TLV2422, TLV2422A, TLV2422Y
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER 1997 – REVISED SEPTEMBER 1999
1
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
Output Swing Includes Both Supply Rails
Extended Common-Mode Input Voltage
Range ...0 V to 4.5 V (Min) with 5-V Single
Supply
No Phase Inversion
Low Noise . . . 18 nV/Hz Typ at f = 1 kHz
Low Input Offset Voltage
950 µV Max at TA = 25°C (TLV2422A)
Low Input Bias Current ...1 pA Typ
Micropower Operation ...50 µA Per
Channel
600- Output Drive
Available in Q-Temp Automotive
HighRel Automotive Applications
Configuration Control / Print Support
Qualification to Automotive Standards
description
The TLV2422 and TLV2422A are dual low-voltage
operational amplifiers from Texas Instruments.
The common-mode input voltage range for this
device has been extended over the typical CMOS
amplifiers making them suitable for a wide range
of applications. In addition, the devices do not
phase invert when the common-mode input is
driven to the supply rails. This satisfies most
design requirements without paying a premium
for rail-to-rail input performance. They also exhibit
rail-to-rail output performance for increased
dynamic range in single- or split-supply
applications. This family is fully characterized at
3-V and 5-V supplies and is optimized for
low-voltage operation. The TLV2422 only requires
50 µA of supply current per channel, making it
ideal for battery-powered applications. The
TLV2422 also has increased output drive over
previous rail-to-rail operational amplifiers and can
drive 600- loads for telecom applications.
Other members in the TLV2422 family are the
high-power, TLV2442, and low-power, TLV2432,
versions.
The TLV2422, exhibiting high input impedance and low noise, is excellent for small-signal conditioning for
high-impedance sources, such as piezoelectric transducers. Because of the micropower dissipation levels and
low-voltage operation, these devices work well in hand-held monitoring and remote-sensing applications. In
addition, the rail-to-rail output feature with single- or split-supplies makes this family a great choice when
interfacing with analog-to-digital converters (ADCs). For precision applications, the TL V2422A is available with
a maximum input offset voltage of 950 µV.
If the design requires single operational amplifiers, see the TI TLV2211/21/31. This is a family of rail-to-rail output
operational amplifiers in the SOT-23 package. Their small size and low power consumption, make them ideal
for high density, battery-powered equipment.
Copyright 1999, Texas Instruments Incorporated
PRODUCTION DATA information is current as of publication date.
Products conform to specifications per the terms of Texas Instruments
standard warranty. Production processing does not necessarily include
testing of all parameters.
Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of
Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.
Advanced LinCMOS is a trademark of Texas Instruments Incorporated.
Figure 1
VOH– High-Level Output Voltage – V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
0
5
2
0816243240
IOH – High-Level Output Current – mA
4
1
3
412202836
TA = 85°C
TA = 125°C
TA = –40°C
TA = 25°C
VDD = 5 V
On products compliant to MIL-STD-883, Class B, all parameters are
tested unless otherwise noted. On all other products, production
processing does not necessarily include testing of all parameters.
TLV2422, TLV2422A, TLV2422Y
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER 1997 – REVISED SEPTEMBER 1999
2POST OFFICE BOX 655303 DALLAS, TEXAS 75265
AVAILABLE OPTIONS
PACKAGED DEVICES
TAVIOmax
AT 25°CSMALL
OUTLINE
(D)
CHIP CARRIER
(FK) CERAMIC DIP
(JG) TSSOP
(PW)
CERAMIC
FLAT PACK
(U)
CHIP FORM
(Y)
0°C to 70°C2.5 mV TLV2422CD TLV2422CPWLE
40
°
Cto85
°
C
950 µV TLV2422AID TLV2422AIPWLE
40°C
to
85°C
µ
2.5 mV TLV2422ID
40
°
Cto125
°
C
950 µV TLV2422AQD TLV2422Y
40°C
to
125°C
µ
2.5 mV TLV2422QD
–55
°
Cto125
°
C
950 µV TLV2422AMFK TLV2422AMJG TLV2422AMU
55°C
to
125°C
µ
2 mV TLV2422MFK TLV2422MJG TLV2422MU
The D packages are available taped and reeled. Add R suffix to device type (e.g., TL V2422CDR). The PW package is available only left-end taped
and reeled. Chips are tested at 25°C.
D OR JG PACKAGE
(TOP VIEW)
1
2
3
4
8
7
6
5
1OUT
1IN–
1IN+
VDD /GND
VDD+
2OUT
2IN
2IN+
PW PACKAGE
(TOP VIEW)
NC
VDD +
2OUT
2IN
2IN +
NC
1OUT
1IN
1IN +
VDD/GND
1
2
3
4
5
10
9
8
7
6
U PACKAGE
(TOP VIEW)
3212019
910111213
4
5
6
7
8
18
17
16
15
14
NC
2OUT
NC
2IN
NC
NC
1IN
NC
1IN+
NC
NC
1OUT
NC
2IN+
NC NC
NC
NC VDD+
VDD–
FK PACKAGE
(TOP VIEW)
/GND
NC – No internal connection
1
2
3
4
8
7
6
5
1OUT
1IN
1IN+
VDD/GND
VDD+
2OUT
2IN
2IN+
NC – No internal connection
TLV2422, TLV2422A
RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER 1997 – REVISED SEPTEMBER 1999
Advanced LinCMOS
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
3
equivalent schematic (each amplifier)
Q27
R9
Q29Q22
Q23
Q26
Q25
Q24
Q31 Q34 Q36
Q32
Q33 Q35
Q37
D1
Q30
R10
VB3
VB2
VB4
VDD+
VDD–/GND
OUT
R8
R1 R2
Q2 Q5
Q1 Q4
Q3
Q12
Q11
Q10Q6
Q7
Q8
Q9
VB3
VB4
C1
C2
C3
R5
R6
Q13 Q15
Q16
Q17
Q14
Q19
Q18
Q20
Q21
R7
R3 R4
VB2
IN+
IN–
VB1
COMPONENT
COUNT
Transistors
Diodes
Resistors
Capacitors
69
5
26
6
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
4POST OFFICE BOX 655303 DALLAS, TEXAS 75265
absolute maximum ratings over operating free-air temperature range (unless otherwise noted)
Supply voltage, VDD (see Note 1) 12 V. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Differential input voltage, VID (see Note 2) ±VDD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input voltage, VI (any input, see Note 1): C and I suffix 0.3 V to VDD
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Input current, II (each input) ±5 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Output current, IO ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current into VDD+ ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Total current out of VDD ±50 mA. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Duration of short-circuit current at (or below) 25°C (see Note 3) unlimited. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Continuous total power dissipation See Dissipation Rating Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Operating free-air temperature range, TA: C suffix 0°C to 70°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
I suffix 40°C to 85°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Q suffix 40°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
M suffix 55°C to 125°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Storage temperature range, Tstg –65°C to 150°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds 260°C. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Stresses beyond those listed under “absolute maximum ratings” may cause permanent damage to the device. These are stress ratings only , and
functional operation of the device at these or any other conditions beyond those indicated under “recommended operating conditions” is not
implied. Exposure to absolute-maximum-rated conditions for extended periods may af fect device reliability.
NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between VDD+ and VDD .
2. Differential voltages are at IN+ with respect to IN–. Excessive current flows if input is brought below VDD – 0.3 V.
3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum
dissipation rating is not exceeded.
DISSIPATION RATING TABLE
PACKAGE
T
A
25°CDERATING F ACTOR T
A
= 70°C T
A
= 85°C T
A
= 125°C
PACKAGE
A
POWER RATING ABOVE TA = 25°C
A
POWER RATING
A
POWER RATING
A
POWER RATING
D725 mW 5.8 mW/°C464 mW 377 mW 145 mW
FK
JG
1375 mW
1050 mW
11.0 mW/°C
8 4 mW/
°
C
880 mW
672 mW
715 mW
546 mW
275 mW
210 mW
JG
PW
1050
mW
525 mW
8
.
