MPCC3 MPCC2 MPCC1 MPCC0
11000000
DocID11535 Rev 7 71/78
STA323W User-programma bl e se tt in gs
78
8.9 Fault detect recovery (address 0x2B - 0x2C)
FDRC bits specify the 16-bit fault detect recovery time delay. When FAULT is active, the
TRISTATE output immediately goes low and is held low for the time period specified by this
constant. A const ant value of 0x0001 in this r egister is a pproximately 0. 083 ms. The default
value of 0x000C specifies approximately 0.1 ms.
8.10 Status indicator register (address 0x2D)
STATUS register bits serve the purpose of communicating the detected error or warning
condition to the user. This is a read-only register and writing to this register would not be of
any consequence.
8.10.1 Thermal warning indicator
If the power st age ther mal operating cond itions are exceeded , the thermal warn ing indicator
transmits a signal to the dig ital logic block to initiate a corrective procedure. This register bit
is set to 0 to indicate a thermal warning and it reverts back to its default state as soon as the
cause of the ther ma l war nin g has be e n corre cted.
8.10.2 Fault detect indicator
As soon as the power stage issues a Fault error signal, thereby initiating the Fault recovery
procedure described in Section 8.9, this register bit is set to 0 to indicate the error to the
user. As soon as the fault condition (over-current or thermal) is corrected, this bit is reset
back to its default state.
D7 D6 D5 D4 D3 D2 D1 D0
FRDC15 FDRC14 FDRC13 FDRC12 FDRC11 FDRC10 FDRC9 FDRC8
00000000
FDRC7 FDRC6 FDRC5 FDRC4 FDRC3 FDRC2 FDRC1 FDRC0
00001100
D7 D6 D5 D4 D3 D2 D1 D0
PLULL Reserved Reserved Reserved Reserved Reserved FAULT TWARN
00000011
Table 71. Thermal warning indicator
Bit R/W RST Name Description
0RO1RWRAN
0: thermal warning dete cted
1: normal operation (n o thermal warning)
Table 72. Fault detect indicat or
Bit R/W RST Name Description
1RO1FAULT 0: fault issued from the power stage
1: normal operation (n o fault)
User-programmable settings STA323W
72/78 DocID11535 Rev 7
8.10.3 PLL unlock indicator
Under normal conditions (with the correct clock) the PLL is locked into an internal clocking
frequency . However, if the clock is insufficient or if it is abruptly lost, the PL L lock state is lost
and this information is relayed to the user via setting the PLLUL bit of the Status register
to 1. As soon as the PLL reverts back to a locked state, this bit is set to 0.
Table 73. PLL unlock indicator
Bit R/W RST Name Description
7RO0PLLUL 0: normal operation (PLL is in a locked state)
1: PLL unlock is detected (due to probable clock loss)
DocID11535 Rev 7 73/78
STA323W Package information
78
9 Package information
In order to meet environmental requirements, ST offers these devices in different grades of
ECOPACK® packages, depending on their level of environmental compliance. ECOPACK®
specifications, grade definitions and product status are available at: www.st.com.
ECOPACK® is an ST trademark.
Package information STA323W
74/78 DocID11535 Rev 7
Figure 51. PowerSO-36 slug down outline drawing
URE 1:
0096119
rev D
DocID11535 Rev 7 75/78
STA323W Package information
78
Table 74. PowerSO-36 slug down dimensions
Symbol mm inch
Min. Typ. Max. Min. Typ. Max.
A- - 3.60 - -0.142
a1 0.10 - 0.30 .004 - .012
a2 - - 3.30 - - 0.130
a3 0 - 0.10 0 - .004
b 0.22 - 0.38 0.009 - 0.015
c 0.23 - 0.32 0.009 - 0.013
D 15.80 - 16.00 0.622 - 0.630
D1 9.40 - 9.80 0.370 - 0.386
E 13.90 - 14.50 0.547 - 0.571
E1 10.90 - 11.10 0.429 - 0.437
E2--2.90--0.114
E3 5.80 - 6.20 0.228 - 0.244
e - 0.65 - - 0.026 -
e3 - 11.05 - - 0.435 -
G0 - 0.10 0 -0.004
H 15.50 - 15.90 0.610 - 0.626
h- - 1.10 - -0.043
L 0.80 - 1.10 0.031 - 0.043
M 2.25 - 2.60 0.089 - 0.102
N - - 10 degrees - - 10 degrees
R - 0.30 - - 0.012 -
s - - 8 degrees - - 8 degrees
Trademarks and other acknowledgements STA323W
76/78 DocID11535 Rev 7
10 Trademarks and other acknowledgements
DDX is a registered trademark of Apogee Technology Inc.