4
mW/°C
4.2 mW/°C
672
mW
336 mW
546
mW
273 mW
210
mW
105 mW
PW
U
525
mW
675 mW
4.2
mW/ C
5.4 mW/°C
336
mW
432 mW
273
mW
350 mW
105
mW
135 mW
recommended operating conditions
C SUFFIX I SUFFIX Q SUFFIX M SUFFIX
UNIT
MIN MAX MIN MAX MIN MAX MIN MAX
UNIT
Supply voltage, VDD±2.7 10 2.7 10 2.7 10 2.7 10 V
Input voltage range, VIVDD VDD+0.8 VDD VDD+0.8 VDD VDD+0.8 VDD VDD+0.8 V
Common-mode input voltage,
VIC VDD VDD+0.8 VDD VDD+0.8 VDD VDD+0.8 VDD VDD+0.8 V
Operating free-air temperature,
TA0 70 –40 85 –40 125 –55 125 °C
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
5
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
TEST CONDITIONS
T
TLV2422C
UNIT
TEST
CONDITIONS
T
A
MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
25°C 300 2000
µV
V
IO
Inp
u
t
offset
v
oltage
Full range 2500 µ
V
αVIO
Tem
p
erature coefficient of in
p
ut offset voltage
25°C
2
µV/
°
C
αVIO
Temperat
u
re
coefficient
of
inp
u
t
offset
v
oltage
to 70°C
2
µ
V/°C
Input offset voltage long-term drift (see Note 4) VIC = 0,
VO=0
VDD± = ±2.5 V,
RS=50
25°C 0.003 µV/mo
IIO
In
p
ut offset current
VO
=
0
,
RS
=
50
25°C 0.5 p
A
I
IO
Inp
u
t
offset
c
u
rrent
Full range 150
pA
IIB
In
p
ut bias current
25°C 1 p
A
I
IB
Inp
u
t
bias
c
u
rrent
Full range 150
pA
VICR
Common mode in
p
ut voltage range
|VIO|5mV
RS=50
25°C0
to
2.5
–0.25
to
2.75
V
V
ICR
Common
-
mode
inp
u
t
v
oltage
range
|V
IO
|
5
mV
,
R
S =
50
Full range 0
to
2.2
V
IOH = –100 µA 25°C 2.97
VOH High-level output voltage
IOH = 500 µA
25°C 2.75 V
I
OH = –
500
µ
A
Full range 2.5
VIC = 0, IOL = 100 µA 25°C 0.05
VOL Low-level output voltage
VIC =0
IOL = 250 µA
25°C 0.2 V
V
IC =
0
,
I
OL =
250
µ
A
Full range 0.5
V25V
R10k
25°C 6 10
AVD Large-signal differential voltage amplification VIC = 2.5 V,
VO=1Vto2V
R
L =
10
k
Full range 3V/mV
VD
gg g
VO
=
1
V
to
2
V
RL = 1 M25°C 700
ri(d) Differential input resistance 25°C1012
ri(c) Common-mode input resistance 25°C1012
ci(c) Common-mode input capacitance f = 10 kHz 25°C 8 pF
zoClosed-loop output impedance f = 100 kHz, AV = 10 25°C 130
CMRR
Common mode rejection ratio
V
IC
= 0 to 2.5 V, V
O
= 1.5 V, 25°C 70 83
dB
CMRR
Common
-
mode
rejection
ratio
IC ,O,
RS = 50 Full range 70
dB
kSVR
Su
pp
ly voltage rejection ratio (VDD/VIO)
V
DD
= 2.7 V to 8 V, 25°C 80 95
dB
k
SVR
S
u
ppl
y-v
oltage
rejection
ratio
(V
DD
/V
IO
)
DD ,
VIC = VDD/2, No load Full range 80
dB
IDD
Su
pp
ly current
VO=15V
No load
25°C 100 150
µA
I
DD
S
u
ppl
y
c
u
rrent
V
O =
1
.
5
V
,
No
load
Full range 175 µ
A
Full range is 0°C to 70°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input of fset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
6POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLV2422I TLV2422AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
25°C 300 2000 300 950
µV
V
IO
Inp
u
t
offset
v
oltage
Full range 2500 1500 µ
V
αVIO
Temperature
coefficient of in
p
ut
25°C
2
2
µV/
°
C
αVIO coe
ffi
c
i
en
t
o
f
i
npu
t
offset voltage to 70°C
2
2
µ
V/°C
Input offset voltage
long-term drift (see
Note 4)
VIC = 0,
VO = 0, VDD± = ±2.5 V,
RS = 50 25°C 0.003 0.003 µV/mo
IIO
In
p
ut offset current
25°C 0.5 0.5 p
A
I
IO
Inp
u
t
offset
c
u
rrent
Full range 150 150
pA
IIB
In
p
ut bias current
25°C 1 1 p
A
I
IB
Inp
u
t
bias
c
u
rrent
Full range 150 150
pA
VICR
Common-mode input
|VIO|5mV
RS=50
25°C0
to
2.5
–0.25
to
2.75
0
to
2.5
–0.25
to
2.75
V
V
ICR voltage range
|V
IO
|
5
mV
,
R
S =
50
Full range 0
to
2.2
0
to
2.2
V
Hi h l l t t
IOH = –100 µA 25°C 2.97 2.97
VOH High-level output
voltage
IOH = 500 µA
25°C 2.75 2.75 V
voltage
I
OH = –
500
µ
A
Full range 2.5 2.5
Llltt
VIC = 0, IOL = 100 µA 25°C 0.05 0.05
VOL Low-level output
voltage
VIC =0
IOL = 250 µA
25°C 0.2 0.2 V
voltage
V
IC =
0
,
I
OL =
250
µ
A
Full range 0.5 0.5
Large
-
signal
V25V
R10k
25°C 6 10 6 10
AVD
Large signal
differential voltage VIC = 2.5 V,
VO=1Vto2V
R
L =
10
k
Full range 3 3 V/mV
VD
amplification
VO
=
1
V
to
2
V
RL = 1 M25°C 700 700
ri(d) Differential input
resistance 25°C1012 1012
ri(c) Common-mode input
resistance 25°C1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz 25°C 8 8 pF
zoClosed-loop output
impedance f = 100 kHz, AV = 10 25°C 130 130
CMRR
Common-mode V
IC
= 0 to 2.5 V, V
O
= 1.5 V, 25°C 70 83 70 83
dB
CMRR
rejection ratio
IC ,O,
RS = 50 Full range 70 70
dB
kSVR
Supply-voltage
rejection ratio
V
DD
= 2.7 V to 8 V, 25°C 80 95 80 95
dB
k
SVR re
j
ec
ti
on ra
ti
o
(VDD/VIO)
DD ,
VIC = VDD/2, No load Full range 80 80
dB
IDD
Su
pp
ly current
VO=15V
No load
25°C 100 150 100 150
µA
I
DD
S
u
ppl
y
c
u
rrent
V
O =
1
.
5
V
,
No
load
Full range 175 175 µ
A
Full range is – 40°C to 85°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input of fset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
7
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER TEST CONDITIONS T
A
TLV2422C, TL V2422I
TLV2422AI UNIT
A
MIN TYP MAX
V 15Vto35V
R10k
25°C 0.01 0.02
SR Slew rate at unity gain
V
O =
1
.
5
V
to
3
.
5
V
,
CL = 100 pF
R
L =
10
k
,Full
range 0.008 V/µs
V
Equivalent in
p
ut noise voltage
f = 10 Hz 25°C 100
nV/Hz
V
n
Eq
u
i
v
alent
inp
u
t
noise
v
oltage
f = 1 kHz 25°C 23 n
V/H
z
VN(PP)
Peak to
p
eak equivalent in
p
ut noise voltage
f = 0.1 Hz to 1 Hz 25°C 2.7
µV
V
N(PP)
Peak
-
to
-
peak
eq
u
i
v
alent
inp
u
t
noise
v
oltage
f = 0.1 Hz to 10 Hz 25°C 4 µ
V
InEquivalent input noise current 25°C 0.6 fAHz
THD+N
Total harmonic distortion
p
lus noise
VO = 0.5 V to 2.5 V,
f 1 kHz
AV = 1
25
°
C
0.25%
THD
+
N
Total
harmonic
distortion
pl
u
s
noise
f
=
1
kH
z,
RL = 10 kAV = 10
25°C
1.8%
Gain-bandwidth product f = 10 kHz,
CL = 100 pFRL = 10 k,25°C 46 kHz
BOM Maximum output-swing bandwidth VO(PP) = 1 V,
RL = 10 k,AV = 1,
CL = 100 pF25°C 8.3 kHz
AV
=–
1,
To 0 1%
86
t
Settling time
AV
=
1
,
Step = 0.5 V to 2.5 V,
To
0
.
1%
25
°
C
8
.
6
µs
t
s
Settling
time
,
RL = 10 k,
To 0 01%
25°C
16
µ
s
L
CL = 100 pF
To
0
.
01%
16
φmPhase margin at unity gain
RL=10k‡,
CL= 100
p
F
25°C62°
Gain margin
R
L =
10
k
,
C
L =
100
pF
25°C11 dB
Full range for the C version is 0°C to 70°C. Full range for the I version is –40°C to 85°C.
Referenced to 2.5 V
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
8POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 3 V (unless otherwise noted)
PARAMETER TEST CONDITIONS T
A
TLV2422Q,
TLV2422M TLV2422AQ,
TLV2422AM UNIT
A
MIN TYP MAX MIN TYP MAX
VIO
In
p
ut offset voltage
25°C 300 2000 300 950
µV
V
IO
Inp
u
t
offset
v
oltage
Full range 2500 1800 µ
V
αVIO
Temperature
coefficient of in
p
ut
Full range
2
2
µV/
°
C
αVIO coe
ffi
c
i
en
t
o
f
i
npu
t
offset voltage
F
u
ll
range
2
2
µ
V/°C
Input offset voltage
long-term drift (see
Note 4)
VIC = 0,
VO = 0, VDD± = ±1.5 V,
RS = 50 25°C 0.003 0.003 µV/mo
IIO
In
p
ut offset current
25°C 0.5 0.5 p
A
I
IO
Inp
u
t
offset
c
u
rrent
Full range 150 150
pA
IIB
In
p
ut bias current
25°C 1 1 p
A
I
IB
Inp
u
t
bias
c
u
rrent
Full range 300 300
pA
VICR
Common-mode input
|VIO|5mV
RS=50
25°C0
to
2.5
–0.25
to
2.75
0
to
2.5
–0.25
to
2.75
V
V
ICR voltage range
|V
IO
|
5
mV
,
R
S =
50
Full range 0
to
2.2
0
to
2.2
V
Hi h l l t t
IOH = –100 µA 25°C 2.97 2.97
VOH High-level output
voltage
IOH = 500 µA
25°C 2.75 2.75 V
voltage
I
OH = –
500
µ
A
Full range 2.5 2.5
Llltt
VIC = 0, IOL = 100 µA 25°C 0.05 0.05
VOL Low-level output
voltage
VIC =0
IOL = 250 µA
25°C 0.2 0.2 V
voltage
V
IC =
0
,
I
OL =
250
µ
A
Full range 0.5 0.5
Large
-
signal
V15V
RL10 k
25°C 6 10 6 10
AVD
Large signal
differential voltage VIC = 1.5 V,
VO=1Vto2V
R
L =
10
k
Full range 2 2 V/mV
VD
amplification
VO
=
1
V
to
2
V
RL = 1 M25°C 700 700
ri(d) Differential input
resistance 25°C1012 1012
ri(c) Common-mode input
resistance 25°C1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz 25°C 8 8 pF
zoClosed-loop output
impedance f = 100 kHz, AV = 10 25°C 130 130
CMRR
Common-mode V
IC
= V
ICR
min, V
O
= 1.5 V, 25°C 70 83 70 83
dB
CMRR
rejection ratio
IC ICR ,O,
RS = 50 Full range 70 70
dB
kSVR
Supply-voltage
rejection ratio
V
DD
= 2.7 V to 8 V, 25°C 80 95 80 95
dB
k
SVR re
j
ec
ti
on ra
ti
o
(VDD/VIO)
DD ,
VIC = VDD/2, No load Full range 80 80
dB
IDD
Su
pp
ly current
VO=15V
No load
25°C 100 150 100 150
µA
I
DD
S
u
ppl
y
c
u
rrent
V
O =
1
.
5
V
,
No
load
Full range 175 175 µ
A
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 1.5 V
NOTE 4: Typical values are based on the input of fset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
9
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 3 V
PARAMETER TEST CONDITIONS TA
TLV2422Q,
TLV2422M,
TLV2422AQ,
TLV2422AM UNIT
MIN TYP MAX
V 11Vto19V
R10k
25°C 0.01 0.02
SR Slew rate at unity gain
V
O =
1
.
1
V
to
1
.
9
V
,
CL = 100 pF
R
L =
10
k
,Full
range 0.008 V/µs
V
Equivalent in
p
ut noise voltage
f = 10 Hz 25°C 100
nV/Hz
V
n
Eq
u
i
v
alent
inp
u
t
noise
v
oltage
f = 1 kHz 25°C 23 n
V/H
z
VN(PP)
Peak to
p
eak equivalent in
p
ut noise voltage
f = 0.1 Hz to 1 Hz 25°C 2.7
µV
V
N(PP)
Peak
-
to
-
peak
eq
u
i
v
alent
inp
u
t
noise
v
oltage
f = 0.1 Hz to 10 Hz 25°C 4 µ
V
InEquivalent input noise current 25°C 0.6 fAHz
THD+N
Total harmonic distortion
p
lus noise
VO = 0.5 V to 2.5 V,
f 1 kHz
AV = 1
25
°
C
0.25%
THD
+
N
Total
harmonic
distortion
pl
u
s
noise
f
=
1
kH
z,
RL = 10 kAV = 10
25°C
1.8%
Gain-bandwidth product f = 10 kHz,
CL = 100 pFRL = 10 k,25°C 46 kHz
BOM Maximum output-swing bandwidth VO(PP) = 1 V,
RL = 10 k,AV = 1,
CL = 100 pF25°C 8.3 kHz
AV
=–
1,
To 0 1%
86
t
Settling time
AV
=
1
,
Step = 0.5 V to 2.5 V,
To
0
.
1%
25
°
C
8
.
6
µs
t
s
Settling
time
,
RL = 10 k,
To 0 01%
25°C
16
µ
s
L
CL = 100 pF
To
0
.