AutoModes is a trademark of Apogee Technology Inc.
ECOPACK is a registered trademark of STMicroelectronics.
DocID11535 Rev 7 77/78
STA323W Revision history
78
11 Revision history
Table 75. Document revision history
Date Revision Changes
01-Jul-2005 1 Initial release.
02-Jan-2006 2 Modified configuration Register A (addr 0x00).
02-Feb-2006 3 Modified the ordering part numbers.
08-Jun-2006 4 Added new chapters.
Updated Electrical characteristics curves
Modified the minimum value of Vcc parameter.
15-Nov-2006 5 Update into latest template.
22-May-2008 6 Updated pin 1 connection.
General presentation revision.
13-Feb-2014 7 Updated order code Table 1 on page 1.
STA323W
78/78 DocID11535 Rev 7
Please Read Carefully:
Information in this document is provided solely in connection with ST products. STMicroelectronics NV and its subsidiaries (“ST”) reserve the
right to make changes, corrections, modifications or improvements, to this document, and the products and services described herein at any
time, without notice.
All ST products are sold purs uant to ST’s terms and conditions of sale.
Purchasers are so lel y res ponsibl e fo r the c hoic e, se lecti on an d use o f the S T prod ucts and s ervic es des crib ed he rein , and ST assumes n o
liability whatsoever rel ating to the choice, selection or use of the ST products and services described herein.
No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted under this document. If any part of this
document ref er s to an y t hird pa rty p ro duc ts or se rv ic es it sh all n ot be deem ed a li ce ns e gran t by ST fo r the use of su ch t hir d party products
or services, or any intel lectual pro perty conta ined therei n or considere d as a warranty covering the use in any mann er whatsoev er of such
third party products or se rvices or any intellectual property cont ained therein.
UNLESS OTHERWISE SET FORTH IN ST’S TERMS AND CONDITIONS OF SALE ST DISCLAIMS ANY EXPRESS OR IMPLIED
WARRANTY WITH RESPECT TO THE USE AND/OR SALE OF ST PRODUCTS INCLUDING WITHOUT LIMITATION IMPLIED
WARRANTIES OF MERCHANTAB ILIT Y, FITNESS F OR A PARTICUL AR PURPOS E (AND THEIR E QUIVALENTS UNDER THE LAWS
OF ANY JURISDICTION), OR INFRINGEMENT OF ANY PAT ENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.
ST PRODUCTS ARE NOT DESIGNED OR AUTHORIZED FOR USE IN: (A) SAFETY CRITICAL APPLICATIONS SUCH AS LIFE
SUPPORTING, ACTIVE IMPLANTED DEVICES OR SYSTEMS WITH PRODUCT FUNCTIONAL SAFETY REQUIREMENTS; (B)
AERONAUTIC APPLICATIONS; (C) AUTOMOTIVE APPLICATIONS OR ENVIRONMENTS, AND/OR (D) AEROSPACE APPLICATIONS
OR ENVIRONMENTS. WHERE ST PRODUCTS ARE NOT DESIGNED FOR SUCH USE, THE PURCHASER SHALL USE PRODUCTS AT
PURCHASER’S SOLE RISK, EVEN IF ST HAS BEEN INFORMED IN WRITING OF SUCH USAGE, UNLESS A PRODUCT IS
EXPRESSLY DESIGNATED BY ST AS BEING INTENDED FOR “AUTOMOTIVE, AUTOMOTIVE SAFETY OR MEDICAL” INDUSTRY
DOMAINS ACCORDING TO ST PRODUCT DESIGN SPECIFICATIONS. PRODUCTS FORMALLY ESCC, QML OR JAN QUALIFIED ARE
DEEMED SUITABLE FOR USE IN AEROSPACE BY THE CORRESPONDING GOVERNMENTAL AGENCY.
Resale of ST products with provisions different from the statements and/or technical features set forth in this document shall immediately void
any warranty granted by ST for the ST product or service described herein and shall not create or extend in any manner whatsoever, any
liability of ST.
ST and the ST lo go are trademarks or registered trademarks of ST in various coun tries.
Information in this docu ment supersedes and replaces al l information previously supplied.
The ST logo is a registered trademark of STMicroelectronics. All other names are the property of their respective owners.
© 2014 STMicroelectronics - All rights reserved
STMicroele ctr on ic s gr oup of companies
Australia - Belgium - Brazil - Canada - China - Czec h Republic - Finland - France - German y - Hong Kong - India - Israel - Ital y - Japan -
Malaysia - Malta - Morocco - Philippines - Singapore - Spain - Swed en - Switzerland - United Kingdom - Uni ted States of Ameri ca
www.st.com
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
STMicroelectronics:
STA323W13TR