01%
16
φmPhase margin at unity gain
RL=10k‡,
CL= 100
p
F
25°C62°
Gain margin
R
L =
10
k
,
C
L =
100
pF
25°C11 dB
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 1.5 V
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
10 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
TEST CONDITIONS
T
TLV2422C
UNIT
TEST
CONDITIONS
T
A
MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
25°C 300 2000
µV
V
IO
Inp
u
t
offset
v
oltage
Full range 2500 µ
V
αVIO
Tem
p
erature coefficient of in
p
ut offset voltage
25°C
2
µV/
°
C
αVIO
Temperat
u
re
coefficient
of
inp
u
t
offset
v
oltage
to 70°C
2
µ
V/°C
Input offset voltage long-term drift (see Note 4) VIC = 0,
VO=0
VDD± = ±2.5 V,
RS=50
25°C 0.003 µV/mo
IIO
In
p
ut offset current
VO
=
0
,
RS
=
50
25°C 0.5 p
A
I
IO
Inp
u
t
offset
c
u
rrent
Full range 150
pA
IIB
In
p
ut bias current
25°C 1 p
A
I
IB
Inp
u
t
bias
c
u
rrent
Full range 150
pA
VICR
Common mode in
p
ut voltage range
|VIO|5mV
RS=50
25°C0
to
4.5
–0.25
to
4.75
V
V
ICR
Common
-
mode
inp
u
t
v
oltage
range
|V
IO
|
5
mV
,
R
S =
50
Full range 0
to
4.2
V
IOH = –100 µA 25°C 4.97
VOH High-level output voltage
IOH =1mA
25°C 4.5 4.75 V
I
OH = –
1
mA
Full range 4.25
VIC = 2.5 V, IOL = 100 µA 25°C 0.04
VOL Low-level output voltage
VIC =25V
IOL = 500 µA
25°C 0.15 V
V
IC =
2
.
5
V
,
I
OL =
500
µ
A
Full range 0.5
V25V
R10k
25°C 8 12
AVD Large-signal differential voltage amplification VIC = 2.5 V,
VO=1Vto4V
R
L =
10
k
Full range 5V/mV
VD
gg g
VO
=
1
V
to
4
V
RL = 1 M25°C 1000
ri(d) Differential input resistance 25°C1012
ri(c) Common-mode input resistance 25°C1012
ci(c) Common-mode input capacitance f = 10 kHz 25°C 8 pF
zoClosed-loop output impedance f = 100 kHz, AV = 10 25°C 130
CMRR
Common mode rejection ratio
V
IC
= 0 to 4.5 V, V
O
= 2.5 V, 25°C 70 90
dB
CMRR
Common
-
mode
rejection
ratio
IC ,O,
RS = 50 Full range 70
dB
kSVR
Su
pp
ly voltage rejection ratio (VDD/VIO)
V
DD
= 4.4 V to 8 V, 25°C 80 95
dB
k
SVR
S
u
ppl
y-v
oltage
rejection
ratio
(V
DD
/V
IO
)
DD ,
VIC = VDD/2, No load Full range 80
dB
IDD
Su
pp
ly current
VO=25V
No load
25°C 100 150
µA
I
DD
S
u
ppl
y
c
u
rrent
V
O =
2
.
5
V
,
No
load
Full range 175 µ
A
Full range is 0°C to 70°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input of fset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
11
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER
TEST CONDITIONS
T
TLV2422I TLV2422AI
UNIT
PARAMETER
TEST
CONDITIONS
T
A
MIN TYP MAX MIN TYP MAX
UNIT
VIO
In
p
ut offset voltage
25°C 300 2000 300 950
µV
V
IO
Inp
u
t
offset
v
oltage
Full range 2500 1500 µ
V
αVIO
Temperature
coefficient of in
p
ut
25°C
2
2
µV/
°
C
αVIO coe
ffi
c
i
en
t
o
f
i
npu
t
offset voltage to 70°C
2
2
µ
V/°C
Input offset voltage
long-term drift (see
Note 4)
VIC = 0,
VO = 0, VDD± = ±2.5 V,
RS = 50 25°C 0.003 0.003 µV/mo
IIO
In
p
ut offset current
25°C 0.5 0.5 p
A
I
IO
Inp
u
t
offset
c
u
rrent
Full range 150 150
pA
IIB
In
p
ut bias current
25°C 1 1 p
A
I
IB
Inp
u
t
bias
c
u
rrent
Full range 150 150
pA
VICR
Common-mode input
|VIO|5mV
RS=50
25°C0
to
4.5
–0.25
to
4.75
0
to
4.5
–0.25
to
4.75
V
V
ICR voltage range
|V
IO
|
5
mV
,
R
S =
50
Full range 0
to
4.2
0
to
4.2
V
Hi h l l t t
IOH = –100 µA 25°C 4.97 4.97
VOH High-level output
voltage
IOH =1mA
25°C 4.5 4.75 4.5 4.75 V
voltage
I
OH = –
1
mA
Full range 4.25 4.25
Llltt
VIC = 2.5 V, IOL = 100 µA 25°C 0.04 0.04
VOL Low-level output
voltage
VIC =25V
IOL = 500 µA
25°C 0.15 0.15 V
voltage
V
IC =
2
.
5
V
,
I
OL =
500
µ
A
Full range 0.5 0.5
Large
-
signal
V25V
R10k
25°C 8 12 8 12
AVD
Large signal
differential voltage VIC = 2.5 V,
VO=1Vto4V
R
L =
10
k
Full range 5 5 V/mV
VD
amplification
VO
=
1
V
to
4
V
RL = 1 M25°C 1000 1000
ri(d) Differential input
resistance 25°C1012 1012
ri(c) Common-mode input
resistance 25°C1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz 25°C 8 8 pF
zoClosed-loop output
impedance f = 100 kHz, AV = 10 25°C 130 130
CMRR
Common-mode V
IC
= 0 to 4.5 V, V
O
= 2.5 V, 25°C 70 90 70 90
dB
CMRR
rejection ratio
IC ,O,
RS = 50 Full range 70 70
dB
kSVR
Supply-voltage
rejection ratio
V
DD
= 4.4 V to 8 V, 25°C 80 95 80 95
dB
k
SVR re
j
ec
ti
on ra
ti
o
(VDD/VIO)
DD ,
VIC = VDD/2, No load Full range 80 80
dB
IDD
Su
pp
ly current
VO=25V
No load
25°C 100 150 100 150
µA
I
DD
S
u
ppl
y
c
u
rrent
V
O =
2
.
5
V
,
No
load
Full range 175 175 µ
A
Full range is – 40°C to 85°C.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input of fset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
12 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS T
A
TLV2422C, TL V2422I
TLV2422AI UNIT
A
MIN TYP MAX
VO15Vto35V
RL10 k
25°C 0.01 0.02
SR Slew rate at unity gain
V
O =
1
.
5
V
t
o
3
.
5
V
,
CL
=
100
p
F
R
L =
10
k
,Full
0 008
V/µs
CL
=
100
F
range
0
.
008
V
Equivalent in
p
ut noise voltage
f = 10 Hz 25°C 100
nV/Hz
V
n
Eq
u
i
v
alent
inp
u
t
noise
v
oltage
f = 1 kHz 25°C 18 n
V/H
z
VN(PP)
Peak to
p
eak equivalent in
p
ut noise voltage
f = 0.1 Hz to 1 Hz 25°C 1.9
µV
V
N(PP)
Peak
-
to
-
peak
eq
u
i
v
alent
inp
u
t
noise
v
oltage
f = 0.1 Hz to 10 Hz 25°C 2.8 µ
V
InEquivalent input noise current 25°C 0.6 fAHz
THD+N
Total harmonic distortion
p
lus noise
VO = 1.5 V to 3.5 V,
f 1 kHz
AV = 1
25°C
0.24%
THD
+
N
Total
harmonic
distortion
pl
u
s
noise
f
=
1
kH
z,
RL = 10 kAV = 10
25°C
1.7%
Gain-bandwidth product f = 10 kHz,
CL = 100 pFRL =10 k,25°C 52 kHz
BOM Maximum output-swing bandwidth VO(PP) = 2 V,
RL = 10 k,AV = 1,
CL = 100 pF25°C 5.3 kHz
AV
=–
1,
To 0 1%
85
t
Settling time
AV
=
1
,
Step = 1.5 V to 3.5 V,
To
0
.
1%
25
°
C
8
.
5
µs
t
s
Settling
time
,
RL = 10 k,
To 0 01%
25°C
15 5
µ
s
L
CL = 100 pF
To
0
.
01%
15
.
5
φmPhase margin at unity gain
RL=10k‡,
CL= 100
p
F
25°C66°
Gain margin
R
L =
10
k
,
C
L =
100
pF
25°C11 dB
Full range for the C version is 0°C to 70°C. Full range for the I version is –40°C to 85°C.
Referenced to 2.5 V
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
13
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
electrical characteristics at specified free-air temperature, VDD = 5 V (unless otherwise noted)
PARAMETER TEST CONDITIONS T
A
TLV2422Q,
TLV2422M TLV2422AQ,
TLV2422AM UNIT
A
MIN TYP MAX MIN TYP MAX
VIO
In
p
ut offset voltage
25°C 300 2000 300 950
µV
V
IO
Inp
u
t
offset
v
oltage
Full range 2500 1800 µ
V
αVIO
Temperature
coefficient of in
p
ut
Full range
2
2
µV/
°
C
αVIO coe
ffi
c
i
en
t
o
f
i
npu
t
offset voltage
F
u
ll
range
2
2
µ
V/°C
Input offset voltage
long-term drift (see
Note 4)
VIC = 0,
VO = 0, VDD± = ±2.5 V,
RS = 50 25°C 0.003 0.003 µV/mo
IIO
In
p
ut offset current
25°C 0.5 0.5 p
A
I
IO
Inp
u
t
offset
c
u
rrent
Full range 150 150
pA
IIB
In
p
ut bias current
25°C 1 1 p
A
I
IB
Inp
u
t
bias
c
u
rrent
Full range 300 300
pA
VICR
Common-mode input
|VIO|5mV
RS=50
25°C0
to
4.5
–0.25
to
4.75
0
to
4.5
–0.25
to
4.75
V
V
ICR voltage range
|V
IO
|
5
mV
,
R
S =
50
Full range 0
to
4.2
0
to
4.2
V
Hi h l l t t
IOH = –100 µA 25°C 4.97 4.97
VOH High-level output
voltage
IOH =1mA
25°C 4.75 4.75 V
voltage
I
OH = –
1
mA
Full range 4.5 4.5
Llltt
VIC = 2.5 V, IOL = 100 µA 25°C 0.04 0.04
VOL Low-level output
voltage
VIC =25V
IOL = 500 µA
25°C 0.15 0.15 V
voltage
V
IC =
2
.
5
V
,
I
OL =
500
µ
A
Full range 0.5 0.5
Large
-
signal
V25V
RL10 k
25°C 8 12 8 12
AVD
Large signal
differential voltage VIC = 2.5 V,
VO=1Vto4V
R
L =
10
k
Full range 3 3 V/mV
VD
amplification
VO
=
1
V
to
4
V
RL = 1 M25°C 1000 1000
ri(d) Differential input
resistance 25°C1012 1012
ri(c) Common-mode input
resistance 25°C1012 1012
ci(c) Common-mode input
capacitance f = 10 kHz 25°C 8 8 pF
zoClosed-loop output
impedance f = 100 kHz, AV = 10 25°C 130 130
CMRR
Common-mode V
IC
= V
ICR
min, V
O
= 2.5 V, 25°C 70 90 70 90
dB
CMRR
rejection ratio
IC ICR ,O,
RS = 50 Full range 70 70
dB
kSVR
Supply-voltage
rejection ratio
V
DD
= 4.4 V to 8 V, 25°C 80 95 80 95
dB
k
SVR re
j
ec
ti
on ra
ti
o
(VDD/VIO)
DD ,
VIC = VDD/2, No load Full range 80 80
dB
IDD
Su
pp
ly current
VO=25V
No load
25°C 100 150 100 150
µA
I
DD
S
u
ppl
y
c
u
rrent
V
O =
2
.
5
V
,
No
load
Full range 175 175 µ
A
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 2.5 V
NOTE 4: Typical values are based on the input of fset voltage shift observed through 500 hours of operating life test at TA = 150°C extrapolated
to TA = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
14 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
operating characteristics at specified free-air temperature, VDD = 5 V
PARAMETER TEST CONDITIONS TA
TLV2422Q,
TLV2422M,
TLV2422AQ,
TLV2422AM UNIT
MIN TYP MAX
VO15Vto35V
RL10 k
25°C 0.01 0.02
SR Slew rate at unity gain
V
O =
1
.
5
V
t
o
3
.
5
V
,
CL
=
100
p
F
R
L =
10
k
,Full
0 008
V/µs
CL
=
100
F
range
0
.
008
V
Equivalent in
p
ut noise voltage
f = 10 Hz 25°C 100
nV/Hz
V
n
Eq
u
i
v
alent
inp
u
t
noise
v
oltage
f = 1 kHz 25°C 18 n
V/H
z
VN(PP)
Peak to
p
eak equivalent in
p
ut noise voltage
f = 0.1 Hz to 1 Hz 25°C 1.9
µV
V
N(PP)
Peak
-
to
-
peak
eq
u
i
v
alent
inp
u
t
noise
v
oltage
f = 0.1 Hz to 10 Hz 25°C 2.8 µ
V
InEquivalent input noise current 25°C 0.6 fAHz
THD+N
Total harmonic distortion
p
lus noise
VO = 1.5 V to 3.5 V,
f 1 kHz
AV = 1
25
°
C
0.24%
THD
+
N
Total
harmonic
distortion
pl
u
s
noise
f
=
1
kH
z,
RL = 10 kAV = 10
25°C
1.7%
Gain-bandwidth product f = 10 kHz,
CL = 100 pFRL =10 k,25°C 52 kHz
BOM Maximum output-swing bandwidth VO(PP) = 2 V,
RL = 10 k,AV = 1,
CL = 100 pF25°C 5.3 kHz
AV
=–
1,
To 0 1%
85
t
Settling time
AV
=
1
,
Step = 1.5 V to 3.5 V,
To
0
.
1%
25
°
C
8
.
5
µs
t
s
Settling
time
,
RL = 10 k,
To 0 01%
25°C
15 5
µ
s
L
CL = 100 pF
To
0
.
01%
15
.
5
φmPhase margin at unity gain
RL=10k‡,
CL= 100
p
F
25°C66°
Gain margin
R
L =
10
k
,
C
L =
100
pF
25°C11 dB
Full range is –40°C to 125°C for Q level part, –55°C to 125°C for M level part.
Referenced to 2.5 V
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
15
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Table of Graphs
FIGURE
VIO
In
p
ut offset voltage
Distribution 2,3
V
IO
Inp
u
t
offset
v
oltage
vs Common-mode input voltage
,
4,5
αVIO Temperature coefficient Distribution 6,7
IIB/IIO Input bias and input offset currents vs Free-air temperature 8
VOH High-level output voltage vs High-level output current 9,11
VOL Low-level output voltage vs Low-level output current 10,12
VO(PP) Maximum peak-to-peak output voltage vs Frequency 13
IOS
Short circuit out
p
ut current
vs Supply voltage 14
I
OS
Short
-
circ
u
it
o
u
tp
u
t
c
u
rrent
yg
vs Free-air temperature 15
VID Differential input voltage vs Output voltage 16,17
Differential gain vs Load resistance 18
AVD
Large signal differential voltage am
p
lification
vs Frequency 19,20
A
VD
Large
-
signal
differential
v
oltage
amplification
qy
vs Free-air temperature
,
21,22
zoOutput impedance vs Frequency 23,24
CMRR
Common mode rejection ratio
vs Frequency 25
CMRR
Common
-
mode
rejection
ratio
qy
vs Free-air temperature 26
kSVR
Su
pp
ly voltage rejection ratio
vs Frequency 27,28
k
SVR
S
u
ppl
y-v
oltage
rejection
ratio
qy
vs Free-air temperature
,
29
IDD Supply current vs Supply voltage 30
SR
Slew rate
vs Load capacitance 31
SR
Sle
w
rate
vs Free-air temperature 32
VOInverting large-signal pulse response 33,34
VOVoltage-follower large-signal pulse response 35,36
VOInverting small-signal pulse response 37,38
VOVoltage-follower small-signal pulse response 39,40
VnEquivalent input noise voltage vs Frequency 41, 42
Noise voltage (referred to input) Over a 10-second period 43
THD + N Total harmonic distortion plus noise vs Frequency 44,45
Gain bandwidth
p
roduct
vs Supply voltage 46
Gain
-
band
w
idth
prod
u
ct
yg
vs Free-air temperature 47
φ
Phase margin
vs Frequency 19,20
φ
m
Phase
margin
qy
vs Load capacitance
,
48
Gain margin vs Load capacitance 49
B1Unity-gain bandwidth vs Load capacitance 50
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
16 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 2
DISTRIBUTION OF TLV2422
INPUT OFFSET VOLTAGE
Percentage of Amplifiers – %
16
14
12
10
8
6
4
2
0–0.4 VIO – Input Offset Voltage – mV
452 Amplifiers from 1 W afer Lot
18
–0.3
VDD = 3 V
RL = 10 k
TA = 25°C
–0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Figure 3
454 Amplifiers from 1 W afer Lot
DISTRIBUTION OF TLV2422
INPUT OFFSET VOLTAGE
Percentage of Amplifiers – %
20
15
10
5
0
VDD = 5 V
RL = 10 k
TA = 25°C
–0.4 VIO – Input Offset Voltage – mV
–0.3 –0.2 –0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
Figure 4
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
–0.5
2
1
0
–1
–2 0 0.5 1 2.5 3
VIC – Common-Mode Input Voltage – V
2
1.5 VDD = 3 V
VIO – Input Offset Voltage – mV
0.5
–0.5
–1.5
1.5
Figure 5
VDD = 5 V
INPUT OFFSET VOLTAGE
vs
COMMON-MODE INPUT VOLTAGE
2
1
0
–1
–2
1.5
0.5
–0.5
–1.5
–0.5 0 0.5 1 2.5 5
VIC – Common-Mode Input Voltage – V
21.5 3 4.543.5
VIO – Input Offset Voltage – mV
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
17
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 6
10
5
0–4 –3 –2 –1 0 1
15
20
25
234
32 Amplifiers From 1 Wafer Lot
VDD = ± 1.5 V
TA = 25°C to 125°C
Percentage of Amplifiers – %
DISTRIBUTION OF TLV2422 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
αVIO – Temperature Coefficient µV/°C
Figure 7
10
5
0–4 –3 –2 –1 0 1
15
20
25
234
32 Amplifiers From 1 W afer Lot
VDD = ± 2.5 V
TA = 25°C to 125°C
Percentage of Amplifiers – %
DISTRIBUTION OF TLV2422 INPUT OFFSET
VOLTAGE TEMPERATURE COEFFICIENT
αVIO – Temperature Coefficient µV/°C
Figure 8
INPUT BIAS AND INPUT OFFSET CURRENTS
vs
FREE-AIR TEMPERATURE
–55
200
120
80
40
0–40 0 25 85 125
TA – Free-Air Temperature – °C
70
IIB
160
IIO
VDD = ±2.5 V
IIB – Input Bias and Input Offset Currents – pAand IIO
Figure 9
VOH– High-Level Output Voltage – V
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
0
3
2
1
036 91215
IOH – High-Level Output Current – mA
TA = 85°C
VDD = 3 V
2.5
1.5
0.5
TA = 125°C
TA = 0°C
TA = 25°C
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
18 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 10
VOL– Low-Level Output Voltage – V
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
0
1.6
1
0.4
012 3 4 5
IOL – Low-Level Output Current – mA
TA = 85°C
VDD = 3 V
1.2
0.8
0.2
TA = 125°C
TA = –40°C
TA = 25°C
0.6
1.4
Figure 11
HIGH-LEVEL OUTPUT VOLTAGE
vs
HIGH-LEVEL OUTPUT CURRENT
0
5
2
0816243240
IOH – High-Level Output Current – mA
4
1
3
412202836
TA = 85°C
TA = 125°C
TA = –40°C
TA = 25°C
VDD = 5 V
VOH– High-Level Output Voltage – V
Figure 12
LOW-LEVEL OUTPUT VOLTAGE
vs
LOW-LEVEL OUTPUT CURRENT
0
1
0.4
012 3 4 5
IOL – Low-Level Output Current – mA
TA = 85°C
VDD = 5 V
1.2
0.8
0.2
TA = 125°C
TA = –40°C
TA = 25°C
0.6
VOH– High-Level Output Voltage – V
Figure 13
MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE
vs
FREQUENCY
VDD = 5 V RL = 10 k
TA = 25°C
4
1
5
3
0
102103104106
f – Frequency – Hz
VO(PP) – Maximum Peak-to-Peak Output Voltage – V
2
105
VDD = 3 V
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
19
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 14
IOS– Short-Circuit Output Current – mA
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE
2
20
–5
–20
–30 34567
VDD – Supply Voltage – V
10
–10
–25
–15
15
VO = VDD/2
VIC = VDD/2
TA = 25°C
30
0
5
25
8910
Figure 15
SHORT-CIRCUIT OUTPUT CURRENT
vs
FREE-AIR TEMPERATURE
–55
2
–4
–8 0 70 125
0
–6
–2
–40 25 85
VDD = 5 V
8
6
4
VID = –100 mV
VID = 100 mV
TA – Free-Air Temperature – °C
IOS– Short-Circuit Output Current – mA
Figure 16
VID – Differential Input Voltage –
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
0
0
–600
–1000 123
–200
–800
–400
0.5 1.5 2.5
600
400
200
VO – Output Voltage – V
1000
800
µV
VDD = 3 V
RL = 10 k
TA = 25°C
Figure 17
012345
VDD = 5 V
RL = 10 k
TA = 25°C
VID – Differential Input Voltage –
0
–600
–1000
–200
–800
–400
600
400
200
1000
800
µV
VO – Output Voltage – V
DIFFERENTIAL INPUT VOLTAGE
vs
OUTPUT VOLTAGE
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
20 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Differential Gain – V/mV
DIFFERENTIAL GAIN
vs
LOAD RESISTANCE
10
10
11000
100
100
10000
1000
VID = 5 V
RL – Load Resistance – k
VID = 3 V
Figure 18
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
50
30
10
–50
f – Frequency – Hz
40
20
0
AVD– Large-Signal Differential
104105
Voltage Amplification – dB
–45
–90
m
φ– Phase Margin – °
VDD = 3 V
RL = 10 k
CL = 100 pF
106
–10
–30
–20
–40
103
180
45
0
90
135
GAIN
PHASE
Figure 19
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
21
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
LARGE-SIGNAL DIFFERENTIAL VOLTAGE
AMPLIFICATION AND PHASE MARGIN
vs
FREQUENCY
60
40
20
–40
f – Frequency – Hz
50
30
10
AVD– Large-Signal Differential
103104
Voltage Amplification – dB
m
φ– Phase Margin – °
105
0
–20
–10
–30
106
–45
–90
180
45
0
90
135
GAIN
PHASE
VDD = 5 V
RL = 10 k
CL = 100 pF
Figure 20
Figure 21
TA – Free-Air Temperature – °C
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
–75
10
1
100
–50
10000
1000
VDD = 3 V
RL = 10 k
–25 0 25 50 75 100 125
AVD– Differential Voltage Amplication – V/mV
RL = 1 M
Figure 22
TA – Free-Air Temperature – °C
DIFFERENTIAL VOLTAGE AMPLIFICATION
vs
FREE-AIR TEMPERATURE
–75
10
1
100
–50
10000
1000
VDD = 5 V
RL = 10 k
–25 0 25 50 75 100 125
AVD– Differential Voltage Amplication – V/mV
RL = 1 M
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
22 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 23
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
100
10
1
f – Frequency – Hz
102103105
VDD = 3 V
TA = 25°C
104
AV = 10
AV = 1
AV = 100
zo– Output Impedance –
Figure 24
OUTPUT IMPEDANCE
vs
FREQUENCY
1000
100
10
1
f – Frequency – Hz
102103105
VDD = 5 V
TA = 25°C
104
AV = 10
AV = 1
AV = 100
zo– Output Impedance –
Figure 25
80
40
0
f – Frequency – Hz
100
60
20
CMRR – Common-Mode Rejection Ratio – dB
102103106
TA = 25°C
104105
VDD = 3 V
VDD = 5 V
COMMON-MODE REJECTION RATIO
vs
FREQUENCY
Figure 26
CMRR – Common-Mode Rejection Ratio – dB
COMMON-MODE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
–55
91
90
88
86
84 –40 25 70 85 125
TA – Free-Air Temperature – °C
89
87
85
0
94
93
92
VDD = 3 V
VDD = 5 V
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
23
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 27
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
80
40
0
f – Frequency – Hz
120
60
20
101103106
104105
K
100
102
VDD = 3 V
TA = 25°C
– Supply-Voltage Rejection Ratio – dB
SVR
KSVR+
KSVR–
Figure 28
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREQUENCY
80
40
0
f – Frequency – Hz
120
60
20
101103106
104105
K
100
102
VDD = 5 V
TA = 25°C
– Supply-Voltage Rejection Ratio – dB
SVR
KSVR+
KSVR–
Figure 29
SUPPLY-VOLTAGE REJECTION RATIO
vs
FREE-AIR TEMPERATURE
–55
94
92
90 –40 25 70 85 125
TA – Free-Air Temperature – °C
0
100
98
96
VDD = 2.7 V to 8 V
k – Supply-Voltage Rejection Ratio – dB
SVR
Figure 30
IDD– Supply Current –
SUPPLY CURRENT
vs
SUPPLY VOLTAGE
0
100
40
0246
80
20
60
135
160
140
120
VDD – Supply Voltage – V
VO = VDD/2
No Load
79810
TA = 25°C
TA = 85°C
TA = –40°C
µA
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
24 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 31
SLEW RATE
vs
LOAD CAPACITANCE
0.02
0.01
0
CL – Load Capacitance – pF
0.03
0.015
0.005
102103106
VDD = 3 V
AV = –1
TA = 25°C
104105
SR+
SR–
0.025
SR – Slew Rate – V/µs
Figure 32
SLEW RATE
vs
FREE-AIR TEMPERATURE
–55
15
10
5–40 25 70 85 125
TA – Free-Air Temperature – °C
0
30
25
20
VDD = 5 V
RL = 10 k
CL = 100 pF
AV = 1
SR – Slew Rate – V/ms
Figure 33
INVERTING LARGE SIGNAL
PULSE RESPONSE
–1000 –600 –200
t – Time – µs
200 600 10000
– Output Voltage – mVVO
VDD = 3 V
RL = 10 k
CL = 100 pF
AV = –1
TA = 25°C
2000
1500
500
–500
–2000
1000
0
–1000
–1500
Figure 34
4
3
1
–1
–4
2
0
–2
–3
INVERTING LARGE SIGNAL
PULSE RESPONSE
–1000 –600 –200
t – Time – µs
200 600 10000
– Output Voltage – mVVO
VDD = 5 V
RL = 10 k
CL = 100 pF
AV = –1
TA = 25°C
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
25
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 35
VOLTAGE-FOLLOWER LARGE SIGNAL
PULSE RESPONSE
–1000
2000
1500
500
–500
–2000 –600 –200
t – Time – µs
1000
0
–1000
200 600 10000
–1500
– Output Voltage – mVVO
VDD = 3 V
RL = 10 k
CL = 100 pF
AV = 1
TA = 25°C
Figure 36
VOLTAGE-FOLLOWER LARGE SIGNAL
PULSE RESPONSE
–1000
2000
1500
500
–500
–2000 –600 –200
t – Time – µs
1000
0
–1000
200 600 10000
–1500
– Output Voltage – mVVO
VDD = 5 V
RL = 10 k
CL = 100 pF
AV = 1
TA = 25°C
Figure 37
INVERTING SMALL SIGNAL
PULSE RESPONSE
–5
400
300
100
–100
–400 –3 –1
t – Time – µs
200
0
–200
1350
–300
– Output Voltage – mVVO
VDD = 3 V
RL = 10 k
CL = 100 pF
AV = –1
TA = 25°C
24
–4 –2
Figure 38
INVERTING SMALL SIGNAL
PULSE RESPONSE
VDD = 5 V
RL = 10 k
CL = 100 pF
AV = –1
TA = 25°C
400
300
100
–100
–400
200
0
–200
–300
– Output Voltage – mVVO
–5 –3 –1
t – Time – µs
13502 4
–4 –2
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
26 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 39
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
–5
400
300
100
–100
–400 –2 –1
t – Time – µs
200
0
–200
0
–300
– Output Voltage – mVVO
VDD = 3 V
RL = 10 k
CL = 100 pF
AV = 1
TA = 25°C
–4 –3 3412 5
Figure 40
VOLTAGE-FOLLOWER SMALL-SIGNAL
PULSE RESPONSE
–5
400
300
100
–100
–400 –2 –1
t – Time – µs
200
0
–200
0
–300
– Output Voltage – mVVO
VDD = 5 V
RL = 10 k
CL = 100 pF
AV = 1
TA = 25°C
–4 –3 3412 5
Figure 41
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
120
80
40
0
f – Frequency – Hz
10 102104
VDD = 3 V
TA = 25°C
103
60
20
Hz– Equivalent Input Noise Voltage – nV/Vn
100
Figure 42
EQUIVALENT INPUT NOISE VOLTAGE
vs
FREQUENCY
f – Frequency – Hz
10 102104
VDD = 5 V
TA = 25°C
103
Hz– Equivalent Input Noise Voltage – nV/Vn
120
80
40
0
60
20
100
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
27
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
0246810
t – Time – s
VDD = 5 V
f = 0.1 Hz to 10 Hz
TA = 25°C
400
200
–200
–600
–1200
0
–400
–800
–1000
Noise Voltage – nV
Over a 10 Second Period
800
600
1000
13579
NOISE VOLTAGE OVER A 10-SECOND PERIOD
Figure 43
Figure 44
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
1
0.01
f – Frequency – Hz
100
10
0.1
101102105
VDD = 3 V
RL = 10 k
TA = 25°C
103104
THD +N – Total Harmonic Distortion Plus Noise – %
AV = 10
AV = 1
Figure 45
TOTAL HARMONIC DISTORTION PLUS NOISE
vs
FREQUENCY
10
0.1
0.001
f – Frequency – Hz
100
1
0.01
101102105
VDD = 5 V
RL = 10 k
TA = 25°C
103104
THD +N – Total Harmonic Distortion Plus Noise – %
AV = 10
AV = 1
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
28 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
Figure 46
GAIN-BANDWIDTH PRODUCT
vs
SUPPLY VOLTAGE
3
80
60
40
20 4 678
VDD – Supply Voltage – V
70
50
30
Gain-Bandwidth Product – kHz
RL = 10 k
CL = 100 pF
f = 10 kHz
TA = 25°C
5
Figure 47
GAIN-BANDWIDTH PRODUCT
vs
FREE-AIR TEMPERATURE
–50
80
60
40
20
0–25 25 50 75 125
TA – Free-Air Temperature – °C
50
30
10
Gain-Bandwidth Product – kHz
VDD = 5 V
RL = 10 k
CL = 100 pF
f = 10 kHz
0 100
70
Figure 48
PHASE MARGIN
vs
LOAD CAPACITANCE
80
40
0
CL – Load Capacitance – pF
120
60
20
10 102105
103104
100
m
φ– Phase Margin – °
Rnull = 1000
Rnull = 100
Rnull = 0
RL = 10 k
TA = 25°CRnull = 500
Rnull = 200
Figure 49
GAIN MARGIN
vs
LOAD CAPACITANCE
40
20
0
CL – Load Capacitance – pF
30
10
10 102105
103104
Gain Margin – dB
Rnull = 1000
Rnull = 100
Rnull = 0
RL = 10 k
TA = 25°CRnull = 500
Rnull = 200
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
29
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
TYPICAL CHARACTERISTICS
UNITY-GAIN BANDWIDTH
vs
LOAD CAPACITANCE
40
20
0
CL – Load Capacitance – pF
60
30
10
10 102105
103104
50
B1 – Unity-Gain Bandwidth – kHz
Figure 50
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
30 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
D (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
14 PIN SHOWN
4040047/D 10/96
0.228 (5,80)
0.244 (6,20)
0.069 (1,75) MAX 0.010 (0,25)
0.004 (0,10)
1
14
0.014 (0,35)
0.020 (0,51)
A
0.157 (4,00)
0.150 (3,81)
7
8
0.044 (1,12)
0.016 (0,40)
Seating Plane
0.010 (0,25)
PINS **
0.008 (0,20) NOM
A MIN
A MAX
DIM
Gage Plane
0.189
(4,80)
(5,00)
0.197
8
(8,55)
(8,75)
0.337
14
0.344
(9,80)
16
0.394
(10,00)
0.386
0.004 (0,10)
M
0.010 (0,25)
0.050 (1,27)
0°–8°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion, not to exceed 0.006 (0,15).
D. Falls within JEDEC MS-012
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
31
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
FK (S-CQCC-N**) LEADLESS CERAMIC CHIP CARRIER
4040140/D 10/96
28 TERMINAL SHOWN
B
0.358
(9,09)
MAX
(11,63)
0.560
(14,22)
0.560
0.458
0.858
(21,8)
1.063
(27,0)
(14,22)
A
NO. OF
MINMAX
0.358
0.660
0.761
0.458
0.342
(8,69)
MIN
(11,23)
(16,26)
0.640
0.739
0.442
(9,09)
(11,63)
(16,76)
0.962
1.165
(23,83)
0.938
(28,99)
1.141
(24,43)
(29,59)
(19,32)(18,78)
**
20
28
52
44
68
84
0.020 (0,51)
TERMINALS
0.080 (2,03)
0.064 (1,63)
(7,80)
0.307
(10,31)
0.406
(12,58)
0.495
(12,58)
0.495
(21,6)
0.850
(26,6)
1.047
0.045 (1,14)
0.045 (1,14)
0.035 (0,89)
0.035 (0,89)
0.010 (0,25)
12
1314151618 17
11
10
8
9
7
5
432
0.020 (0,51)
0.010 (0,25)
6
12826 27
19
21
B SQ
A SQ 22
23
24
25
20
0.055 (1,40)
0.045 (1,14)
0.028 (0,71)
0.022 (0,54)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a metal lid.
D. The terminals are gold plated.
E. Falls within JEDEC MS-004
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
32 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
JG (R-GDIP-T8) CERAMIC DUAL-IN-LINE PACKAGE
0.310 (7,87)
0.290 (7,37)
0.014 (0,36)
0.008 (0,20)
Seating Plane
4040107/C 08/96
5
4
0.065 (1,65)
0.045 (1,14)
8
1
0.020 (0,51) MIN
0.400 (10,20)
0.355 (9,00)
0.015 (0,38)
0.023 (0,58)
0.063 (1,60)
0.015 (0,38)
0.200 (5,08) MAX
0.130 (3,30) MIN
0.245 (6,22)
0.280 (7,11)
0.100 (2,54)
0°–15°
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
E. Falls within MIL-STD-1835 GDIP1-T8
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
33
POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
PW (R-PDSO-G**) PLASTIC SMALL-OUTLINE PACKAGE
4040064/E 08/96
14 PIN SHOWN
Seating Plane
1,20 MAX
1
A
7
14
0,19
4,50
4,30
8
6,20
6,60
0,30
0,75
0,50
0,25
Gage Plane
0,15 NOM
0,65 M
0,10
0°–8°
0,10
PINS **
A MIN
A MAX
DIM
2,90
3,10
8
4,90
5,10
14
6,60
6,404,90
5,10
16
7,70
20
7,90
24
9,60
9,80
28
0,15
0,05
NOTES: A. All linear dimensions are in millimeters.
B. This drawing is subject to change without notice.
C. Body dimensions do not include mold flash or protrusion not to exceed 0,15.
D. Falls within JEDEC MO-153
TLV2422, TLV2422A
Advanced LinCMOS RAIL-TO-RAIL OUTPUT
WIDE-INPUT-VOLTAGE MICROPOWER DUAL OPERATIONAL AMPLIFIERS
SLOS199B – SEPTEMBER1997 – REVISED SEPTEMBER 1999
34 POST OFFICE BOX 655303 DALLAS, TEXAS 75265
MECHANICAL DATA
U (S-GDFP-F10) CERAMIC DUAL FLATPACK
4040179/B 03/95
1.000 (25,40)
0.080 (2,03)
0.250 (6,35)
0.250 (6,35)
0.019 (0,48)
0.025 (0,64)
0.300 (7,62)
0.045 (1,14)
0.006 (0,15)
0.050 (1,27)
0.015 (0,38)
0.005 (0,13)
0.026 (0,66)
0.004 (0,10)
0.246 (6,10)
0.750 (19,05)
110
56
0.250 (6,35)
0.350 (8,89)0.350 (8,89)
0.250 (6,35)
0.050 (1,27)
NOTES: A. All linear dimensions are in inches (millimeters).
B. This drawing is subject to change without notice.
C. This package can be hermetically sealed with a ceramic lid using glass frit.
D. Index point is provided on cap for terminal identification only.
E. Falls within MIL STD 1835 GDFP1-F10 and JEDEC MO-092AA
IMPORTANT NOTICE
Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue
any product or service without notice, and advise customers to obtain the latest version of relevant information
to verify, before placing orders, that information being relied on is current and complete. All products are sold
subject to the terms and conditions of sale supplied at the time of order acknowledgement, including those
pertaining to warranty, patent infringement, and limitation of liability.
TI warrants performance of its semiconductor products to the specifications applicable at the time of sale in
accordance with TI’s standard warranty. Testing and other quality control techniques are utilized to the extent
TI deems necessary to support this warranty . Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
CERTAIN APPLICATIONS USING SEMICONDUCTOR PRODUCTS MAY INVOLVE POTENTIAL RISKS OF
DEATH, PERSONAL INJURY, OR SEVERE PROPERTY OR ENVIRONMENTAL DAMAGE (“CRITICAL
APPLICATIONS”). TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, AUTHORIZED, OR
WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT DEVICES OR SYSTEMS OR OTHER
CRITICAL APPLICA TIONS. INCLUSION OF TI PRODUCTS IN SUCH APPLICATIONS IS UNDERSTOOD TO
BE FULLY AT THE CUSTOMER’S RISK.
In order to minimize risks associated with the customer’s applications, adequate design and operating
safeguards must be provided by the customer to minimize inherent or procedural hazards.
TI assumes no liability for applications assistance or customer product design. TI does not warrant or represent
that any license, either express or implied, is granted under any patent right, copyright, mask work right, or other
intellectual property right of TI covering or relating to any combination, machine, or process in which such
semiconductor products or services might be or are used. TI’s publication of information regarding any third
party’s products or services does not constitute TI’s approval, warranty or endorsement thereof.
Copyright 1999, Texas Instruments Incorporated